1
|
Adomako K, Asamoah L. Effects of naked neck and frizzle genes on growth and egg-laying performance of chickens in the tropics in an era of climate change. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02853-3. [PMID: 39856460 DOI: 10.1007/s00484-025-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/06/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
In regions characterized by tropical and subtropical climates, the elevated ambient temperatures exert adverse effects on both broiler and laying chickens, impacting their growth and egg production performance. To mitigate the challenges posed by heat stress, genetic strategies aimed at reducing feather coverage have gained prominence in hot climate areas. Among these approaches, the naked neck (Na) and frizzle (F) genes have emerged as particularly noteworthy. The Na and F genes play a pivotal role in facilitating heat dissipation and temperature regulation. By decreasing feather insulation, these genes enable efficient heat dissipation through exposed areas of the chickens' bodies. This reduction in feather coverage leads to elevated body surface temperature, which, in turn, enhances the capacity for heat loss and contributes to overall body temperature reduction. A substantial body of literature underscores the well-established positive impacts of the naked neck and frizzle genes on growth and egg-laying performance. As a result, these genes hold significant potential for integration into broiler and layer production systems, especially in regions characterized by high tropical temperatures. In the context of broiler farming under challenging heat conditions, the Na and F genes have demonstrated favorable effects on crucial parameters such as feed conversion ratio, body weight gain, disease resistance, and carcass attributes. Likewise, layers exposed to elevated temperatures exhibit enhanced egg production, eggshell quality, fertility, hatchability, and resistance to diseases when these genes are incorporated. Given that the prevalence of the naked neck and frizzle genes is primarily observed in indigenous chicken populations, it becomes imperative to prioritize measures for their conservation due to their exceptional performance in heat-stressed environments. To unlock the full genetic potential of exotic poultry reared in hot and humid conditions, the integration of the Na and F genes is a strongly recommended strategy.
Collapse
Affiliation(s)
- K Adomako
- Department of Animal Science, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - L Asamoah
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Ncho CM, Berdos JI, Gupta V, Rahman A, Mekonnen KT, Bakhsh A. Abiotic stressors in poultry production: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2025; 109:30-50. [PMID: 39132861 PMCID: PMC11731476 DOI: 10.1111/jpn.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
In modern animal husbandry, stress can be viewed as an automatic response triggered by exposure to adverse environmental conditions. This response can range from mild discomfort to severe consequences, including mortality. The poultry industry, which significantly contributes to human nutrition, is not exempt from this issue. Although genetic selection has been employed for several decades to enhance production output, it has also resulted in poor stress resilience. Stress is manifested through a series of physiological reactions, such as the identification of the stressful stimulus, activation of the sympathetic nervous system and the adrenal medulla, and subsequent hormonal cascades. While brief periods of stress can be tolerated, prolonged exposure can have more severe consequences. For instance, extreme fluctuations in environmental temperature can lead to the accumulation of reactive oxygen species, impairment of reproductive performance, and reduced immunity. In addition, excessive noise in poultry slaughterhouses has been linked to altered bird behaviour and decreased production efficiency. Mechanical vibrations have also been shown to negatively impact the meat quality of broilers during transport as well as the egg quality and hatchability in hatcheries. Lastly, egg production is heavily influenced by light intensity and regimens, and inadequate light management can result in deficiencies, including visual anomalies, skeletal deformities, and circulatory problems. Although there is a growing body of evidence demonstrating the impact of environmental stressors on poultry physiology, there is a disproportionate representation of stressors in research. Recent studies have been focused on chronic heat stress, reflecting the current interest of the scientific community in climate change. Therefore, this review aims to highlight the major abiotic stressors in poultry production and elucidate their underlying mechanisms, addressing the need for a more comprehensive understanding of stress in diverse environmental contexts.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Environmental Systems ScienceInstitute of Agricultural Sciences, ETH ZürichZürichSwitzerland
| | - Janine I. Berdos
- Department of Animal ScienceCollege of Agriculture and Forestry, Tarlac Agricultural UniversityMalacampaTarlacPhilippines
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Four Program)Gyeongsang National UniversityJinju‐siRepublic of Korea
| | - Attaur Rahman
- Department of Medicine and TherapeuticsFaculty of Medicine, The Chinese University of Hong KongHong KongChina
| | - Kefala Taye Mekonnen
- Department of Animal ScienceCollege of Agriculture and Environmental Science, Arsi UniversityAsellaOromiaEthiopia
| | - Allah Bakhsh
- Atta‐ur‐Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan
| |
Collapse
|
3
|
Duhra D, Beaulieu D, Shynkaruk T, Dorigam JCDP, Whelan R, Schwean-Lardner K. Maximizing the performance of heat stressed broilers by optimizing starch-to-lipid ratios, digestible amino acid, and metabolizable energy during the finisher phase. Poult Sci 2024; 104:104729. [PMID: 39756107 PMCID: PMC11757756 DOI: 10.1016/j.psj.2024.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025] Open
Abstract
This study investigated the effects and interactions among diets formulated to have high starch-to-lipid ratios (S:L), amino acid density [indicated as % digestible lysine (DigLys)], and AME on growth performance and carcass characteristics of heat stressed broilers. A {3,3} simplex lattice design was used to assess relative effects and generate predictive models. Three basal finisher diets were formulated to have the highest S:L ratio (Basal A; 20:1), DigLys (Basal B; 1.30 %), or AME (Basal C; 3300 kcal/kg). These diets were blended at levels of 0.00, 0.33, 0.67, or 1.00 to produce 10 finisher diets. The mixtures allowed varying S:L ratios (4:1 to 20:1), DigLys (0.80 to 1.30 %), and AME (2800 to 3300 kcal/kg) content of diets. sex-separated (n = 6,864) Ross 708 broiler chicks were placed in separate rooms (5 male and 4 female) with a pen stocking density of 31 kg/m2. Sex-specific starter and grower diets were fed until d 21. The rooms were maintained at 21°C during d 21 to 27. From d 27 to 32, the birds were subjected to cyclical heat stress, with 12 h of 31°C followed by 12 h of 21°C, with a minimum RH of 50 %. BW and feed residual weights were measured on d 21, 27, and 32, then used to calculate BW gain (BWG) and feed-to-gain ratios (F:G). On d 33, 20 birds per treatment per sex were slaughtered to determine carcass characteristics. Under these conditions (d 21 to 32), maximum male BWG of 926 g was estimated to occur when fed a diet comprised of 42.2 % Basal B and 57.8 % Basal C with a S:L ratio of 4:1, AME of 3089 kcal/kg, and 1.01 % DigLys. Diet did not influence female BWG during heat stress. Although a practical recommendation was not possible for optimal breast meat yield (% live weight) and F:G ratios, the results, indicated that increasing DigLys would improve these parameters under heat stress.
Collapse
Affiliation(s)
- Dilshaan Duhra
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Denise Beaulieu
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Tory Shynkaruk
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Essen 63457, Germany
| | - Karen Schwean-Lardner
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
4
|
Wang Z, Wang X, Zhu C, Xiong Y, Yan K, He S. Effects of Bacillus subtilis and Lactobacillus on growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora in heat-stressed broilers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2705-2713. [PMID: 39302453 DOI: 10.1007/s00484-024-02780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study investigates the effect of dietary Bacillus subtilis and Lactobacillus on the growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora of broilers under heat stress (HS) and provides a theoretical basis for the application of probiotic additives to alleviate the stress of poultry under HS. A total of 200 Cobb broilers were randomly assigned to four replicates of 10 broilers in each of the five groups. The growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora of broilers were detected on the 28th, 35th, and 42nd days, respectively. Results revealed that HS can affect the growth performance and serum biochemical indexes of broilers, lowered the number of intestinal bifidobacteria and Lactobacillus, and increase the number of Escherichia coli in comparsion to the CON group. Compared with the HS group, the ADFI of HS broilers in the BS group and the combined group significantly increased (P < 0.05) at 22-28 days of age, and the serum calcium and phosphorus increased (P < 0.05) significantly at 42 days of age. Meanwhile, the number of Lactobacillus in the BS group and LAB group increased significantly at 42 days of age (P < 0.05). The number of Escherichia coli in the LAB group and combination group decreased significantly at 35 days of age (P < 0.01). The present study revealed that the addition of Bacillus subtilis or Lactobacillus to diets increased ADFI, increased probiotic counts, and lowered Escherichia coli counts in HS broilers, while probiotics alone work well.
Collapse
Affiliation(s)
- Zekai Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Xifeng Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Chengcai Zhu
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Kang Yan
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China.
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China.
| |
Collapse
|
5
|
Wang S, Wang X, Gao Y, Fu Y, Han Z, Xu P, Tang J. Protocatechuic acid attenuates intestinal inflammation through TLR4/p38 and NF-κB pathways in heat-stressed broilers. Poult Sci 2024; 103:104424. [PMID: 39427417 PMCID: PMC11536018 DOI: 10.1016/j.psj.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Protocatechuic acid (PCA), a major active component found in Eucommia ulmoides Oliver, is involved in regulating oxidative stress and inflammation. Heat stress poses a significant threat to the poultry industry. In this study, we investigated the protective effect of PCA on intestinal homeostasis under heat stress. Our results indicated that PCA improved the growth performance of broilers during heat stress. Furthermore, PCA mitigated jejunal damage and attenuated the upregulation of inflammatory mediators, including TNF-α, IL-6, and IL-1β, triggered by heat stress. Concurrently, it restored the activity of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Furthermore, PCA maintained the jejunum function by increasing the levels of ZO-1, Claudin-1, and Occludin. Mechanistically, PCA inhibited the activation of TLR4/p38 MAPK and NF-κB pathways, thereby regulating the imbalance in oxidative stress and inflammatory responses caused by heat stress.
Collapse
Affiliation(s)
- Shuaiyong Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Yu Gao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Yuchen Fu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Jianli Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Jiang H, Shi L, Deng T, Hou G, Xun W. Effects of cardamonin on the growth performance, intestinal barrier function and intestinal microbiota of Danzhou chickens under heat stress. Poult Sci 2024; 103:104362. [PMID: 39426223 PMCID: PMC11536001 DOI: 10.1016/j.psj.2024.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
The aim of this study was to investigate the effects of cardamonin (CDN) on the growth performance, intestinal mucosal barrier function and intestinal microbiota of Danzhou chickens under heat stress. A total of 200 one-day-old female Danzhou chickens were randomly divided into 5 groups. The daytime temperature of heat stress (HS) was set at 36 ± 2°C, and the nighttime temperature was kept the same as in the control (CON) group at 25 ± 2°C. The formal experiment lasted for 21 d. The CON and HS groups were fed a basal diet, whereas the L-CDN, M-CDN, and H-CDN groups received a basal diet supplemented with 50, 100, and 200 mg/kg CDN, respectively. Compared with the HS group, the CDN group presented a significantly greater average daily gain (ADG) (P < 0.001) but a significantly lower feed-to-gain ratio (F/G) (P = 0.007). CDN supplementation also increased the villus height (VH) and the ratio of the villus height to crypt depth (V/C) (P < 0.001) and reduced intestinal permeability by increasing expression of the ZO-1 (P < 0.001), Occludin (P < 0.001), and Claudin-1 (P = 0.034) proteins and decreasing the content of D-lactic acid (D-LA) and the activity of diamine oxidase (DAO) in serum (P < 0.001). Additionally, CDN reduced the levels of the intestinal mucosal inflammatory factors (IL-1β (P = 0.031), IL-6 (P = 0.003), and TNF-α (P = 0.014)) while upregulating IL-10 (P < 0.001). Furthermore, it increased the total antioxidant capacity (T-AOC) (P = 0.004) and catalase (CAT) activity (P < 0.001) and reduced the malondialdehyde (MDA) content (P = 0.017), effectively reducing intestinal oxidative stress and inflammatory reactions. Expression of the Nrf2 pathway-related proteins Nrf2 (P = 0.012), HO-1 (P = 0.008), and NQO1 (P = 0.003) was also increased by CDN. Moreover, feeding CDN increased the proportion of beneficial bacteria such as Firmicutes and Bacteroidetes but decreased the proportion of harmful bacteria such as Proteobacteria, thus protecting the intestinal barrier. In summary, 200 mg/kg CDN in the diet improved growth performance, enhanced intestinal barrier function and improved intestinal flora disorders in heat stress-induced Danzhou chickens, which may be related to the Nrf2/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Haoran Jiang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Tanjie Deng
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Wenjuan Xun
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
7
|
Yang H, Liu Y, Cao G, Liu J, Xiao S, Xiao P, Tao Y, Gao H. Effects of lycopene on the growth performance, meat quality, cecal metagenome, and hepatic untargeted metabolome in heat stressed broilers. Poult Sci 2024; 103:104299. [PMID: 39316987 PMCID: PMC11462354 DOI: 10.1016/j.psj.2024.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
The occurrence of heat stress in poultry houses is inevitable and leads to oxidative stress in the birds. Lycopene, a natural hydrocarbon carotenoid, possesses potent antioxidant properties. This study aimed to investigate the impact of lycopene on growth performance, meat quality, cecal microflora, and liver metabolome in broilers subjected to heat stress. A total of 480 yellow feather broilers were randomly allocated into 4 treatment groups: birds fed standard diet (Con), birds fed standard diet and supplemented with lycopene (Lyc), birds fed standard diet and subjected to heat stress (Hs), and birds fed with lycopene and subjected to heat stress (Hs-Lyc). As compared with the normal temperature groups, Hs decreased the average daily gain (ADG) of birds during d 1 to 28, lowered the pH value either in breast meat or thigh meat, increased the L* value of breast meat, and decreased the a* value of thigh meat. In comparison with non-Lyc feeding birds, Lyc supplement elevated the ADG during d 1 to 56, increased the pH of breast meat, decrease the L* and b* values of thigh meat, simultaneously increase the a* value of thigh meat. The L* of breast meat and pH of thigh meat exhibited significant differences under Hs-Lyc treatment. Lyc-treated birds exhibited higher elasticity, gumminess, and resilience in breast meat than those in non-Lyc feeding birds. The cecal metagenome analysis indicated that Hs-Lyc treatment increased the abundance of Phocaeicola salanitronis and Prevotella sp.CAG:1058, Bacteroides sp.An269, and Bacteroides sp.An19 at the species level compared with other treatments. The hepatic untargeted metabolome analysis showed that administration of Lyc upregulated 20 metabolites and downregulated 60 metabolites compared to the Con birds. Futhermore, the Hs-Lyc treatment upregulated 34 metabolites and downregulated 45 metabolites compared to the Hs birds. The correlation between the metagenome and metabolome showed that Lyc supplementation induced significant alterations in the citrate cycle, metabolism of butanoate, glycolysis/gluconeogenesis, glyoxylate and dicarboxylate, alanine, aspartate, and glutamate compared with standard supplement. In contrast, Hs-Lyc treatment induced alterations in the citrate cycle, metabolism of pyruvate, glyoxylate, and dicarboxylate, glycolysis/gluconeogenesis, arginine, proline, alanine, aspartate, and glutamate compared with the standard supplement of heat-challenged broilers. In summary, dietary Lyc supplementation promoted the growth performance, changed the meat quality, modulated the cecal metagenome and hepatic metabolome in heat-stressed broilers.
Collapse
Affiliation(s)
- Huijuan Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China; Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China; College of Standardisation, China Jiliang Universtiy, Hangzhou, Zhejiang, 310058, China
| | - Yingsen Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang Universtiy, Hangzhou, Zhejiang, 310058, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China
| | - Shiping Xiao
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunan, 650201, China
| | - Ye Tao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Hong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China.
| |
Collapse
|
8
|
Khalfi B, Buyse K, Khan I, Carvalho CL, Soster P, Antonissen G, Tuyttens FAM. Cooled Multifunctional Platforms to Alleviate Heat Stress in Broiler Chickens: Effects on Performance, Carcass and Meat Quality Traits. Animals (Basel) 2024; 14:3448. [PMID: 39682411 DOI: 10.3390/ani14233448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Platforms have been shown to be a suitable environmental enrichment for broiler chickens, accommodating their motivation to roost and rest at an elevated position. In order to increase the animal welfare benefits, we designed prototype elevated platforms with additional functionalities: a local cooling system, a sheltered area underneath the platform and collection trays underneath the platform that prevent manure from falling on the litter. This study assessed the effects of these multifunctional platforms during thermoneutral and heat stress conditions on two key determinants of their commercial uptake potential, namely production performance, carcass and meat quality. In each of the three experimental rounds, 560 one-day-old male chicks (Ross 308) were equally assigned to four pens and reared for 43 days. The barn was divided into two compartments (thermoneutral and heat), each containing one enriched and one barren pen. To induce heat stress, the ambient temperature was increased to 32 °C during 6 h/day when the birds were 29-40 d old. The platforms did not compromise broiler performance. Heat stress negatively impacted body weight (p = 0.008), average daily gain (p = 0.009) and feed intake (p < 0.001) and improved the feed conversion ratio (p = 0.026). The platforms reduced mortality rate under heat stress but not under thermoneutral conditions (heat × enrichment p = 0.025), likely due to the cooling functionality. No major effects of the platforms on overall carcass and meat quality were observed, except for a reduction in the risk of breast muscle myopathies (p < 0.001), which could enhance consumer acceptance and improve profitability. To conclude, the use of cooled platforms under the conditions of this experiment mitigated the adverse effects of heat stress on mortality, reduced the risk of breast muscle myopathies and did not compromise any other production or carcass and meat quality parameters.
Collapse
Affiliation(s)
- Bassem Khalfi
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Kobe Buyse
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), 9090 Melle, Belgium
| | - Imad Khan
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Camila Lopes Carvalho
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Patricia Soster
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Poulpharm, Prins Albertlaan 112, 8870 Izegem, Belgium
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Frank André Maurice Tuyttens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), 9090 Melle, Belgium
| |
Collapse
|
9
|
Hashemitabar SH, Hosseinian SA. The comparative effects of probiotics on growth, antioxidant indices and intestinal histomorphology of broilers under heat stress condition. Sci Rep 2024; 14:23471. [PMID: 39379397 PMCID: PMC11461668 DOI: 10.1038/s41598-024-66301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 10/10/2024] Open
Abstract
Heat stress adversely affects both the productivity and well-being of chickens. Probiotics offer beneficial impacts on the health and growth performance of broilers. The current study investigates the influence of administering of Bacillus (including B. subtilis, B. licheniformis, B. coagulans, and B. indicus) and Lactobacillus (consisting of L. acidophilus, L. plantarum, L. buchneri, and L. rhamnosus) probiotics via drinking water, either singular or combined, on various aspects including growth performance, oxidative stress markers, carcass characteristics, fecal microbial composition, intestinal structure, and intestinal pH in broilers exposed to chronic heat stress. A total of 150 one-day-old broiler chicks were divided into 5 groups: (1) NC, negative control; (2) HS, birds exposed to chronic heat stress; (3) HSpBacil, exposed to chronic heat stress and received Bacillus probiotic; (4) HSpLAB, subjected to chronic heat stress and provided with Lactobacillus probiotic; (5) HSpMix, subjected to chronic heat stress and administered a combined probiotic from Bacillus and Lactobacillus. The HS group exhibited significantly reduced levels of growth performance, carcass traits, and notably affected oxidative stress indices, as well as intestinal pH and histomorphology in the birds. Additionally, the administered probiotics led to increased weight of lymphoid organs, enhanced body weight gain, and improved intestinal histomorphology. Furthermore, the probiotics decreased malondialdehyde and increased total antioxidant capacity in broilers. In conclusion, Bacillus and Lactobacillus probiotics, as single or multi-species, particularly Lactobacillus and combined probiotic, demonstrated potential in alleviating the adverse effects of heat stress in broiler chickens. They could serve as beneficial feed additives and growth enhancers.
Collapse
Affiliation(s)
- Seyed Hamidreza Hashemitabar
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Seyedeh Alemeh Hosseinian
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran.
| |
Collapse
|
10
|
Zaboli G, Rahmatnejad E. Embryonic thermal manipulation and post-hatch dietary guanidinoacetic acid supplementation alleviated chronic heat stress impact on broiler chickens. J Therm Biol 2024; 125:103976. [PMID: 39303460 DOI: 10.1016/j.jtherbio.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
The study investigated the effects of embryonic thermal manipulation (TM) and post-hatch guanidinoacetic acid (GAA) supplementation on male broiler chickens exposed to chronic heat stress (HS). Ross 308 eggs (n = 710) were randomly assigned to control (37.8 °C, 56% RH) or TM (39.5 °C, 65% RH for 12 h/day from embryonic day 7-16) treatments. After hatching, chicks were further assigned to four dietary treatments (n = 12 birds/pen, 5 replicates/treatment): control, control with 1.2 g/kg GAA supplementation (CS), TM, and TM with 1.2 g/kg GAA supplementation (TMS). All birds were subjected to chronic HS (32-36 °C and 55% RH for 6 h/day) from day 28-42. Embryonic TM treatment decreased hatchability, hatching weight (HW), and facial temperature (FT). During the pre-HS period (days 1-28), no significant differences in feed conversion ratio (FCR) and mortality were observed, although the TM group exhibited the lowest body weight gain (BWG). Following HS exposure (days 29-42), the TMS group displayed significantly higher BWG than the control and CS groups. The TM and TMS groups also demonstrated significantly lower FCR and mortality rates during this period. Across the entire period (days 1-42), BWG was significantly higher in the TMS group compared to other groups. Furthermore, TM and TMS treatments were associated with lower mortality rates, improved FCR, better European Performance Efficiency Index (EPEI), and reduced abdominal fat deposition. The experimental treatments did not significantly affect intestinal morphology or most blood parameters, except triiodothyronine (T3), thyroxine (T4), and uric acid. Plasma concentrations of T3, T4, and uric acid were significantly lower in the TM and TMS groups compared to the control and CS treatments. The findings suggest that a combined strategy of embryonic TM and post-hatch dietary GAA supplementation may not only alleviate the detrimental effects of HS but also promote beneficial physiological responses in broiler chickens.
Collapse
Affiliation(s)
- Gholamreza Zaboli
- Department of Ostrich, Special Domestic Animal Institute, Research Institute of Zabol, Zabol, Iran.
| | - Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| |
Collapse
|
11
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of growth performance, heat resistance and carcass traits in four poultry genotypes reared in hot-humid tropical environment. J Anim Physiol Anim Nutr (Berl) 2024; 108:1510-1523. [PMID: 38825837 DOI: 10.1111/jpn.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
This study investigated the impact of heat stress on growth and carcass traits in four poultry genotypes-Giriraja, Country chicken, Naked Neck and Kadaknath reared in a hot and humid tropical environment. Birds from all genotypes had ad libitum access to feed and water while being challenged with consistently high environmental temperatures in the experimental shed. Daily diurnal meteorological data were recorded inside and outside the shed. The study specifically examined growth variables and carcass characteristics. Significant differences (p < 0.01) were observed in body weight and average daily gain at various intervals. Notably, feed intake showed significant differences (p < 0.01) across weeks, indicating interactions between genotypes and time intervals. The feed conversion ratio (FCR) varied significantly (p < 0.01), with the highest FCR recorded in the Kadaknath breed. Livability percentages were similar across groups, except for Giriraja, which had significantly lower livability (p < 0.01). Carcass traits, including dressing, wings, feathers and giblet percentages, showed significant differences among genotypes (p < 0.01). Hepatic mRNA expression of growth-related genes revealed numerical variations, with Naked Neck displaying the highest (p < 0.05) fold change in IGF-1 expression compared to other genotypes. The study recognized in the Naked Neck genotype to possess higher resilience in maintaining homoeostasis and uncompromised growth under heat stress, providing valuable insights for sustainable poultry farming in challenging environmental conditions.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Oluwagbenga EM, Bergman M, Ajuwon KM, Fraley GS. Sex differences in intestinal morphology and increase in diencephalic neuropeptide Y gene expression in female but not male Pekin ducks exposed to chronic heat stress. J Neuroendocrinol 2024:e13424. [PMID: 38960698 DOI: 10.1111/jne.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
The impact of heat stress (HS) on production is intricately linked with feed intake. We investigated the effects of HS on intestines and diencephalic genes in Pekin ducks. One hundred and sixty adult ducks were allocated to two treatment rooms. The control room was maintained at 22°C and the HS room at 35°C for the first 10 h of the day then reduced to 29.5°C. After 3 weeks, 10 hens and 5 drakes were euthanized from each room and jejunum and ileum collected for histology. Brains were collected for gene expression analysis using qRT-PCR. Intestinal morphology data were analyzed with two-way ANOVA and diencephalic gene data were analyzed with Kruskal-Wallis test. There was an increase in villi width in the ileum (p = .0136) and jejunum (p = .0019) of HS hens compared to controls. HS drakes showed a higher crypt depth (CD) in the jejunum (p = .0198) compared to controls. There was an increase in crypt goblet cells (GC) count in the ileum (p = .0169) of HS drakes compared to HS hens. There was higher villi GC count (p = .07) in the jejunum of HS drakes compared to controls. There was an increase in the crypt GC density (p = .0054) in the ileum, not jejunum, of HS drakes compared to HS hens. Further, there were no differences in the proopiomelanocortin gene expression in either sex but there was an increase in the expression of neuropeptide Y (NPY) gene in HS hens (p = .031) only and a decrease in the corticotropin releasing hormone gene in the HS drakes (p = .037) compared to controls. These data show that there are sex differences in the effect of HS on gut morphology while the upregulation in NPY gene may suggest a role in mediating response to chronic HS.
Collapse
Affiliation(s)
- E M Oluwagbenga
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - M Bergman
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - K M Ajuwon
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Yehia M, Alfonso-Avila AR, Prus JMA, Ouellet V, Alnahhas N. The potential of in ovo-fed amino acids to alleviate the effects of heat stress on broiler chickens: effect on performance, body temperature, and oxidative status during the finisher phase. Poult Sci 2024; 103:103821. [PMID: 38823160 PMCID: PMC11179241 DOI: 10.1016/j.psj.2024.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
The aim of the current study was to investigate the potential of in ovo-fed amino acids (AA) to reduce the effects of heat stress on finishing broiler chickens. To achieve this, a total of 1,400 fertile hatching eggs were randomly distributed into 5 groups (n = 280/group) and injected with one of the following in ovo treatments on embryonic day 18: 52 µL of sterile diluent/egg (CTRL), CTRL + 1.0 mg of L-Leucine (T1), CTRL + 0.45 mg of leucine + 1.15 mg of methionine (T2), CTRL + 3.0 mg of methionine + 2.0 mg of cysteine (T3), and CTRL + 0.40 mg of leucine + 1.60 mg of methionine + 1.60 mg of cysteine (T4). After hatch, chicks were allocated according to a complete randomized block design comprising 2 thermal conditions: thermoneutral (24°C, 45% RH) and heat stress (34°C, 55-60% RH) with 5 pens/group/condition. The cyclical heat stress regimen (10 h/d) was then applied from d 29 to d 34. Compared to the CTRL group, T3 and T4 exhibited a higher BW during the starter phase (P < 0.001). T4 also had a lower feed conversion ratio (FCR) than CTRL during this same phase (P = 0.03). During the grower phase, males of all treatment groups consistently exhibited higher BW compared to the CTRL group, which was not observed among female birds (PSex × TRT = 0.005). During the finisher phase, the in ovo treatment effect on performance was not significant. However, heat-stressed birds from treatment group T3 and T4 exhibited lower facial temperatures (Pday × TRT < 0.001) as well as lower plasma (Pcondition x TRT = 0.039) and liver (Pcondition x TRT < 0.001) malonaldehyde concentrations compared to the CTRL group. In conclusion, in ovo-fed AA have the potential to modulate the effects of heat stress on finishing broiler chickens by limiting its detrimental consequences, including increased body temperature and oxidative damage.
Collapse
Affiliation(s)
- Moustafa Yehia
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | | | | | - Véronique Ouellet
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | - Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe J2S 2M2, Quebec, Canada.
| |
Collapse
|
14
|
Eldiasty JG, Al-Sayed HMA, Farsi RM, Algothmi KM, Alatawi FS, AlGhabban AJ, Alnawwar WH, Alatawi AO, Hamdy HM. The beneficial impacts of nano-propolis liposomes as an anti-stressor agent on broiler chickens kept under cyclic heat stress. Poult Sci 2024; 103:103695. [PMID: 38626693 PMCID: PMC11036096 DOI: 10.1016/j.psj.2024.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024] Open
Abstract
This research assessed the impacts of dietary nano-propolis liposomes (NPRL) inclusion on the growth, blood biochemical components, immune function, and oxidative status of broilers exposed to cyclic heat stress (HS). Birds were fed with a basal diet supplemented with various levels of NPRL at 0 (HS), 100 (NPRL100), 250 (NPRL250) and 400 (NPRL400) mg/kg diets. Diets supplemented with NPRL significantly improved the growth indices and feed utilization, hemoglobin and red blood cells (P < 0.01). White blood cells, lymphocytes and monocytes were significantly decreased by NPRL inclusion (P < 0.001). Dietary supplementation of 250 or 400 mg of NPRL /kg reduced the pathogenic bacteria counts (Salmonella, E. coli and Enterococci) (P < 0.01). The birds fed diets with NPRL (400 mg/kg diet) significantly downregulated the mRNA IFNγ gene (p < 0.001), while both groups (NPRL100 and NPRL250) had similar results (P > 0.05). The iNOS gene was significantly decreased by the dietary NPRL inclusion in a dose-dependent manner. Birds in NRPL groups had inferior levels of the mRNA of interleukin-4 and tumor necrosis factor genes. The lysosome activity was significantly reduced by dietary 250 or 400 mg of NPRL inclusion (P < 0.001). Birds in NPRL250 and NPRL100 had greater IgG (P < 0.05) than the other groups. Regarding oxidative-related biomarkers, dietary NPRL inclusion decreased myeloperoxidase and malondialdehyde levels significantly compared to those with the HS group (P < 0.001). Broilers in the NPRL400 group had the lowest levels of total bilirubin and gamma-glutamyl transferase. NPRL250 had the lowest values of urea compared with other groups (P < 0.001). Dietary NPRL inclusion improved the broiler's hepatic and intestinal architecture exposed to cyclic heat stress. These results indicate that employing NPRL in the diets of stressed broilers can enhance heat resistance by enhancing blood metabolites and immunity, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jayda G Eldiasty
- Biology Department, University College of Haqel, University of Tabuk, Tabuk, Saudi Arabia.
| | - Hanan M A Al-Sayed
- Department of Food and Nutrition Science, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabi; Department of Food Science, Faculty of Agricultural, University of Ain Shams, Cairo, Egypt
| | - Reem M Farsi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud M Algothmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Immunology unit KFMC, King Abdulaziz University, Kingdom of Saudi Arabia
| | - Fatema S Alatawi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Areej J AlGhabban
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Asma O Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Haggag M Hamdy
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Helwan, Egypt
| |
Collapse
|
15
|
Gupta V, Ncho CM, Goel A, Jeong CM, Choi YH. In ovo feeding of α-ketoglutaric acid improves hepatic antioxidant-gene expression, plasma antioxidant activities and decreases body temperature without affecting broiler body weight under cyclic heat stress. Poult Sci 2024; 103:103749. [PMID: 38670054 PMCID: PMC11066556 DOI: 10.1016/j.psj.2024.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The broiler industry is adversely affected by the rise in global temperature. This study investigated the effects of in ovo feeding of α-ketoglutaric acid (AKG) on growth performance, organ weight, plasma metabolite, plasma oxidative stress, rectal temperature (RT), and hepatic mRNA expression of antioxidant-related genes in Arbor Acres broilers subjected to cyclic heat stress (HS). Three hundred fifty fertile eggs during incubation were divided into 5 groups according to AKG concentrations and temperature conditions. After dissolving AKG in distilled water at 0, 0.5, 1.0, and 1.5, 0% AKG was in ovo administered to 2 of the 5 groups whereas the remaining 3 groups received 0.5, 1.0, and 1.5%, respectively. From d 29 to 34 of age, 4 groups of birds received heat stress (HS) at 31°C ± 1°C for 6 h per day while the other group was kept at room temperature (21°C ± 1°C; NT). So, the 5 treatment groups were: 1) 0AKG-NT, where chicks hatched from eggs receiving 0% AKG were reared under thermoneutral conditions. 2) 0AKG-HS, where chicks hatched from eggs receiving 0% AKG were reared under cyclic HS conditions. 3) 0.5AKG-HS, where chicks hatched from eggs receiving 0.5% AKG were reared under cyclic HS conditions. 4) 1.0AKG-HS, where chicks hatched from eggs receiving 1.0% AKG were reared under cyclic HS conditions. 5) 1.5AKG-HS, where chicks hatched from eggs receiving 1.5% AKG were reared under cyclic HS conditions. HS significantly reduced body weight change (ΔBW %) and average daily gain (ADG) without affecting average daily feed intake (ADFI). Feed conversion ratio (FCR) was significantly increased (P = 0.003) in all HS-treated groups. A significant linear decrease in the final RT (P = 0.005) and a change in RT (P = 0.003) were detected with increasing AKG concentration. Total antioxidant capacity (P = 0.029) and antioxidant balance (P = 0.001) in plasma increased linearly with increasing AKG concentration whereas malondialdehyde concentrations were linearly decreased (P = 0.001). Hepatic gene expression of CAT (P = 0.026) and GPX1 (P = 0.001) were dose-dependently upregulated while nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, and heat shock protein (HSP)70 were linearly downregulated (P < 0.05). Hence, in ovo injection of AKG was effective in mitigating HS-induced oxidative stress without attenuating the adverse effects on broiler growth.
Collapse
Affiliation(s)
- Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
16
|
Mahmoud R, Salama B, Safhi FA, Pet I, Pet E, Ateya A. Assessing the Impacts of Different Levels of Nano-Selenium on Growth Performance, Serum Metabolites, and Gene Expression in Heat-Stressed Growing Quails. Vet Sci 2024; 11:228. [PMID: 38921975 PMCID: PMC11209059 DOI: 10.3390/vetsci11060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Nano-minerals are employed to enhance mineral bioavailability thus promoting the growth and well-being of animals. In recent times, nano-selenium (nano-Se) has garnered significant attention within the scientific community owing to its potential advantages in the context of poultry. This study was conducted to explore the impact of using variable levels of nano-Se on the growth performance, carcass characteristics, serum constituents, and gene expression in growing Japanese quails under both thermoneutral and heat stress conditions. A randomized experimental design was used in a 2 × 3 factorial, with 2 environmental conditions (thermoneutral and heat stress) and 3 nano-Se levels (0, 0.2, and 0.5 mg/kg of diet. The findings revealed that heat stress negatively affected the growth and feed utilization of quails; indicated by the poor BWG and FCR. Additionally, oxidative stress was aggravated under heat stress condition; indicated by increased lipids peroxidation and decreased antioxidant enzymes activities. The addition of nano-Se, especially at the level of 0.2 mg/kg of diet, significantly improved the performance of heat stressed quails and restored blood oxidative status. The expression profile of inflammatory and antioxidant markers was modulated by heat stress and/or 0.2 and 0.5 nano-Se in conjunction with environmental temperature in quail groups. In comparison to the control group, the heat stress-exposed quails' expression profiles of IL-2, IL-4, IL-6, and IL-8 showed a notable up-regulation. Significantly lower levels of the genes for IL-2, IL-4, IL-6, and IL-8 and higher levels of the genes for SOD and GPX as compared to the heat stress group demonstrated the ameliorative impact of 0.2 nano-Se. The expression profiles of IL-2, IL-4, IL-6, and IL-8 are dramatically elevated in quails exposed to 0.5 nano-Se when compared to the control group. SOD and GPX markers, on the other hand, were markedly down-regulated. It was concluded that nano-Se by low level in heat stressed growing quails provides the greatest performance and its supplementation can be considered as a protective management practice in Japanese quail diets to reduce the negative impact of heat stress.
Collapse
Affiliation(s)
- Rania Mahmoud
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Elena Pet
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, Calea Aradului no.119, 30064 Timisoara, Romania;
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
17
|
Gouda A, Al-Khalaifah H, Al-Nasser A, Kamel NN, Gabr S, Eid KMA. Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers. Animals (Basel) 2024; 14:1485. [PMID: 38791702 PMCID: PMC11117284 DOI: 10.3390/ani14101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is one of the stressors that negatively affect broiler chickens, leading to a reduction in production efficiency and profitability. This reduction affects the economy in general, especially in hot and semi-hot countries. Therefore, improving heat tolerance of broiler chicks is a key to sustained peak performance, especially under adverse environmental heat stress conditions. The present study investigated three early feed withdrawal regimes (FWD) as a potential mitigation for thermal stress exposure. A total of 240 unsexed one-day-old Cobb-500 chicks were randomly recruited to one of four experimental groups using a completely randomized design (10 birds × 6 replicates). The experimental groups included the control group with no feed withdrawal (control), while the other three groups were subjected to early feed withdrawal for either 24 h on the 5th day of age (FWD-24), 12 h on the 3rd and 5th day of age (FWD-12), or 8 h on the 3rd, 4th, and 5th day of age (FWD-8), respectively. Production performance was monitored throughout the experiment. Meanwhile, blood and liver samples were taken at the end of the experimental period to evaluate major physiological dynamic changes. Our findings demonstrated that under chronic heat stress conditions, FWD treatments significantly improved broilers' production performance and enhanced several physiological parameters compared with the control. Serum levels of thyroid hormones were elevated, whereas leptin hormone was decreased in FWD groups compared with the control. Moreover, serum total protein, globulin, and hemoglobin levels were higher, while total cholesterol and uric acid were lower in the FWD groups. Furthermore, FWD groups showed significantly higher antioxidant marker activity with a significantly lower lipid peroxidation level. Immunoglobulin levels, lysozyme, complement factor C3, and liver heat shock protein 70 (HSP70) concentration were also elevated in FWD compared with the control. Also, serum interleukin-1β (IL-1β) and interferon-gamma (IFN-γ) significantly increased with FWD. Based on our findings, early feed withdrawal can be applied as a promising non-invasive nutritional strategy for broilers reared under chronic heat stress conditions. Such a strategy promotes the alleviation of the deleterious effects of heat stress on broiler performance, immunity, and redox status, owing to the onset of physiological adaptation and the development of thermotolerance ability.
Collapse
Affiliation(s)
- Ahmed Gouda
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Hanan Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, Kuwait City 13109, Kuwait; (H.A.-K.); (A.A.-N.)
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, Kuwait City 13109, Kuwait; (H.A.-K.); (A.A.-N.)
| | - Nancy N. Kamel
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Sherin Gabr
- Department of Poultry Breeding Research, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza P.O. Box 12611, Egypt; (S.G.); (K.M.A.E.)
| | - Kamal M. A. Eid
- Department of Poultry Breeding Research, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza P.O. Box 12611, Egypt; (S.G.); (K.M.A.E.)
| |
Collapse
|
18
|
Mangan M, Siwek M. Strategies to combat heat stress in poultry production-A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:576-595. [PMID: 38152002 DOI: 10.1111/jpn.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The effects of heat stress (HS) caused by high temperatures continue to be a global concern in poultry production. Poultry birds are homoeothermic, however, modern-day chickens are highly susceptible to HS due to their inefficiency in dissipating heat from their body due to the lack of sweat glands. During HS, the heat load is higher than the chickens' ability to regulate it. This can disturb normal physiological functioning, affect metabolism and cause behavioural changes, respiratory alkalosis and immune dysregulation in birds. These adverse effects cause gut dysbiosis and, therefore, reduce nutrient absorption and energy metabolism. This consequently reduces production performances and causes economic losses. Several strategies have been explored to combat the effects of HS. These include environmentally controlled houses, provision of clean cold water, low stocking density, supplementation of appropriate feed additives, dual and restricted feeding regimes, early heat conditioning and genetic selection of poultry lines to produce heat-resistant birds. Despite all these efforts, HS still remains a challenge in the poultry sector. Therefore, there is a need to explore effective strategies to address this long-lasting problem. The most recent strategy to ameliorate HS in poultry is early perinatal programming using the in ovo technology. Such an approach seems particularly justified in broilers because chick embryo development (21 days) equals half of the chickens' posthatch lifespan (42 days). As such, this strategy is expected to be more efficient and cost-effective to mitigate the effects of HS on poultry and improve the performance and health of birds. Therefore, this review discusses the impact of HS on poultry, the advantages and limitations of the different strategies. Finally recommend a promising strategy that could be efficient in ameliorating the adverse effects of HS in poultry.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
19
|
Stelios V, Ilias G, Ioannis P, Christos A, Elias P, Paschalis F. Effect of three different insect larvae on growth performance and antioxidant activity of thigh, breast, and liver tissues of chickens reared under mild heat stress. Trop Anim Health Prod 2024; 56:80. [PMID: 38358592 PMCID: PMC10869369 DOI: 10.1007/s11250-024-03923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
This study investigated the potential of insect-based diets to mitigate heat stress impact on broiler chickens, focusing on growth performance and antioxidant stability. Four dietary groups were examined, including a control and three treated groups with Tenebrio molitor (TM), Hermetia illucens (HI), and Zophobas morio (ZM) larvae, respectively, at a 5% replacement ratio. Temperature and relative humidity of the poultry house were monitored. Under heat stress conditions, the HI-fed group consistently exhibited the highest body weight, demonstrating their remarkable growth-promoting potential. TM-fed broilers also displayed commendable growth compared to the control. Insect larvae inclusion in the diet improved feed intake during early growth stages, indicating their positive influence on nutrient utilization. Regarding antioxidant stability, malondialdehyde (MDA) levels in the liver, an oxidative stress and lipid peroxidation marker, were significantly lower in the TM-fed group, suggesting reduced oxidative stress. While the specific insect-based diet did not significantly affect MDA levels in thigh and breast tissues, variations in the total phenolic content (TPC) were observed across tissues, with HI larvae significantly increasing it in the breast. However, the total antioxidant capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) levels did not differ significantly among dietary groups in the examined tissues. Results suggest that insect-based diets enhance broiler growth and potentially reduce oxidative stress, particularly in the liver. Dietary presence of bioactive compounds may contribute to these benefits. Further research is required to fully elucidate the mechanisms underlying these findings. Insect-based diets seem to offer promise as feed additives in addressing the multifaceted challenges of oxidative stress and enhancing broiler health and resilience under heat stress conditions.
Collapse
Affiliation(s)
- Vasilopoulos Stelios
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece
| | - Giannenas Ilias
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece.
| | - Panitsidis Ioannis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece
| | - Athanassiou Christos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446, Volos, N. Ionia, Greece
| | - Papadopoulos Elias
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Fortomaris Paschalis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
20
|
Elsayed MM, El-Basrey YFH, El-Baz AH, Dowidar HA, Shami A, Al-Saeed FA, Alsamghan A, Salem HM, Alhazmi WA, El-Tarabily KA, Khedr MHE. Ecological prevalence, genetic diversity, and multidrug resistance of Salmonella enteritidis recovered from broiler and layer chicken farms. Poult Sci 2024; 103:103320. [PMID: 38215504 PMCID: PMC10825688 DOI: 10.1016/j.psj.2023.103320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024] Open
Abstract
Salmonella is a significant foodborne pathogen that has a significant impact on public health, and different strains of multidrug resistance (MDR) have been identified in this genus. This study used a combination of phenotypic and genotypic approaches to identify distinct Salmonella species collected from poultry broiler and layer farms, and antibiotic sensitivity testing was performed on these species. A total of 56 Salmonella isolates were serotyped, and phenotypic antibiotic resistance was determined for each strain. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) method was also used to provide a genotypic description, from which a dendrogram was constructed and the most likely phylogenetic relationships were applied. Salmonella isolates were detected in 20 (17%) out of 117 samples collected from small-scale broiler flocks. Salmonella isolates were classified as MDR strains after showing tolerance to 4 antibiotics, but no resistance to cloxacillin, streptomycin, vancomycin, or netilmicin was observed. From a genotypic perspective, these strains lack dfrD, parC, and blasfo-1 resistant genes, while harboring blactx-M, blaDHA-L, qnrA, qnrB, qnrS, gyrA, ermA, ermB, ermC, ermTR, mefA, msrA, tet A, tet B, tet L, tet M resistance genes. The genotyping results obtained with ERIC-PCR allowed isolates to be classified based on the source of recovery. It was determined that Salmonella strains displayed MDR, and many genes associated with them. Additionally, the ERIC-PCR procedure aided in the generation of clusters with biological significance. Extensive research on Salmonella serotypes is warranted, along with the implementation of long-term surveillance programs to monitor MDR Salmonella serotypes in avian-derived foods.
Collapse
Affiliation(s)
- Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yara F H El-Basrey
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amira Hussein El-Baz
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Heba A Dowidar
- Department of Medical Laboratory, Higher Institute of Technology for Applied Health Science, Badr Institute for Science and Technology, Cairo, Egypt
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Awad Alsamghan
- Family and Community Medicine Department, College of Medicine, King Khalid University, Abha 61413, Saudi Arabia
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa Ahmed Alhazmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Mariam H E Khedr
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
21
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Stress-Related Gene Expression in Liver Tissues from Laying Hens Housed in Conventional Cage and Cage-Free Systems in the Tropics. Vet Med Int 2024; 2024:4107326. [PMID: 38250291 PMCID: PMC10799707 DOI: 10.1155/2024/4107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Global egg production is mainly based on cage systems, which have been associated with negative effects on the welfare of birds. Stress factors in restrictive production systems can lead to changes in gene transcription and protein synthesis, ultimately impacting the quality of poultry products. The liver serves various metabolic functions, such as glycogen storage, and plays a crucial role in animals' adaptation to environmental changes. Consequently, both internal and external conditions can influence liver functions. The aim of this study was to evaluate the gene expression of AGP, CRP, NOX4, SOD1, CAT, GPX1, SREBF1, and FXR in the liver of laying hens under two different production systems. Liver tissues from Hy-Line Brown hens housed in conventional cage and cage-free egg production systems at 60 and 80 weeks of production were used. mRNA transcript levels were determined by qPCR using the relative quantification method and ACTB as the reference gene. AGP, SOD1, and SREBF1 gene expressions were significantly higher in the conventional cage group at the 60 weeks of production. Furthermore, the mRNA levels of transcripts related to oxidative stress and lipid metabolism were higher in the group of laying hens housed in conventional cages compared to those in cage-free systems. These results suggest differential gene expression of genes related to oxidative stress in liver tissues from hens housed in conventional cages compared to cage-free systems. The conditions of the egg production system can impact the gene expression of oxidative stress and lipid synthesis genes, potentially leading to changes in the metabolism and performance of hens, including egg quality.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| |
Collapse
|
22
|
Malila Y, Uengwetwanit T, Sanpinit P, Songyou W, Srimarut Y, Kunhareang S. Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds. Anim Biosci 2024; 37:61-73. [PMID: 37905317 PMCID: PMC10766454 DOI: 10.5713/ab.23.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). METHODS Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35°C±1°C for 6 h, followed by 26°C±1°C for 18 h) for 20 days. Control group was raised under a constant temperature of 26°C±1°C. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermalstressed groups were compared within the same breeds. RESULTS Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. CONCLUSION The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Wipakarn Songyou
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Sajee Kunhareang
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002,
Thailand
| |
Collapse
|
23
|
Hatipoglu D, Senturk G, Aydin SS, Kirar N, Top S, Demircioglu İ. Rye-grass-derived probiotics alleviate heat stress effects on broiler growth, health, and gut microbiota. J Therm Biol 2024; 119:103771. [PMID: 38134538 DOI: 10.1016/j.jtherbio.2023.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The primary aim of this study was to assess the impact of liquid (S-LAB) and lyophilized (L-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria on broilers experiencing heat stress. The study involved 240 broiler chicks divided into six groups. These groups included a negative control (Control) with broilers raised at a normal temperature (24 °C) on a basal diet, and positive control groups (S-LAB and L-LAB) with broilers under normal temperature receiving a lactic acid bacteria supplement (0.5 mL/L) from rye-grass in their drinking water. The heat stress group (HS) comprised broilers exposed to cyclic heat stress (5-7 h per day at 34-36 °C) on a basal diet, while the heat stress and probiotic groups (S-LAB/HS and L-LAB/HS) consisted of broilers under heat stress supplemented with the rye-grass-derived lactic acid bacteria. Results indicated that heat stress without supplementation (HS) led to reduced body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increased feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels. Heat stress also negatively impacted cecal microbiota, decreasing lactic acid bacteria (LABC) while increasing E. coli and coliform bacteria (CBC) counts. Probiotic supplements (S-LAB/HS and L-LAB/HS) mitigated these effects by enhancing broilers' resilience to heat stress. In conclusion, rye grass-derived S-LAB and L-LAB probiotics can effectively support broiler chickens under heat stress, promoting growth, liver function, hormonal balance, gut health, and cecal microbiome ecology. These benefits are likely mediated through improved gut health.
Collapse
Affiliation(s)
- Durmus Hatipoglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Physiology, 42130, Konya, Turkey.
| | - Goktug Senturk
- Aksaray University, Faculty of Veterinary Medicine, Department of Physiology, 68100, Aksaray, Turkey
| | - Sadik Serkan Aydin
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Nurcan Kirar
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Sermin Top
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - İsmail Demircioglu
- Harran University, Faculty of Veterinary Medicine, Department of Anatomy, 63200, Sanliurfa, Turkey
| |
Collapse
|
24
|
Abo Ghanima MM, Aljahdali N, Abuljadayel DA, Shafi ME, Qadhi A, Abd El-Hack ME, Mohamed LA. Effects of dietary supplementation of Amla, Chicory and Leek extracts on growth performance, immunity and blood biochemical parameters of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2022.2156932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mahmoud M. Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nesreen Aljahdali
- Department of Biological Science, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalia A. Abuljadayel
- Department of Biological Sciences, Faculty of Science, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Qadhi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Laila A. Mohamed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Fries-Craft K, Graham D, Hargis BM, Bobeck EA. Evaluating a Salmonella Typhimurium, Eimeria maxima, and Clostridium perfringens coinfection necrotic enteritis model in broiler chickens: repeatability, dosing, and immune outcomes. Poult Sci 2023; 102:103018. [PMID: 37651774 PMCID: PMC10480656 DOI: 10.1016/j.psj.2023.103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Coccidiosis and necrotic enteritis negatively impact poultry production, making challenge model repeatability important for evaluating mitigation strategies. Study objectives were: 1) evaluate Salmonella Typhimurium-Eimeria maxima-Clostridium perfringens necrotic enteritis coinfection model repeatability and 2) investigate E. maxima dose and early S. Typhimurium challenge on immune responses. Three trials using Ross 308 chicks assigned to 12 cages/trial (7 chicks/cage) in wire-floor brooders were completed. Trials 1 and 2 determined E. maxima dose for necrotic enteritis challenge in trial 3. Chicks in trials 1 and 2 were inoculated with 0 (control), 5, 15, or 25,000 sporulated E. maxima M6 oocysts on d 14 and jejunal lesion scores evaluated on d 20. In trial 3, chicks were assigned to control or necrotic enteritis challenge (42 chicks/group). Necrotic enteritis challenge chicks were inoculated with 1 × 105 colony forming units (CFU) S. Typhimurium on d 1, 15,000 E. maxima oocysts on d 14, and 1 × 108 CFU C. perfringens on d 19 and 20 with lesion scoring on d 22. Bird and feeder weights were recorded throughout each trial. Peripheral blood mononuclear cells (PBMC) were isolated from 1 chick/cage at baseline (all trials), 4 chicks/dose (trials 1 and 2) or 8 chicks/challenge (trial 3) 24 h post-inoculation (pi) with E. maxima for immunometabolic assays and immune cell profiling. Data were analyzed by mixed procedure (SAS 9.4) with challenge and timepoint fixed effects (P ≤ 0.05, trends 0.05 ≤ P ≤ 0.01). Inoculating chicks with 15,000 E. maxima oocysts increased d 14 to 20 FCR 79 points (trials 1 and 2; P = 0.009) vs. unchallenged chicks and achieved a target lesion score of 2. While C. perfringens challenge reduced trial 3 performance, average lesion scores were <1. Salmonella inoculation on d 1 tended to increase PBMC ATP production 41.6% 24 hpi with E. maxima vs. chicks challenged with E. maxima only (P = 0.06). These results provide insight for future model optimization and considerations regarding S. Typhimurium's effect on E. maxima immune response timelines.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - D Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
26
|
Quintana-Ospina GA, Alfaro-Wisaquillo MC, Oviedo-Rondon EO, Ruiz-Ramirez JR, Bernal-Arango LC, Martinez-Bernal GD. Effect of Environmental and Farm-Associated Factors on Live Performance Parameters of Broilers Raised under Commercial Tropical Conditions. Animals (Basel) 2023; 13:3312. [PMID: 37958066 PMCID: PMC10649212 DOI: 10.3390/ani13213312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Although temperature, relative humidity, and farm-associated factors are known to affect broiler live performance, data about the impact of these variables under commercial operations are still scarce. This study aimed to evaluate the effect of temperature, relative humidity, a thermal humidity index, management, and farm-associated factors on BW, BW gain, feed conversion ratio (FCR), and mortality of broilers raised to 35 d under commercial tropical conditions. The data analyzed included performance records of Ross 308 AP broiler flocks placed between 2018 and 2020. Environmental monitoring information was obtained from electronic sensors that captured data hourly from 80 flocks in 29 farms. Farm-associated factors were gathered using a survey of 86 farms. Three data analyses were conducted in parallel. Correlation analyses, one-way ANOVA, and machine learning techniques were employed. Results indicated that BW and BW gain were reduced, and FCR worsened (p < 0.001) up to 21 d when chickens were mainly exposed to temperatures 2.5 °C lower than the recommended optimums for each age period. At the same time, mortality at 28 and 35 d increased. In conclusion, all farm-associated factors affected chicken live performance. Variable importance analysis indicated that performance results at 14 and 21 d were significant to predict BW at 35. At the same time, sex, distance between the hatchery and farm, and farm altitude accounted for the most significant contributions from the farm-associated factors.
Collapse
Affiliation(s)
- Gustavo A. Quintana-Ospina
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | - Maria C. Alfaro-Wisaquillo
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
| | - Edgar O. Oviedo-Rondon
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
| | - Juan R. Ruiz-Ramirez
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | - Luis C. Bernal-Arango
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | | |
Collapse
|
27
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
28
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
29
|
Kikusato M, Toyomizu M. Mechanisms underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J Poult Sci 2023; 60:2023021. [PMID: 37560151 PMCID: PMC10406517 DOI: 10.2141/jpsa.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Poultry meat and egg production benefits from a smaller carbon footprint, as well as feed and water consumption, per unit of product, than other protein sources. Therefore, maintaining a sustainable production of poultry meat is important to meet the increasing global demand for this staple. Heat stress experienced during the summer season or in tropical/subtropical areas negatively affects the productivity and health of chickens. Crucially, its impact is predicted to grow with the acceleration of global warming. Heat stress affects the physiology, metabolism, and immune response of chickens, causing electrolyte imbalance, oxidative stress, endocrine disorders, inflammation, and immunosuppression. These changes do not occur independently, pointing to a systemic mechanism. Recently, intestinal homeostasis has been identified as an important contributor to nutrient absorption and the progression of systemic inflammation. Its mechanism of action is thought to involve neuroendocrine signaling, antioxidant response, the presence of oxidants in the diet, and microbiota composition. The present review focuses on the effect of heat stress on intestinal dysfunction in chickens and the underlying causative factors. Understanding these mechanisms will direct the design of strategies to mitigate the negative effect of heat stress, while benefiting both animal health and sustainable poultry production.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| |
Collapse
|
30
|
Goel A, Ncho CM, Jeong CM, Gupta V, Jung JY, Ha SY, Yang JK, Choi YH. Dietary supplementation of solubles from shredded, steam-exploded pine particles modifies gut length and cecum microbiota in cyclic heat-stressed broilers. Poult Sci 2023; 102:102498. [PMID: 36739799 PMCID: PMC9932117 DOI: 10.1016/j.psj.2023.102498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
This study was conducted to investigate the effect of supplementing solubles from steam-exploded pine particles (SSPP) on mitigating the adverse effects of cyclic heat stress (CHS) in broilers which were distributed into 3 dietary treatment groups and 2 temperature conditions. Heat stress (HS) exposure for 6 h daily for 7 d adversely affected performance parameters and rectal temperature of chickens. The absolute and relative weights of the liver and bursa of Fabricius decreased in the CHS group while the relative lengths of the jejunum and ileum increased, which was rescued by dietary supplementation with SSPP. The expression of mucin2 (MUC2) and occludin (OCLN) genes was decreased in CHS birds. The expression of heat shock protein -70 and -90 increased in 0% HS compared to that in 0% NT. Birds supplemented with 0.4% SSPP had higher NADPH oxidase -1 expression than birds in the 0% and 0.1% SSPP treatments. Beta diversity of gut microbiota evaluated through unweighted UniFrac distances was significantly different among treatments. Bacteroidetes was among the 2 most abundant phyla in the cecum, which decreased with 0.1% NT and increased with 0.1% HS in comparison to 0% NT. A total of 13 genera were modified by HS, 5 were altered by dose, and nine showed an interaction effect. In conclusion, CHS adversely affects performance and gut health which can be mitigated with dietary SSPP supplementation that modifies the cecal microbiota in broilers.
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chris Major Ncho
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
31
|
Chen S, Liu H, Zhang J, Zhou B, He X, Wang T, Wang C. Dietary rutin improves breast meat quality in heat-stressed broilers and protects mitochondria from oxidative attack via the AMPK/PINK1-Parkin pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2367-2377. [PMID: 36606563 DOI: 10.1002/jsfa.12431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study was conducted to investigate the effect of dietary rutin on the meat quality, antioxidant status and mitochondrial structure and function in the breast muscle of heat-stressed broilers. A total of 192 male broilers were randomly assigned into three groups and treated with normal control (CON), heat stress (34 °C, HS), and HS with 500 mg kg-1 rutin supplementation (HS + Rutin), respectively. RESULTS Dietary rutin significantly reversed HS-induced decrease in body weight, average daily feed intake, average daily gain, and feed efficiency. Rutin supplementation attenuated HS-induced impaired meat quality by decreasing the lightness, drip loss at 24 and 48 h, the peak time of free water (T22 ) and the peak area ratio of free water (P22 ), and increasing the pH24h and peak area ratio of immobilized water (P21 ). Rutin supplementation promoted superoxide dismutase, glutathione peroxidase activities and total antioxidant capacity, and decreased malondialdehyde levels compared with the HS group. Moreover, rutin attenuated HS-induced mitochondrial damage by increasing the mitochondrial DNA copy number and improving mitochondrial morphology. Dietary rutin significantly increased mitochondrial biogenesis-related mRNA (proliferator-activated γ receptor coactivator-1α [PGC-1α], nuclear respiratory factor 1 [NRF1], and mitochondrial transcription factor A [TFAM]) expression via the AMP-activated protein kinase (AMPK) signaling pathway. HS significantly increased mitophagy-related genes and proteins (Parkin, PTEN-induced putative kinase 1 [PINK1], microtubule associated protein light chain 3-II [LC3-II]) expression, and dietary rutin significantly reversed these alterations. CONCLUSION Dietary rutin attenuated the HS-induced decline in meat quality and antioxidant capacity of broilers, which may be related to inhibition of the AMPK/PINK1-Parkin signaling pathway to attenuate mitochondrial damage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - HuiJuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - JiaQi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - BinBin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - XiaoFang He
- School of Animal Science and Food Engineering, Institute of Jingling Technology, Nanjing, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
32
|
Fernandes E, Raymundo A, Martins LL, Lordelo M, de Almeida AM. The Naked Neck Gene in the Domestic Chicken: A Genetic Strategy to Mitigate the Impact of Heat Stress in Poultry Production—A Review. Animals (Basel) 2023; 13:ani13061007. [PMID: 36978548 PMCID: PMC10044606 DOI: 10.3390/ani13061007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The poultry sector is one of the most important food industries in the world. Poultry production generates high-value protein products (meat and eggs) that are produced efficiently without the need for large areas. In poultry production, especially in the tropics, environmental factors, such as temperature and humidity, play a major role. Heat stress (HS) causes behavioral, physical, and physiological changes in poultry, with severe financial impacts. Therefore, it is important to find strategies to minimize it. The naked neck (Na) is an autosomal, incompletely dominant gene. Compared with normal feathered birds, these animals are known for their ability to adapt, perform, and reproduce under hot and humid climate conditions. Due to the absence of feathers on the neck, these animals increase heat dissipation, alleviating adverse heat effects, especially on productive performance. Genetic improvement of heat tolerance may provide a low-cost solution, of particular interest for developing countries in the tropics. The focus of this review is to evaluate the impact of HS in poultry with a special emphasis on the advantages of using the Na gene.
Collapse
|
33
|
Sarrigeorgiou I, Stivarou T, Tsinti G, Patsias A, Fotou E, Moulasioti V, Kyriakou D, Tellis C, Papadami M, Moussis V, Tsiouris V, Tsikaris V, Tsoukatos D, Lymberi P. Levels of Circulating IgM and IgY Natural Antibodies in Broiler Chicks: Association with Genotype and Farming Systems. BIOLOGY 2023; 12:biology12020304. [PMID: 36829580 PMCID: PMC9952908 DOI: 10.3390/biology12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Naturally occurring antibodies (NAbs), which are major components of innate immunity, exist in circulation under healthy conditions without prior antigenic stimulation and are able to recognize both self- and non-self-constituents. The present study aimed at identifying potential immunological differences between commercial fast- and slow-growth broilers (n = 555) raised in conventional and free-range systems, respectively, through the use of the specificity, isotypes and levels of circulating NAbs. The possible beneficial effect of oregano-based dietary supplementation was also evaluated. To this end, serum IgM and IgY NAbs against self- (actin and DNA) and non-self- antigens (trinitrophenol and lipopolysaccharide) were measured by ELISA and further correlated with genotype, season and performance. Significantly higher levels of IgM NAbs against all antigens were found in slow-growth compared to fast-growth broilers. IgM NAb levels were also significantly increased in dietarily supplemented slow-growth broilers versus those consuming standard feed. Moreover, significantly elevated levels of anti-DNA IgY NAbs were found in fast-growth compared to slow-growth broilers, whereas the opposite was observed for anti-LPS IgY NAbs. Multivariate linear regression analysis confirmed multiple interactions between NAb levels, genotype, season and performance. Overall, serum NAbs have proven to be valuable innovative immunotools in the poultry industry, efficiently differentiating fast-growing versus slow-growing broilers, and dietary supplementation of plant extracts can enhance natural immunity.
Collapse
Affiliation(s)
- Ioannis Sarrigeorgiou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), 127, Vasilissis Sofias Avenue, 11521 Athens, Greece
| | - Theodora Stivarou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), 127, Vasilissis Sofias Avenue, 11521 Athens, Greece
| | - Gerasimina Tsinti
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), 127, Vasilissis Sofias Avenue, 11521 Athens, Greece
| | - Apostolos Patsias
- Microbiology and Chemical Laboratory, Pindos APSI, 45500 Rodotopi Ioannina, Greece
| | - Evgenia Fotou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki Moulasioti
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Kyriakou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Constantinos Tellis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Papadami
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vassilios Moussis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios Tsiouris
- Microbiology and Chemical Laboratory, Pindos APSI, 45500 Rodotopi Ioannina, Greece
- Unit of Avian Medicine, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vassilios Tsikaris
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Demokritos Tsoukatos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Peggy Lymberi
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), 127, Vasilissis Sofias Avenue, 11521 Athens, Greece
- Correspondence:
| |
Collapse
|
34
|
Loengbudnark W, Chankitisakul V, Boonkum W. The genetic impact of heat stress on the egg production of Thai native chickens (Pradu Hang dum). PLoS One 2023; 18:e0281328. [PMID: 36735733 PMCID: PMC9897533 DOI: 10.1371/journal.pone.0281328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Sustainable poultry production in adverse weather conditions is a widely debated issue, which has led to research into the development of breeds of poultry that are genetically resistant to heat. This study aimed to investigate the effects of heat stress on the genetics of monthly egg production and examine the threshold point of heat stress for preventing thermal stress and its effects on chicken productivity. The data of 5,965 monthly egg production records of 629 Thai native Pradu Hang dum chickens were used for analysis in combination with the temperature-humidity index (THI) calculated by meteorological data near the testing station. The average THI throughout the year was 76.6, and the highest was 82. The THI data were subsequently used to find the threshold point of heat stress. The THI equation used in this study was chosen by its highest correlation (-0.306) between THI values and monthly egg production. At a THI of 74, the lowest -2 logL was found and was considered the threshold point of heat stress. This means that monthly egg production would start decreasing when the THI was 74. Heritability was 0.15±0.03, and genetic and permanent environmental correlations were -0.29 and -0.48, respectively. The threshold point was used to estimate the estimated breeding values (EBVs) of the monthly egg production and heat stress individually, and EBVs were calculated into the selection index. The selection index values when the animal was selected for the replacement herd for all chickens (top 50%, 30%, 20%, and 10%) were 0.14, 0.90, 1.27, 1.53, and 1.91, respectively, and the genetic progress was 0.55, 0.60, 0.68, 0.75, and 0.77, respectively. This shows that the selection index values are lower if there are many selected animals. The recommendation for animal genetic selection is that the top 10% is appropriately because it seems to be most preferred. Therefore, using a selection index for high egg production and heat tolerance in Thai native chickens is possible to achieve genetic assessment in a large population.
Collapse
Affiliation(s)
- Wipas Loengbudnark
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
35
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
36
|
Goel A, Ncho CM, Gupta V, Choi YH. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. ANIMAL NUTRITION 2023; 13:150-159. [PMID: 37123616 PMCID: PMC10130083 DOI: 10.1016/j.aninu.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Healthy chickens are necessary to meet the ever-increasing demand for poultry meat. Birds are subjected to numerous stressful conditions under commercial rearing systems, including variations in the environmental temperature. However, it is difficult to counter the effects of global warming on the livestock industry. High environmental temperature is a stressful condition that has detrimental effects on growth and production performance, resulting in decreased feed intake, retarded growth, compromised gut health, enhanced oxidative stress, and altered immune responses. Traditional approaches include nutritional modification and housing management to mitigate the harmful effects of hot environments. Currently, broiler chickens are more susceptible to heat stress (HS) than layer chickens because of their high muscle mass and metabolic rate. In this review, we explored the possibility of in ovo manipulation to combat HS in broiler chickens. Given their short lifespan from hatching to market age, embryonic life is thought to be one of the critical periods for achieving these objectives. Chicken embryos can be modulated through either temperature treatment or nourishment to improve thermal tolerance during the rearing phase. We first provided a brief overview of the harmful effects of HS on poultry. An in-depth evaluation was then presented for in ovo feeding and thermal manipulation as emerging strategies to combat the negative effects of HS. Finally, we evaluated a combination of the two methods using the available data. Taken together, these investigations suggest that embryonic manipulation has the potential to confer heat resistance in chickens.
Collapse
|
37
|
An J, Lee J, Song M, Oh H, Kim Y, Chang S, Go Y, Song D, Cho H, Park H, Kim HB, Cho J. Effects of supplemental different clay minerals in broiler chickens under cyclic heat stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:113-131. [PMID: 37093908 PMCID: PMC10119463 DOI: 10.5187/jast.2022.e94] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate the effect of supplementing clay minerals and organic chromium in feed on broiler chicken under heat stress (HS). A total of 90 one-day-old broiler chicken (Arbor Acres) with an initial body weight of 45.0 ± 0.2 g were assigned to five treatment groups (six replications, three birds each cage): 1) NC group, basal diet under room temperature environment; 2) PC group, basal diet under high temperature (HT) environment; 3) ILT group, basal diet + 1% illite + HT; 4) ZLT group, basal diet + 1% zeolite + HT; 5) OC group, basal diet + 400 ppb/kg organic chromium + HT. The ILT and ZLT groups had significantly higher body weight than the PC group in 4 weeks. Apparent total tract digestibility of gross energy was increased in the ILT, ZLT, and OC groups compared to the PC group. The NC group had lower foot-pad dermatitis score than other groups. Escherichia coli population in the cecum and feces was decreased in the ZLT group than in the PC group. Lactobacillus in cecum and feces was significantly increased in the ZLT group than in the PC group. Regarding blood profiles, blood cortisol was decreased in the NC and ILT groups compared to the PC group. Water holding capacity and pH were increased in the ZLT group than the PC group. In conclusion, according to the results of growth performance, nutrients digestibility, bacteria counts, and meat characteristics, supplementation of the ZLT in broiler diet can alleviate HS.
Collapse
Affiliation(s)
- Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Yongju Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Youngbin Go
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Haeryoung Park
- Korea Agriculture Technology Promotion
Agency, Iksan 54667, Korea
| | - Hyeun Bum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
38
|
Hosseinzadeh S, Hasanpur K. Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress. Front Genet 2023; 14:1102136. [PMID: 37205120 PMCID: PMC10185895 DOI: 10.3389/fgene.2023.1102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Heat stress in poultry houses, especially in warm areas, is one of the main environmental factors that restrict the growth of broilers or laying performance of layers, suppresses the immune system, and deteriorates egg quality and feed conversion ratio. The molecular mechanisms underlying the response of chicken to acute heat stress (AHS) have not been comprehensively elucidated. Therefore, the main object of the current work was to investigate the liver gene expression profile of chickens under AHS in comparison with their corresponding control groups, using four RNA-seq datasets. The meta-analysis, GO and KEGG pathway enrichment, WGCNA, machine-learning, and eGWAS analyses were performed. The results revealed 77 meta-genes that were mainly related to protein biosynthesis, protein folding, and protein transport between cellular organelles. In other words, under AHS, the expression of genes involving in the structure of rough reticulum membrane and in the process of protein folding was adversely influenced. In addition, genes related to biological processes such as "response to unfolded proteins," "response to reticulum stress" and "ERAD pathway" were differentially regulated. We introduce here a couple of genes such as HSPA5, SSR1, SDF2L1, and SEC23B, as the most significantly differentiated under AHS, which could be used as bio-signatures of AHS. Besides the mentioned genes, the main findings of the current work may shed light to the identification of the effects of AHS on gene expression profiling of domestic chicken as well as the adaptive response of chicken to environmental stresses.
Collapse
|
39
|
Bopape MA, Erlwanger KH, Lembede BW, Chivandi E. β-sitosterol as an alternative to oxytetracycline: Effect on growth performance, feed intake and utilization efficiency and viscera macromorphometry of Cobb 500 broiler chickens. Vet Anim Sci 2022; 19:100283. [PMID: 36684817 PMCID: PMC9853345 DOI: 10.1016/j.vas.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibiotics are used to fortify broiler chicken feeds as growth promoters. Chronic antibiotic use pollutes the environment and causes the development of antibiotic resistance. Natural alternatives that mimic the properties of antibiotics, without causing health and environmental challenges are required. β-sitosterol has antimicrobial, antioxidant, digestive and immune system modulating and growth stimulating activities. We evaluated its potential to replace oxytetracycline as a growth-promoter in broiler chicken feeds. Two hundred and forty, one-day-old Cobb 500 broiler chicks were randomly allocated to four diets where β-sitosterol replaced oxytetracycline at 0 mg/kg (control; fortified with 50 mg/kg oxytetracycline), 500 mg/kg, 1000 mg/kg and 1500 mg/kg (w/w) feed and fed for 6 weeks: 2 weeks for each growth phase. Each diet was replicated thrice with 20 chicks per replicate. Initial, weekly and terminal body mass (TBM) and daily feed intake (FI) were measured. Body mass gain (BMG), average daily gain (ADG) and feed conversion ratio were computed. Terminally, the chickens were fasted for 4 h then slaughtered and dressed. Gastrointestinal tract (GIT) and GIT accessory viscera masses and small and large intestine lengths were measured. Dietary fortification with β-sitosterol had similar effects (P > 0.05) to oxytetracycline on the chickens' TBM, BMG, ADG, FI and utilisation efficiency and GIT organ macromorphometry. In conclusion, β-sitosterol can replace oxytetracycline in Cobb 500 broiler chicken feeds without compromising growth performance, feed intake and utilisation efficiency and GIT organ growth and development.
Collapse
Affiliation(s)
- Malebogo A. Bopape
- University of the Witwatersrand, School of Physiology, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg, 2193, South Africa,Sol Plaatje University, School of Natural and Applied Science, Department of Biological and Agricultural Sciences, Private Bag X5008, Kimberley, 8300, South Africa,Corresponding author.
| | - Kennedy H. Erlwanger
- Sol Plaatje University, School of Natural and Applied Science, Department of Biological and Agricultural Sciences, Private Bag X5008, Kimberley, 8300, South Africa
| | - Busisani W. Lembede
- Sol Plaatje University, School of Natural and Applied Science, Department of Biological and Agricultural Sciences, Private Bag X5008, Kimberley, 8300, South Africa
| | - Eliton Chivandi
- Sol Plaatje University, School of Natural and Applied Science, Department of Biological and Agricultural Sciences, Private Bag X5008, Kimberley, 8300, South Africa
| |
Collapse
|
40
|
Sumanu VO, Naidoo V, Oosthuizen MC, Chamunorwa JP. Adverse effects of heat stress during summer on broiler chickens production and antioxidant mitigating effects. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2379-2393. [PMID: 36169706 DOI: 10.1007/s00484-022-02372-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Broiler chicken meat is a good source of protein consumed universally, and is one of the most commonly farmed species in world. In addition to providing food, poultry non-edible byproducts also have value. A major advantage of broiler chicken production is their short production cycle, which results in a greater rate of production in comparison to other species. However, as with any production system, there are constraints in broiler production with one of the most pressing being energy requirements to keep the birds warm as chicks and cool later in the growth cycle, as a result of the cost needing mechanical heating and cooling. While this is feasible in more advanced economies, this is not readily affordable in developing economies. As a result, farmers rely on natural ventilation to cool the rearing houses, which generally becoming excessively warm with the resultant heat stress on the birds. Since little can be done without resorting to mechanical ventilation and cooling, exploring the use of other means to reduce heat stress is needed. For this review, we cover the various factors that induce heat stress, the physiological and behavioral responses of broiler chickens to heat stress. We also look at mitigating the adverse effect of heat stress through the use of antioxidants which possess either an anti-stress and/or antioxidant effects.
Collapse
Affiliation(s)
- V O Sumanu
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - V Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - M C Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - J P Chamunorwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
41
|
Dietary shredded steam-exploded pine particle supplementation as a strategy to mitigate chronic cyclic heat stress by modulating gut microbiota in broilers. Sci Rep 2022; 12:19704. [PMID: 36385125 PMCID: PMC9669035 DOI: 10.1038/s41598-022-24031-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Improving the availability of underutilized waste for the economic use of livestock feed can be important in countries where feed grain production is scarce. Modulating the gut microbiota through the fibrous content present in these wastes may help mitigate the adverse effects of heat stress (HS). Here, we investigated the effects of dietary steam-exploded pine particle (SPP), a value-added waste product, on the performance, gut health, and cecum microbiota in heat-stressed broilers. Ross 308 broilers (n = 180) at 29 days of age were distributed into three dietary treatment groups (0%, 1%, and 2% SPP) and two temperature conditions (NT: 21 °C; CHS: 31 °C) and grown for seven days. CHS, but not SPP, adversely affected performance parameters, but SPP did not interactively modulate these results. On the contrary, both differently affected other parameters. CHS resulted in increased rectal temperature, total protein in serum, and Nox4 gene expression, whereas 2% SPP increased GLP-2 and the Nox4 gene expression in the duodenum in comparison to 0% and 1% SPP. CHS significantly modified the beta-diversity of cecal microbiota while 1% SPP supplementation in diets increased the abundance of the favorable bacterial genera in chicken. Concludingly, CHS adversely affects growth performances, gut health, stress-related genes, and cecal microbiota while dietary 1% SPP may facilitate the proliferation of beneficial microorganisms in the cecum of broilers.
Collapse
|
42
|
Effects of Dietary Supplementation of Solubles from Shredded, Steam-Exploded Pine Particles on the Performance and Cecum Microbiota of Acute Heat-Stressed Broilers. Microorganisms 2022; 10:microorganisms10091795. [PMID: 36144397 PMCID: PMC9504121 DOI: 10.3390/microorganisms10091795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) negatively influences livestock productivity, but it can be, at least in part, mitigated by nutritional interventions. One such intervention is to use byproducts from various sources that are likely to be included in the consumer chain. Thus, the present study investigated the effects of dietary supplementation of solubles from shredded, steam-exploded pine particles (SSPPs) on the performance and cecum microbiota in broilers subjected to acute HS. One-week-old Ross 308 broilers (n = 108) were fed 0%, 0.1%, or 0.4% SSPP in their diets. On the 37th day, forty birds were allocated to one of four groups; namely, a group fed a control diet without SSPPs at thermoneutral temperature (NT) (0% NT) and acute heat-stressed birds with 0% (0% HS), 0.1% (0.1% HS), and 0.4% (0.4% HS) SSPP-supplemented diets. The NT was maintained at 21.0 °C, while the HS room was increased to 31 °C. The final BW, percent difference in body weight (PDBW), and feed intake (FI) were lower in HS birds, but PDBW was reversely associated with dietary SSPP. Similarly, HS birds had a higher rectal temperature (RT) and ΔT in comparison to birds kept at NT. The FI of SSPP-supplemented birds was not significant, indicating lower HS effects. Plasma triglyceride was decreased in HS birds but not affected in 0.1% HS birds in comparison to 0% NT birds. OTUs and Chao1 were increased by 0.1% HS compared to 0% NT. Unweighted Unifrac distances for 0.1% HS were different from 0% NT and 0.4% HS. The favorable bacterial phylum (Tenericutes) and genera (Faecalibacterium and Anaerofustis) were increased, while the pathogenic genus (Enterococcus) was decreased, in SSPP-supplemented birds. In sum, production performances are negatively affected under acute HS. Dietary supplementation of SSPPs is beneficial for improving community richness indices and unweighted Unifrac distances, and it enhanced the advantageous bacterial phyla and reduced virulent genera and triglyceride hydrolysis in acute HS broilers. Our results indicate that dietary SSPPs modulates the microbial profile of the cecum while resulting in relatively less weight loss and lower rectal temperature compared to control.
Collapse
|
43
|
Ahmad R, Yu YH, Hsiao FSH, Su CH, Liu HC, Tobin I, Zhang G, Cheng YH. Influence of Heat Stress on Poultry Growth Performance, Intestinal Inflammation, and Immune Function and Potential Mitigation by Probiotics. Animals (Basel) 2022; 12:ani12172297. [PMID: 36078017 PMCID: PMC9454943 DOI: 10.3390/ani12172297] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The poultry industry sustains severe economic loss under heat stress conditions. Heat stress adversely affects the productivity, physiological status, and immunity of birds. To date, several mitigation measures have been adopted to minimize the negative effects of heat stress in poultry. Nutritional strategies have been explored as a promising approach to mitigate heat stress-associated deleterious impacts. Of these, probiotic feeding has a strong potential as a nutritional strategy, and this approach warrants further investigation to improve thermotolerance in poultry. Abstract Heat stress has emerged as a serious threat to the global poultry industry due to climate change. Heat stress can negatively impact the growth, gut health, immune function, and production and reproductive performances of poultry. Different strategies have been explored to mitigate heat stress in poultry; however, only a few have shown potential. Probiotics are gaining the attention of poultry nutritionists, as they are capable of improving the physiology, gut health, and immune system of poultry under heat stress. Therefore, application of probiotics along with proper management are considered to potentially help negate some of the negative impacts of heat stress on poultry. This review presents scientific insight into the impact of heat stress on poultry health and growth performance as well as the application of probiotics as a promising approach to alleviate the negative effects of heat stress in poultry.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
| | - Chin-Hui Su
- Ilan Branch, Livestock Research Institute, Yilan 268020, Taiwan
| | - Hsiu-Chou Liu
- Ilan Branch, Livestock Research Institute, Yilan 268020, Taiwan
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (G.Z.); (Y.-H.C.)
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
- Correspondence: (G.Z.); (Y.-H.C.)
| |
Collapse
|
44
|
Chen Q, Wang Z, Shao D, Shi S. Effects of heat stress on the intestinal microorganisms in poultry and its nutritional regulations: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qingyi Chen
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Huanan Agricultural University, Guangzhou, China
| | - Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Center of Effective Evaluation of Feed and Feed Additive (Poultry Institute) Ministry of Agriculture, Yangzhou, China
| |
Collapse
|
45
|
Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals (Basel) 2022; 12:ani12141834. [PMID: 35883381 PMCID: PMC9311685 DOI: 10.3390/ani12141834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Chronic heat stress remains the most detrimental factor for broiler productivity in hot and desert regions. The manipulation of the lighting program is a useful and inexpensive tool to alleviate the negative effects of heat stress on broiler performance. The present study aimed to investigate the beneficial effects of an intermittent lighting (I.L.) program consisting of repeated periods of 1 h light to 3 h dark during a day on broiler performance under chronic heat-stress conditions. The results indicate that applying the I.L. program to heat-stressed broilers relieved the stress indicators and improved the immune response, physiological status, and growth performance of broilers. Therefore, the application of the I.L. program could be used as a beneficial strategy to recover broiler performance during heat-stress conditions. Abstract The effects of heat stress on broiler performance and immunological response were explored using lighting-program manipulation as a potential tool. The study included 200 Cobb500 broiler chicks that were one day old at the time of recruitment. The birds were divided into four-compartment groups with similar environments (five cages per compartment, ten chicks per cage). Starting from the fourth day of age, birds of two compartments received a continuous lighting program (23L:1D a day; C.L. groups) while birds of the other two compartments received an intermittent lighting program (1L:3D 6 times per day; I.L. groups). Within each lighting program during 22–42 d of age, one group was subjected either to a thermoneutral temperature at 24 °C or heat stress at 35 °C. The results reveal that stress biomarkers, especially the plasma concentrations of corticosterone (CORT), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) were relieved by 46%, 27%, and 51%, respectively, in the I.L. treatment groups compared to the C.L. program in broiler chicks subjected to heat stress. The liver function was also improved by 24% and 32% in AST and ALT levels, respectively, in the I.L. program compared to the C.L. program in stressed birds. Furthermore, the I.L. program positively influenced the immune response of the heat-stressed broilers. Eventually, the I.L. program increased the heat-stressed broilers’ body weight gain and feed conversion ratio. It can be concluded that applying the I.L. program to broiler chickens can effectively improve their physiological balance and growth performance under heat-stress conditions.
Collapse
|
46
|
Retnani Y, Risyahadi S, Qomariyah N, Barkah N, Taryati T, Jayanegara A. Comparison between pelleted and unpelleted feed forms
on the performance and digestion of small ruminants:
a meta-analysis. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149192/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Tavaniello S, Slawinska A, Sirri F, Wu M, De Marzo D, Siwek M, Maiorano G. Performance and meat quality traits of slow-growing chickens stimulated in ovo with galactooligosaccharides and exposed to heat stress. Poult Sci 2022; 101:101972. [PMID: 35760001 PMCID: PMC9241043 DOI: 10.1016/j.psj.2022.101972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo performance, carcass and meat quality traits of slow-growing chickens stimulated in ovo with trans galactooligosaccharides (GOS) and exposed to heat stress were evaluated. On d 12 of egg incubation, 3,000 fertilized eggs (Hubbard JA57) were divided into prebiotic group (GOS) injected with 3.5 mg GOS/egg, saline group (S) injected with physiological saline (only to assess the hatchability rate) and an uninjected control group (C). After hatching, 600 male chicks (300 from GOS and 300 from C) were housed on floor pens (6 pens/treatment, 25 birds/pen) and reared under neutral (TN) or heat stress conditions (HS, 30°C from 36 to 50 d). BW, daily feed intake (DFI), daily weight gain (DWG), feed conversion rate (FCR), and mortality were measured. At 50 d of age, 15 randomly selected birds/treatment/environmental conditions were slaughtered and the pectoral muscle (PM) was collected for analyses. Hatchability was similar among groups. BW of the newly hatched chicks was lower (P < 0.01) in GOS compared to C. Final BW, DWG, DFI, and FCR were not affected (P > 0.05) by GOS. HS reduced final BW (−12.93%, P < 0.001). During finisher phase, DFI and DWG were lower (P < 0.001) and FCR was higher (P < 0.01) in HS compared to TN. Mortality was not affected (P > 0.05) by GOS and HS. Meat from GOS chickens had a higher (P < 0.01) pH and was darker (P < 0.05) compared to C. Proximate composition, cholesterol content, fatty acid profile, and intramuscular collagen properties of PM were not affected by GOS. The HS group showed a lower (P < 0.05) content of both collagen and monounsaturated fatty acids than TN group. Significant interactions between GOS and temperature were found for FA composition. In conclusion, the differences in performance have had an impact on the responses to HS in Hubbard chickens, but not on mortality rate. GOS did not relieve the negative effect of HS on chickens’ performance.
Collapse
|
48
|
Liu WC, Pan ZY, Zhao Y, Guo Y, Qiu SJ, Balasubramanian B, Jha R. Effects of Heat Stress on Production Performance, Redox Status, Intestinal Morphology and Barrier-Related Gene Expression, Cecal Microbiome, and Metabolome in Indigenous Broiler Chickens. Front Physiol 2022; 13:890520. [PMID: 35574439 PMCID: PMC9098996 DOI: 10.3389/fphys.2022.890520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
This study was done to evaluate the effects of heat stress (HS) on production performance, redox status, small intestinal barrier-related parameters, cecal microbiota, and metabolome of indigenous broilers. A total of forty female indigenous broilers (56-day-old) were randomly and equally divided into normal treatment group (NT group, 21.3 ± 1.2°C, 24 h/day) and HS group (32.5 ± 1.4°C, 8 h/day) with five replicates of each for 4 weeks feeding trial. The results showed that the body weight gain (BWG) of broilers in HS group was lower than those in NT group during 3–4 weeks and 1–4 weeks (p < 0.05). The HS exposure increased the abdominal fat rate (p < 0.05) but decreased the thigh muscle rate (p < 0.01). Besides, broilers in HS group had higher drip loss of breast muscle than NT group (p < 0.01). Broilers exposed to HS had lower total antioxidant capacity (T-AOC) in serum and jejunum, activities of total superoxide dismutase (T-SOD) in the jejunum, glutathione peroxidase (GSH-Px) in the thigh muscle, duodenum, and jejunum; and catalase (CAT) in breast muscle, duodenum, and jejunum (p < 0.05). Whereas the malondialdehyde (MDA) contents in breast muscle, duodenum, and jejunum was elevated by HS exposure (p < 0.05). Moreover, the relative mRNA expression of Occludin and ZO-1 in the duodenum, Occludin, Claudin-1, Claudin-4, ZO-1, Mucin-2 in the jejunum, and the Claudin-4 and Mucin-2 in the ileum was down-regulated by HS exposure (p < 0.05). The 16S rRNA sequencing results showed that the HS group increased the relative abundance of Anaerovorax in the cecum at the genus level (p < 0.05). Cecal metabolomics analysis indicated 19 differential metabolites between the two groups (p < 0.10, VIP >1). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the differential metabolites mainly enriched in 10 signaling pathways such as the Citrate cycle (TCA cycle) (p < 0.01). In summary, chronic HS exposure caused a decline of production performance, reduced antioxidant capacity, disrupted intestinal barrier function, and negatively affected cecal microbiota and metabolome in indigenous broilers.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zi-Yi Pan
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yue Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sheng-Jian Qiu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Balamuralikrishnan Balasubramanian
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| |
Collapse
|
49
|
Akter S, Liu Y, Cheng B, Classen J, Oviedo E, Harris D, Wang-Li L. Impacts of Air Velocity Treatments under Summer Conditions: Part II—Heavy Broiler’s Behavioral Response. Animals (Basel) 2022; 12:ani12091050. [PMID: 35565477 PMCID: PMC9103274 DOI: 10.3390/ani12091050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Broiler chickens exposed to heat stress adapt to various behavioral changes to regulate their comfortable body temperature, which is critical to ensure their performance and welfare. Hence, assessing various behavioral responses in birds when they are subjected to environmental changes can be essential for assessing their welfare under heat-stressed conditions. This study aimed to evaluate the effect of two air velocity (AV) treatments on heavy broilers’ behavioral changes from 43 to 54 days under summer conditions. Two AV treatments (high and low) were applied in six poultry growth chambers with three chambers per treatment and 44 COBB broilers per chamber from 28 to 61 days in the summer of 2019. Three video cameras placed inside each chamber (2.44 m × 2.44 m × 2.44 m in dimension) were used to record the behavior of different undisturbed birds, such as feeding, drinking, resting, standing, walking, panting, etc. The results indicate that the number of chickens feeding, drinking, standing, walking, sitting, wing flapping, and leg stretching changed under AV treatments. High AV increased the number of chickens feeding, standing, and walking. Moreover, a two-way interaction with age and the time of day can affect drinking and panting. This study provides insights into heavy broilers’ behavioral changes under heat-stressed conditions and AV treatments, which will help guide management practices to improve birds’ performance and welfare under commercial conditions in the future.
Collapse
Affiliation(s)
- Suraiya Akter
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.); (Y.L.); (B.C.); (J.C.)
| | - Yingying Liu
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.); (Y.L.); (B.C.); (J.C.)
- Department of Automation, College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Cheng
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.); (Y.L.); (B.C.); (J.C.)
| | - John Classen
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.); (Y.L.); (B.C.); (J.C.)
| | - Edgar Oviedo
- Prestage Poultry Science Department, North Carolina State University, Raleigh, NC 27695, USA;
| | - Dan Harris
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA;
| | - Lingjuan Wang-Li
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.); (Y.L.); (B.C.); (J.C.)
- Correspondence: ; Tel.: +1-919-515-6762
| |
Collapse
|
50
|
Malila Y, Sanpinit P, Thongda W, Jandamook A, Srimarut Y, Phasuk Y, Kunhareang S. Influences of Thermal Stress During Three Weeks Before Market Age on Histology and Expression of Genes Associated With Adipose Infiltration and Inflammation in Commercial Broilers, Native Chickens, and Crossbreeds. Front Physiol 2022; 13:858735. [PMID: 35492598 PMCID: PMC9039046 DOI: 10.3389/fphys.2022.858735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to examine the effects of cyclic thermal stress on histological characteristics of breast muscle and gene expression regarding adipose infiltration and inflammation in breast muscles collected from different breeds of chickens. The birds, from commercial broilers (CB, Ross 308, 3 weeks), native (NT, 100% Thai native Chee, 9 weeks), H75 (crossbred; 75% broiler and 25% NT, 5 weeks), and H50 (crossbred; 50% broiler and 50% NT, 7 weeks), were equally assigned into control or treatment groups. The control samples were reared under a constant temperature of 26 ± 1°C, while the treatment groups were exposed to 35 ± 1°C (6 h per day). After a 20-day thermal challenge, 12 male birds per treatment group were randomly collected for determination of live body weight, breast weight, numbers of growth-related myopathies, and breast meat chemical composition. Histological lesions were evaluated in the pectoralis major muscle immediately collected within 20 min postmortem based on hematoxylin and eosin staining. The results indicated that despite interaction between thermal stress and breed effects, thermal challenge significantly reduced feed intake, live body weight, and breast weight of the birds and increased moisture content in breast meat (p < 0.05). An interaction between the two main factors was found for protein content (p < 0.05) for which control CB showed less protein than the other groups. Heat stress decreased histological scores for adipose infiltration in CB (p < 0.05), but it did not significantly influence such scores in the other groups. CB received histological scores for adipose tissue at greater extent than those for the other groups. Differential absolute abundance of CD36, FABP4, LITAF, PDGFRA, PLIN1, PPARG, POSTN, SCD1, and TGFB1 in the muscle samples well-agreed with the trend of histological scores, suggesting potential involvement of dysregulated fibro-adipogenic progenitors together with imbalanced lipid storage and utilization in the breast muscle. The findings demonstrated that the cyclic thermal challenge restricted growth performance and breast mass of the birds, but such effects attenuated infiltration of adipose tissue and inflammatory cells in the CB breast muscle.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
- *Correspondence: Yuwares Malila,
| | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Wilawan Thongda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuwat Jandamook
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Yupin Phasuk
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Sajee Kunhareang
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|