1
|
Glover F, Sullivan E, Mulloy E, Belladelli F, Del Giudice F, Eisenberg ML. The relationship between klotho, testosterone, and sexual health parameters among US adult men. J Endocrinol Invest 2024; 47:523-533. [PMID: 37648906 DOI: 10.1007/s40618-023-02163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Klotho is a pleotropic hormone involved in a multitude of biological processes necessary for healthy aging, and affords protection from adverse events such as cardiovascular disease, inflammation, and various cancers. Emerging evidence suggests that klotho is also an important component of biochemical pathways that regulate hormone balance, which may include those pathways governing testosterone production and men's sexual health, though data are limited and results are mixed. OBJECTIVE Using a cohort of 767 men from the NHANES 2015-2016 survey cycle, we set out to quantify the association between serum klotho levels and serum testosterone levels, as well as clinical markers of men's sexual health (e.g., testosterone:estrogen ratio, bioavailable testosterone, and free testosterone). METHODS Multivariable linear and logistic regression models while controlling for potential confounders were constructed to quantify the relationship between serum klotho and testosterone, as well as between serum klotho and odds of low testosterone (serum testosterone < 300 ng/dL). RESULTS A positive association was observed between serum klotho and testosterone (β = 0.18, p = 0.04). Serum klotho levels were also stratified into quartiles, and we observed statistically significant increases in testosterone for increasing quartile level of klotho using the first quartile as the reference group (β = 90.51, p = 0.001, β = 106.93, p = 0.002, β = 95.33, p = 0.03 for quartiles 2, 3, and 4, respectively). The average testosterone values by quartiles of klotho were 306.9 ng/dL, 390 ng/dL, 409.3 ng/dL, and 436.6 ng/dL, respectively. We modeled important proxies for sexual health including bioavailable and free testosterone, the testosterone:estradiol ratio, and C-reactive protein. Men in the second quartile of klotho had a significantly lower odds of an abnormal testosterone:estradiol ratio compared to the first quartile [OR = 0.18, 95% CI = (0.03, 0.98)].We observed null associations between continuous serum klotho and odds of low testosterone [OR = 1.0, 95% CI = (1.0, 1.0)], and when stratified by quartile, we observed a significant decrease in the odds of low testosterone for individuals in the second quartile of klotho compared to the first quartile [OR = 0.21, 95% CI = (0.05, 0.91)]. In addition, C-reactive protein was inversely associated with testosterone in men (β = - 4.65, p = 0.001), and inversely associated with quartiles of klotho (β = - 2.28, p = 0.04, β = - 2.22, p = 0.04, β = - 2.28, p = 0.03, for quartiles 2, 3, and 4, respectively). CONCLUSION Our findings support previous studies suggesting a role for klotho in testosterone levels and sexual function among men. Future studies are warranted to corroborate these findings, determine clinical significance, and elucidate potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- F Glover
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - E Sullivan
- Pharmacology Department, Emory University, Atlanta, GA, 30322, USA
| | - E Mulloy
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Belladelli
- Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - F Del Giudice
- Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - M L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Borsky P, Holmannova D, Andrys C, Kremlacek J, Fiala Z, Parova H, Rehacek V, Svadlakova T, Byma S, Kucera O, Borska L. Evaluation of potential aging biomarkers in healthy individuals: telomerase, AGEs, GDF11/15, sirtuin 1, NAD+, NLRP3, DNA/RNA damage, and klotho. Biogerontology 2023; 24:937-955. [PMID: 37523061 PMCID: PMC10615959 DOI: 10.1007/s10522-023-10054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Aging is a natural process of gradual decrease in physical and mental capacity. Biological age (accumulation of changes and damage) and chronological age (years lived) may differ. Biological age reflects the risk of various types of disease and death from any cause. We selected potential biomarkers of aging - telomerase, AGEs, GDF11 and 15 (growth differentiation factor 11/15), sirtuin 1, NAD+ (nicotinamide adenine dinucleotide), inflammasome NLRP3, DNA/RNA damage, and klotho to investigate changes in their levels depending on age and sex. We included 169 healthy volunteers and divided them into groups according to age (under 35; 35-50; over 50) and sex (male, female; male and female under 35; 35-50, over 50). Markers were analyzed using commercial ELISA kits. We found differences in values depending on age and gender. GDF15 increased with age (under 30 and 35-50 p < 0.002; 35-50 and over 50; p < 0.001; under 35 and over 50; p < 0.001) as well as GDF11 (35-50 and over 50; p < 0.03; under 35 and over 50; p < 0.02), AGEs (under 30 and 35-50; p < 0.005), NLRP3 (under 35 over 50; p < 0.03), sirtuin 1 (35-50 and over 50; p < 0.0001; under 35 and over 50; p < 0.004). AGEs and GDF11 differed between males and females. Correlations were identified between individual markers, markers and age, and markers and sex. Markers that reflect the progression of biological aging vary with age (GDF15, GDF11, AGEs, NLRP3, sirtuin) and sex (AGEs, GDF11). Their levels could be used in clinical practice, determining biological age, risk of age-related diseases and death of all-causes, and initiating or contraindicating a therapy in the elderly based on the patient's health status.
Collapse
Affiliation(s)
- Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic.
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Institute of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Helena Parova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Center, University Hospital, 50003, Hradec Kralove, Czech Republic
| | - Tereza Svadlakova
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Svatopluk Byma
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Otto Kucera
- Institute of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Aczel D, Torma F, Jokai M, McGreevy K, Boros A, Seki Y, Boldogh I, Horvath S, Radak Z. The Circulating Level of Klotho Is Not Dependent upon Physical Fitness and Age-Associated Methylation Increases at the Promoter Region of the Klotho Gene. Genes (Basel) 2023; 14:525. [PMID: 36833453 PMCID: PMC9957177 DOI: 10.3390/genes14020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
(1) Background: Higher levels of physical fitness are believed to increase the physiological quality of life and impact the aging process with a wide range of adaptive mechanisms, including the regulation of the expression of the age-associated klotho (KL) gene and protein levels. (2) Methods: Here, we tested the relationship between the DNA methylation-based epigenetic biomarkers PhenoAge and GrimAge and methylation of the promoter region of the KL gene, the circulating level of KL, and the stage of physical fitness and grip force in two groups of volunteer subjects, trained (TRND) and sedentary (SED), aged between 37 and 85 years old. (3) Results: The circulating KL level is negatively associated with chronological age in the TRND group (r = -0.19; p = 0.0295) but not in the SED group (r = -0.065; p = 0.5925). The age-associated decrease in circulating KL is partly due to the increased methylation of the KL gene. In addition, higher plasma KL is significantly related to epigenetic age-deceleration in the TRND group, assessed by the biomarker of PhenoAge (r = -0.21; p = 0.0192). (4) Conclusions: The level of physical fitness, on the other hand, does not relate to circulating KL levels, nor to the rate of the methylation of the promoter region of the KL gene, only in males.
Collapse
Affiliation(s)
- Dora Aczel
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
- Sports Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| | - Matyas Jokai
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
| | - Kristen McGreevy
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anita Boros
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
| | - Yasuhiro Seki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan
| |
Collapse
|
4
|
Ercan Z, Deniz G, Yentur SB, Arikan FB, Karatas A, Alkan G, Koca SS. Effects of acute aerobic exercise on cytokines, klotho, irisin, and vascular endothelial growth factor responses in rheumatoid arthritis patients. Ir J Med Sci 2023; 192:491-497. [PMID: 35296975 DOI: 10.1007/s11845-022-02970-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes cartilage and bone damage as well as disability. AIMS : The aim of this study was to examine the effects of acute aerobic exercise on cytokines such as serum interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α) and irisin, vascular endothelial growth factor(VEGF) and klotho in RA patients. METHODS: Forty RA patient and 40 healthy volunteers of the same age participated in this study. All participants walked on the treadmill for 30 minutes at 60-80% of maximal heart rate. Blood samples were taken before and immediately after the exercise. Serum levels of IL-6, IL1β, TNF-α and irisin, VEGF and klotho were measured by enzyme-linked immunosorbent analysis. RESULTS: Baseline levels of inflammatory cytokines, irisin, VEGF and klotho were found to be higher in RA patients compared to the control group. In both groups, there was an increase in serum klotho levels after exercise compared to baseline (p<0.05), while a decrease in IL1β, TNF-α levels were observed. While serum VEGF level decreased in RA group, it increased in the control group(p<0.05). Irisin levels decreased in both groups. IL-6 level did not change in the control group, while it increased in RA group. A single exercise session had an acute anti-inflammatory effect in RA patients. CONCLUSION It can be concluded that acute aerobic exercise can be beneficial for patients with RA through cytokine, irisin, klotho and VEGF levels, and also it can be safely implemented to the RA rehabilitation program for additional anti-inflammatory effects. Trial registration ClinicalTrials.gov: NCT04439682.
Collapse
Affiliation(s)
- Zubeyde Ercan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey.
| | - Gulnihal Deniz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Songül Baglan Yentur
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Funda Bulut Arikan
- Department of Physiology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ahmet Karatas
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gokhan Alkan
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Serdar Koca
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
5
|
Corrêa HDL, Raab ATO, Araújo TM, Deus LA, Reis AL, Honorato FS, Rodrigues-Silva PL, Neves RVP, Brunetta HS, Mori MADS, Franco OL, Rosa TDS. A systematic review and meta-analysis demonstrating Klotho as an emerging exerkine. Sci Rep 2022; 12:17587. [PMID: 36266389 PMCID: PMC9585050 DOI: 10.1038/s41598-022-22123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
Klotho is an anti-aging protein with several therapeutic roles in the pathophysiology of different organs, such as the skeletal muscle and kidneys. Available evidence suggests that exercise increases Klotho levels, regardless of the condition or intervention, shedding some light on this anti-aging protein as an emergent and promising exerkine. Development of a systematic review and meta-analysis in order to verify the role of different exercise training protocols on the levels of circulating soluble Klotho (S-Klotho) protein. A systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE through PubMed, EMBASE, CINAHL, CT.gov, and PEDro. Randomized and quasi-randomized controlled trials that investigated effects of exercise training on S-Klotho levels. We included 12 reports in the analysis, comprising 621 participants with age ranging from 30 to 65 years old. Klotho concentration increased significantly after chronic exercise training (minimum of 12 weeks) (Hedge' g [95%CI] 1.3 [0.69-1.90]; P < 0.0001). Moreover, exercise training increases S-Klotho values regardless of the health condition of the individual or the exercise intervention, with the exception of combined aerobic + resistance training. Furthermore, protocol duration and volume seem to influence S-Klotho concentration, since the effect of the meta-analysis changes when subgrouping these variables. Altogether, circulating S-Klotho protein is altered after chronic exercise training and it might be considered an exerkine. However, this effect may be influenced by different training configurations, including protocol duration, volume, and intensity.
Collapse
Affiliation(s)
- Hugo de Luca Corrêa
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil.
| | | | - Thamires Marra Araújo
- Faculty of Bio-Medicine, Catholic University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Lysleine Alves Deus
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | - Andrea Lucena Reis
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | - Fernando Sousa Honorato
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | | | - Rodrigo Vanerson Passos Neves
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | | | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Thiago Dos Santos Rosa
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil.
| |
Collapse
|
6
|
Barati A, Rahbar Saadat Y, Meybodi SM, Nouraei S, Moradi K, Kamrani Moghaddam F, Malekinejad Z, Hosseiniyan Khatibi SM, Zununi Vahed S, Bagheri Y. Eplerenone reduces renal ischaemia/reperfusion injury by modulating Klotho, NF-κB and SIRT1/SIRT3/PGC-1α signalling pathways. J Pharm Pharmacol 2022:6648426. [PMID: 35866843 DOI: 10.1093/jpp/rgac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a sudden impairment in kidney function that is associated with high morbidity and mortality. Inflammation, oxidative stress, mitochondrial impairment and energy depletion, along with organ dysfunction are hallmarks of AKI. This study aimed to evaluate the effects of Eplerenone, an aldosterone receptor antagonist, on the kidney injury caused by ischaemia/reperfusion (I/R). METHODS Male Wistar rats (n = 24) were randomly allocated into four groups: sham, IR, Eplerenone and Eplerenone+IR. Rats in the two last groups 1 h before I/R induction, were treated with Eplerenone (100 mg/kg) via intraperitoneal injection. Protein levels of Klotho, heat shock protein 70 (HSP70), sirtuin1 (SIRT1), SIRT3 and peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α) along with antioxidant, apoptotic (caspase 3, Bax and Bcl2) and inflammatory [nuclear factor kappa-B (NF-κB) p65, Interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2)] factors were evaluated in the kidney tissues of the experimental groups. KEY FINDINGS Eplerenone pre-treatment significantly could improve IR-induced pathological changes and kidney function and increase the renal antioxidant factors compared to the IR group (P < 0.05). Furthermore, in the Eplerenone + IR group, significant elevation of the Klotho, SIRT1, SIRT3 and PGC-1α at the protein level was identified compared to the IR group. Eplerenone pretreatment could not only downregulate NF-κB signalling and its downstream inflammatory factors (IL-6, COX-2 and TNF-α) but also could decrease apoptotic factors (P ≤ 0.01). CONCLUSIONS The results recommended that Eplerenone exerts a protective effect against kidney IR injury by up-regulating Klotho, HSP70, sirtuins and PGC-1α to preserve mitochondrial function and cell survival. Moreover, it hinders renal inflammation by suppressing NF-κB signalling. These results offer insight into the prevention or treatment of AKI in the future.
Collapse
Affiliation(s)
- Alireza Barati
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sana Nouraei
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Kimia Moradi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Zahra Malekinejad
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | | | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Arroyo E, Troutman AD, Moorthi RN, Avin KG, Coggan AR, Lim K. Klotho: An Emerging Factor With Ergogenic Potential. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:807123. [PMID: 36188832 PMCID: PMC9397700 DOI: 10.3389/fresc.2021.807123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.
Collapse
Affiliation(s)
- Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashley D. Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Ranjani N. Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Keith G. Avin
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Iturriaga T, Yvert T, Sanchez-Lorente IM, Diez-Vega I, Fernandez-Elias VE, Sanchez-Barroso L, Dominguez-Balmaseda D, Larrosa M, Perez-Ruiz M, Santiago C. Acute Impacts of Different Types of Exercise on Circulating α-Klotho Protein Levels. Front Physiol 2021; 12:716473. [PMID: 34539440 PMCID: PMC8440965 DOI: 10.3389/fphys.2021.716473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Elevated plasma α-klotho (αKl) protects against several ageing phenotypes and has been proposed as a biomarker of a good prognosis for different diseases. The beneficial health effects of elevated plasma levels of soluble αKl (SαKl) have been likened to the positive effects of exercise on ageing and chronic disease progression. It has also been established that molecular responses and adaptations differ according to exercise dose. The aim of this study is to compare the acute SαKl response to different exercise interventions, cardiorespiratory, and strength exercise in healthy, physically active men and to examine the behavior of SαKl 72h after acute strength exercise. Methods: In this quasi-experimental study, plasma SαKl was measured before and after a cardiorespiratory exercise session (CR) in 43 men, and strength exercise session (ST) in 39 men. The behavior of SαKl was also examined 24, 48, and 72h after ST. Results: Significant differences (time×group) were detected in SαKl levels (p=0.001; d=0.86) between CR and ST. After the ST intervention, SαKl behavior varied significantly (p=0.009; d=0.663) in that levels dropped between pre- and post-exercises (p=0.025; d=0.756) and were also significantly higher compared to pre ST values at 24h (p=0.033; d=0.717) and at 48h (p=0.015; d=0.827). Conclusions: SαKl levels increased in response to a single bout of cardiorespiratory exercise; while they decreased immediately after strength exercise, levels were elevated after 24h indicating different klotho protein responses to different forms of exercise.
Collapse
Affiliation(s)
- Tamara Iturriaga
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Thomas Yvert
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Isabel M Sanchez-Lorente
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Ignacio Diez-Vega
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain.,Departamento de Enfermería y Fisioterapia, Facultad de Ciencias de la salud, Universidad de Leon, Ponferrada, Spain
| | - Valentin E Fernandez-Elias
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Lara Sanchez-Barroso
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Diego Dominguez-Balmaseda
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Mar Larrosa
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Margarita Perez-Ruiz
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain.,Servicio de Medicina Física y Rehabilitación, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Catalina Santiago
- Faculty of Physical Activity, Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021; 9:121. [PMID: 34564326 PMCID: PMC8472997 DOI: 10.3390/sports9090121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unmasked mankind's vulnerability to biological threats. Although higher age is a major risk factor for disease severity in COVID-19, several predisposing risk factors for mortality are related to low cardiorespiratory and metabolic fitness, including obesity, cardiovascular disease, diabetes, and hypertension. Reaching physical activity (PA) guideline goals contribute to protect against numerous immune and inflammatory disorders, in addition to multi-morbidities and mortality. Elevated levels of cardiorespiratory fitness, being non-obese, and regular PA improves immunological function, mitigating sustained low-grade systemic inflammation and age-related deterioration of the immune system, or immunosenescence. Regular PA and being non-obese also improve the antibody response to vaccination. In this review, we highlight potential physiological, cellular, and molecular mechanisms that are affected by regular PA, increase the host antiviral defense, and may determine the course and outcome of COVID-19. Not only are the immune system and regular PA in relation to COVID-19 discussed, but also the cardiovascular, respiratory, renal, and hormonal systems, as well as skeletal muscle, epigenetics, and mitochondrial function.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| | - Ian Cotgreave
- Division of Biomaterials and Health, Department of Pharmaceutical and Chemical Safety, Research Institutes of Sweden, 151 36 Södertälje, Sweden;
| | - Maria Furberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Michael Svensson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
10
|
Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, van Praag H. Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease. Front Endocrinol (Lausanne) 2021; 12:660181. [PMID: 34093436 PMCID: PMC8173166 DOI: 10.3389/fendo.2021.660181] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that physical activity and exercise training may delay or prevent the onset of Alzheimer's disease (AD). However, systemic biomarkers that can measure exercise effects on brain function and that link to relevant metabolic responses are lacking. To begin to address this issue, we utilized blood samples of 23 asymptomatic late middle-aged adults, with familial and genetic risk for AD (mean age 65 years old, 50% female) who underwent 26 weeks of supervised treadmill training. Systemic biomarkers implicated in learning and memory, including the myokine Cathepsin B (CTSB), brain-derived neurotrophic factor (BDNF), and klotho, as well as metabolomics were evaluated. Here we show that aerobic exercise training increases plasma CTSB and that changes in CTSB, but not BDNF or klotho, correlate with cognitive performance. BDNF levels decreased with exercise training. Klotho levels were unchanged by training, but closely associated with change in VO2peak. Metabolomic analysis revealed increased levels of polyunsaturated free fatty acids (PUFAs), reductions in ceramides, sphingo- and phospholipids, as well as changes in gut microbiome metabolites and redox homeostasis, with exercise. Multiple metabolites (~30%) correlated with changes in BDNF, but not CSTB or klotho. The positive association between CTSB and cognition, and the modulation of lipid metabolites implicated in dementia, support the beneficial effects of exercise training on brain function. Overall, our analyses indicate metabolic regulation of exercise-induced plasma BDNF changes and provide evidence that CTSB is a marker of cognitive changes in late middle-aged adults at risk for dementia.
Collapse
Affiliation(s)
- Julian M. Gaitán
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hyo Youl Moon
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Department of Education, Seoul National University, Seoul, South Korea
- Institute of Sport Science, Seoul National University, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| | - Matthew Stremlau
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, United States
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Henriette van Praag
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
11
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Nava R, Zuhl M, Bourbeau K, Moriarty T, Welch A, Mermier C. Relationship between aerobic fitness, antioxidant capacity and the anti-aging hormone, Klotho. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.18.03972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Barnes JW, Duncan D, Helton S, Hutcheson S, Kurundkar D, Logsdon NJ, Locy M, Garth J, Denson R, Farver C, Vo HT, King G, Kentrup D, Faul C, Kulkarni T, De Andrade JA, Yu Z, Matalon S, Thannickal VJ, Krick S. Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L141-L154. [PMID: 31042083 PMCID: PMC6689746 DOI: 10.1152/ajplung.00246.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia that mainly affects the elderly. Several reports have demonstrated that aging is involved in the underlying pathogenic mechanisms of IPF. α-Klotho (KL) has been well characterized as an "age-suppressing" hormone and can provide protection against cellular senescence and oxidative stress. In this study, KL levels were assessed in human plasma and primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF-FB) and in lung tissue from mice exposed to bleomycin, which showed significant downregulation when compared with controls. Conversely, transgenic mice overexpressing KL were protected against bleomycin-induced lung fibrosis. Treatment of human lung fibroblasts with recombinant KL alone was not sufficient to inhibit transforming growth factor-β (TGF-β)-induced collagen deposition and inflammatory marker expression. Interestingly, fibroblast growth factor 23 (FGF23), a proinflammatory circulating protein for which KL is a coreceptor, was upregulated in IPF and bleomycin lungs. To our surprise, FGF23 and KL coadministration led to a significant reduction in fibrosis and inflammation in IPF-FB; FGF23 administration alone or in combination with KL stimulated KL upregulation. We conclude that in IPF downregulation of KL may contribute to fibrosis and inflammation and FGF23 may act as a compensatory antifibrotic and anti-inflammatory mediator via inhibition of TGF-β signaling. Upon restoration of KL levels, the combination of FGF23 and KL leads to resolution of inflammation and fibrosis. Altogether, these data provide novel insight into the FGF23/KL axis and its antifibrotic/anti-inflammatory properties, which opens new avenues for potential therapies in aging-related diseases like IPF.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Dawn Duncan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Samuel Hutcheson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Morgan Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Rebecca Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Carol Farver
- Department of Pathology, Cleveland Clinic , Cleveland, Ohio
| | - Hai T Vo
- Department of Neurobiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Gwendalyn King
- Department of Neurobiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Joao A De Andrade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
- Birmingham VA Medical Center , Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama , Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| |
Collapse
|
14
|
Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Espuch-Oliver A, de Haro T, Gutierrez A, Ruiz JR, Castillo MJ. Exercise training increases the S-Klotho plasma levels in sedentary middle-aged adults: A randomised controlled trial. The FIT-AGEING study. J Sports Sci 2019; 37:2175-2183. [PMID: 31164040 DOI: 10.1080/02640414.2019.1626048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effects of different training modalities on the soluble Klotho (S-Klotho) plasma levels in sedentary middle-aged adults. A total of 74 middle-aged adults (53.4 ± 5.0 years old; 52.7% women) were enrolled in the FIT-AGEING study. We conducted a 12-week randomised controlled trial. The participants were randomly assigned to 4 different groups: (i) a control group (no exercise), (ii) a physical activity recommendation from the World Health Organization group (PAR), (iii) a high intensity interval training group (HIIT), and (iv) a high intensity interval training group adding whole-body electromyostimulation training group (HIIT-EMS). S-Klotho plasma levels, anthropometric measurements, and body composition variables were measured before and after the intervention programme. All exercise training modalities induced an increase in the S-Klotho plasma levels (all P ≤ 0.019) without statistical differences between them (all P ≥ 0.696). We found a positive association between changes in lean mass index and changes in the S-Klotho plasma levels, whereas a negative association was reported between changes in fat mass outcomes and changes in the S-Klotho plasma levels after our intervention study. In conclusion, our results suggest that the link between exercise training and the increase in S-Klotho plasma levels could be mediated by a decrease of fat mass and an increase of lean mass.
Collapse
Affiliation(s)
- F J Amaro-Gahete
- a Department of Medical Physiology, School of Medicine, University of Granada , Granada , Spain.,b PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada , Spain
| | - A De-la-O
- a Department of Medical Physiology, School of Medicine, University of Granada , Granada , Spain
| | - L Jurado-Fasoli
- a Department of Medical Physiology, School of Medicine, University of Granada , Granada , Spain
| | - A Espuch-Oliver
- c Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital, H.U. Virgen de las Nieves, Ibs, Granada, Complejo Hospitalario de Granada , Granada , Spain
| | - T de Haro
- d Unidad de Gestión Clínica de Laboratorios Clínicos, H.U San Cecilio, Ibs, Granada, Complejo Hospitalario de Granada , Granada , Spain
| | - A Gutierrez
- a Department of Medical Physiology, School of Medicine, University of Granada , Granada , Spain
| | - J R Ruiz
- b PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada , Spain
| | - M J Castillo
- a Department of Medical Physiology, School of Medicine, University of Granada , Granada , Spain
| |
Collapse
|
15
|
Association of physical activity and fitness with S-Klotho plasma levels in middle-aged sedentary adults: The FIT-AGEING study. Maturitas 2019; 123:25-31. [DOI: 10.1016/j.maturitas.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
16
|
Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Espuch-Oliver A, Robles-Gonzalez L, Navarro-Lomas G, de Haro T, Femia P, Castillo MJ, Gutierrez A. Exercise training as S-Klotho protein stimulator in sedentary healthy adults: Rationale, design, and methodology. Contemp Clin Trials Commun 2018; 11:10-19. [PMID: 30023455 PMCID: PMC6022251 DOI: 10.1016/j.conctc.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Aims The secreted form of the α-Klotho gene (S-Klotho), which is considered a powerful biomarker of longevity, makes it an attractive target as an anti-ageing therapy against functional decline, sarcopenic obesity, metabolic and cardiovascular diseases, osteoporosis, and neurodegenerative disorders. The S-Klotho plasma levels could be related to physical exercise inasmuch physical exercise is involved in physiological pathways that regulate the S-Klotho plasma levels. FIT-AGEING will determine the effect of different training modalities on the S-Klotho plasma levels (primary outcome) in sedentary healthy adults. FIT-AGEING will also investigate the physiological consequences of activating the klotho gene (secondary outcomes). Methods FIT-AGEING will recruit 80 sedentary, healthy adults (50% women) aged 45–65 years old. Eligible participants will be randomly assigned to a non-exercise group, i.e. the control group, (n = 20), a physical activity recommendation from World Health Organization group (n = 20), a high intensity interval training group (n = 20), and a whole-body electromyostimulation group (n = 20). The laboratory measurements will be taken at the baseline and 12 weeks later including the S-Klotho plasma levels, physical fitness (cardiorespiratory fitness, muscular strength), body composition, basal metabolic rate, heart rate variability, maximal fat oxidation, health blood biomarkers, free-living physical activity, sleep habits, reaction time, cognitive variables, and health-related questionnaires. We will also obtain dietary habits data and cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- Department of Medical Physiology, School of Medicine, University of Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Alejandro De-la-O
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Lucas Jurado-Fasoli
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Andrea Espuch-Oliver
- Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital, H.U. Virgen de Las Nieves, Ibs.Granada, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | | | - Ginés Navarro-Lomas
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Tomás de Haro
- Unidad de Gestión Clínica de Laboratorios Clínicos, H.U San Cecilio, Ibs.Granada, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | - Pedro Femia
- Department of Statistics, Faculty of Medicine at the University of Granada, Granada, Spain
| | - Manuel J Castillo
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Angel Gutierrez
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| |
Collapse
|
17
|
Panah F, Ghorbanihaghjo A, Argani H, Asadi Zarmehri M, Nazari Soltan Ahmad S. Ischemic acute kidney injury and klotho in renal transplantation. Clin Biochem 2018; 55:3-8. [PMID: 29608890 DOI: 10.1016/j.clinbiochem.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Post-transplant ischemic acute kidney injury (AKI), secondary to ischemia reperfusion injury (IRI), is a major problem influencing on the short and long term graft and patient survival. Many molecular and cellular modifications are observed during IRI, for example, tissue damage result production of reactive oxygen species (ROS), cytokines, chemokines, and leukocytes recruitment which are activated by NF-κB (nuclear factor kappa B) signaling pathway. Therefore, inhibiting these processes can significantly protect renal parenchyma from tissue damage. Klotho protein, mainly produced in distal convoluted tubules (DCT), is an anti-senescence protein. There is increasing evidence to confirm a relationship between Klotho levels and renal allograft function. Many studies have also demonstrated that expression of the Klotho gene would be down regulated with IRI, so it will be used as an early biomarker for acute kidney injury after renal transplantation. Other studies suggest that Klotho may have a renoprotective effect for attenuating of kidney injury. In this review, we will discuss pathophysiology of IRI-induced acute kidney injury and its relation with klotho level in renal transplantation procedure.
Collapse
Affiliation(s)
- Fatemeh Panah
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Asadi Zarmehri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Boksha IS, Prokhorova TA, Savushkina OK, Tereshkina EB. Klotho protein: Its role in aging and central nervous system pathology. BIOCHEMISTRY (MOSCOW) 2017; 82:990-1005. [DOI: 10.1134/s0006297917090024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Dalise S, Cavalli L, Ghuman H, Wahlberg B, Gerwig M, Chisari C, Ambrosio F, Modo M. Biological effects of dosing aerobic exercise and neuromuscular electrical stimulation in rats. Sci Rep 2017; 7:10830. [PMID: 28883534 PMCID: PMC5589775 DOI: 10.1038/s41598-017-11260-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Aerobic exercise (AE) and non-aerobic neuromuscular electric stimulation (NMES) are common interventions used in physical therapy. We explored the dose-dependency (low, medium, high) of these interventions on biochemical factors, such as brain derived neurotrophic growth factor (BDNF), vascular endothelial growth factor-A (VEGF-A), insulin-like growth factor-1 (IGF-1) and Klotho, in the blood and brain of normal rats, as well as a treadmill-based maximum capacity test (MCT). A medium dose of AE produced the most improvement in MCT with dose-dependent changes in Klotho in the blood. A dose-dependent increase of BDNF was evident following completion of an NMES protocol, but there was no improvement in MCT performance. Gene expression in the hippocampus was increased after both AE and NMES, with IGF-1 being a signaling molecule that correlated with MCT performance in the AE conditions, but also highly correlated with VEGF-A and Klotho. Blood Klotho levels can serve as a biomarker of therapeutic dosing of AE, whereas IGF-1 is a key molecule coupled to gene expression of other molecules in the hippocampus. This approach provides a translatable paradigm to investigate the mode and mechanism of action of interventions employed in physical therapy that can improve our understanding of how these factors change under pathological conditions.
Collapse
Affiliation(s)
- Stefania Dalise
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Loredana Cavalli
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Harmanvir Ghuman
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA
| | | | | | - Carmelo Chisari
- University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Fabrisia Ambrosio
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA.,Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA
| | - Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, Pittsburgh, Pennsylvania, USA. .,Department of Radiology, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Measurement of Serum Klotho in Systemic Sclerosis. DISEASE MARKERS 2017; 2017:9545930. [PMID: 28912623 PMCID: PMC5585626 DOI: 10.1155/2017/9545930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Background The aim of our study was to evaluate the serum concentration of klotho in a cohort of systemic sclerosis (SSc) patients compared to that of healthy controls and to correlate its levels with the degree and the kind of organ involvement. Methods Blood samples obtained from both patients and controls were collected and analysed by an ELISA test for the determination of human soluble klotho. Scleroderma patients were evaluated for disease activity through clinical, laboratory, and instrumental assessment. Results Our cohort consisted of 81 SSc patients (74 females, mean age 63.9 ± 13.1 years) and 136 healthy controls (78 females, mean age 50.5 ± 10.7 years). When matched for age, serum klotho concentration significantly differed between controls and patients (p < 0.001). However, in SSc patients, we did not find any significant association between serum klotho and clinical, laboratory, and instrumental findings. Lower serum levels of klotho were detected in 4 patients who were anticitrullinated peptide antibody (ACPA) positive (p = 0.005). Conclusions Our data show a lower concentration of klotho in the serum of SSc patients compared to that of healthy controls, without any significant association with clinical manifestations and laboratory and instrumental findings. The association between serum klotho and ACPA positivity requires further investigation.
Collapse
|