1
|
Intirach J, Shu C, Lv X, Gao S, Sutthanont N, Chen T, Lv Z. Human parasitic infections of the class Adenophorea: global epidemiology, pathogenesis, prevention and control. Infect Dis Poverty 2024; 13:48. [PMID: 38902844 PMCID: PMC11188577 DOI: 10.1186/s40249-024-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Human parasitic infections caused by Adenophorean nematodes encompass a range of diseases, including dioctophymiasis, trichuriasis, capillariasis, trichinellosis, and myositis. These infection can result in adverse impacts on human health and cause societal and economic concerns in tropical and subtropical regions. METHODS This review conducted searches in PubMed, Embase and Google Scholar for relevant studies that published in established databases up to April 26, 2024. Studies that focused on the common morphology, life cycle, disease distribution, clinical manifestations, and prevention and control strategies for Adenophorean parasitic diseases in humans were included. RESULTS Adenophorean nematodes exhibit shared morphological characteristics with a four-layered cuticle; uninucleate epidermal cells; pseudocoelom with six or more coelomocytes; generally three caudal glands; five esophageal glands; two testes in males with median-ventral supplementary glands in a single row; tail in males rarely possessing caudal alae; amphids always postlabial; presence of cephalic sensory organs; absence of phasmids; and a secretory-excretory system consisting of a single ventral gland cell, usually with a non-cuticularized terminal duct. Humans play two important roles in the life cycle of the nematode class, Adenophorea: 1) as a definitive host infected by ingesting undercooked paratenic hosts, embryonated eggs, infective larvae in fish tissue and meat contaminated with encysted or non-encysted larvae, and 2) as an accidental host infected by ingesting parasitic eggs in undercooked meat. Many organs are targeted by the Adenophorean nematode in humans such as the intestines, lungs, liver, kidneys, lymphatic circulation and blood vessels, resulting in gastrointestinal problems, excessive immunological responses, cell disruption, and even death. Most of these infections have significant incidence rates in the developing countries of Africa, Asia and Latin America; however, some parasitic diseases have restricted dissemination in outbreaks. To prevent these diseases, interventions together with education, sanitation, hygiene and animal control measures have been introduced in order to reduce and control parasite populations. CONCLUSIONS The common morphology, life cycle, global epidemiology and pathology of human Adenophorean nematode-borne parasitic diseases were highlighted, as well as their prevention and control. The findings of this review will contribute to improvement of monitoring and predicting human-parasitic infections, understanding the relationship between animals, humans and parasites, and preventing and controlling parasitic diseases.
Collapse
Affiliation(s)
- Jitrawadee Intirach
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, China
| | - Chang Shu
- School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xin Lv
- School of Public Health, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Suzhen Gao
- School of Public Health, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Nataya Sutthanont
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tao Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| | - Zhiyue Lv
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
A Helminth-Derived Chitinase Structurally Similar to Mammalian Chitinase Displays Immunomodulatory Properties in Inflammatory Lung Disease. J Immunol Res 2021; 2021:6234836. [PMID: 34869783 PMCID: PMC8639245 DOI: 10.1155/2021/6234836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Immunomodulation of airway hyperreactivity by excretory-secretory (ES) products of the first larval stage (L1) of the gastrointestinal nematode Trichuris suis is reported by us and others. Here, we aimed to identify the proteins accounting for the modulatory effects of the T. suis L1 ES proteins and studied six selected T. suis L1 proteins for their immunomodulatory efficacy in a murine OVA-induced allergic airway disease model. In particular, an enzymatically active T. suis chitinase mediated amelioration of clinical signs of airway hyperreactivity, primarily associated with suppression of eosinophil recruitment into the lung, the associated chemokines, and increased numbers of RELMα+ interstitial lung macrophages. While there is no indication of T. suis chitinase directly interfering with dendritic cell activation or antigen presentation to CD4 T cells, treatment of allergic mice with the worm chitinase influenced the hosts' own chitinase activity in the inflamed lung. The three-dimensional structure of the T. suis chitinase as determined by high-resolution X-ray crystallography revealed high similarities to mouse acidic mammalian chitinase (AMCase) but a unique ability of T. suis chitinase to form dimers. Our data indicate that the structural similarities between the parasite and host chitinase contribute to the disease-ameliorating effect of the helminth-derived chitinase on allergic lung inflammation.
Collapse
|
3
|
Socio-medical studies of individuals self-treating with helminths provide insight into clinical trial design for assessing helminth therapy. Parasitol Int 2021; 87:102488. [PMID: 34737071 DOI: 10.1016/j.parint.2021.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
The virtually complete loss of intestinal worms, known as helminths, from Western society has resulted in elimination of a range of helminth-induced morbidities. Unfortunately, that loss has also led to inflammation-associated deficiencies in immune function, ultimately contributing to widespread pandemics of allergies, autoimmunity, and neuropsychiatric disorders. Several socio-medical studies have examined the effects of intentional reworming, or self-treatment with helminths, on a variety of inflammation-related disorders. In this study, the latest results from ongoing socio-medical studies are described. The results point toward two important factors that appear to be overlooked in some if not most clinical trials. Specifically, (a) the method of preparation of the helminth can have a profound effect on its therapeutic efficacy, and (b) variation between individuals in the effective therapeutic dosage apparently covers a 10-fold range, regardless of the helminth used. These results highlight current limits in our understanding of the biology of both hosts and helminths, and suggest that information from self-treatment may be critical for clinical evaluation of the benefits and limits of helminth therapy.
Collapse
|
4
|
Safety and tolerability of medicinal parasite ova (Trichuris suis) in healthy Japanese volunteers: A randomized, double-blind, placebo-controlled trial. Parasitol Int 2021; 85:102441. [PMID: 34425258 DOI: 10.1016/j.parint.2021.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Trichuris suis ova (TSO), with the potential to modulate the human immune system, have been tested for therapeutic application in autoimmune and allergic diseases such as inflammatory bowel disease (IBD). Previous clinical studies were limited to European and American participants, whereas Asian populations have not been well documented. In this study, a clinical trial was conducted to examine the safety and tolerability of TSO administration among a healthy Japanese population. METHODS The study was a randomized, double-blind, placebo-controlled trial held at Jikei University Hospital, Tokyo. Twelve volunteers were stratified into three groups receiving different doses of TSO (TSO 1000, 2500, and 7500) and another into the control group. These cases were limited to healthy Japanese men aged over 20 years old. Single doses of medicinal TSO or placebo were given to three participants of each group. All participants were followed up to 56 days after ingestion. During the follow-up period, clinical practitioners checked each participant at the clinic at 7, 14, 28, and 56 days post-ingestion (dpi). Clinical symptoms were evaluated using questionnaire-based self-reporting, which participants filled at every visit. Blood samples were drawn at 7, 14, 28, and 56 dpi. Fecal samples were collected at 28 and 56 dpi. RESULTS During the study period, twelve healthy Japanese male volunteers were enrolled. All participants completed the follow-up period. No severe adverse events were observed during the study period in all groups. Three participants in the TSO 1000, 2500, and 7500 groups had mild to moderate abdominal symptoms, diarrhea, bloating, and appetite loss during the observation period. One participant in the placebo group presented with mild diarrhea. Microscopic examination identified no parasite ova in any fecal samples. Blood sample examination indicated elevated eosinophil count in several cases, especially in the groups with the higher dose of TSO. No extra-abdominal symptoms were present in all cases. CONCLUSIONS Healthy Japanese people tolerated all doses of TSO without any severe adverse events. On the other hand, mild to moderate abdominal symptoms were observed in several participants. This study suggested that the medicinal use of TSO in Japan is relatively safe, and close follow-up is recommended for sustainable usage.
Collapse
|
5
|
Jones KR. Trichuris spp. in Animals, with Specific Reference to Neo-Tropical Rodents. Vet Sci 2021; 8:15. [PMID: 33494133 PMCID: PMC7909510 DOI: 10.3390/vetsci8020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Trichuriasis is the clinical disease of animals infected with the parasite of the genus Trichuris. This review attempts to present information on Trichuris spp. infestation in neo-tropical rodents that are utilized for meat consumption by humans. Neo-tropical rodents utilized for meat production can be divided into two categories: those that have been domesticated, which include the guinea pig (Cavia porcellus), and those that are on the verge of domestication, such as the capybara (Hydrochoerus hydrochaeris), lappe (Cuniculus paca/Agouti paca), and agouti (Dasyprocta leporina). This document reviews the literature on the species of Trichuris that affects the rodents mentioned above, as well as the clinical signs observed. The literature obtained spans over sixty years, from 1951 to 2020. Trichuris spp. was found in these neo-tropical rodents mentioned. However, there is a dearth of information on the species of Trichuris that parasitize these animals. The capybara was the only rodent where some molecular techniques were used to identify a new species named T. cutillasae. In most cases, Trichuris spp. was found in combination with other endoparasites, and was found at a low prevalence in the lappe and guinea pig. The presence of Trichuris spp. ranged from 4.62-53.85% in the agouti, 4.21-10.00% in the lappe, 50% in the capybaras, and 1-31% in guinea pigs. Further work must be done towards molecular identification of various Trichuris spp. present in these rodents, as well as the clinical effect of infection on the performance of agouti, lappe, capybara, and guinea pigs.
Collapse
Affiliation(s)
- Kegan Romelle Jones
- Department of Basic Veterinary Sciences (DBVS), School of Veterinary Medicine (SVM), Faculty of Medical Sciences (FMS), University of the West Indies (UWI), Mt. Hope Campus, Trinidad and Tobago;
- Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), University of the West Indies (UWI), St. Augustine Campus, Trinidad and Tobago
| |
Collapse
|
6
|
Turck D, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Pöting A, Poulsen M, Sanz Y, Schlatter JR, van Loveren H, Fernandez Dumont A, Gelbmann W, Knutsen HK. Safety of viable embryonated eggs of the whipworm Trichuris suis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2019; 17:e05777. [PMID: 32626406 PMCID: PMC7009231 DOI: 10.2903/j.efsa.2019.5777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on viable embryonated eggs of the whipworm Trichuris suis as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The applicant proposes to use the NF as a food supplement in the format of a 15-mL bottle containing 250 viable embryonated eggs of T. suis. The target population for the NF is the general population. Considering the compositional data and proposed conditions of use, the consumption of the NF is considered of no nutritional relevance. Available data suggest that most larvae of T. suis after hatching in the intestinal tract of humans remain immature and live for several weeks in the gastrointestinal tract of the human host. Nevertheless, under certain circumstances, T. suis can be invasive in human, being able to mature into adult size and reproduce in humans. Human studies have also shown that administration of T. suis ova may increase the incidence of adverse gastrointestinal reactions. The Panel considers that there are no studies available that demonstrate the safety of this NF intended for the general population at a proposed intake of 250 viable embryonated eggs of T. suis ova per day. Based on the available information, the Panel cannot establish a safe dose at which no safety concerns would be expected. The Panel concludes that the safety of the NF has not been established.
Collapse
|
7
|
Arroyo-López C. Helminth therapy for autism under gut-brain axis- hypothesis. Med Hypotheses 2019; 125:110-118. [PMID: 30902137 DOI: 10.1016/j.mehy.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Autism is a neurodevelopmental disease included within Autism Syndrome Disorder (ASD) spectrum. ASD has been linked to a series of genes that play a role in immune response function and patients with autism, commonly suffer from immune-related comorbidities. Despite the complex pathophysiology of autism, Gut-brain axis is gaining strength in the understanding of several neurological disorders. In addition, recent publications have shown the correlation between immune dysfunctions, gut microbiota and brain with the behavioral alterations and comorbid symptoms found in autism. Gut-brain axis acts as the "second brain", in a communication network established between neural, endocrine and the immunological systems. On the other hand, Hygiene Hypothesis suggests that the increase in the incidence of autoimmune diseases in the modern world can be attributed to the decrease of exposure to infectious agents, as parasitic nematodes. Helminths induce modulatory and protective effects against several inflammatory disorders, maintaining gastrointestinal homeostasis and modulating brain functions. Helminthic therapy has been previously performed in diseases such as ulcerative colitis, Crohn's disease, diabetes, multiple sclerosis, asthma, rheumatoid arthritis, and food allergies. Considering gut-brain axis, Hygiene Hypothesis, and the modulatory effects of helminths I hypothesized that a treatment with Trichuris suis soluble products represents a feasible holistic treatment for autism, and the key for the development of novel treatments. Preclinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Celia Arroyo-López
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, United States.
| |
Collapse
|
8
|
Phosuk I, Sanpool O, Thanchomnang T, Sadaow L, Rodpai R, Anamnart W, Janwan P, Wijit A, Laymanivong S, Pa Aung WP, Intapan PM, Maleewong W. Molecular Identification of Trichuris suis and Trichuris trichiura Eggs in Human Populations from Thailand, Lao PDR, and Myanmar. Am J Trop Med Hyg 2018; 98:39-44. [PMID: 29165218 DOI: 10.4269/ajtmh.17-0651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Trichuris trichiura is a soil-transmitted helminth infecting human populations globally. Human cases caused by Trichuris suis and Trichuris vulpis have also been reported. Molecular identifications of Trichuris species infecting human populations in Lao PDR and Myanmar are lacking. Here, we explored molecular data obtained from Trichuris eggs recovered from human fecal samples from these countries and compared these with new and existing data from Thailand. Nuclear ribosomal DNA (18S and ITS2) sequences were amplified from Trichuris eggs and sequenced. Forty-one samples showed 99-100% similarity in their 18S sequences to published sequences of T. trichiura and one sample showed 99% similarity to a sequence of T. suis. Similarly, 41 samples showed 92-100% similarity in their ITS2 sequences to published sequences of T. trichiura and one sample showed 94-97% similarity to sequences of T. suis. This study is the first molecular confirmation of human infection with T. suis in northeast Thailand and the first molecular confirmation of the species of Trichuris infecting humans in Lao PDR and Myanmar.
Collapse
Affiliation(s)
- Issarapong Phosuk
- Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Faculty of Medicine, Maha Sarakram University, Maha Sarakram, Thailand.,Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Witthaya Anamnart
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Penchom Janwan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand.,Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Adulsak Wijit
- Office of Disease Prevention & Control 1st, Ministry of Public Health, Chiang Mai, Thailand
| | - Sakhone Laymanivong
- Centre of Malariology, Parasitology and Entomology, Ministry of Health, Vientiane, Lao PDR.,Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Win Pa Pa Aung
- Department of Microbiology, University of Medicine 2, Ministry of Health and Sport, Yangon, Myanmar.,Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, and Research and Diagnostic Center for Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Smith H, Forman R, Mair I, Else KJ. Interactions of helminths with macrophages: therapeutic potential for inflammatory intestinal disease. Expert Rev Gastroenterol Hepatol 2018; 12:997-1006. [PMID: 30113218 DOI: 10.1080/17474124.2018.1505498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophages represent a highly heterogeneous and plastic cell type found in most tissues of the body; the intestine is home to enormous numbers of these cells. Considerable interest surrounds the 'M2 macrophage,' as it is able to control and regulate inflammation, while promoting tissue repair. Areas covered: As potent inducers of M2 macrophages, intestinal helminths and helminth-derived products are ideal candidates for small molecule drug design to drive M2 macrophage polarization. Several gastrointestinal helminths have been found to cause M2 macrophage-inducing infections. This review covers current knowledge of helminth products and their impact on macrophage polarization, which may in the future lead to new therapeutic strategies. A literature search was performed using the following search terms in PubMed: M2 macrophage, alternative activation, helminth products, helminth ES, helminth therapy, nanoparticle, intestinal macrophages. Other studies were selected by using references from articles identified through our original literature search. Expert commentary: While the immunomodulatory potential of helminth products is well established, we have yet to fully characterize many components of the intestinal helminth product library. Current work aims to identify the protein motifs responsible for modulation of macrophages and other components of the immune system.
Collapse
Affiliation(s)
- Hannah Smith
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Ruth Forman
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Iris Mair
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Kathryn J Else
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| |
Collapse
|
10
|
Trichuris vulpis and T. trichiura infections among schoolchildren of a rural community in northwestern Thailand: the possible role of dogs in disease transmission. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Trichuriasis is an important soil-transmitted helminth infection caused by Trichuris trichiura. About one-tenth of the world population may be infected. Incidentally, T. vulpis or dog whipworm has been reported to infect humans based on the egg size. However, an overlapping egg dimension occurs between T. trichiura and T. vulpis leading to the potential for misdiagnosis. Objective: Develop a PCR method to differentiate T. trichiura and T. vulpis eggs in stool samples and to investigate the prevalence of both whipworms in humans and dogs in a rural community in Thailand. Materials and methods: We determined and compared the small subunit ribosomal RNA sequences of both species of whipworms for developing species-specific PCR diagnosis. After validation of the method, we conducted a cross-sectional survey at Ta Song Yang District in Tak Province, northwestern Thailand in 2008. Stool samples were randomly recruited from 80 schoolchildren (36 males, 44 females) and 79 dogs in this community. Results: Fifty-six individuals harbored Trichuris eggs in their stools. The PCR-based diagnosis revealed that 50 cases were infected with T. trichiura and six (10.7%) were co-infected with both T. trichiura and T. vulpis. Although the dimension of Trichuris eggs provided some diagnostic clues for species differentiation, a remarkable variation in the length of these whipworm eggs was observed among samples that could lead to misdiagnosis. Conclusion: Both T. trichiura and T. vulpis eggs were detected in stool samples of dogs that roamed around this community, highlighting the potential reservoir role of dogs in the transmission of both human and dog whipworms in this population.
Collapse
|
11
|
Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DSS colitis but may be detrimental under conditions of immunosuppression. Sci Rep 2017; 7:16500. [PMID: 29184071 PMCID: PMC5705695 DOI: 10.1038/s41598-017-16287-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
Trichuris suis ova (TSO) have been tested for therapeutic application in inflammatory bowel diseases (IBD) yet understanding of the underlying mechanisms and safety in an immunocompromised host is limited due to lack of a suitable animal model. We used a recently established rabbit model of dextran sodium sulphate (DSS) induced colitis to study the efficacy, mechanisms and safety of TSO therapy in immunocompetent and immunosuppressed animals. TSO treatment prevented the DSS induced weight loss, delayed the onset of DSS induced symptoms by 2 days and significantly reduced the disease activity (DAI). TSO treatment protected caecal histology and prevented the colitis-associated loss in faecal microbiota diversity. Mainly the transcriptome of lamina propria mononuclear cells (LPMC) was affected by TSO treatment, showing dampened innate and adaptive inflammatory responses. The protective effect of TSO was lost in immunosuppressed rabbits, where TSO exacerbated colitis. Our data show that preventive TSO treatment ameliorates colitis severity in immunocompetent rabbits, modulates LPMC immune responses and reduces faecal dysbiosis. In contrast, the same TSO treatment exacerbates colitis in immunosuppressed animals. Our data provide further evidence for a therapeutic effect of TSO in IBD, yet caution is required with regard to TSO treatment in immunosuppressed patients.
Collapse
|
12
|
Williams AR, Dige A, Rasmussen TK, Hvas CL, Dahlerup JF, Iversen L, Stensvold CR, Agnholt J, Nejsum P. Immune responses and parasitological observations induced during probiotic treatment with medicinal Trichuris suis ova in a healthy volunteer. Immunol Lett 2017; 188:32-37. [PMID: 28602842 DOI: 10.1016/j.imlet.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
Ingestion of eggs (ova) of the porcine nematode parasite Trichuris suis (TSO) may reduce the severity of autoimmune disorders, however the development of TSO treatment as a useful therapy for autoimmune diseases is hampered by a lack of knowledge on the development of the parasite and the nature of the local immune responses in humans. Here, we used colonoscopy to investigate the development of T. suis and related mucosal and systemic immune responses during TSO treatment in an intestinally healthy male volunteer. TSO treatment induced T. suis-specific serum antibodies, a transient blood eosinophilia, and increases in IFNγ+ and IL4+ cells within the circulating CD4+ T-cell population. Increased expression of genes encoding cytokines (IL4, IL10, IL17 and TGF-β), and transcription factors (FOXP3, GATA3 and RORC) were apparent in the ascending and transverse colon (the predilection site of the worms), whereas only limited changes in gene expression were observed proximally (ileum) and distally (descending colon) to the infected tissue. We further show that T. suis is able to colonise the human colon, with a number of worms developing to a similar size and morphology observed in the natural pig host, and a small number of unembryonated eggs were passed in the faeces, indicating patent infection. Notably, the volunteer experienced a substantial improvement in psoriasis during the course of TSO treatment. Thus, TSO treatment induced a mixed Th1/Th2/T regulatory response at the local site of infection, which was also reflected to some extent in the peripheral circulation. These results, together with the first definitive observations that T. suis can mature to adult size and reproduce in humans, shed new light on the interaction between the human immune system and probiotic helminth treatment, which should facilitate further development of this novel therapeutic option.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Tue Kruse Rasmussen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark
| | - Christian L Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Jens F Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Laan LC, Williams AR, Stavenhagen K, Giera M, Kooij G, Vlasakov I, Kalay H, Kringel H, Nejsum P, Thamsborg SM, Wuhrer M, Dijkstra CD, Cummings RD, van Die I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB J 2016; 31:719-731. [PMID: 27806992 DOI: 10.1096/fj.201600841r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Clinical trials have shown that administration of the nematode Trichuris suis can be beneficial in treating various immune disorders. To provide insight into the mechanisms by which this worm suppresses inflammatory responses, an active component was purified from T. suis soluble products (TsSPs) that suppress---- TNF and IL-12 secretion from LPS-activated human dendritic cells (DCs). Analysis by liquid chromatography tandem mass spectrometry identified this compound as prostaglandin (PG)E2. The purified compound showed similar properties compared with TsSPs and commercial PGE2 in modulating LPS-induced expression of many cytokines and chemokines and in modulating Rab7B and P2RX7 expression in human DCs. Furthermore, the TsSP-induced reduction of TNF secretion from DCs is reversed by receptor antagonists for EP2 and EP4, indicating PGE2 action. T. suis secretes extremely high amounts of PGE2 (45-90 ng/mg protein) within their excretory/secretory products but few related lipid mediators as established by metabololipidomic analysis. Culture of T. suis with several cyclooxygenase (COX) inhibitors that inhibit mammalian prostaglandin synthesis affected the worm's motility but did not inhibit PGE2 secretion, suggesting that the worms can synthesize PGE2 via a COX-independent pathway. We conclude that T. suis secretes PGE2 to suppress proinflammatory responses in human DCs, thereby modulating the host's immune response.-Laan, L. C., Williams, A. R., Stavenhagen, K., Giera, M., Kooij, G., Vlasakov, I., Kalay, H., Kringel, H., Nejsum, P., Thamsborg, S. M., Wuhrer, M., Dijkstra, C. D., Cummings, R. D., van Die, I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells.
Collapse
Affiliation(s)
- Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrew R Williams
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Iliyan Vlasakov
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Helene Kringel
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Peter Nejsum
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Stig M Thamsborg
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine D Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycosciences, Boston, Massachusetts, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
14
|
|
15
|
Steinfelder S, O’Regan NL, Hartmann S. Diplomatic Assistance: Can Helminth-Modulated Macrophages Act as Treatment for Inflammatory Disease? PLoS Pathog 2016; 12:e1005480. [PMID: 27101372 PMCID: PMC4839649 DOI: 10.1371/journal.ppat.1005480] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helminths have evolved numerous pathways to prevent their expulsion or elimination from the host to ensure long-term survival. During infection, they target numerous host cells, including macrophages, to induce an alternatively activated phenotype, which aids elimination of infection, tissue repair, and wound healing. Multiple animal-based studies have demonstrated a significant reduction or complete reversal of disease by helminth infection, treatment with helminth products, or helminth-modulated macrophages in models of allergy, autoimmunity, and sepsis. Experimental studies of macrophage and helminth therapies are being translated into clinical benefits for patients undergoing transplantation and those with multiple sclerosis. Thus, helminths or helminth-modulated macrophages present great possibilities as therapeutic applications for inflammatory diseases in humans. Macrophage-based helminth therapies and the underlying mechanisms of their therapeutic or curative effects represent an under-researched area with the potential to open new avenues of treatment. This review explores the application of helminth-modulated macrophages as a new therapy for inflammatory diseases.
Collapse
Affiliation(s)
- Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Noëlle Louise O’Regan
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
Abstract
Autoimmune and chronic inflammatory organic diseases represent a "postindustrial revolution epidemics," and their frequency has increased dramatically in the last century. Today, it is assumed that the increase in hygiene standards reduced the interactions with helminth parasites that coevolved with the immune system and are crucial for its proper functioning. Several helminths have been proposed and tested in the search of the ideal therapeutic. In this review, the authors summarize the translational and clinical studies and review the caveats and possible solutions for the optimization of helminth therapies.
Collapse
Affiliation(s)
- Irina Leonardi
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Isabelle Frey
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Shepherd C, Navarro S, Wangchuk P, Wilson D, Daly NL, Loukas A. Identifying the immunomodulatory components of helminths. Parasite Immunol 2015; 37:293-303. [PMID: 25854639 DOI: 10.1111/pim.12192] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Immunomodulatory components of helminths offer great promise as an entirely new class of biologics for the treatment of inflammatory diseases. Here, we discuss the emerging themes in helminth-driven immunomodulation in the context of therapeutic drug discovery. We broadly define the approaches that are currently applied by researchers to identify these helminth molecules, highlighting key areas of potential exploitation that have been mostly neglected thus far, notably small molecules. Finally, we propose that the investigation of immunomodulatory compounds will enable the translation of current and future research efforts into potential treatments for autoimmune and allergic diseases, while at the same time yielding new insights into the molecular interface of host-parasite biology.
Collapse
Affiliation(s)
- C Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Vejzagić N, Adelfio R, Keiser J, Kringel H, Thamsborg SM, Kapel CMO. Bacteria-induced egg hatching differs for Trichuris muris and Trichuris suis. Parasit Vectors 2015; 8:371. [PMID: 26174801 PMCID: PMC4501204 DOI: 10.1186/s13071-015-0986-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/06/2015] [Indexed: 12/26/2022] Open
Abstract
Background Eggs of the porcine whipworm Trichuris suis are currently explored in human clinical trials as a treatment of immune-mediated diseases. In this context, only the infective, embryonated eggs, constitute the Active Pharmaceutical Ingredient (API). The rodent whipworm, Trichuris muris is commonly used as a laboratory model to study Trichuris biology. The embryonated eggs (containing a fully developed larva) are biologically active and will invade the large intestinal mucosa of the host. This study aims to assess the in vitro hatching of T. muris and T. suis eggs in various bacterial cultures as a measure for their biological activity. Methods Eggs of T. muris and T. suis were incubated with Escherichia coli strain (BL-21) at three concentrations in a slightly modified in vitro egg hatching assay previously developed for T. muris. Additionally, E. coli strains (M15, SG13009, PMC103, JM109, TUNER, DH5alpha, TOP10) and five Gram-positive bacteria (Enterococcus caccae, Streptococcus hyointestinalis, Lactobacillus amylovorus, L. murinus, and L. reuteri) were tested as a hatching stimulus for T. muris and T. suis eggs. Results Whereas T. muris eggs hatched, T. suis did not, even when exposed to different concentrations and strains of E. coli after 4 and 24-hour incubation. When incubated with Gram-positive bacteria, only T. muris eggs showed noticeable hatching after 20 h, although with high variability. Conclusions The observed difference in hatching of T. muris and T. suis eggs incubated with selected bacteria, indicate significant biological differences which may reflect specific adaptation to different host-specific gut microbiota.
Collapse
Affiliation(s)
- Nermina Vejzagić
- Section for Organismal Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| | - Roberto Adelfio
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | | | - Stig Milan Thamsborg
- Parasite Technologies A/S, Hørsholm, Denmark. .,Parasitology and Aquatic Diseases, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Christian M O Kapel
- Section for Organismal Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark. .,Parasite Technologies A/S, Hørsholm, Denmark.
| |
Collapse
|
19
|
Cavallero S, De Liberato C, Friedrich KG, Di Cave D, Masella V, D'Amelio S, Berrilli F. Genetic heterogeneity and phylogeny of Trichuris spp. from captive non-human primates based on ribosomal DNA sequence data. INFECTION GENETICS AND EVOLUTION 2015; 34:450-6. [PMID: 26066463 DOI: 10.1016/j.meegid.2015.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/15/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
Nematodes of the genus Trichuris, known as whipworms, are recognized to infect numerous mammalian species including humans and non-human primates. Several Trichuris spp. have been described and species designation/identification is traditionally based on host-affiliation, although cross-infection and hybridization events may complicate species boundaries. The main aims of the present study were to genetically characterize adult Trichuris specimens from captive Japanese macaques (Macaca fuscata) and grivets (Chlorocebus aethiops), using the ribosomal DNA (ITS) as molecular marker and to investigate the phylogeny and the extent of genetic variation also by comparison with data on isolates from other humans, non-human primates and other hosts. The phylogenetic analysis of Trichuris sequences from M. fuscata and C. aethiops provided evidences of distinct clades and subclades thus advocating the existence of additional separated taxa. Neighbor Joining and Bayesian trees suggest that specimens from M. fuscata may be distinct from, but related to Trichuris trichiura, while a close relationship is suggested between the subclade formed by the specimens from C. aethiops and the subclade formed by T. suis. The tendency to associate Trichuris sp. to host species can lead to misleading taxonomic interpretations (i.e. whipworms found in primates are identified as T. trichiura). The results here obtained confirm previous evidences suggesting the existence of Trichuris spp. other than T. trichiura infecting non-human living primates.
Collapse
Affiliation(s)
- Serena Cavallero
- Sapienza University of Rome, Department of Public Health and Infectious Diseases, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Via Appia Nuova 1411, 00178 Rome, Italy
| | - Klaus G Friedrich
- Fondazione Bioparco, Viale del Giardino Zoologico, 00197 Rome, Italy
| | - David Di Cave
- Department of Experimental Medicine and Surgery, TorVergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Valentina Masella
- Department of Experimental Medicine and Surgery, TorVergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Stefano D'Amelio
- Sapienza University of Rome, Department of Public Health and Infectious Diseases, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Federica Berrilli
- Department of Experimental Medicine and Surgery, TorVergata University, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
20
|
Mozaffari S, Nikfar S, Abdollahi M. Inflammatory bowel disease therapies discontinued between 2009 and 2014. Expert Opin Investig Drugs 2015; 24:949-56. [PMID: 25861835 DOI: 10.1517/13543784.2015.1035432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION New therapeutic approaches are currently under development, which consider the fundamental mechanisms involved in the pathogenesis of inflammatory bowel disease (IBD). The disease is associated with inflamed intestinal and colonic mucosa in response to the dysregulated immune system. AREAS COVERED The aim of this article is to review drugs that have been designed for the treatment of IBD and discontinued between 2009 and 2014. Herein, nine molecules with different mechanisms of action are under review. Brodalumab, daclizumab, elubrixin and vatelizumab were withdrawn from the Phase II trial due to the lack of efficacy. Abatacept was not significantly superior to the placebo in the rate of remission and its Phase III trials were stopped. CNDO-210 and Catridecacog were discontinued due to safety concerns and lack of efficacy, respectively. Finally, NU-206 and alkaline phosphatase also ceased in development during Phase I and II tests. EXPERT OPINION The development in our knowledge and understanding of the pathophysiology of IBD and the identification of key objectives for the future play significant roles in IBD therapeutic development. Furthermore, well-planned clinical trials with concise measures of efficacy and safety are required to better decide whether to extend or terminate the development process. Some anti-inflammatory cytokines such as IL-2, IL-12, IL-17, IL-18, IL-23 and INF-γ could garner more attention in the future.
Collapse
Affiliation(s)
- Shilan Mozaffari
- Tehran University of Medical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology , Tehran , Iran ;
| | | | | |
Collapse
|
21
|
Ebner F, Hepworth MR, Rausch S, Janek K, Niewienda A, Kühl A, Henklein P, Lucius R, Hamelmann E, Hartmann S. Therapeutic potential of larval excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease. Allergy 2014; 69:1489-97. [PMID: 25069662 DOI: 10.1111/all.12496] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gastrointestinal nematodes are currently being evaluated as a novel therapeutic in the treatment of chronic human inflammatory disorders, due to their unique ability to induce immunoregulatory pathways in their hosts. In particular, administration of ova from the pig whipworm Trichuris suis (T. suis; TSO) has been proposed for the treatment of allergic, inflammatory and autoimmune disorders. Despite these advances, the biological pathways through which TSO therapy modulates the host immune system in the context of human disease remain undefined. METHODS We characterized the dominant proteins present in the excretory/secretory (E/S) products of first-stage (L1) T. suis larvae (Ts E/S) using LC-MS/MS analysis and examined the immunosuppressive properties of whole larval Ts E/S in vitro and in a murine model of allergic airway disease. RESULTS Administration of larval Ts E/S proteins in vivo during the allergen sensitization phase was sufficient to suppress airway hyperreactivity, bronchiolar inflammatory infiltrate and allergen-specific IgE production. Three proteins in larval Ts E/S were unambiguously identified. The immunomodulatory function of larval Ts E/S was found to be partially dependent on the immunoregulatory cytokine IL-10. CONCLUSIONS Taken together, these data demonstrate that the released proteins of larval T. suis have significant immunomodulatory capacities and efficiently dampen allergic airway hyperreactivity. Thus, the therapeutic potential of defined larval E/S proteins should be exploited for the treatment of human allergic disorders.
Collapse
Affiliation(s)
- F. Ebner
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
| | - M. R. Hepworth
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
- Institute for Immunology; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - S. Rausch
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
| | - K. Janek
- Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Niewienda
- Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Kühl
- Department of Pathology/Research Center ImmunoSciences (RCIS); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - P. Henklein
- Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - R. Lucius
- Department of Molecular Parasitology; Humboldt-Universität; Berlin Germany
| | - E. Hamelmann
- Ev. Hospital Bielefeld (EvKB); Children's Hospital; Bielefeld Germany
| | - S. Hartmann
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
22
|
The mechanisms behind helminth's immunomodulation in autoimmunity. Autoimmun Rev 2014; 14:98-104. [PMID: 25449677 DOI: 10.1016/j.autrev.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
The incidence of autoimmune diseases has risen throughout the last half a century, mostly in the industrialized world. Helminths and their derivatives were found to have a protective role in autoimmunity and inflammatory conditions, as they manipulate the immune network, attenuating the host's cellular and humoral responses. Indeed, various helminth species used in several human and animal models were shown to limit inflammatory activity in a variety of diseases including inflammatory bowel disease, multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Our review will focus on the main mechanisms by which helminths and their secreted molecules modulate the host's immune system. The main pathways induce a shift from Th1 to Th2 phenotype, accelerate T regulatory and B regulatory phenotypes, and attenuate the levels of the inflammatory cytokines, leading to a tolerable scenario.
Collapse
|
23
|
Dalton JP, Robinson MW, Mulcahy G, O'Neill SM, Donnelly S. Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol 2013; 195:272-85. [PMID: 23623183 DOI: 10.1016/j.vetpar.2013.04.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.
Collapse
Affiliation(s)
- John P Dalton
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, St. Anne de Bellevue, Quebec H9X 3V9, Canada.
| | | | | | | | | |
Collapse
|
24
|
Fleming J. Helminth therapy and multiple sclerosis. Int J Parasitol 2013; 43:259-74. [DOI: 10.1016/j.ijpara.2012.10.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
|
25
|
Klementowicz JE, Travis MA, Grencis RK. Trichuris muris: a model of gastrointestinal parasite infection. Semin Immunopathol 2012; 34:815-28. [PMID: 23053395 PMCID: PMC3496546 DOI: 10.1007/s00281-012-0348-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
Abstract
Infection with soil-transmitted gastrointestinal parasites, such as Trichuris trichiura, affects more than a billion people worldwide, causing significant morbidity and health problems especially in poverty-stricken developing countries. Despite extensive research, the role of the immune system in triggering parasite expulsion is incompletely understood which hinders the development of anti-parasite therapies. Trichuris muris infection in mice serves as a useful model of T. trichiura infection in humans and has proven to be an invaluable tool in increasing our understanding of the role of the immune system in promoting either susceptibility or resistance to infection. The old paradigm of a susceptibility-associated Th1 versus a resistance-associated Th2-type response has been supplemented in recent years with cell populations such as novel innate lymphoid cells, basophils, dendritic cells and regulatory T cells proposed to play an active role in responses to T. muris infection. Moreover, new immune-controlled mechanisms of expulsion, such as increased epithelial cell turnover and mucin secretion, have been described in recent years increasing the number of possible targets for anti-parasite therapies. In this review, we give a comprehensive overview of experimental work conducted on the T. muris infection model, focusing on important findings and the most recent reports on the role of the immune system in parasite expulsion.
Collapse
Affiliation(s)
- Joanna E Klementowicz
- Department of Surgery, The University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
26
|
Hernandez JLR, Leung G, McKay DM. Cestode regulation of inflammation and inflammatory diseases. Int J Parasitol 2012; 43:233-43. [PMID: 23058631 DOI: 10.1016/j.ijpara.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022]
Abstract
Helminth parasites are masters of immune regulation; a likely prerequisite for long-term survival by circumventing their hosts' attempt to eradicate them. From a translational perspective, knowledge of immune events as a response to infection with a helminth parasite could be used to reduce the intensity of unwanted inflammatory reactions. Substantial data have accumulated showing that inflammatory reactions that promote a variety of auto-inflammatory diseases are dampened as a consequence of infection with helminth parasites, via either the mobilization of an anti-worm spectrum of immune events or by the direct effect of secretory/excretory bioactive immunomodulatory molecules released from the parasite. However, many issues are outstanding in the definition of the mechanism(s) by which infection with helminth parasites can affect the outcome, positively or negatively, of concomitant disease. We focus on a subgroup of this complex group of metazoan parasites, the cestodes, summarizing studies from rodent models that illustrate if, and by what mechanisms, infection with tapeworms ameliorate or exaggerate disease in their host. The ability of infection with cestodes, or other classes of helminth, to worsen a disease course or confer susceptibility to intracellular pathogens should be carefully considered in the context of 'helminth therapy'. In addition, poorly characterised cestode extracts can regulate murine and human immunocyte function, yet the impact of these in the context of autoimmune or allergic diseases is poorly understood. Thus, studies with cestodes, as representative helminths, have helped cement the concept that infection with parasitic helminths can inhibit concomitant disease; however, issues relating to long-term effects, potential side-effects, mixed pathogen infections and purification of immunomodulatory molecules from the parasite remain as challenges that need to be addressed in order to achieve the use of helminths as anti-inflammatory agents for human diseases.
Collapse
Affiliation(s)
- Jose-Luis Reyes Hernandez
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
27
|
Whelan RAK, Hartmann S, Rausch S. Nematode modulation of inflammatory bowel disease. PROTOPLASMA 2012; 249:871-886. [PMID: 22086188 PMCID: PMC3459088 DOI: 10.1007/s00709-011-0342-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease arising due to a culmination of genetic, environmental, and lifestyle-associated factors and resulting in an excessive pro-inflammatory response to bacterial populations in the gastrointestinal tract. The prevalence of IBD in developing nations is relatively low, and it has been proposed that this is directly correlated with a high incidence of helminth infections in these areas. Gastrointestinal nematodes are the most prevalent parasitic worms, and they efficiently modulate the immune system of their hosts in order to establish chronic infections. Thus, they may be capable of suppressing unrelated inflammation in disorders such as IBD. This review describes how nematodes, or their products, suppress innate and adaptive pro-inflammatory immune responses and how the mechanisms involved in the induction of anti-nematode responses regulate colitis in experimental models and clinical trials with IBD patients. We also discuss how refinement of nematode-derived therapies should ultimately result in the development of potent new therapeutics of clinical inflammatory disorders.
Collapse
Affiliation(s)
- Rose A. K. Whelan
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Susanne Hartmann
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Sebastian Rausch
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
28
|
Hepworth MR, Hartmann S. Worming our way closer to the clinic. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:187-90. [PMID: 24533279 DOI: 10.1016/j.ijpddr.2012.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 12/26/2022]
Abstract
In a recent issue of "The International Journal for Parasitology: Drugs and Drug Resistance" Prof. David Pritchard from the University of Nottingham offers his intriguing opinion on the current status of "worm therapy" and outlines future research priorities aimed at bringing this research area closer to the clinic. In this response article we discuss various aspects of the current state of the research field and offer some alternative viewpoints regarding the future of "worm therapy".
Collapse
Affiliation(s)
- Matthew R Hepworth
- Institute of Immunology, School of Veterinary Medicine, Free University, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, School of Veterinary Medicine, Free University, Berlin, Germany
| |
Collapse
|
29
|
Trichuris suis ova: Testing a helminth-based therapy as an extension of the hygiene hypothesis. J Allergy Clin Immunol 2012; 130:3-10; quiz 11-2. [DOI: 10.1016/j.jaci.2012.05.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/19/2022]
|
30
|
Kim SE, Kim JH, Min BH, Bae YM, Hong ST, Choi MH. Crude extracts of Caenorhabditis elegans suppress airway inflammation in a murine model of allergic asthma. PLoS One 2012; 7:e35447. [PMID: 22558152 PMCID: PMC3338843 DOI: 10.1371/journal.pone.0035447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/16/2012] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies suggest an inverse relationship between helminth infections and allergic disease, and several helminth-derived products have been shown to suppress allergic responses in animals. This study was undertaken to evaluate the effect of a crude extract of Caenorhabditis elegans on allergic airway inflammation in a murine model of asthma. Allergic airway inflammation was induced in BALB/c mice by sensitization with ovalbumin. The effect of the C. elegans crude extract on the development of asthma and on established asthma was evaluated by analyzing airway hyperresponsiveness, serum antibody titers, lung histology and cell counts and cytokine levels in the bronchoalveolar lavage fluid. The role of IFN-γ in the suppression of asthma by the C. elegans crude extract was investigated in IFN-γ knockout and wild-type mice. When mice were sensitized with ovalbumin together with the crude extract of C. elegans, cellular infiltration into the lung was dramatically reduced in comparison with the ovalbumin-treated group. Treatment of mice with the C. elegans crude extract significantly decreased methacholine-induced airway hyperresponsiveness and the total cell counts and levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid but increased the levels of IFN-γ and IL-12. Sensitization with the C. elegans crude extract significantly diminished the IgE and IgG1 responses but provoked elevated IgG2a levels. However, the suppressive effect of the C. elegans crude extract was abolished in IFN-γ knockout mice, and the Th2 responses in these mice were as strong as those in wild-type mice sensitized with ovalbumin. The crude extract of C. elegans also suppressed the airway inflammation associated with established asthma. This study provides new insights into immune modulation by the C. elegans crude extract, which suppressed airway inflammation in mice not only during the development of asthma but also after its establishment by skewing allergen-induced Th2 responses to Th1 responses.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | - Jae-Hwan Kim
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | - Byung-Hoon Min
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mee Bae
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | - Sung-Tae Hong
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | - Min-Ho Choi
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect Immun 2012; 80:2150-7. [PMID: 22493085 DOI: 10.1128/iai.00141-12] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Helminth parasites ensure their survival by regulating host immunity through mechanisms that dampen inflammation. These properties have recently been exploited therapeutically to treat human diseases. The biocomplexity of the intestinal lumen suggests that interactions between the parasite and the intestinal microbiota would also influence inflammation. In this study, we characterized the microbiota in the porcine proximal colon in response to Trichuris suis (whipworm) infection using 16S rRNA gene-based and whole-genome shotgun (WGS) sequencing. A 21-day T. suis infection in four pigs induced a significant change in the composition of the proximal colon microbiota compared to that of three parasite-naive pigs. Among the 15 phyla identified, the abundances of Proteobacteria and Deferribacteres were changed in infected pigs. The abundances of approximately 13% of genera were significantly altered by infection. Changes in relative abundances of Succinivibrio and Mucispirillum, for example, may relate to alterations in carbohydrate metabolism and niche disruptions in mucosal interfaces induced by parasitic infection, respectively. Of note, infection by T. suis led to a significant shift in the metabolic potential of the proximal colon microbiota, where 26% of all metabolic pathways identified were affected. Besides carbohydrate metabolism, lysine biosynthesis was repressed as well. A metabolomic analysis of volatile organic compounds (VOCs) in the luminal contents showed a relative absence in infected pigs of cofactors for carbohydrate and lysine biosynthesis, as well as an accumulation of oleic acid, suggesting altered fatty acid absorption contributing to local inflammation. Our findings should facilitate development of strategies for parasitic control in pigs and humans.
Collapse
|
32
|
Wolff MJ, Broadhurst MJ, Loke P. Helminthic therapy: improving mucosal barrier function. Trends Parasitol 2012; 28:187-94. [PMID: 22464690 DOI: 10.1016/j.pt.2012.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022]
Abstract
The epidemiology of autoimmune diseases and helminth infections led to suggestions that helminths could improve inflammatory conditions, which was then tested using animal models. This has translated to clinical investigations aimed at the safe and controlled reintroduction of helminthic exposure to patients suffering from autoimmune diseases (so-called 'helminthic therapy') in an effort to mitigate the inflammatory response. In this review, we summarize the results of recent clinical trials of helminthic therapy, with particular attention to mechanisms of action. Whereas previous reviews have emphasized immune regulatory mechanisms activated by helminths, we propose that enhancement of mucosal barrier function may have an equally important role in improving conditions of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Martin J Wolff
- Division of Gastroenterology, Department of Medicine, New York University School of Medicine, New York, NY 10010, USA
| | | | | |
Collapse
|
33
|
Nissen S, Al-Jubury A, Hansen TVA, Olsen A, Christensen H, Thamsborg SM, Nejsum P. Genetic analysis of Trichuris suis and Trichuris trichiura recovered from humans and pigs in a sympatric setting in Uganda. Vet Parasitol 2012; 188:68-77. [PMID: 22494938 DOI: 10.1016/j.vetpar.2012.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 01/15/2023]
Abstract
The whipworms Trichuris trichiura and Trichuris suis in humans and pigs, respectively, are believed to be two different species yet closely related. Morphologically, adult worms, eggs and larvae of the two species are indistinguishable. The aim of this study was to examine the genetic variation of Trichuris sp. mainly recovered from natural infected pigs and humans. Worm material isolated from humans and pigs living in the same geographical region in Uganda were analyzed by PCR, cloning and sequencing. Measurements of morphometric characters were also performed. The analysis of the ITS-2 (internal transcribed spacer) region showed a high genetic variation in the human-derived worms with two sequence types, designated type 1 and type 2, differing with up to 45%, the type 2 being identical to the sequence found in pig-derived worms. A single human-derived worm showed exclusively the type 2-genotype (T. suis-type) and three cases of 'heterozygote' worms in humans were identified. However, the analysis showed that sympatric Trichuris primarily assorted with host origin. Sequence analysis of a part of the genetically conserved β-tubulin gene confirmed two separate populations/species but also showed that the 'heterozygote' worms had a T. suis-like β-tubulin gene. A PCR-RFLP on the ITS-2 region was developed, that could distinguish between worms of the pig, human and 'heterozygote' type. The data suggest that Trichuris in pigs and humans belong to two different populations (i.e. are two different species). However, the data presented also suggest that cross-infections of humans with T. suis takes place. Further studies on sympatric Trichuris populations are highly warranted in order to explore transmission dynamics and unravel the zoonotic potential of T. suis.
Collapse
Affiliation(s)
- Sofie Nissen
- Section for Parasitology, Health and Development, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 15, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
34
|
Assessing the zoonotic potential ofAscaris suumandTrichuris suis: looking to the future from an analysis of the past. J Helminthol 2012; 86:148-55. [DOI: 10.1017/s0022149x12000193] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe two geohelminths,Ascaris lumbricoidesandTrichuris trichiura, infect more than a billion people worldwide but are only reported sporadically in the developed part of the world. In contrast, the closely related speciesA. suumandT. suisin pigs have a truly global distribution, with infected pigs found in most production systems. In areas where pigs and humans live in close proximity or where pig manure is used as fertilizer on vegetables for human consumption, there is a potential risk of cross-infections. We therefore review this relationship betweenAscarisandTrichurisin the human and pig host, with special focus on recent evidence concerning the zoonotic potential of these parasites, and identify some open questions for future research.
Collapse
|
35
|
Pritchard DI. Worm therapy: How would you like your medicine? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:106-8. [PMID: 24533271 DOI: 10.1016/j.ijpddr.2012.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Parasite immunologists have contributed significantly to our understanding of the human immune system, to the extent that live parasites are being tested as investigational medicinal products (IMPs) and their secretions are being analysed for potentially novel and effective immune regulatory molecules (IRMs). This article expresses an opinion on the current status of research, and suggests that parasite immunologists and the pharmaceutical industry combine to source non-immunogenic IRMs from parasites selected for their immune modulatory potential. The article also suggests that parasite immunologists should be perhaps more rigorous in their choice of infection and disease models in rodents.
Collapse
|
36
|
Pritchard DI, Blount DG, Schmid-Grendelmeier P, Till SJ. Parasitic worm therapy for allergy: Is this incongruous or avant-garde medicine? Clin Exp Allergy 2011; 42:505-12. [DOI: 10.1111/j.1365-2222.2011.03911.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/14/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
Affiliation(s)
- D. I. Pritchard
- Immune Modulation Research Group; School of Pharmacy; University of Nottingham; Nottingham, UK
| | - D. G. Blount
- Immune Modulation Research Group; School of Pharmacy; University of Nottingham; Nottingham, UK
| | | | - S. J. Till
- Department of Asthma; Allergy and Respiratory Science; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; Kings College London; London, UK
| |
Collapse
|
37
|
Bager P, Kapel C, Roepstorff A, Thamsborg S, Arnved J, Rønborg S, Kristensen B, Poulsen LK, Wohlfahrt J, Melbye M. Symptoms after ingestion of pig whipworm Trichuris suis eggs in a randomized placebo-controlled double-blind clinical trial. PLoS One 2011; 6:e22346. [PMID: 21829616 PMCID: PMC3149054 DOI: 10.1371/journal.pone.0022346] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/19/2011] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Symptoms after human infection with the helminth Trichuris suis have not previously been described. Exposure to helminths has been suggested as immune therapy against allergy and autoimmune diseases. We randomized adults with allergic rhinitis to ingest a dose of 2500 T. suis eggs or placebo every 21 days for 168 days (total 8 doses) in a double-blind clinical trial. In a previous publication, we reported a lack of efficacy and a high prevalence of adverse gastrointestinal reactions. The aim of the present study was to present a detailed description of the adverse event data and post-hoc analyses of gastrointestinal reactions. Adverse events and severity (mild, moderate, severe) were recorded daily by subjects, classified by organ using MedDRA 10.0, and event rates compared between subjects on T. suis treatment vs. subjects on placebo. T. suis-specific serum IgG antibodies were measured by a fluoroenzymeimmunoassay (Phadia ApS). During 163 days complete follow-up, subjects ingesting T. suis eggs (N = 49) had a three to 19-fold higher rate of events (median duration, 2 days) with gastrointestinal reactions (moderate to severe flatulence, diarrhea, and upper abdominal pain) compared with placebo subjects (N = 47). The highest incidence of affected subjects was seen from the first few days and until day 42 (3(rd) dose): 63% vs. 29% for placebo; day 163: 76% vs. 49% for placebo. Seroprevalences increased concurrently in the T. suis group: Day 59, 50%; day 90, 91%; day 170, 93%. The combined duration of episodes with onset before day 42 was ≤ 14 days in 80% of affected subjects. Age, gender, total IgE, and recent intestinal symptoms at baseline did not predict gastrointestinal side effects. In conclusion, during the first 2 months, repeated ingestions of 2500 T. suis eggs caused frequent gastrointestinal reactions lasting up to 14 days, whereas 4 months further treatment mainly provoked a subclinical stimulation. TRIAL REGISTRATION University hospital Medical Information Network trial registry Reg. no. R000001298, Trial ID UMIN000001070.
Collapse
Affiliation(s)
- Peter Bager
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
AbstractThis article succinctly reviews the weight of evidence supporting worm therapy, and asks the question whether the evidence is sufficient to support the use of parasitic worms as investigational medicinal products.
Collapse
|
39
|
Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD, Field AS, Boland J, Fabry Z. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler 2011; 17:743-54. [PMID: 21372112 PMCID: PMC3894910 DOI: 10.1177/1352458511398054] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Probiotic treatment strategy based on the hygiene hypothesis, such as administration of ova from the non-pathogenic helminth, Trichuris suis, (TSO) has proven safe and effective in autoimmune inflammatory bowel disease. OBJECTIVE To study the safety and effects of TSO in a second autoimmune disease, multiple sclerosis (MS), we conducted the phase 1 Helminth-induced Immunomodulatory Therapy (HINT 1) study. METHODS Five subjects with newly diagnosed, treatment-naive relapsing-remitting multiple sclerosis (RRMS) were given 2500 TSO orally every 2 weeks for 3 months in a baseline versus treatment control exploratory trial. RESULTS The mean number of new gadolinium-enhancing magnetic resonance imaging (MRI) lesions (n-Gd+) fell from 6.6 at baseline to 2.0 at the end of TSO administration, and 2 months after TSO was discontinued, the mean number of n-Gd+ rose to 5.8. No significant adverse effects were observed. In preliminary immunological investigations, increases in the serum level of the cytokines IL-4 and IL-10 were noted in four of the five subjects. CONCLUSION TSO was well tolerated in the first human study of this novel probiotic in RRMS, and favorable trends were observed in exploratory MRI and immunological assessments. Further investigations will be required to fully explore the safety, effects, and mechanism of action of this immunomodulatory treatment.
Collapse
Affiliation(s)
- J O Fleming
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Helminths and multiple sclerosis: will old friends give us new treatments for MS? J Neuroimmunol 2011; 233:3-5. [PMID: 21295861 DOI: 10.1016/j.jneuroim.2011.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 12/26/2022]
|
41
|
Bodammer P, Waitz G, Loebermann M, Holtfreter MC, Maletzki C, Krueger MR, Nizze H, Emmrich J, Reisinger EC. Schistosoma mansoni infection but not egg antigen promotes recovery from colitis in outbred NMRI mice. Dig Dis Sci 2011; 56:70-8. [PMID: 20428947 DOI: 10.1007/s10620-010-1237-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 04/06/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The ability of intestinal helminths to manipulate the immune system of their host towards a Th2 response has been proposed to modulate auto-immune and allergic diseases. AIMS This initial study investigated the anti-inflammatory potential of S. mansoni and soluble egg antigen (SEA) in a murine model of colitis. METHODS Colitis was induced in female NMRI mice by 5% dextran sulfate sodium (DSS) for 7 days, either 9 weeks post-infection with S. mansoni or during treatment with SEA. In addition to clinical signs of colitis, colon histology, immunohistochemistry, and flow cytometry of leukocytes were performed. Colon cytokines were measured using a quantitative real-time technique. RESULTS Infection with cercariae of S. mansoni attenuated DSS-induced colitis. Clinical symptoms such as weight loss and shortening of colon length were significantly prevented. Histological scores and cell infiltration were affected and expression of pro-inflammatory cytokines in the colons of infected DSS colitis mice was reduced. In contrast, application of SEA failed to improve colitis, even though some findings like earlier manifestation of inflammation and local induction of Th2 cytokines were similar to the effects of cercarial infection. CONCLUSIONS The results presented here suggest that SEA treatment could not protect mice from acute colitis. However, both infection with S. mansoni and injection of SEA affect mucosal immune responses.
Collapse
Affiliation(s)
- Peggy Bodammer
- Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Levison SE, McLaughlin JT, Zeef LAH, Fisher P, Grencis RK, Pennock JL. Colonic transcriptional profiling in resistance and susceptibility to trichuriasis: phenotyping a chronic colitis and lessons for iatrogenic helminthosis. Inflamm Bowel Dis 2010; 16:2065-79. [PMID: 20687192 DOI: 10.1002/ibd.21326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helminth therapy is advocated to restore and maintain control of inflammatory responses, particularly chronic colitis. However, helminths can induce chronic colitis in susceptible individuals. Susceptibility has an immunogenetic basis: defining this is essential if nematode therapy is to be successfully and safely targeted in inflammatory bowel disease (IBD). To validate a preclinical mouse model we phenotyped the response to Trichuris muris in mice. We determined colonic transcriptional activity in naïve and infected mice and linked differential gene expression to mechanistic pathways. METHODS T. muris-infected resistant (BALB/c) and susceptible (AKR) mice were studied to a chronic colitic timepoint (day 35). Colonic genome-wide expression was performed by microarray. Significant transcriptional changes were analyzed by cluster and gene ontology filtering and KEGG pathway mapping. RESULTS Day 35 infected AKR displayed chronic diarrhea, weight loss, and transmural colonic inflammation; BALB/c remained asymptomatic, cleared the infection, and demonstrated normal histology. Compared to BALB/c mice, infected AKR upregulated gene expression clusters were overrepresented by immune response, chemotaxis, and apoptosis pathways. Cellular/tissue homeostasis and tight junction pathways dominated downregulated AKR expression clusters. Infected AKR T-helper cell development/polarization markers demonstrated predominant T(H) 1/T(H) 17 transcriptional activity. Colitic AKR data mirrored established murine models and human colitis. CONCLUSIONS T. muris infection in the mouse shows striking phenotypic and transcriptional similarities to widely used models of IBD and human IBD. This preclinical mouse model presents a platform to examine biological commonalities among chronic colitides. However, these data urge caution in untargeted therapeutic helminth use until risk/benefit in susceptible individuals is more fully understood.
Collapse
Affiliation(s)
- S E Levison
- School of Translational Medicine, School of Medicine, University of Manchester, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Kuijk LM, van Die I. Worms to the rescue: can worm glycans protect from autoimmune diseases? IUBMB Life 2010; 62:303-12. [PMID: 20101628 DOI: 10.1002/iub.304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoimmune and autoinflammatory diseases represent a significant health burden, especially in Western societies. For the majority of these diseases, no cure exists. Recently, research on parasitic worms (helminths) has demonstrated great potential for whole worms, their eggs or their excretory/secretory proteins in down-regulating inflammatory responses both in vitro and in vivo, in various disease models and, in some cases, even in clinical trials. The worms are thought to induce Th2 and regulatory T cells, interfere with Toll-like receptor (TLR) signaling and to down-regulate Th17 and Th1 responses. The molecular mechanisms underlying the worms' ability to modulate the host immune response are not well understood, and many hypotheses have been proposed to explain the observed immune modulation. Increasing evidence suggests that carbohydrate structures (glycans), for example, phosphorylcholine-modified glycans or Galbeta1-4(Fucalpha1-3)GlcNAc- (Lewis X, Le(X)) containing glycans, expressed by the worms contribute to these modulating properties by their interaction with antigen presenting cells. Helminths express a broad variety of protein- and lipid-linked glycans on their surface and on secretory products. These glycans differ in amount and composition and several of these structures are species specific. However, worms also express glycan antigens that are found in a wide variety of different species. Some of these "common" worm glycans are particularly interesting with regard to regulating host responses, because they have the potential to interact with C-type lectins on dendritic cells and thereby may interfere with T-cell polarization. Helminths and helminth-derived molecules form a novel and promising group of therapeutics for autoinflammatory diseases. However, much has to be learned about the molecular mechanisms behind the helminth-mediated antiinflammatory properties. This review will describe some of the emerging evidence in selected disease areas as well as discuss the putative role of glycans in helminth-mediated immunosuppression.
Collapse
Affiliation(s)
- Loes M Kuijk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
44
|
Zhao Y, Zhang S, Jiang L, Jiang J, Liu H. Preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid-induced colitis and bacterial translocation in mice. J Gastroenterol Hepatol 2009; 24:1775-80. [PMID: 20136961 DOI: 10.1111/j.1440-1746.2009.05986.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS To evaluate the preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid (TNBS)-induced colitis and bacterial translocation in mice. METHODS BALB/c mice were randomly divided into three groups: control group; TNBS(+)Ova(-) group; and TNBS(+)Ova(+) group. Mice of the TNBS(+)Ova(+) group were exposed to 10 000 freeze-killed S. japonicum ova by i.p. injection on day 1 and day 11. On day 15, mice were challenged with TNBS to induce colitis. The following variables were assessed: colon pathological changes; serum expression of tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and interleukin-10 (IL-10); expression of Toll-like receptor 4 (TLR4) in colon; IFN-gamma, IL-10 and TLR4 mRNA expression in colon; and the bacterial translocation rate. RESULTS Compared to TNBS(+)Ova(-) group, the colonic inflammation in the TNBS(+)Ova(+) group were relieved. A highly significant elevation of IFN-gamma and TNF-alpha were observed in the TNBS-induced colitis group. After exposure to the eggs, IFN-gamma was significantly decreased, while TNF-alpha was similar to that of the TNBS(+)ova(-) group. No obvious variation was seen in IL-10 expression in TNBS-induced colitis, compared to the controls. Exposure to the eggs led to a significant upregulation of IL-10 expression. TLR4 expression was elevated after injected with TNBS and was downregulated in the eggs group. Less intestinal bacterial translocation frequency was observed when exposed to eggs. CONCLUSION S. japonicum ova can prevent the TNBS-induced colitis and reduce the bacterial translocation frequency in mice. The mechanisms were supposed to be due to the regulation of T-helper cell 1/2 balance and TLR4 expression.
Collapse
Affiliation(s)
- Yuan Zhao
- ZhongShan Hospital, Fudan University, Gastroenterology, Shanghai, China
| | | | | | | | | |
Collapse
|
45
|
Abstract
There is limited data on the human mucosal immune response to geohelminths, but extensive data from experimental animals. Geohelminth infections may modulate mucosal immunity with effects on parasite expulsion or persistence and mucosal inflammation. Geohelminths are considered to have important effects on immunity to mucosal vaccines, infectious disease susceptibility, and anti-inflammatory effects in inflammatory bowel disease and asthma. This review will discuss the findings of studies of human immunity to geohelminths and their potential effects on non-parasite mucosal immune responses. Such effects are likely to be of public health importance in middle- and low-income countries where these parasites are endemic. There is a need for human studies on the effects of geohelminth infections on mucosal immunity and the potential for anthelmintic treatment to modify these effects. Such studies are likely to provide important insights into the regulation of mucosal immunity and inflammation, and the development of more effective mucosal vaccines.
Collapse
|
46
|
Abstract
The population dynamics of Trichuris suis in pigs was studied during long-term experimental infections. Twenty-three 10-week-old pigs were inoculated with 5 T. suis eggs/kg/day. Seven, 8, and 8 pigs were necropsied at weeks 4, 8, and 14 post-start of infection (p.i.), respectively. The median numbers of worms in the colon were 538 (min-max: 277-618), 332 (14-1140) and 0 (0-4) at 4, 8, and 14 weeks p.i. respectively, suggesting an increased aggregation of the worms with time and acquisition of nearly sterile immunity. The serum levels of T. suis specific antibodies (IgG1, IgG2 and IgA) peaked at week 8 p.i. By week 14 p.i. the IgG2 and IgA antibody levels remained significantly elevated above the level of week 0. The population dynamics of T. suis trickle infections in pigs is discussed with focus on interpretation of diagnostic and epidemiological data of pigs, the use of pigs as a model for human Trichuris trichiura infections and the novel approach of using T. suis eggs in the treatment of patients with inflammatory bowel disease.
Collapse
|
47
|
Ruyssers NE, De Winter BY, De Man JG, Loukas A, Pearson MS, Weinstock JV, Van den Bossche RM, Martinet W, Pelckmans PA, Moreels TG. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis 2009; 15:491-500. [PMID: 19023900 DOI: 10.1002/ibd.20787] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The hygiene hypothesis suggests an inverse relationship between the incidence of parasitic infections and chronic inflammatory bowel diseases (IBD). We investigated the therapeutic potential of Schistosoma mansoni and Ancylostoma caninum soluble proteins on experimental colitis in mice. METHODS Colitis was induced by intrarectal administration of 10 mg trinitrobenzene sulfonic acid (TNBS) in 30% ethanol. Six hours after TNBS injection, mice were treated intraperitoneally with helminth proteins. Three days later, colonic inflammation was scored based on 5 inflammatory parameters: clinical disease activity, macroscopic and microscopic inflammation score, extent of inflammation, and myeloperoxidase (MPO) activity. To determine immunological pathways induced by S. mansoni proteins we measured cytokine profiles of T-lymphocytes from colon, mesenteric lymph nodes (MLN), and spleen by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS Control mice showed no signs of inflammation, whereas all inflammatory parameters were significantly increased in mice with colitis. Treatment of mice with colitis with S. mansoni or A. caninum proteins decreased the macroscopic inflammation score, extent of inflammation, and MPO activity. Immunologically, induction of colitis significantly increased expression of IFN-gamma mRNA in the inflamed colon. Treatment with S. mansoni proteins caused a decrease of proinflammatory cytokines (IFN-gamma, IL-17) in colon and MLN, whereas the production of regulatory cytokines (IL-10, TGF-beta) increased significantly in colon tissue. CONCLUSIONS Treatment with proteins of S. mansoni and A. caninum ameliorated TNBS-induced colitis in mice. S. mansoni proteins increased mRNA expression of regulatory cytokines while suppressing expression of proinflammatory cytokines. Therefore, we suggest a therapeutic potential for helminth proteins in the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McKay DM. The therapeutic helminth? Trends Parasitol 2009; 25:109-14. [DOI: 10.1016/j.pt.2008.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 12/20/2022]
|
49
|
Can helminths or helminth-derived products be used in humans to prevent or treat allergic diseases? Trends Immunol 2009; 30:75-82. [DOI: 10.1016/j.it.2008.11.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 01/06/2023]
|
50
|
Adisakwattana P, Saunders SP, Nel HJ, Fallon PG. Helminth-Derived Immunomodulatory Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:95-107. [DOI: 10.1007/978-1-4419-1601-3_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|