1
|
Zaeifi D, Azarnia M. Promoting β-cells function by the recapitulation of in vivo microenvironmental differentiation signals. Cell Tissue Res 2023:10.1007/s00441-023-03773-7. [PMID: 37140683 DOI: 10.1007/s00441-023-03773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
The study aims to transdifferentiate rat bone marrow-derived mesenchymal stem cells (BM-MSCs) more efficiently into islet-like cells and encapsulate and transplant them with vital properties like stability, proliferation, and metabolic activity enhanced for the treatment of T1DM. Trans-differentiation of BM-MCs into islet-like cells induced by high glucose concentration combined with Nicotinamide, ꞵ-Mercaptoethanol, ꞵ-Cellulin, and IGF-1. Glucose challenge assays and gene expression profiles were used to determine functionality. Microencapsulation was performed using the vibrating nozzle encapsulator droplet method with a 1% alginate concentration. Encapsulated ꞵ-cells were cultured in a fluidized-bed bioreactor with 1850 μL/min fluid flow rates and a superficial velocity of 1.15 cm/min. The procedure was followed by transplanting transdifferentiated cells into the omentum of streptozotocin (STZ)-induced diabetic Wistar rats. Changes in weight, glucose, insulin, and C-peptide levels were monitored for 2 months after transplantation. PDX1, INS, GCG, NKx2.2, NKx6.1, and GLUT2 expression levels revealed the specificity of generated β-cells with higher viability (about 20%) and glucose sensitivity about twofold more. The encapsulated β-cells decreased the glucose levels in STZ-induced rats significantly (P < 0.05) 1 week after transplantation. Also, the weight and levels of insulin and C-peptide reached the control group. In contrast to the treated, the sham group displayed a consistent decline in weight and died when loss reached > 20% at day ~ 55. The coated cells secrete significantly higher amounts of insulin in response to glucose concentration changes. Enhanced viability and functionality of β-cells can be achieved through differentiation and culturing, a promising approach toward insulin therapy alternatives.
Collapse
Affiliation(s)
- Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Oyenihi OR, Cerf ME, Matsabisa MG, Brooks NL, Oguntibeju OO. Effect of kolaviron on islet dynamics in diabetic rats. Saudi J Biol Sci 2022; 29:324-330. [PMID: 35002425 PMCID: PMC8716911 DOI: 10.1016/j.sjbs.2021.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 10/25/2022] Open
Abstract
Kolaviron, a biflavonoid isolated from the edible seeds of Garcinia kola, lowers blood glucose in experimental models of diabetes; however, the underlying mechanisms are not yet fully elucidated. The objective of the current study was to assess the effects of kolaviron on islet dynamics in streptozotocin-induced diabetic rats. Using double immunolabeling of glucagon and insulin, we identified insulin-producing β- and glucagon-producing α-cells in the islets of diabetic and control rats and determined the fractional β-cell area, α-cell area and islet number. STZ challenged rats presented with islet hypoplasia and reduced β-cell area concomitant with an increase in α-cell area. Kolaviron restored some islet architecture in diabetic rats through the increased β-cell area. Overall, kolaviron-treated diabetic rats presented a significant (p < 0.05) increase in the number of large and very large islets compared to diabetic control but no difference in islet number and α-cell area. The β-cell replenishment potential of kolaviron and its overall positive effects on glycemic control suggest that it may be a viable target for diabetes treatment.
Collapse
Affiliation(s)
- Omolola R Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Marlon E Cerf
- Grants, Innovation and Product Development, South African Medical Research Council, Tygerberg, South Africa.,Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Motlalepula G Matsabisa
- Pharmacology Department, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nicole L Brooks
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
4
|
Zhang Y, Yang J, Zhang J, Li S, Zheng L, Zhang Y, Meng H, Zhang X, Wu Z. A bio-inspired injectable hydrogel as a cell platform for real-time glycaemic regulation. J Mater Chem B 2020; 8:4627-4641. [PMID: 32373901 DOI: 10.1039/d0tb00561d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Frequent subcutaneous insulin injection and islet transplantation are promising therapeutic options for type 1 diabetes mellitus. However, poor patient compliance, insufficient appropriate islet β cell donors and body immune rejection limit their clinical applications. The design of a platform capable of encapsulating insulin-secreting cells and achieving real-time blood glucose regulation, is a so far unmet need. Herein, inspired by the natural processes of regulating blood glucose in pancreatic islet β cells, we developed a poly(N-isopropylacrylamide-co-dextran-maleic acid-co-3-acrylamidophenylboronic acid) (P(AAPBA-Dex-NIPAM)) hydrogel as a cell platform with glucose responsiveness and thermo-responsiveness for the therapy of diabetes. This platform showed good biocompatibility against insulin-secreting cells and presented glucose-dependent insulin release behaviour. The bioinspired P(AAPBA6-Dex-NIPAM64) hydrogel had a positive effect on real-time glycaemic regulation, as observed by intraperitoneal glucose tolerance tests. The non-fasting blood glucose of diabetic rats was restored to a normal level during the period of treatment. Additionally, the inflammatory response did not occur after administration of the platform. Collectively, we expected that the bio-mimetic platform combined with an insulin-secreting capability could be a new diabetic treatment strategy.
Collapse
Affiliation(s)
- Yu Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Volume changes of the pancreatic head remnant after distal pancreatectomy. Surgery 2020; 167:455-467. [DOI: 10.1016/j.surg.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
|
6
|
Cito M, Pellegrini S, Piemonti L, Sordi V. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocr Connect 2018; 7:R114-R125. [PMID: 29555660 PMCID: PMC5861368 DOI: 10.1530/ec-18-0012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
The experience in the field of islet transplantation shows that it is possible to replace β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite sources of β cells are strongly required. In this review, we make an overview of the most promising and advanced β cell production strategies. Particular hope is placed in pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells (iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells are ongoing in the United States and Canada, but a successful strategy for the use of PSC in patients with diabetes has still to overcome several important hurdles. Another promising strategy of generation of new β cells is the transdifferentiation of adult cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, in particular liver cells. Finally, new advances in gene editing technologies have given impetus to research on the production of human organs in chimeric animals and on in situ reprogramming of adult cells through in vivo target gene activation.
Collapse
Affiliation(s)
- Monia Cito
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| | - Valeria Sordi
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Kumar S, Blangero J, Curran JE. Induced Pluripotent Stem Cells in Disease Modeling and Gene Identification. Methods Mol Biol 2018; 1706:17-38. [PMID: 29423791 DOI: 10.1007/978-1-4939-7471-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved, and the underlying genetic component influencing, the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and, thus, unlimited source of pluripotent cells for targeted differentiation. In principle, the entire range of cell types found in the human body can be interrogated using an iPSC approach. Therefore, iPSC technology, and the increasingly refined abilities to differentiate iPSCs into disease-relevant target cells, has far-reaching implications for understanding disease pathophysiology, identifying disease-causing genes, and developing more precise therapeutics, including advances in regenerative medicine. In this chapter, we discuss the technological perspectives and recent developments in the application of patient-derived iPSC lines for human disease modeling and disease gene identification.
Collapse
Affiliation(s)
- Satish Kumar
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, 1214 W Schunior St, Edinburg, TX, 78541, USA.
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, 1214 W Schunior St, Edinburg, TX, 78541, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, 1214 W Schunior St, Edinburg, TX, 78541, USA
| |
Collapse
|
8
|
Abstract
OBJECTIVES The side population (SP) contains cells with stem cell/progenitor properties. Previously, we observed that the mouse pancreas SP expanded after pancreatic injury. We aimed to characterize the SP in human pancreas as a potential source of stem cells. METHODS Human organ donor pancreata were fractionated into islets and exocrine tissue, enriched by tissue culture and dispersed into single cells. Cells were phenotyped by flow cytometry, and the SP was defined by efflux of fluorescent dye Hoechst 33342 visualized by ultraviolet excitation. Cells were flow sorted, and their colony-forming potential measured on feeder cells in culture. RESULTS An SP was identified in islet and exocrine cells from human organ donors: 2 with type 1 diabetes, 3 with type 2 diabetes, and 28 without diabetes. Phenotyping revealed that exocrine SP cells had an epithelial origin, were enriched for carbohydrate antigen 19-9 ductal cells expressing stem cell markers CD133 and CD26, and had greater colony-forming potential than non-SP cells. The exocrine SP was increased in a young adult with type 1 diabetes and ongoing islet autoimmunity. CONCLUSIONS The pancreatic exocrine SP is a potential reservoir of adult stem/progenitor cells, consistent with previous evidence that such cells are duct-derived and express CD133.
Collapse
|
9
|
Xue A, Niu G, Chen Y, Li K, Xiao Z, Luan Y, Sun C, Xie X, Zhang D, Du X, Kong F, Guo Y, Zhang H, Cheng G, Xin Q, Guan Y, Zhao S. Recellularization of well-preserved decellularized kidney scaffold using adipose tissue-derived stem cells. J Biomed Mater Res A 2017; 106:805-814. [PMID: 29067774 DOI: 10.1002/jbm.a.36279] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Aibing Xue
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Guangzhu Niu
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yuan Chen
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Kailin Li
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Zhiying Xiao
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yun Luan
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Chao Sun
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Xiaoshuai Xie
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Denglu Zhang
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Xiaohang Du
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Feng Kong
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yanxia Guo
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University; Jinan Shandong China
| | - Guanghui Cheng
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Qian Xin
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yong Guan
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Shengtian Zhao
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
- Department of Urology; The Affiliated Hospital of Shandong University of Traditional Chinese Medicine; Jinan Shandong China
| |
Collapse
|
10
|
Ueda S, Shimasaki M, Ichiseki T, Ueda Y, Tsuchiya M, Kaneuji A, Kawahara N. Prevention of glucocorticoid-associated osteonecrosis by intravenous administration of mesenchymal stem cells in a rabbit model. BMC Musculoskelet Disord 2017; 18:480. [PMID: 29162088 PMCID: PMC5698964 DOI: 10.1186/s12891-017-1837-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Background Glucocorticoid-associated osteonecrosis is an intractable condition, making the establishment of preventative strategies of particular importance. Recently various studies using mesenchymal stem cells (MSC) have been conducted. Using a rabbit glucocorticoid-associated osteonecrosis model we administered green fluorescent protein (GFP)-labeled MSC intravenously to investigate their effect on osteonecrosis. Methods A rabbit osteonecrosis model in which methylprednisolone (MP) 20 mg/kg was injected into the gluteus of a Japanese white rabbit was used. Simultaneously with MP, MSC labeled with GFP (GFP-labeled MSC) were injected intravenously. Fourteen days later the animals were killed (MSC(+)/MP(+)/14d), femurs were extracted, and the prevalence of osteonecrosis was determined histopathologically. Also, animals were killed 3 days after simultaneous administration of GFP-labeled MSC and MP (MSC(+)/MP(+)/3d), and western blotting (WB) for GFP was performed of the femur, liver, kidney, lung, blood vessel, and vertebra, in addition to immunohistochemical study of femur. As a control for the histopathological study, animals were killed 14 days after MP administration and intravenous vehicle injection (MSC(−)/MP(+)/14d). For WB, animals were killed 3 days after intravenous GFP-labeled MSC administration and vehicle injection into the gluteus (MSC(+)/MP(−)/3d). Results In MSC(−)/MP(+)/14d osteonecrosis was found in 7 of 10 rabbits (70%), while in MSC(+)/MP(+)/14d, partial bone marrow necrosis was found in only 1 rabbit (12.5%); osteonecrosis was not found in 7 of 8 rabbits (p < 0.05). WB showed expression of GFP in the femur, not in the liver, kidney, lung, blood vessel, or vertebra, of MSC(+)/MP(+)/3d; expression of GFP-labeled MSC was absent in the femur of MSC(+)/MP(−)/3d. In the immunohistochemical study of MSC(+)/MP(+)/3d, homing of GFP-labeled MSC was noted perivascularly in the femur, but not in MSC(+)/MP(−)/3d. Conclusions With transvenous MSC administration a significant prophylactic effect against glucocorticoid-associated osteonecrosis was found. Direct administration of MSC to the site of tissue injury requires highly invasive surgery. In contrast, as shown here the simple and hardly invasive intravenous administration of MSC may succeed in preventing osteonecrosis. Electronic supplementary material The online version of this article (10.1186/s12891-017-1837-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shusuke Ueda
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Miyako Shimasaki
- Department of Phathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Toru Ichiseki
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan.
| | - Yoshimichi Ueda
- Department of Phathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Masanobu Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Ayumi Kaneuji
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
11
|
Nikravesh N, Cox SC, Ellis MJ, Grover LM. Encapsulation and Fluidization Maintains the Viability and Glucose Sensitivity of Beta-Cells. ACS Biomater Sci Eng 2017; 3:1750-1757. [DOI: 10.1021/acsbiomaterials.7b00191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Niusha Nikravesh
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sophie C. Cox
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Marianne J. Ellis
- School
of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Liam M. Grover
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
12
|
Berezin AE. New Trends in Stem Cell Transplantation in Diabetes Mellitus Type I and Type II. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55687-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Hříbková H, Zelinková J, Sun YM. Progress in human pluripotent stem cell-based modeling systems for neurological diseases. NEUROGENESIS 2017. [DOI: 10.1080/23262133.2017.1324258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Zelinková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yuh-Man Sun
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
The lacrimal gland: development, wound repair and regeneration. Biotechnol Lett 2017; 39:939-949. [DOI: 10.1007/s10529-017-2326-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
|
15
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
16
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
17
|
Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 2016; 21:1167-79. [PMID: 27240529 PMCID: PMC4995546 DOI: 10.1038/mp.2016.89] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
Major programs in psychiatric genetics have identified >150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes.
Collapse
|
18
|
Corritore E, Lee YS, Sokal EM, Lysy PA. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7:182-99. [PMID: 27540464 PMCID: PMC4973405 DOI: 10.1177/2042018816652059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies.
Collapse
Affiliation(s)
- Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M. Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
19
|
Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology 2016; 64:4-7. [PMID: 27102721 DOI: 10.1002/hep.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Lola M Reid
- Department of Cell Biology and Physiology Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
20
|
Mousavinejad M, Andrews PW, Shoraki EK. Current Biosafety Considerations in Stem Cell Therapy. CELL JOURNAL 2016; 18:281-7. [PMID: 27540533 PMCID: PMC4988427 DOI: 10.22074/cellj.2016.4324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient's life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies.
Collapse
Affiliation(s)
- Masoumeh Mousavinejad
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Elham Kargar Shoraki
- Department of Biological Sciences, Faculty of Science, Tehran Kharazmi University, Tehran, Iran
| |
Collapse
|
21
|
Willenberg BJ, Oca-Cossio J, Cai Y, Brown AR, Clapp WL, Abrahamson DR, Terada N, Ellison GW, Mathews CE, Batich CD, Ross EA. Repurposed biological scaffolds: kidney to pancreas. Organogenesis 2016; 11:47-57. [PMID: 26252820 DOI: 10.1080/15476278.2015.1067354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in organ regeneration have been facilitated by gentle decellularization protocols that maintain distinct tissue compartments, and thereby allow seeding of blood vessels with endothelial lineages separate from populations of the parenchyma with tissue-specific cells. We hypothesized that a reconstituted vasculature could serve as a novel platform for perfusing cells derived from a different organ: thus discordance of origin between the vascular and functional cells, leading to a hybrid repurposed organ. The need for a highly vascular bed is highlighted by tissue engineering approaches that involve transplantation of just cells, as attempted for insulin production to treat human diabetes. Those pancreatic islet cells present unique challenges since large numbers are needed to allow the cell-to-cell signaling required for viability and proper function; however, increasing their number is limited by inadequate perfusion and hypoxia. As proof of principle of the repurposed organ methodology we harnessed the vasculature of a kidney scaffold while seeding the collecting system with insulin-producing cells. Pig kidneys were decellularized by sequential detergent, enzymatic and rinsing steps. Maintenance of distinct vascular and collecting system compartments was demonstrated by both fluorescent 10 micron polystyrene microspheres and cell distributions in tissue sections. Sterilized acellular scaffolds underwent seeding separately via the artery (fibroblasts or endothelioma cells) and retrograde (murine βTC-tet cells) up the ureter. After three-day bioreactor incubation, histology confirmed separation of cells in the vasculature from those in the collecting system. βTC-tet clusters survived in tubules, glomerular Bowman's space, demonstrated insulin immunolabeling, and thereby supported the feasibility of kidney-to-pancreas repurposing.
Collapse
|
22
|
An optimised mouse model of chronic pancreatitis with a combination of ethanol and cerulein. Cent Eur J Immunol 2016; 41:54-63. [PMID: 27095923 PMCID: PMC4829821 DOI: 10.5114/ceji.2016.58816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Chronic pancreatitis (CP) is an intractable and multi-factorial disorder. Developing appropriate animal models is an essential step in pancreatitis research, and the best ones are those which mimic the human disorder both aetiologically and pathophysiologically. The current study presents an optimised protocol for creating a murine model of CP, which mimics the initial steps of chronic pancreatitis in alcohol chronic pancreatitis and compares it with two other mouse models treated with cerulein or ethanol alone. Material and methods Thirty-two male C57BL/6 mice were randomly selected, divided into four groups, and treated intraperitoneally with saline (10 ml/kg, control group), ethanol (3 g/kg; 30% v/v), cerulein (50 µg/kg), or ethanol + cerulein, for six weeks. Histopathological and immunohistochemical assays for chronic pancreatitis index along with real-time PCR assessments for mRNA levels of inflammatory cytokines and fibrogenic markers were conducted to verify the CP induction. Results The results indicated that CP index (CPI) was significantly increased in ethanol-cerulein mice compared to the saline, ethanol, and cerulein groups (p < 0.001). Interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), α-smooth muscle actin (α-SMA), and myeloperoxidase activity were also significantly greater in both cerulein and ethanol-cerulein groups than in the saline treated animals (p < 0.001). Immunohistochemical analysis revealed enhanced expression of TGF-β and α-SMA in ethanol-cerulein mice compared to the saline group. Conclusions Intraperitoneal (IP) injections of ethanol and cerulein could successfully induce CP in mice. IP injections of ethanol provide higher reproducibility compared to ethanol feeding. The model is simple, non-invasive, reproducible, and time-saving. Since the protocol mimics the initial phases of CP development in alcoholics, it can be used for investigating basic mechanisms and testing new therapies.
Collapse
|
23
|
Carpino G, Puca R, Cardinale V, Renzi A, Scafetta G, Nevi L, Rossi M, Berloco PB, Ginanni Corradini S, Reid LM, Maroder M, Gaudio E, Alvaro D. Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes. Stem Cells 2016; 34:1332-42. [PMID: 26850087 DOI: 10.1002/stem.2311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Peribiliary glands (PBGs) are niches in the biliary tree and containing heterogeneous endodermal stem/progenitors cells that can differentiate, in vitro and in vivo, toward pancreatic islets. The aim of this study was to evaluate, in experimental and human diabetes, proliferation of cells in PBGs and differentiation of the biliary tree stem/progenitor cells (BTSCs) toward insulin-producing cells. Diabetes was generated in mice by intraperitoneal injection of a single dose of 200 mg/kg (N = 12) or 120 mg/kg (N = 12) of streptozotocin. Liver, pancreas, and extrahepatic biliary trees were en bloc dissected and examined. Cells in PBGs proliferated in experimental diabetes, and their proliferation was greatest in the PBGs of the hepatopancreatic ampulla, and inversely correlated with the pancreatic islet area. In rodents, the cell proliferation in PBGs was characterized by the expansion of Sox9-positive stem/progenitor cells that gave rise to insulin-producing cells. Insulin-producing cells were located mostly in PBGs in the portion of the biliary tree closest to the duodenum, and their appearance was associated with upregulation of MafA and Gli1 gene expression. In patients with type 2 diabetes, PBGs at the level of the hepatopancreatic ampulla contained cells showing signs of proliferation and pancreatic fate commitment. In vitro, high glucose concentrations induced the differentiation of human BTSCs cultures toward pancreatic beta cell fates. The cells in PBGs respond to diabetes with proliferation and differentiation towards insulin-producing cells indicating that PBG niches may rescue pancreatic islet impairment in diabetes. These findings offer important implications for the pathophysiology and complications of this disease. Stem Cells 2016;34:1332-1342.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Rosa Puca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gaia Scafetta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Nevi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Pasquale B Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Stefano Ginanni Corradini
- Department of Clinical Medicine, Gastroenterology Division, Sapienza University of Rome, Rome, Italy
| | - Lola M Reid
- Department of Cell and Molecular Physiology, Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Marella Maroder
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| |
Collapse
|
24
|
COMP-Ang1 promotes long-term survival of allogeneic islet grafts in a bioinert perforated chamber by inhibiting inflammation via inhibition of the TLR4 signaling pathway. Biotechnol Lett 2016; 38:1033-42. [PMID: 26875093 DOI: 10.1007/s10529-016-2059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the effects of cartilage oligomeric matrix protein (COMP)- angiopoietin-1 (Ang1) on allogeneic islet graft survival in a bioinert perforated chamber. RESULTS COMP-Ang1 treatment significantly decreased lipopolysaccharide-induced cell apoptosis and islet-related lymph node cell proliferation (both P < 0.01). Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels in the chamber exudate were significantly lower in the COMP-Ang1 + chamber group than in the chamber group (all P < 0.05), as were the protein expression levels. COMP-Ang1 significantly inhibited the expression of Toll-like receptor 4 (TLR4) in cultured islets. Finally, full COMP-Ang1 treatment resulted in the longest survival time among the treatment groups. CONCLUSION Combined use of the bioinert perforated chamber with COMP-Ang1 is an effective strategy for improving islet allograft survival.
Collapse
|
25
|
Seneviratne AK, Bell GI, Sherman SE, Cooper TT, Putman DM, Hess DA. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions. Stem Cells 2016; 34:873-87. [DOI: 10.1002/stem.2268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Ayesh K. Seneviratne
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Gillian I. Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Stephen E. Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Tyler T. Cooper
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - David M. Putman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - David A. Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| |
Collapse
|
26
|
Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes. Proc Natl Acad Sci U S A 2016; 113:650-5. [PMID: 26733677 DOI: 10.1073/pnas.1524200113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9(+) (Sox9(+)) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9(+) ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9(+) ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300-450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9(+) ductal cell differentiation into β cells in adult mice.
Collapse
|
27
|
Li M, Page-McCaw P, Chen W. FGF1 Mediates Overnutrition-Induced Compensatory β-Cell Differentiation. Diabetes 2016; 65:96-109. [PMID: 26420862 PMCID: PMC4686947 DOI: 10.2337/db15-0085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
Increased insulin demand resulting from insulin resistance and/or overnutrition induces a compensatory increase in β-cell mass. The physiological factors responsible for the compensation have not been fully characterized. In zebrafish, overnutrition rapidly induces compensatory β-cell differentiation through triggering the release of a paracrine signal from persistently activated β-cells. We identified Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal in a small molecule screen. Fgf1 was confirmed as the overnutrition-induced β-cell differentiation signal, as inactivation of fgf1 abolished the compensatory β-cell differentiation. Furthermore, expression of human FGF1 solely in β-cells in fgf1(-/-) animals rescued the compensatory response, indicating that β-cells can be the source of FGF1. Additionally, constitutive secretion of FGF1 with an exogenous signal peptide increased β-cell number in the absence of overnutrition. These results demonstrate that fgf1 is necessary and FGF1 expression in β-cells is sufficient for the compensatory β-cell differentiation. We further show that FGF1 is secreted during prolonged activation of cultured mammalian β-cells and that endoplasmic reticulum stress acts upstream of FGF1 release. Thus, the recently discovered antidiabetes function of FGF1 may act partially through increasing β-cell differentiation.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Patrick Page-McCaw
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
28
|
Augstein P, Naselli G, Loudovaris T, Hawthorne WJ, Campbell P, Bandala-Sanchez E, Rogers K, Heinke P, Thomas HE, Kay TW, Harrison LC. Localization of dipeptidyl peptidase-4 (CD26) to human pancreatic ducts and islet alpha cells. Diabetes Res Clin Pract 2015; 110:291-300. [PMID: 26515908 DOI: 10.1016/j.diabres.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/12/2023]
Abstract
AIM DPP-4/CD26 degrades the incretins GLP-1 and GIP. The localization of DPP-4 within the human pancreas is not well documented but is likely to be relevant for understanding incretin function. We aimed to define the cellular localization of DPP-4 in the human pancreas from cadaveric organ donors with and without diabetes. METHODS Pancreas was snap-frozen and immunoreactive DPP-4 detected in cryosections using the APAAP technique. For co-localization studies, pancreas sections were double-stained for DPP-4 and proinsulin or glucagon and scanned by confocal microscopy. Pancreata were digested and cells in islets and in islet-depleted, duct-enriched digests analyzed for expression of DPP-4 and other markers by flow cytometry. RESULTS DPP-4 was expressed by pancreatic duct and islet cells. In pancreata from donors without diabetes or with type 2 diabetes, DPP-4-positive cells in islets had the same location and morphology as glucagon-positive cells, and the expression of DPP-4 and glucagon overlapped. In donors with type 1 diabetes, the majority of residual cells in islets were DPP-4-positive. CONCLUSION In the human pancreas, DPP-4 expression is localized to duct and alpha cells. This finding is consistent with the view that DPP-4 regulates exposure to incretins of duct cells directly and of beta cells indirectly in a paracrine manner.
Collapse
Affiliation(s)
- Petra Augstein
- Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, 1G Royal Parade, Victoria, Australia; The Institute of Diabetes "Gerhardt Katsch", 17440 Karlsburg, Greifswald, Germany.
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, 1G Royal Parade, Victoria, Australia.
| | - Thomas Loudovaris
- St Vincent's Institute of Medical Research, 3056 Fitzroy, 41 Victoria Parade, Victoria, Australia.
| | - Wayne J Hawthorne
- University of Sydney, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.
| | - Peter Campbell
- St Vincent's Institute of Medical Research, 3056 Fitzroy, 41 Victoria Parade, Victoria, Australia
| | - Esther Bandala-Sanchez
- Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, 1G Royal Parade, Victoria, Australia.
| | - Kelly Rogers
- Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, 1G Royal Parade, Victoria, Australia.
| | - Peter Heinke
- The Institute of Diabetes "Gerhardt Katsch", 17440 Karlsburg, Greifswald, Germany.
| | - Helen E Thomas
- St Vincent's Institute of Medical Research, 3056 Fitzroy, 41 Victoria Parade, Victoria, Australia.
| | - Thomas W Kay
- St Vincent's Institute of Medical Research, 3056 Fitzroy, 41 Victoria Parade, Victoria, Australia.
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, 1G Royal Parade, Victoria, Australia.
| |
Collapse
|
29
|
Carpino G, Renzi A, Cardinale V, Franchitto A, Onori P, Overi D, Rossi M, Berloco PB, Alvaro D, Reid LM, Gaudio E. Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat 2015; 228:474-86. [PMID: 26610370 DOI: 10.1111/joa.12418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic duct glands (PDGs) are tubule-alveolar glands associated with the pancreatic duct system and can be considered the anatomical counterpart of peribiliary glands (PBGs) found within the biliary tree. Recently, we demonstrated that endodermal precursor niches exist fetally and postnatally and are composed functionally of stem cells and progenitors within PBGs and of committed progenitors within PDGs. Here we have characterized more extensively the anatomy of human PDGs as novel niches containing cells with multiple phenotypes of committed progenitors. Human pancreata (n = 15) were obtained from cadaveric adult donors. Specimens were processed for histology, immunohistochemistry and immunofluorescence. PDGs were found in the walls of larger pancreatic ducts (diameters > 300 μm) and constituted nearly 4% of the duct wall area. All of the cells identified were negative for nuclear expression of Oct4, a pluripotency gene, and so are presumably committed progenitors and not stem cells. In the main pancreatic duct and in large interlobular ducts, Sox9(+) cells represented 5-30% of the cells within PDGs and were located primarily at the bottom of PDGs, whereas rare and scattered Sox9(+) cells were present within the surface epithelium. The expression of PCNA, a marker of cell proliferation, paralleled the distribution of Sox9 expression. Sox9(+) PDG cells proved to be Pdx1(+) /Ngn3(+/-) /Oct4A(-) . Nearly 10% of PDG cells were positive for insulin or glucagon. Intercalated ducts contained Sox9(+) /Pdx1(+) /Ngn3(+) cells, a phenotype that is presumptive of committed endocrine progenitors. Some intercalated ducts appeared in continuity with clusters of insulin-positive cells organized in small pancreatic islet-like structures. In summary, PDGs represent niches of a population of Sox9(+) cells exhibiting a pattern of phenotypic traits implicating a radial axis of maturation from the bottoms of the PDGs to the surface of pancreatic ducts. Our results complete the anatomical background that links biliary and pancreatic tracts and could have important implications for the common patho-physiology of biliary tract and pancreas.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | | | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
31
|
Corritore E, Dugnani E, Pasquale V, Misawa R, Witkowski P, Lei J, Markmann J, Piemonti L, Sokal EM, Bonner-Weir S, Lysy PA. β-Cell differentiation of human pancreatic duct-derived cells after in vitro expansion. Cell Reprogram 2015; 16:456-66. [PMID: 25437872 DOI: 10.1089/cell.2014.0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
β-Cell replacement therapy is a promising field of research that is currently evaluating new sources of cells for clinical use. Pancreatic epithelial cells are potent candidates for β-cell engineering, but their large-scale expansion has not been evidenced yet. Here we describe the efficient expansion and β-cell differentiation of purified human pancreatic duct cells (DCs). When cultured in endothelial growth-promoting media, purified CA19-9(+) cells proliferated extensively and achieved up to 22 population doublings over nine passages. While proliferating, human pancreatic duct-derived cells (HDDCs) downregulated most DC markers, but they retained low CK19 and SOX9 gene expression. HDDCs acquired mesenchymal features but differed from fibroblasts or pancreatic stromal cells. Coexpression of duct and mesenchymal markers suggested that HDDCs were derived from DCs via a partial epithelial-to-mesenchymal transition (EMT). This was supported by the blockade of HDDC appearance in CA19-9(+) cell cultures after incubation with the EMT inhibitor A83-01. After a differentiation protocol mimicking pancreatic development, HDDC populations contained about 2% of immature insulin-producing cells and showed glucose-unresponsive insulin secretion. Downregulation of the mesenchymal phenotype improved β-cell gene expression profile of differentiated HDDCs without affecting insulin protein expression and secretion. We show that pancreatic ducts represent a new source for engineering large amounts of β-like-cells with potential for treating diabetes.
Collapse
Affiliation(s)
- Elisa Corritore
- 1 Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain , B-1200, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
33
|
Yang J, Zhou F, Xing R, Lin Y, Han Y, Teng C, Wang Q. Development of large-scale size-controlled adult pancreatic progenitor cell clusters by an inkjet-printing technique. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11624-11630. [PMID: 25961432 DOI: 10.1021/acsami.5b02676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The generation of transplantable β-cells from pancreatic progenitor cells (PPCs) could serve as an ideal cell-based therapy for diabetes. Because the transplant efficiency depends on the size of islet-like clusters, it becomes one of the key research topics to produce PPCs with controlled cluster sizes in a scalable manner. In this study, we used inkjet printing to pattern biogenic nanoparticles, i.e., mutant tobacco mosaic virus (TMV), with different spot sizes to support the formation of multicellular clusters by PPCs. We successfully achieved TMV particle patterns with variable features and sizes by adjusting the surface wettability and printing speed. The spot sizes of cell-adhesive TMV mutant arrays were in the range of 50-150 μm diameter. Mouse PPCs were seeded on the TMV-RGD (arginine-glycine-aspartate)-patterned polystyrene (PS) substrate, which consists of areas that either favor (TMV-RGD) or prohibit (bare PS) cell adhesion. The PPCs stably attached, proliferated on top of the TMV-RGD support, thus resulting in the formation of uniform and confluent PPC clusters. Furthermore, the aggregated PPCs also maintained their multipotency and were positive for E-cadherin, indicating that the formation of cell-cell junctions is critical for enhanced cell-cell contact.
Collapse
Affiliation(s)
- Jia Yang
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fang Zhou
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Rubo Xing
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yuan Lin
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanchun Han
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chunbo Teng
- §College of Life Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qian Wang
- ∥Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
34
|
The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos. PLoS One 2015; 10:e0128216. [PMID: 26029927 PMCID: PMC4452480 DOI: 10.1371/journal.pone.0128216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/24/2015] [Indexed: 01/22/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), its product Angiotensin-(1-7) [Ang-(1-7)], and Ang-(1-7) receptor Mas, have been shown to regulate organogenesis during embryonic development in various species. However, it is not known whether a local ACE2/Ang-(1-7)/Mas axis is present in the fetal pancreas. It is hypothesized that there is a local ACE2/Ang-(1-7)/Mas axis in the embryonic pancreas in mice that is involved in regulating islet cell development. To address this issue, the endogenous expression profile of axis constituents in embryonic mouse pancreata was examined. Involvement of the ACE2 axis in the regulation of pancreatic development was also examined. The present experiments showed in an in vivo animal model that endogenous expression levels of ACE2 and the Mas receptor were upregulated in mouse pancreata in late embryogenesis, peaking on embryonic day E16.5, when it reached 3 folds compared to that seen at E12.5. Consistently, endogenous expression of Ang-(1-7) also peaked at E16.5. Treatment with the ACE2 inhibitor DX600 did not alter islet development. However, prenatal treatment with A779, a Mas receptor antagonist, reduced the β-cell to α-cell ratio in neonatal islets, impaired islet insulin secretory function, and impaired the pups' glucose tolerance. In ex vivo pancreas explant cultures, A779 again decreased the β-cell to α-cell ratio, apparently through its effects on β-cell proliferation (reduced proliferation shown with Ki67 staining), and also decreased Insulin and Ngn3 mRNA expression. Furthermore, treatment of explant cultures with Ang-(1-7) increased mRNA levels of Insulin and pancreatic progenitor marker Ngn3, as well as Nox4, the ROS generation enzyme; these stimulatory effects were attenuated by co-treatment with A779, suggesting that Ang-(1-7), via Mas receptor signaling, may promote differentiation of pancreatic progenitors into insulin-producing cells via modulation of reactive oxygen species. These data together suggest that a Mas receptor-mediated mechanism may stimulate pancreatic cell development.
Collapse
|
35
|
Berezin AE. Diabetes mellitus and cellular replacement therapy: Expected clinical potential and perspectives. World J Diabetes 2014; 5:777-86. [PMID: 25512780 PMCID: PMC4265864 DOI: 10.4239/wjd.v5.i6.777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is the most prevailing disease with progressive incidence worldwide. Despite contemporary treatment type one DM and type two DM are frequently associated with long-term major microvascular and macrovascular complications. Currently restoration of failing β-cell function, regulation of metabolic processes with stem cell transplantation is discussed as complements to contemporary DM therapy regimens. The present review is considered paradigm of the regenerative care and the possibly effects of cell therapy in DM. Reprogramming stem cells, bone marrow-derived mononuclear cells; lineage-specified progenitor cells are considered for regenerative strategy in DM. Finally, perspective component of stem cell replacement in DM is discussed.
Collapse
|
36
|
Purwana I, Zheng J, Li X, Deurloo M, Son DO, Zhang Z, Liang C, Shen E, Tadkase A, Feng ZP, Li Y, Hasilo C, Paraskevas S, Bortell R, Greiner DL, Atkinson M, Prud'homme GJ, Wang Q. GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes 2014; 63:4197-205. [PMID: 25008178 DOI: 10.2337/db14-0153] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
γ-Aminobutyric acid (GABA) exerts protective and regenerative effects on mouse islet β-cells. However, in humans it is unknown whether it can increase β-cell mass and improve glucose homeostasis. To address this question, we transplanted a suboptimal mass of human islets into immunodeficient NOD-scid-γ mice with streptozotocin-induced diabetes. GABA treatment increased grafted β-cell proliferation, while decreasing apoptosis, leading to enhanced β-cell mass. This was associated with increased circulating human insulin and reduced glucagon levels. Importantly, GABA administration lowered blood glucose levels and improved glucose excursion rates. We investigated GABA receptor expression and signaling mechanisms. In human islets, GABA activated a calcium-dependent signaling pathway through both GABA A receptor and GABA B receptor. This activated the phosphatidylinositol 3-kinase-Akt and CREB-IRS-2 signaling pathways that convey GABA signals responsible for β-cell proliferation and survival. Our findings suggest that GABA regulates human β-cell mass and may be beneficial for the treatment of diabetes or improvement of islet transplantation.
Collapse
Affiliation(s)
- Indri Purwana
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Juan Zheng
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoming Li
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marielle Deurloo
- Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dong Ok Son
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoyun Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Christie Liang
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eddie Shen
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Akshaya Tadkase
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Zhong-Ping Feng
- Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Craig Hasilo
- Department of Surgery, McGill University, and Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Steven Paraskevas
- Department of Surgery, McGill University, and Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rita Bortell
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Health Science Center, Gainesville, FL
| | - Gerald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Sancho R, Gruber R, Gu G, Behrens A. Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell Stem Cell 2014; 15:139-53. [PMID: 25105579 PMCID: PMC4136739 DOI: 10.1016/j.stem.2014.06.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 04/11/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023]
Abstract
The adult pancreas is capable of limited regeneration after injury but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here, we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into α, δ, and β cells. Loss of Fbw7 stabilized the transcription factor Ngn3, a key regulator of endocrine cell differentiation. The induced β cells resemble islet β cells in morphology and histology, express genes essential for β cell function, and release insulin after glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.
Collapse
Affiliation(s)
- Rocio Sancho
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ralph Gruber
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44, Lincoln's Inn Fields, London WC2A 3LY, UK; School of Medicine, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
38
|
Stem cells for pancreatic β-cell replacement in diabetes mellitus: actual perspectives. Curr Opin Organ Transplant 2014; 19:162-8. [PMID: 24553500 DOI: 10.1097/mot.0000000000000055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Type 1 and type 2 diabetes mellitus represent a widespread metabolic disorder, related to autoimmune β-cell destruction and insulin resistance, leading to β-cell dysfunction, respectively, that are associated with severe chronic complications with irreversible multiorgan morphological and functional damage. Conventional treatment, based on exogenous insulin or oral agents may control and delay but not prevent the disease complications, which has lead, so far, to a steady increase in mortality and morbidity. β-Cell substitution cell therapy, initially pursued by whole pancreatic and isolated islet transplantation, with scarce and limited efficiency, now is looking at the new technologies for cell and molecular therapy for diabetes, based on stem cells. RECENT FINDINGS Pancreatic endocrine cells regeneration might replenish the destroyed β-cell pool, with neogenerated β-cell derived from pancreatic and extrapancreatic stem cell sources. Additionally, embryonic or adult stem cells derived from different cell lineages, and able to differentiate into β-like cell elements, may not only restore the original insulin secretory patterns but also exert the immunomodulatory effects aimed at interrupting the β-cell-directed autoimmune destruction vicious cycle. SUMMARY These new strategies may, one day, provide for the final cure of diabetes mellitus.
Collapse
|
39
|
Krishnan R, Alexander M, Robles L, Foster CE, Lakey JRT. Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud 2014; 11:84-101. [PMID: 25148368 DOI: 10.1900/rds.2014.11.84] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Lourdes Robles
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
40
|
van der Meulen T, Huising MO. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev Diabet Stud 2014; 11:115-32. [PMID: 25148370 DOI: 10.1900/rds.2014.11.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts.
Collapse
Affiliation(s)
- Talitha van der Meulen
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Holditch SJ, Terzic A, Ikeda Y. Concise review: pluripotent stem cell-based regenerative applications for failing β-cell function. Stem Cells Transl Med 2014; 3:653-61. [PMID: 24646490 DOI: 10.5966/sctm.2013-0184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetes engenders the loss of pancreatic β-cell mass and/or function, resulting in insulin deficiency relative to the metabolic needs of the body. Diabetic care has traditionally relied on pharmacotherapy, exemplified by insulin replacement to target peripheral actions of the hormone. With growing understanding of the pathogenesis of diabetic disease, alternative approaches aiming at repair and restoration of failing β-cell function are increasingly considered as complements to current diabetes therapy regimens. To this end, emphasis is placed on transplantation of exogenous pancreas/islets or artificial islets, enhanced proliferation and maturation of endogenous β cells, prevention of β-cell loss, or fortified renewal of β-like-cell populations from stem cell pools and non-β-cell sources. In light of emerging clinical experiences with human embryonic stem cells and approval of the first in-human trial with induced pluripotent stem cells, in this study we highlight advances in β-cell regeneration strategies with a focus on pluripotent stem cell platforms in the context of translational applications.
Collapse
Affiliation(s)
- Sara J Holditch
- Center for Regenerative Medicine, Department of Molecular Medicine, Division of Cardiovascular Diseases, Department of Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, and Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
42
|
Abstract
Cell therapy has enormous potential for the treatment of conditions of unmet medical need. Cell therapy may be applied to diabetes mellitus in the context of beta cell replacement or for the treatment of diabetic complications. A large number of cell types including hematopoietic stem cells, mesenchymal stem cells, umbilical cord blood, conditioned lymphocytes, mononuclear cells, or a combination of these cells have been shown to be safe and feasible for the treatment of patients with diabetes mellitus. The first part of this review article will focus on the current perspective of the role of embryonic stem cells and inducible pluripotent stem cells for beta cell replacement and the current clinical data on cell-based therapy for the restoration of normoglycemia. The second part of this review will highlight the therapeutic role of MSCs in islet cells cotransplantation and the management of diabetes related vascular complications.
Collapse
Affiliation(s)
- Aaron Liew
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science (NCBES), National University Ireland Galway (NUIG), Galway, Ireland
| | | |
Collapse
|
43
|
Längle D, Halver J, Rathmer B, Willems E, Schade D. Small molecules targeting in vivo tissue regeneration. ACS Chem Biol 2014; 9:57-71. [PMID: 24372447 DOI: 10.1021/cb4008277] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of regenerative medicine has boomed in recent years thanks to milestone discoveries in stem cell biology and tissue engineering, which has been driving paradigm shifts in the pharmacotherapy of degenerative and ischemic diseases. Small molecule-mediated replenishment of lost and/or dysfunctional tissue in vivo, however, is still in its infancy due to a limited understanding of mechanisms that control such endogenous processes of tissue homeostasis or regeneration. Here, we discuss current progress using small molecules targeting in vivo aspects of regeneration, including adult stem cells, stem cell niches, and mechanisms of homing, mobilization, and engraftment as well as somatic cell proliferation. Many of these compounds derived from both knowledge-based design and screening campaigns, illustrating the feasibility of translating in vitro discovery to in vivo regeneration. These early examples of drug-mediated in vivo regeneration provide a glimpse of the future directions of in vivo regenerative medicine approaches.
Collapse
Affiliation(s)
- Daniel Längle
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jonas Halver
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Bernd Rathmer
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Erik Willems
- Muscle
Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis Schade
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
44
|
Tahamtani Y, Azarnia M, Farrokhi A, Moradmand A, Mirshahvaladi S, Aghdami N, Baharvand H. Stauprimide Priming of Human Embryonic Stem Cells toward Definitive Endoderm. CELL JOURNAL 2014; 16:63-72. [PMID: 24518969 PMCID: PMC3933440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/16/2013] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In vitro production of a definitive endoderm (DE) is an important issue in stem cell-related differentiation studies and it can assist with the production of more efficient endoderm derivatives for therapeutic applications. Despite tremendous progress in DE differentiation of human embryonic stem cells (hESCs), researchers have yet to discover universal, efficient and cost-effective protocols. MATERIALS AND METHODS In this experimental study, we have treated hESCs with 200 nM of Stauprimide (Spd) for one day followed by activin A (50 ng/ml; A50) for the next three days (Spd-A50). In the positive control group, hESCs were treated with Wnt3a (25 ng/ml) and activin A (100 ng/ml) for the first day followed by activin A for the next three days (100 ng/ml; W/A100-A100). RESULTS Gene expression analysis showed up regulation of DE-specific marker genes (SOX17, FOXA2 and CXCR4) comparable to that observed in the positive control group. Expression of the other lineage specific markers did not significantly change (p<0.05). We also obtained the same gene expression results using another hESC line. The use of higher concentrations of Spd (400 and 800 nM) in the Spd-A50 protocol caused an increase in the expression SOX17 as well as a dramatic increase in mortality rate of the hESCs. A lower concentration of activin A (25 ng/ml) was not able to up regulate the DE-specific marker genes. Then, A50 was replaced by inducers of definitive endoderm; IDE1/2 (IDE1 and IDE2), two previously reported small molecule (SM) inducers of DE, in our protocol (Spd-IDE1/2). This replacement resulted in the up regulation of visceral endoderm (VE) marker (SOX7) but not DE-specific markers. Therefore, while the Spd-A50 protocol led to DE production, we have shown that IDE1/2 could not fully replace activin A in DE induction of hESCs. CONCLUSION These findings can assist with the design of more efficient chemically-defined protocols for DE induction of hESCs and lead to a better understanding of the different signaling networks that are involved in DE differentiation of hESCs.
Collapse
Affiliation(s)
- Yaser Tahamtani
- Department of Biology, Kharazmi University, Tehran, Iran,Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for
Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Biology, Kharazmi University, Tehran, Iran
| | - Ali Farrokhi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for
Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for
Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahab Mirshahvaladi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for
Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for
Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for
Stem Cell Biology and Technology, ACECR, Tehran, Iran ,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran ,
* Corresponding Address: P.O.Box: 16635-148Department of Stem Cells and Developmental Biology at Cell Science
Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| |
Collapse
|
45
|
Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O, Nicolas N, Fonfrede M, Rosenzwajg M, Bernard C, Klatzmann D. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2013; 1:295-305. [PMID: 24622415 DOI: 10.1016/s2213-8587(13)70113-x] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND An improper balance of regulatory/effector T (Treg/Teff) cells is central to the development of autoimmune diseases, including type 1 diabetes. We previously showed that low-dose interleukin 2 (IL2) induced Treg cell expansion and activation and clinical improvement in patients with hepatitis-C-virus-induced vasculitis. We aimed to establish which low doses of IL2 would be safe and induce Treg cells in patients with type 1 diabetes, considering that: (1) type 1 diabetes might be linked to alteration of the IL2/IL2R activation pathway; (2) activation of pathogenic Teff cells by IL2 could exacerbate disease; and (3) the safety of low-dose IL2 is not known in type 1 diabetes. METHODS This was a single-centre phase 1/2 study. 24 adult patients (18-55 years) with established insulin-dependent type 1 diabetes and at least one diabetes-related autoantibody were enrolled and randomly assigned (in a 1:1:1:1 ratio, by computer-generated randomisation list, with block size four) to placebo or IL2 at 0.33 MIU/day, 1 MIU/day, or 3 MIU/day for a 5-day course and were followed up for 60 days. All investigators and participants were masked to assignment. The primary outcome was change in Treg cells, measured by flow cytometry, and expressed as a percentage of CD4+ T cells, from day 1 to day 60. This trial is registered with ClinicalTrials.gov, number NCT01353833. FINDINGS Six patients were assigned to each group between June 1, 2011, and Feb 3, 2012. IL2 was well tolerated at all doses, with no serious adverse events. However, there was a dose-response association for non-serious adverse events during the treatment phase (days 1-6); one patient in the placebo group, three patients in the 0.33 MIU group, five patients in the 1 MIU group, and six patients in the 3 MIU group had non-serious adverse events. The most common adverse events in the treatment phase were injection-site reaction (no patients with placebo vs three patients with 0.33 MIU and 1 MIU vs two patients with 3 MIU) and influenza-like syndrome (no patients with placebo vs one patient with 0.33 MIU and 1 MIU vs four patients with 3 MIU). After the treatment phase, adverse events did not differ between groups. IL2 did not induce deleterious changes in glucose-metabolism variables. IL2 induced a dose-dependent increase in the proportion of Treg cells, significant at all doses compared with placebo (placebo mean increase 0.5% [SD 0.4]; 0.33 MIU 2.8% [1.2], p=0.0039; 1 MIU 3.9% [1.8], p=0.0039; 3 MIU 4.8% [1.9] p=0.0039). INTERPRETATION We have defined a well-tolerated and immunologically effective dose range of IL2 for application to type 1 diabetes therapy and prevention, which could be relevant to other disorders in which a Treg cell increase would be desirable.
Collapse
Affiliation(s)
- Agnès Hartemann
- Department of Diabetology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gilbert Bensimon
- Department of Clinical Pharmacology, Hôpital Pitié-Salpêtrière, Paris, France; Pharmacologie, Paris, France
| | - Christine A Payan
- Department of Clinical Pharmacology, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Olivier Bourron
- Department of Diabetology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nathalie Nicolas
- Clinical Investigation Center Paris-Est-CIC-9304, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michèle Fonfrede
- Department of Biochemistry, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michelle Rosenzwajg
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department AP-HP, Hôpital Pitié-Salpêtrière, Paris, France; Immunology-Immunopathology-Immunotherapy UPMC Univ Paris 06, Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy, Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Claude Bernard
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department AP-HP, Hôpital Pitié-Salpêtrière, Paris, France; Immunology-Immunopathology-Immunotherapy UPMC Univ Paris 06, Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy, Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - David Klatzmann
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department AP-HP, Hôpital Pitié-Salpêtrière, Paris, France; Immunology-Immunopathology-Immunotherapy UPMC Univ Paris 06, Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy, Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy, Paris, France.
| |
Collapse
|
46
|
Trounson A. A rapidly evolving revolution in stem cell biology and medicine. Reprod Biomed Online 2013; 27:756-64. [DOI: 10.1016/j.rbmo.2013.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/29/2013] [Accepted: 07/08/2013] [Indexed: 01/23/2023]
|
47
|
Yuan Y, Hartland K, Boskovic Z, Wang Y, Walpita D, Lysy PA, Zhong C, Young DW, Kim YK, Tolliday NJ, Sokal EM, Schreiber SL, Wagner BK. A small-molecule inducer of PDX1 expression identified by high-throughput screening. ACTA ACUST UNITED AC 2013; 20:1513-22. [PMID: 24290880 DOI: 10.1016/j.chembiol.2013.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 01/05/2023]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1), a member of the homeodomain-containing transcription factor family, is a key transcription factor important for both pancreas development and mature β cell function. The ectopic overexpression of Pdx1, Neurog3, and MafA in mice reprograms acinar cells to insulin-producing cells. We developed a quantitative PCR-based gene expression assay to screen more than 60,000 compounds for expression of each of these genes in the human PANC-1 ductal carcinoma cell line. We identified BRD7552, which upregulated PDX1 expression in both primary human islets and ductal cells, and induced epigenetic changes in the PDX1 promoter consistent with transcriptional activation. Prolonged compound treatment induced both insulin mRNA and protein and also enhanced insulin expression induced by the three-gene combination. These results provide a proof of principle for identifying small molecules that induce expression of transcription factors to control cellular reprogramming.
Collapse
Affiliation(s)
- Yuan Yuan
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kate Hartland
- Chemical Biology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zarko Boskovic
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yikai Wang
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deepika Walpita
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Philippe A Lysy
- Laboratory of Pediatric Hepatology and Cell Therapy, Catholic University of Leuven, Brussels 1200, Belgium
| | - Cheng Zhong
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Damian W Young
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Young-Kwon Kim
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nicola J Tolliday
- Chemical Biology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Catholic University of Leuven, Brussels 1200, Belgium
| | - Stuart L Schreiber
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bridget K Wagner
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
48
|
Cerf ME. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes. Endocrine 2013; 44:303-11. [PMID: 23483434 DOI: 10.1007/s12020-013-9917-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/01/2013] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.
Collapse
Affiliation(s)
- Marlon E Cerf
- Diabetes Discovery Platform, South African Medical Research, PO Box 19070, Tygerberg, 7505, South Africa,
| |
Collapse
|
49
|
Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, Sojoodi M, Li VSW, Schuijers J, Gracanin A, Ringnalda F, Begthel H, Hamer K, Mulder J, van Es JH, de Koning E, Vries RGJ, Heimberg H, Clevers H. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 2013; 32:2708-21. [PMID: 24045232 PMCID: PMC3801438 DOI: 10.1038/emboj.2013.204] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality. The establishment of conditions for long-term culture and expansion of adult, bi-potent pancreas progenitors may facilitate novel and tailored therapeutic approaches.
Collapse
Affiliation(s)
- Meritxell Huch
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kamm RD, Bashir R. Creating living cellular machines. Ann Biomed Eng 2013; 42:445-59. [PMID: 24006130 DOI: 10.1007/s10439-013-0902-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
Development of increasingly complex integrated cellular systems will be a major challenge for the next decade and beyond, as we apply the knowledge gained from the sub-disciplines of regenerative medicine, synthetic biology, micro-fabrication and nanotechnology, systems biology, and developmental biology. In this prospective, we describe the current state-of-the-art in the assembly of source cells, derived from pluripotent cells, into populations of a single cell type to produce the components or building blocks of higher order systems and finally, combining multiple cell types, possibly in combination with scaffolds possessing specific physical or chemical properties, to produce higher level functionality. We also introduce the issue, questions and ample research opportunities to be explored by others in the field. As these "living machines" increase in capabilities, exhibit emergent behavior and potentially reveal the ability for self-assembly, self-repair, and even self-replication, questions arise regarding the ethical implications of this work. Future prospects as well as ways of addressing these complex ethical questions will be discussed.
Collapse
Affiliation(s)
- Roger D Kamm
- Massachusetts Institute of Technology, Cambridge, MA, USA,
| | | |
Collapse
|