1
|
Alonzo M, Contreras J, Bering J, Zhao MT. In Vivo and In Vitro Approaches to Modeling Hypoplastic Left Heart Syndrome. Curr Cardiol Rep 2024; 26:1221-1229. [PMID: 39340601 PMCID: PMC11538128 DOI: 10.1007/s11886-024-02122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW Hypoplastic left heart syndrome (HLHS) is a critical congenital heart defect characterized by the underdevelopment of left-sided heart structures, leading to significant circulatory challenges, and necessitating multiple surgeries for survival. Despite advancements in surgical interventions, long-term outcomes often involve heart failure, highlighting the need for a deeper understanding of HLHS pathogenesis. Current in vivo and in vitro models aim to recapitulate HLHS anatomy and physiology, yet they face limitations in accuracy and complexity. RECENT FINDINGS In vivo models, including those in chick, lamb, and mouse, provide insights into hemodynamic and genetic factors influencing HLHS. In vitro models using human induced pluripotent stem cells offer valuable platforms for studying genetic mutations and cellular mechanisms. This review evaluates these models' utility and limitations, and proposes future directions for developing more sophisticated models to enhance our understanding and treatment of HLHS.
Collapse
Affiliation(s)
- Matthew Alonzo
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Javier Contreras
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Jakob Bering
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Wang BX. Investigating Inherited Heart Diseases Using Human Induced Pluripotent Stem Cell-Based Models. Life (Basel) 2024; 14:1370. [PMID: 39598169 PMCID: PMC11595871 DOI: 10.3390/life14111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Inherited heart diseases (IHDs) are caused by genetic mutations that disrupt the physiological structure and function of the heart. Understanding the mechanisms behind these diseases is crucial for developing personalised interventions in cardiovascular medicine. Development of induced pluripotent stem cells, which can then be differentiated to any nucleated adult cell type, has enabled the creation of personalised single-cell and multicellular models, providing unprecedented insights into the pathophysiology of IHDs. This review provides a comprehensive overview of recent advancements in human iPSC models used to dissect the molecular and genetic underpinnings of common IHDs. We examine multicellular models and tissue engineering approaches, such as cardiac organoids, engineered heart tissue, and multicellular co-culture systems, which simulate complex intercellular interactions within heart tissue. Recent advancements in stem cell models offer a more physiologically relevant platform to study disease mechanisms, enabling researchers to observe cellular interactions, study disease progression, and identify therapeutic strategies. By leveraging these innovative models, we can gain deeper insights into the molecular and cellular mechanisms underlying IHDs, ultimately paving the way for more effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Brian Xiangzhi Wang
- Department of Cardiology, Jersey General Hospital, Gloucester Street, St. Helier JE1 3QS, Jersey, UK
| |
Collapse
|
3
|
Pushpan CK, Kumar SR. iPSC-Derived Cardiomyocytes as a Disease Model to Understand the Biology of Congenital Heart Defects. Cells 2024; 13:1430. [PMID: 39273002 PMCID: PMC11393881 DOI: 10.3390/cells13171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital heart defects (CHDs), enabling the customization of treatment strategies. The ability to understand the disease process specific to the individual patient of interest provides this technology with a significant advantage over generic animal models. However, its utility as a disease-in-a-dish model requires identifying effective and efficient differentiation protocols that accurately reproduce disease traits. Currently, iPSC-related research relies heavily on the quality of cells and the properties of the differentiation technique In this review, we discuss the utility of iPSCs in bench CHD research, the molecular pathways involved in the differentiation of cardiomyocytes, and their applications in CHD disease modeling, therapeutics, and drug application.
Collapse
Affiliation(s)
- Chithra K. Pushpan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
| | - Subramanyan Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
- Dr. C.C. and Mabel, L. Criss Heart Center, Children’s Nebraska, 8200 Dodge St, Omaha, NE 68114, USA
| |
Collapse
|
4
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
5
|
Zhang H, Wu JC. Deciphering Congenital Heart Disease Using Human Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:239-252. [PMID: 38884715 DOI: 10.1007/978-3-031-44087-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart disease (CHD) is a leading cause of birth defect-related death. Despite significant advances, the mechanisms underlying the development of CHD are complex and remain elusive due to a lack of efficient, reproducible, and translational model systems. Investigations relied on animal models have inherent limitations due to interspecies differences. Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for disease modeling. iPSCs allow for the production of a limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. With the development of physiologic three-dimensional cardiac organoids, iPSCs represent a powerful platform to mechanistically dissect CHD and serve as a foundation for future translational research.
Collapse
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Parker LE, Kurzlechner LM, Landstrom AP. Induced Pluripotent Stem Cell-Based Modeling of Single-Ventricle Congenital Heart Diseases. Curr Cardiol Rep 2023; 25:295-305. [PMID: 36930454 PMCID: PMC10726018 DOI: 10.1007/s11886-023-01852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Congenital heart disease includes a wide variety of structural cardiac defects, the most severe of which are single ventricle defects (SVD). These patients suffer from significant morbidity and mortality; however, our understanding of the developmental etiology of these conditions is limited. Model organisms offer a window into normal and abnormal cardiogenesis yet often fail to recapitulate complex congenital heart defects seen in patients. The use of induced pluripotent stem cells (iPSCs) derived from patients with single-ventricle defects opens the door to studying SVD in patient-derived cardiomyocytes (iPSC-CMs) in a variety of different contexts, including organoids and chamber-specific cardiomyocytes. As the genetic and cellular causes of SVD are not well defined, patient-derived iPSC-CMs hold promise for uncovering mechanisms of disease development and serve as a platform for testing therapies. The purpose of this review is to highlight recent advances in iPSC-based models of SVD. RECENT FINDINGS Recent advances in patient-derived iPSC-CM differentiation, as well as the development of both chamber-specific and non-myocyte cardiac cell types, make it possible to model the complex genetic and molecular architecture involved in SVD development. Moreover, iPSC models have become increasingly complex with the generation of 3D organoids and engineered cardiac tissues which open the door to new mechanistic insight into SVD development. Finally, iPSC-CMs have been used in proof-of-concept studies that the molecular underpinnings of SVD may be targetable for future therapies. While each platform has its advantages and disadvantages, the use of patient-derived iPSC-CMs offers a window into patient-specific cardiogenesis and SVD development. Advancement in stem-cell based modeling of SVD promises to revolutionize our understanding of the developmental etiology of SVD and provides a tool for developing and testing new therapies.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Leonie M Kurzlechner
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke University Medical Center, Box 2652, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Julian K, Garg N, Hibino N, Jain R. Stem Cells and Congenital Heart Disease: The Future Potential Clinical Therapy Beyond Current Treatment. Curr Cardiol Rev 2023; 19:e310522205424. [PMID: 35642109 PMCID: PMC10201894 DOI: 10.2174/1573403x18666220531093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly in newborns. Current treatment for cyanotic CHD largely relies on the surgical intervention; however, significant morbidity and mortality for patients with CHD remain. Recent research to explore new avenues of treating CHD includes the utility of stem cells within the field. Stem cells have since been used to both model and potentially treat CHD. Most clinical applications to date have focused on hypoplastic left heart syndrome. Here, we examine the current role of stem cells in CHD and discuss future applications within the field.
Collapse
Affiliation(s)
| | - Nikita Garg
- Department of Pediatrics, Southern Illinois University, Carbondale, Illinois, USA
| | - Narutoshi Hibino
- Department of Cardiothoracic Surgery, University of Chicago, Hershey, Pennsylvania, USA
| | - Rohit Jain
- Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Yu Z, Liu Z, Ravichandran V, Lami B, Gu M. Endocardium in Hypoplastic Left Heart Syndrome: Implications from In Vitro Study. J Cardiovasc Dev Dis 2022; 9:jcdd9120442. [PMID: 36547439 PMCID: PMC9786329 DOI: 10.3390/jcdd9120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Endocardium lines the inner layer of the heart ventricle and serves as the source of valve endothelial cells and interstitial cells. Previously, endocardium-associated abnormalities in hypoplastic left heart syndrome (HLHS) have been reported, including endocardial fibroelastosis (EFE) and mitral and aortic valve malformation. However, few mechanistic studies have investigated the molecular pathological changes in endocardial cells. Recently, the emergence of a powerful in vitro system-induced pluripotent stem cells (iPSCs)-was applied to study various genetic diseases, including HLHS. This review summarized current in vitro studies in understanding the endocardial pathology in HLHS, emphasizing new findings of the cellular phenotypes and underlying molecular mechanisms. Lastly, a future perspective is provided regarding the better recapitulation of endocardial phenotypes in a dish.
Collapse
Affiliation(s)
- Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vidhya Ravichandran
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bonny Lami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
9
|
Onyak JR, Vergara MN, Renna JM. Retinal organoid light responsivity: current status and future opportunities. Transl Res 2022; 250:98-111. [PMID: 35690342 DOI: 10.1016/j.trsl.2022.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
The ability to generate human retinas in vitro from pluripotent stem cells opened unprecedented opportunities for basic science and for the development of therapeutic approaches for retinal degenerative diseases. Retinal organoid models not only mimic the histoarchitecture and cellular composition of the native retina, but they can achieve a remarkable level of maturation that allows them to respond to light stimulation. However, studies evaluating the nature, magnitude, and properties of light-evoked responsivity from each cell type, in each retinal organoid layer, have been sparse. In this review we discuss the current understanding of retinal organoid function, the technologies used for functional assessment in human retinal organoids, and the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - M Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado.
| | - Jordan M Renna
- Department of Biology, The University of Akron, Akron, Ohio.
| |
Collapse
|
10
|
Wang YJ, Zhang X, Lam CK, Guo H, Wang C, Zhang S, Wu JC, Snyder M, Li J. Systems analysis of de novo mutations in congenital heart diseases identified a protein network in the hypoplastic left heart syndrome. Cell Syst 2022; 13:895-910.e4. [PMID: 36167075 PMCID: PMC9671831 DOI: 10.1016/j.cels.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Despite a strong genetic component, only a few genes have been identified in congenital heart diseases (CHDs). We introduced systems analyses to uncover the hidden organization on biological networks of mutations in CHDs and leveraged network analysis to integrate the protein interactome, patient exomes, and single-cell transcriptomes of the developing heart. We identified a CHD network regulating heart development and observed that a sub-network also regulates fetal brain development, thereby providing mechanistic insights into the clinical comorbidities between CHDs and neurodevelopmental conditions. At a small scale, we experimentally verified uncharacterized cardiac functions of several proteins. At a global scale, our study revealed developmental dynamics of the network and observed its association with the hypoplastic left heart syndrome (HLHS), which was further supported by the dysregulation of the network in HLHS endothelial cells. Overall, our work identified previously uncharacterized CHD factors and provided a generalizable framework applicable to studying many other complex diseases. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yuejun Jessie Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Xicheng Zhang
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Hongchao Guo
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA
| | - Cheng Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Sai Zhang
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Radiology, Stanford University School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA; Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA.
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Hall B, Alonzo M, Texter K, Garg V, Zhao MT. Probing single ventricle heart defects with patient-derived induced pluripotent stem cells and emerging technologies. Birth Defects Res 2022; 114:959-971. [PMID: 35199491 PMCID: PMC9586491 DOI: 10.1002/bdr2.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Single ventricle heart defects (SVHDs) are a severe type of congenital heart disease with poorly understood pathogenic mechanisms. New research using patient-specific induced pluripotent stem cells (iPSCs) as a cellular model is beginning to uncover genetic and cellular etiologies of SVHDs. Hypoplastic left heart syndrome (HLHS) is a type of SVHD that is characterized by an underdeveloped left ventricle and other malformations in the left side of the heart. Hypoplastic right heart syndrome (HRHS), the second type of SVHD, is characterized by an underdeveloped right heart, including malformed tricuspid and pulmonary valves. Despite a noticeable lack of research on SVHD, emerging technologies offer a promising future to further probe the genetic and cellular mechanisms of these diseases. Pediatric cardiovascular research is at the dawn of a new era in terms of what can be discovered with patient-specific iPSCs in conjunction with other technologies (e.g., organoids, single-cell genomics, CRISPR/Cas9 genome editing). In this review, we present recent approaches and findings utilizing patient-specific iPSCs to identify cellular mechanisms responsible for improper cardiac organogenesis in HLHS and HRHS.
Collapse
Affiliation(s)
- Bailey Hall
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
| | - Matthew Alonzo
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
| | - Karen Texter
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| |
Collapse
|
13
|
Grossfeld P. ETS1 and HLHS: Implications for the Role of the Endocardium. J Cardiovasc Dev Dis 2022; 9:jcdd9070219. [PMID: 35877581 PMCID: PMC9319889 DOI: 10.3390/jcdd9070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/16/2022] Open
Abstract
We have identified the ETS1 gene as the cause of congenital heart defects, including an unprecedented high frequency of HLHS, in the chromosomal disorder Jacobsen syndrome. Studies in Ciona intestinalis demonstrated a critical role for ETS1 in heart cell fate determination and cell migration, suggesting that the impairment of one or both processes can underlie the pathogenesis of HLHS. Our studies determined that ETS1 is expressed in the cardiac neural crest and endocardium in the developing murine heart, implicating one or both lineages in the development of HLHS. Studies in Drosophila and Xenopus demonstrated a critical role for ETS1 in regulating cardiac cell fate determination, and results in Xenopus provided further evidence for the role of the endocardium in the evolution of the “hypoplastic” HLHS LV. Paradoxically, these studies suggest that the loss of ETS1 may cause a cell fate switch resulting in the loss of endocardial cells and a relative abundance of cardiac myocytes. These studies implicate an “HLHS transcriptional network” of genes conserved across species that are essential for early heart development. Finally, the evidence suggests that in a subset of HLHS patients, the HLHS LV cardiac myocytes are, intrinsically, developmentally and functionally normal, which has important implications for potential future therapies.
Collapse
Affiliation(s)
- Paul Grossfeld
- Department of Pediatrics, Division of Cardiology, UCSD School of Medicine, San Diego, CA 92093, USA
| |
Collapse
|
14
|
Mousavi A, Stefanek E, Jafari A, Ajji Z, Naghieh S, Akbari M, Savoji H. Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. BIOMATERIALS ADVANCES 2022; 138:212916. [PMID: 35913255 DOI: 10.1016/j.bioadv.2022.212916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Current drug screening approaches are incapable of fully detecting and characterizing drug effectiveness and toxicity of human cardiomyocytes. The pharmaceutical industry uses mathematical models, cell lines, and in vivo models. Many promising drugs are abandoned early in development, and some cardiotoxic drugs reach humans leading to drug recalls. Therefore, there is an unmet need to have more reliable and predictive tools for drug discovery and screening applications. Biofabrication of functional cardiac tissues holds great promise for developing a faithful 3D in vitro disease model, optimizing drug screening efficiencies enabling precision medicine. Different fabrication techniques including molding, pull spinning and 3D bioprinting were used to develop tissue-engineered heart chambers. The big challenge is to effectively organize cells into tissue with structural and physiological features resembling native tissues. Some advancements have been made in engineering miniaturized heart chambers that resemble a living pump for drug screening and disease modeling applications. Here, we review the currently developed tissue-engineered heart chambers and discuss challenges and prospects.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Evan Stefanek
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada; Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
15
|
Okhovatian S, Mohammadi MH, Rafatian N, Radisic M. Engineering Models of the Heart Left Ventricle. ACS Biomater Sci Eng 2022; 8:2144-2160. [PMID: 35523206 DOI: 10.1021/acsbiomaterials.1c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite capturing the imagination of scientists for decades, the goal of creating an artificial heart for transplantation proved to be significantly more challenging than initially anticipated. Toward this goal, recent ground-breaking studies demonstrate the development of functional left ventricular (LV) models. LV models are artificially constructed 3D chambers that are capable of containing liquid within the engineered cavity and exhibit the functionality of native LV including contraction, ejection of fluid, and electrical impulse propagation. Various hydrogels and polymers have been used in manufacturing of LV models, relying on techniques such as electrospinning, bioprinting, casting, and molding. Most studies scaled down the models based on the dimensions of the human or rat ventricle. Initially, neonatal rat cardiomyocytes were the cell type of choice for construction the LV models. Yet, as the stem cell biology field advanced, recent studies focused on the use of cardiomyocytes derived from human induced pluripotent stem cells. In this review, we first describe the physiological characteristics of the human heart, to establish the parameter space for modeling. We then elaborate on current advances in the field and compare recently developed LV models among themselves and with the native human left ventricle. Fabrication methods, cell types, biomaterials, functional properties, and disease modeling capability are some of the major parameters that have distinguished these models. We also highlight some of the current challenges in this field, such as vascularization, cell composition and fidelity, and discuss potential solutions to overcome them.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Mohammad Hossein Mohammadi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
16
|
Tripathi D, Reddy S. iPSC model of congenital heart disease predicts disease outcome. Cell Stem Cell 2022; 29:659-660. [PMID: 35523134 DOI: 10.1016/j.stem.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this issue of Cell Stem Cell, Xu et al. demonstrate that induced pluripotent stem cell-derived cardiomyocytes from patients with hypoplastic left heart syndrome exhibit mitochondrial dysfunction and can be used for disease modeling. In addition, they show the potential to predict future heart failure and develop therapies.
Collapse
Affiliation(s)
- Dipti Tripathi
- Department of Pediatrics (Cardiology) and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology) and Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Xu X, Jin K, Bais AS, Zhu W, Yagi H, Feinstein TN, Nguyen PK, Criscione JD, Liu X, Beutner G, Karunakaran KB, Rao KS, He H, Adams P, Kuo CK, Kostka D, Pryhuber GS, Shiva S, Ganapathiraju MK, Porter GA, Lin JHI, Aronow B, Lo CW. Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell 2022; 29:840-855.e7. [PMID: 35395180 PMCID: PMC9302582 DOI: 10.1016/j.stem.2022.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with 30% mortality from heart failure (HF) in the first year of life, but the cause of early HF remains unknown. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) from patients with HLHS showed that early HF is associated with increased apoptosis, mitochondrial respiration defects, and redox stress from abnormal mitochondrial permeability transition pore (mPTP) opening and failed antioxidant response. In contrast, iPSC-CM from patients without early HF showed normal respiration with elevated antioxidant response. Single-cell transcriptomics confirmed that early HF is associated with mitochondrial dysfunction accompanied with endoplasmic reticulum (ER) stress. These findings indicate that uncompensated oxidative stress underlies early HF in HLHS. Importantly, mitochondrial respiration defects, oxidative stress, and apoptosis were rescued by treatment with sildenafil to inhibit mPTP opening or TUDCA to suppress ER stress. Together these findings point to the potential use of patient iPSC-CM for modeling clinical heart failure and the development of therapeutics.
Collapse
Affiliation(s)
- Xinxiu Xu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Abha S Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenjuan Zhu
- Centre for Cardiovascular Genomics and Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy N Feinstein
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Phong K Nguyen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Joseph D Criscione
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gisela Beutner
- Departments of Pediatrics and Environmental Medicine University of Rochester Medical Center Rochester, NY USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Krithika S Rao
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haoting He
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Phillip Adams
- Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine K Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational & Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gloria S Pryhuber
- Departments of Pediatrics and Environmental Medicine University of Rochester Medical Center Rochester, NY USA
| | - Sruti Shiva
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - George A Porter
- Pediatrics, Pharmacology, and Physiology, Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jiuann-Huey Ivy Lin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45256, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Given a general lack of emphasis on the molecular underpinnings of single ventricle (SV) congenital heart diseases (CHD), our review highlights and summarizes recent advances in uncovering the genetic and molecular mechanisms in SV CHD etiology. RECENT FINDINGS While common SV-associated genetic mutations were found in key cardiac transcription factors, other mutations were sporadic. With advances in genetic sequencing technologies and animal models, more disease-associated factors have been identified to act in critical cardiac signaling pathways such as NOTCH, Wnt, and TGF signaling. Recent studies have also revealed that different cardiac lineages play different roles in disease pathogenesis. SV defects are attributed to complex combinations of genetic mutations, indicating that sophisticated spatiotemporal regulation of gene transcription networks and functional cellular pathways govern disease progression. Future studies will warrant in-depth investigations into better understanding how different genetic factors converge to influence common downstream cellular pathways, resulting in SV abnormalities.
Collapse
|
19
|
Krane M, Dreßen M, Santamaria G, My I, Schneider CM, Dorn T, Laue S, Mastantuono E, Berutti R, Rawat H, Gilsbach R, Schneider P, Lahm H, Schwarz S, Doppler SA, Paige S, Puluca N, Doll S, Neb I, Brade T, Zhang Z, Abou-Ajram C, Northoff B, Holdt LM, Sudhop S, Sahara M, Goedel A, Dendorfer A, Tjong FVY, Rijlaarsdam ME, Cleuziou J, Lang N, Kupatt C, Bezzina C, Lange R, Bowles NE, Mann M, Gelb BD, Crotti L, Hein L, Meitinger T, Wu S, Sinnecker D, Gruber PJ, Laugwitz KL, Moretti A. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation 2021; 144:1409-1428. [PMID: 34694888 PMCID: PMC8542085 DOI: 10.1161/circulationaha.121.056198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Markus Krane
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Gianluca Santamaria
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Ilaria My
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Christine M Schneider
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Tatjana Dorn
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Svenja Laue
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Elisa Mastantuono
- German Heart Center Munich, and Institute of Human Genetics (E.M., R.B., T.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,Helmholtz Zentrum München, Neuherberg, Germany (E.M., R.B., T.M.)
| | - Riccardo Berutti
- German Heart Center Munich, and Institute of Human Genetics (E.M., R.B., T.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,Helmholtz Zentrum München, Neuherberg, Germany (E.M., R.B., T.M.)
| | - Hilansi Rawat
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology (R.G., P.S., L.H.), University of Freiburg, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany (R.G.).,DZHK (German Centre for Cardiovascular Research)-partner site RheinMain, Frankfurt am Main, Germany (R.G.)
| | - Pedro Schneider
- Institute of Experimental and Clinical Pharmacology and Toxicology (R.G., P.S., L.H.), University of Freiburg, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Sascha Schwarz
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Germany (S. Schwarz, S. Sudhop)
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Sharon Paige
- Cardiovascular Institute, Stanford University School of Medicine, CA (S.P., S.W.)
| | - Nazan Puluca
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Sophia Doll
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (S.D., M.M.)
| | - Irina Neb
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Thomas Brade
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Zhong Zhang
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Claudia Abou-Ajram
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Bernd Northoff
- Institute of Laboratory Medicine (B.N., L.M.H.), University Hospital, LMU Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine (B.N., L.M.H.), University Hospital, LMU Munich, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Germany (S. Schwarz, S. Sudhop)
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden (M.S.)
| | - Alexander Goedel
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Andreas Dendorfer
- DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.).,Walter-Brendel-Centre of Experimental Medicine (A.D.), University Hospital, LMU Munich, Germany
| | - Fleur V Y Tjong
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, The Netherlands (F.V.Y.T., C.B.)
| | - Maria E Rijlaarsdam
- Department of Pediatric Cardiology, Leiden University Medical Center, The Netherlands (M.E.R.)
| | - Julie Cleuziou
- Department of Congenital and Paediatric Heart Surgery, Institute Insure (J.C.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Nora Lang
- Department of Paediatric Cardiology and Congenital Heart Defects (N.L.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Christian Kupatt
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Connie Bezzina
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, The Netherlands (F.V.Y.T., C.B.)
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Neil E Bowles
- Department of Pediatrics (Division of Cardiology), University of Utah School of Medicine, Salt Lake City (N.E.B.)
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (S.D., M.M.)
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York (B.D.G.)
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy (L.C.).,Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy (L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology (R.G., P.S., L.H.), University of Freiburg, Germany.,BIOSS, Center for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Thomas Meitinger
- German Heart Center Munich, and Institute of Human Genetics (E.M., R.B., T.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.).,Helmholtz Zentrum München, Neuherberg, Germany (E.M., R.B., T.M.)
| | - Sean Wu
- Cardiovascular Institute, Stanford University School of Medicine, CA (S.P., S.W.)
| | - Daniel Sinnecker
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Peter J Gruber
- Department of Surgery, Yale University, New Haven, CT (P.J.G.)
| | - Karl-Ludwig Laugwitz
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Alessandra Moretti
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| |
Collapse
|
20
|
From Stem Cells to Populations-Using hiPSC, Next-Generation Sequencing, and GWAS to Explore the Genetic and Molecular Mechanisms of Congenital Heart Defects. Genes (Basel) 2021; 12:genes12060921. [PMID: 34208537 PMCID: PMC8235101 DOI: 10.3390/genes12060921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/16/2023] Open
Abstract
Congenital heart defects (CHD) are developmental malformations affecting the heart and the great vessels. Early heart development requires temporally regulated crosstalk between multiple cell types, signaling pathways, and mechanical forces of early blood flow. While both genetic and environmental factors have been recognized to be involved, identifying causal genes in non-syndromic CHD has been difficult. While variants following Mendelian inheritance have been identified by linkage analysis in a few families with multiple affected members, the inheritance pattern in most familial cases is complex, with reduced penetrance and variable expressivity. Furthermore, most non-syndromic CHD are sporadic. Improved sequencing technologies and large biobank collections have enabled genome-wide association studies (GWAS) in non-syndromic CHD. The ability to generate human to create human induced pluripotent stem cells (hiPSC) and further differentiate them to organotypic cells enables further exploration of genotype–phenotype correlations in patient-derived cells. Here we review how these technologies can be used in unraveling the genetics and molecular mechanisms of heart development.
Collapse
|
21
|
Liu X, Shang H, Li B, Zhao L, Hua Y, Wu K, Hu M, Fan T. Exploration and validation of hub genes and pathways in the progression of hypoplastic left heart syndrome via weighted gene co-expression network analysis. BMC Cardiovasc Disord 2021; 21:300. [PMID: 34130651 PMCID: PMC8204459 DOI: 10.1186/s12872-021-02108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background Despite significant progress in surgical treatment of hypoplastic left heart syndrome (HLHS), its mortality and morbidity are still high. Little is known about the molecular abnormalities of the syndrome. In this study, we aimed to probe into hub genes and key pathways in the progression of the syndrome. Methods Differentially expressed genes (DEGs) were identified in left ventricle (LV) or right ventricle (RV) tissues between HLHS and controls using the GSE77798 dataset. Then, weighted gene co-expression network analysis (WGCNA) was performed and key modules were constructed for HLHS. Based on the genes in the key modules, protein–protein interaction networks were conducted, and hub genes and key pathways were screened. Finally, the GSE23959 dataset was used to validate hub genes between HLHS and controls. Results We identified 88 and 41 DEGs in LV and RV tissues between HLHS and controls, respectively. DEGs in LV tissues of HLHS were distinctly involved in heart development, apoptotic signaling pathway and ECM receptor interaction. DEGs in RV tissues of HLHS were mainly enriched in BMP signaling pathway, regulation of cell development and regulation of blood pressure. A total of 16 co-expression network were constructed. Among them, black module (r = 0.79 and p value = 2e−04) and pink module (r = 0.84 and p value = 4e−05) had the most significant correlation with HLHS, indicating that the two modules could be the most relevant for HLHS progression. We identified five hub genes in the black module (including Fbn1, Itga8, Itga11, Itgb5 and Thbs2), and five hub genes (including Cblb, Ccl2, Edn1, Itgb3 and Map2k1) in the pink module for HLHS. Their abnormal expression was verified in the GSE23959 dataset. Conclusions Our findings revealed hub genes and key pathways for HLHS through WGCNA, which could play key roles in the molecular mechanism of HLHS.
Collapse
Affiliation(s)
- Xuelan Liu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Honglei Shang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bin Li
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Liyun Zhao
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Ying Hua
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Kaiyuan Wu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Manman Hu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Taibing Fan
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
22
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
23
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
24
|
Ma L, Zhou N, Zou R, Shi W, Luo Y, Du N, Zhong J, Zhao X, Chen X, Xia H, Wu Y. Single-Cell RNA Sequencing and Quantitative Proteomics Analysis Elucidate Marker Genes and Molecular Mechanisms in Hypoplastic Left Heart Patients With Heart Failure. Front Cell Dev Biol 2021; 9:617853. [PMID: 33718359 PMCID: PMC7946977 DOI: 10.3389/fcell.2021.617853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To probe markers and molecular mechanisms of the hypoplastic left heart (HLH) by single-cell RNA sequencing (scRNA-seq) and quantitative proteomics analysis. Methods Following data preprocessing, scRNA-seq data of pluripotent stem cell (iPSC)-derived cardiomyocytes from one HLH patient and one control were analyzed by the Seurat package in R. Cell clusters were characterized, which was followed by a pseudotime analysis. Markers in the pseudotime analysis were utilized for functional enrichment analysis. Quantitative proteomics analysis was based on peripheral blood samples from HLH patients without heart failure (HLH-NHF), HLH patients with heart failure (HLH-HF), and healthy controls. Hub genes were identified by the intersection of pseudotime markers and differentially expressed proteins (DE-proteins), which were validated in the GSE77798 dataset, RT-qPCR, and western blot. Results Cardiomyocytes derived from iPSCs were clustered into mesenchymal stem cells, myocardium, and fibroblast cells. Pseudotime analysis revealed their differentiation trajectory. Markers in the three pseudotime clusters were significantly associated with distinct biological processes and pathways. Finally, three hub genes (MMP2, B2M, and COL5A1) were identified, which were highly expressed in the left (LV) and right (RV) ventricles of HLH patients compared with controls. Furthermore, higher expression levels were detected in HLH patients with or without HF than in controls. Conclusion Our findings elucidate marker genes and molecular mechanisms of HLH, deepening the understanding of the pathogenesis of HLH.
Collapse
Affiliation(s)
- Li Ma
- The First Affiliated Hospital of Jinan University, Guangzhou, China.,Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rongjun Zou
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanting Shi
- Department of Paediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Luo
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Du
- Department of Surgical Nursing, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Zhong
- Department of Surgical Nursing, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Zhao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinxin Chen
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- The First Affiliated Hospital of Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Haller C, Friedberg MK, Laflamme MA. The role of regenerative therapy in the treatment of right ventricular failure: a literature review. Stem Cell Res Ther 2020; 11:502. [PMID: 33239066 PMCID: PMC7687832 DOI: 10.1186/s13287-020-02022-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
Right ventricular (RV) failure is a commonly encountered problem in patients with congenital heart disease but can also be a consequence of left ventricular disease, primary pulmonary hypertension, or RV-specific cardiomyopathies. Improved survival of the aforementioned pathologies has led to increasing numbers of patients suffering from RV dysfunction, making it a key contributor to morbidity and mortality in this population. Currently available therapies for heart failure were developed for the left ventricle (LV), and there is clear evidence that LV-specific strategies are insufficient or inadequate for the RV. New therapeutic strategies are needed to address this growing clinical problem, and stem cells show significant promise. However, to properly evaluate the prospects of a potential stem cell-based therapy for RV failure, one needs to understand the unique pathophysiology of RV dysfunction and carefully consider available data from animal models and human clinical trials. In this review, we provide a comprehensive overview of the molecular mechanisms involved in RV failure such as hypertrophy, fibrosis, inflammation, changes in energy metabolism, calcium handling, decreasing RV contractility, and apoptosis. We also summarize the available preclinical and clinical experience with RV-specific stem cell therapies, covering the broad spectrum of stem cell sources used to date. We describe two different scientific rationales for stem cell transplantation, one of which seeks to add contractile units to the failing myocardium, while the other aims to augment endogenous repair mechanisms and/or attenuate harmful remodeling. We emphasize the limitations and challenges of regenerative strategies, but also highlight the characteristics of the failing RV myocardium that make it a promising target for stem cell therapy.
Collapse
Affiliation(s)
- Christoph Haller
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Mark K Friedberg
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,McEwen Stem Cell Institute, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
26
|
Lam YY, Keung W, Chan CH, Geng L, Wong N, Brenière-Letuffe D, Li RA, Cheung YF. Single-Cell Transcriptomics of Engineered Cardiac Tissues From Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Abnormal Developmental Trajectory and Intrinsic Contractile Defects in Hypoplastic Right Heart Syndrome. J Am Heart Assoc 2020; 9:e016528. [PMID: 33059525 PMCID: PMC7763394 DOI: 10.1161/jaha.120.016528] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background To understand the intrinsic cardiac developmental and functional abnormalities in pulmonary atresia with intact ventricular septum (PAIVS) free from effects secondary to anatomic defects, we performed and compared single‐cell transcriptomic and phenotypic analyses of patient‐ and healthy subject–derived human‐induced pluripotent stem cell–derived cardiomyocytes (hiPSC‐CMs) and engineered tissue models. Methods and Results We derived hiPSC lines from 3 patients with PAIVS and 3 healthy subjects and differentiated them into hiPSC‐CMs, which were then bioengineered into the human cardiac anisotropic sheet and human cardiac tissue strip custom‐designed for electrophysiological and contractile assessments, respectively. Single‐cell RNA sequencing (scRNA‐seq) of hiPSC‐CMs, human cardiac anisotropic sheet, and human cardiac tissue strip was performed to examine the transcriptomic basis for any phenotypic abnormalities using pseudotime and differential expression analyses. Through pseudotime analysis, we demonstrated that bioengineered tissue constructs provide pro‐maturational cues to hiPSC‐CMs, although the maturation and development were attenuated in PAIVS hiPSC‐CMs. Furthermore, reduced contractility and prolonged contractile kinetics were observed with PAIVS human cardiac tissue strips. Consistently, single‐cell RNA sequencing of PAIVS human cardiac tissue strips and hiPSC‐CMs exhibited diminished expression of cardiac contractile apparatus genes. By contrast, electrophysiological aberrancies were absent in PAIVS human cardiac anisotropic sheets. Conclusions Our findings were the first to reveal intrinsic abnormalities of cardiomyocyte development and function in PAIVS free from secondary effects. We conclude that hiPSC‐derived engineered tissues offer a unique method for studying primary cardiac abnormalities and uncovering pathogenic mechanisms that underlie sporadic congenital heart diseases.
Collapse
Affiliation(s)
- Yin-Yu Lam
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre HKU - KI Collaboration in Regenerative Medicine The University of Hong Kong Hong Kong SAR.,Ming-Wai Lau Centre for Reparative Medicine Karolinska Insititutet Hong Kong
| | - Chun-Ho Chan
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR
| | - Lin Geng
- Dr. Li Dak-Sum Research Centre HKU - KI Collaboration in Regenerative Medicine The University of Hong Kong Hong Kong SAR
| | - Nicodemus Wong
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR
| | | | - Ronald A Li
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR.,Dr. Li Dak-Sum Research Centre HKU - KI Collaboration in Regenerative Medicine The University of Hong Kong Hong Kong SAR.,Ming-Wai Lau Centre for Reparative Medicine Karolinska Insititutet Hong Kong
| | - Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR.,Dr. Li Dak-Sum Research Centre HKU - KI Collaboration in Regenerative Medicine The University of Hong Kong Hong Kong SAR.,Ming-Wai Lau Centre for Reparative Medicine Karolinska Insititutet Hong Kong
| |
Collapse
|
27
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
28
|
Abstract
The combination of pediatric cardiology being both a perceptual and a cognitive subspecialty demands a complex decision-making model which makes artificial intelligence a particularly attractive technology with great potential. The prototypical artificial intelligence system would autonomously impute patient data into a collaborative database that stores, syncs, interprets and ultimately classifies the patient's profile to specific disease phenotypes to compare against a large aggregate of shared peer health data and outcomes, the current medical body of literature and ongoing trials to offer morbidity and mortality prediction, drug therapy options targeted to each patient's genetic profile, tailored surgical plans and recommendations for timing of sequential imaging. The focus of this review paper is to offer a primer on artificial intelligence and paediatric cardiology by briefly discussing the history of artificial intelligence in medicine, modern and future applications in adult and paediatric cardiology across selected concentrations, and current barriers to implementation of these technologies.
Collapse
|
29
|
Modeling Congenital Heart Disease Using Pluripotent Stem Cells. Curr Cardiol Rep 2020; 22:55. [PMID: 32562063 DOI: 10.1007/s11886-020-01316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require immediate surgery upon birth. Significant efforts are underway to better understand how CHD manifests through basic science approaches. Recently, human-induced pluripotent stem cells (hiPSCs) have emerged as a means by which to interrogate CHD phenotypes mechanistically. PURPOSE OF REVIEW: To review recent studies and results utilizing hiPSCs and their cardiovascular derivative cell types to better understand the mechanisms for various forms of CHD. RECENT FINDINGS: Recent studies demonstrate that hiPSC-derived cardiomyocytes can replicate the genetic and epigenetic abnormalities that ultimately lay the cellular foundation for CHD phenotypes. Such irregularities manifest in vitro through defects in hiPSC differentiation, signaling, and transcriptional activity. Use of hiPSC-derived cells to understand CHD may ultimately lead to the development of preemptive screening approaches to identify CHD early in utero and innovative therapies to alleviate symptoms after birth.
Collapse
|
30
|
Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020; 11:384. [PMID: 32390874 PMCID: PMC7188911 DOI: 10.3389/fphys.2020.00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Non-genetic cardiac pathologies develop as an aftermath of extracellular stress-conditions. Nevertheless, the response to pathological stimuli depends deeply on intracellular factors such as physiological state and complex genetic backgrounds. Without a thorough characterization of their in vitro phenotype, modeling of maladaptive hypertrophy, ischemia and reperfusion injury or diabetes in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has been more challenging than hereditary diseases with defined molecular causes. In past years, greater insights into hPSC-CM in vitro physiology and advancements in technological solutions and culture protocols have generated cell types displaying stress-responsive phenotypes reminiscent of in vivo pathological events, unlocking their application as a reductionist model of human cardiomyocytes, if not the adult human myocardium. Here, we provide an overview of the available literature of pathology models for cardiac non-genetic conditions employing healthy (or asymptomatic) hPSC-CMs. In terms of numbers of published articles, these models are significantly lagging behind monogenic diseases, which misrepresents the incidence of heart disease causes in the human population.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Michael Magnussen
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.,Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Industrial Engineering, University of Padova, Padua, Italy
| |
Collapse
|
31
|
Garcia AM, Beatty JT, Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol Heart Circ Physiol 2020; 318:H947-H965. [PMID: 32108525 PMCID: PMC7191494 DOI: 10.1152/ajpheart.00518.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Because of remarkable surgical and medical advances over the past several decades, there are growing numbers of infants and children living with single ventricle congenital heart disease (SV), where there is only one functional cardiac pumping chamber. Nevertheless, cardiac dysfunction (and ultimately heart failure) is a common complication in the SV population, and pharmacological heart failure therapies have largely been ineffective in mitigating the need for heart transplantation. Given that there are several inherent risk factors for ventricular dysfunction in the setting of SV in addition to probable differences in molecular adaptations to heart failure between children and adults, it is perhaps not surprising that extrapolated adult heart failure medications have had limited benefit in children with SV heart failure. Further investigations into the molecular mechanisms involved in pediatric SV heart failure may assist with risk stratification as well as development of targeted, efficacious therapies specific to this patient population. In this review, we present a brief overview of SV anatomy and physiology, with a focus on patients with a single morphological right ventricle requiring staged surgical palliation. Additionally, we discuss outcomes in the current era, risk factors associated with the progression to heart failure, present state of knowledge regarding molecular alterations in end-stage SV heart failure, and current therapeutic interventions. Potential avenues for improving SV outcomes, including identification of biomarkers of heart failure progression, implications of personalized medicine and stem cell-derived therapies, and applications of novel models of SV disease, are proposed as future directions.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
32
|
Saraf A, Book WM, Nelson TJ, Xu C. Hypoplastic left heart syndrome: From bedside to bench and back. J Mol Cell Cardiol 2019; 135:109-118. [PMID: 31419439 PMCID: PMC10831616 DOI: 10.1016/j.yjmcc.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 02/09/2023]
Abstract
Hypoplastic Left Heart Syndrome (HLHS) is a complex Congenital Heart Disease (CHD) that was almost universally fatal until the advent of the Norwood operation in 1981. Children with HLHS who largely succumbed to the disease within the first year of life, are now surviving to adulthood. However, this survival is associated with multiple comorbidities and HLHS infants have a higher mortality rate as compared to other non-HLHS single ventricle patients. In this review we (a) discuss current clinical challenges associated in the care of HLHS patients, (b) explore the use of systems biology in understanding the molecular framework of this disease, (c) evaluate induced pluripotent stem cells as a translational model to understand molecular mechanisms and manipulate them to improve outcomes, and (d) investigate cell therapy, gene therapy, and tissue engineering as a potential tool to regenerate hypoplastic cardiac structures and improve outcomes.
Collapse
Affiliation(s)
- Anita Saraf
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wendy M Book
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Timothy J Nelson
- Division of General Internal Medicine, Center for Regenerative Medicine, Pediatric Cardiothoracic Surgery, Division of Cardiovascular Diseases, Transplant Center, Division of Biomedical Statistics and Informatics, Division of Pediatric Cardiology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
34
|
Mellough CB, Collin J, Queen R, Hilgen G, Dorgau B, Zerti D, Felemban M, White K, Sernagor E, Lako M. Systematic Comparison of Retinal Organoid Differentiation from Human Pluripotent Stem Cells Reveals Stage Specific, Cell Line, and Methodological Differences. Stem Cells Transl Med 2019; 8:694-706. [PMID: 30916455 PMCID: PMC6591558 DOI: 10.1002/sctm.18-0267] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
A major goal in the stem cell field is to generate tissues that can be utilized as a universal tool for in vitro models of development and disease, drug development, or as a resource for patients suffering from disease or injury. Great efforts are being made to differentiate human pluripotent stem cells in vitro toward retinal tissue, which is akin to native human retina in its cytoarchitecture and function, yet the numerous existing retinal induction protocols remain variable in their efficiency and do not routinely produce morphologically or functionally mature photoreceptors. Herein, we determine the impact that the method of embryoid body (EB) formation and maintenance as well as cell line background has on retinal organoid differentiation from human embryonic stem cells and human induced pluripotent stem cells. Our data indicate that cell line-specific differences dominate the variables that underline the differentiation efficiency in the early stages of differentiation. In contrast, the EB generation method and maintenance conditions determine the later differentiation and maturation of retinal organoids. Of the latter, the mechanical method of EB generation under static conditions, accompanied by media supplementation with Y27632 for the first 48 hours of differentiation, results in the most consistent formation of laminated retinal neuroepithelium containing mature and electrophysiologically responsive photoreceptors. Collectively, our data provide substantive evidence for stage-specific differences in the ability to give rise to laminated retinae, which is determined by cell line-specific differences in the early stages of differentiation and EB generation/organoid maintenance methods at later stages.
Collapse
Affiliation(s)
- Carla B. Mellough
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
- Centre for Ophthalmology and Visual ScienceLions Eye Institute, University of Western AustraliaPerthWestern AustraliaAustralia
| | - Joseph Collin
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Rachel Queen
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Gerrit Hilgen
- Institute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Birthe Dorgau
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Darin Zerti
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Majed Felemban
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Kathryn White
- EM Research ServicesNewcastle UniversityNewcastleUnited Kingdom
| | - Evelyne Sernagor
- Institute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Majlinda Lako
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
35
|
|
36
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
37
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
38
|
Hoes MF, Bomer N, van der Meer P. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Transl Med 2018; 8:66-74. [PMID: 30302938 PMCID: PMC6312446 DOI: 10.1002/sctm.18-0052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Until recently, in vivo and ex vivo experiments were the only means to determine factors and pathways involved in disease pathophysiology. After the generation of characterized human embryonic stem cell lines, human diseases could readily be studied in an extensively controllable setting. The introduction of human‐induced pluripotent stem cells, a decade ago, allowed the investigation of hereditary diseases in vitro. In the field of cardiology, diseases linked to known genes have successfully been studied, revealing novel disease mechanisms. The direct effects of various mutations leading to hypertrophic cardiomyopathy, dilated cardiomyopathy, arrythmogenic cardiomyopathy, or left ventricular noncompaction cardiomyopathy are discovered as a result of in vitro disease modeling. Researchers are currently applying more advanced techniques to unravel more complex phenotypes, resulting in state‐of‐the‐art models that better mimic in vivo physiology. The continued improvement of tissue engineering techniques and new insights into epigenetics resulted in more reliable and feasible platforms for disease modeling and the development of novel therapeutic strategies. The introduction of CRISPR‐Cas9 gene editing granted the ability to model diseases in vitro independent of induced pluripotent stem cells. In addition to highlighting recent developments in the field of human in vitro cardiomyopathy modeling, this review also aims to emphasize limitations that remain to be addressed; including residual somatic epigenetic signatures induced pluripotent stem cells, and modeling diseases with unknown genetic causes. Stem Cells Translational Medicine2019;8:66–74
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| |
Collapse
|
39
|
George RM, Firulli AB. Hand Factors in Cardiac Development. Anat Rec (Hoboken) 2018; 302:101-107. [PMID: 30288953 DOI: 10.1002/ar.23910] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022]
Abstract
Congenital heart defects account for 1% of infant mortality and 10% of in utero deaths. As the vertebrate embryo develops, multiple tissue types develop in tandem to morphologically pattern the functional heart. Underlying cardiac development is a network of transcription factors known to tightly control these morphological events. Members of the Twist family of basic helix-loop-helix transcription factors, Hand1 and Hand2, are essential to this process. The expression patterns and functional role of Hand factors in neural crest cells, endocardium, myocardium, and epicardium is indicative of their importance during cardiogenesis; however, to date, an extensive understanding of the transcriptional targets of Hand proteins and their overall mechanism of action remain unclear. In this review, we summarize the recent findings that further outline the crucial functions of Hand factors during heart development and in post-natal heart function. Anat Rec, 302:101-107, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
40
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
41
|
Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 2017; 26:3031-3045. [PMID: 28521042 PMCID: PMC5886295 DOI: 10.1093/hmg/ddx140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.
Collapse
Affiliation(s)
- Chunbo Yang
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - David Lee
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Sameer Alharti
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Nicola Hellen
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Noor Ahmad Shaik
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Hussein Sheikh Ali Mohamoud
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | | | - Gennadiy Tenin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Osman O Al-Radi
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Jameel Atta
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Sian E. Harding
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
42
|
Kriegel AJ, Gartz M, Afzal MZ, de Lange WJ, Ralphe JC, Strande JL. Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes. J Cardiovasc Transl Res 2016; 10:295-304. [PMID: 28032312 DOI: 10.1007/s12265-016-9723-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023]
Abstract
Heart failure with preserved left ventricular ejection fraction (HFpEF) has emerged as one of the largest unmet needs in cardiovascular medicine. HFpEF is increasing in prevalence and causes significant morbidity, mortality, and health care resource utilization. Patients have multiple co-morbidities which contribute to the disease complexity. To date, no effective treatment for HFpEF has been identified. The paucity of cardiac biopsies from this patient population and the absence of well-accepted animal models limit our understanding of the underlying molecular mechanisms of HFpEF. In this review, we discuss combining state-of-the-art technologies of microRNA profiling and human induced pluripotent cell-derived cardiomyocytes (iPSC-CMs) in order to uncover novel molecular pathways that may contribute to the development of HFpEF. Here, we focus the advantages and limitations of microRNA profiling and iPSC-CMs as a disease model system to discover molecular mechanisms in HFpEF.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
43
|
Jiang Y, Wang D, Zhang G, Wang G, Tong J, Chen T. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. ENVIRONMENTAL TOXICOLOGY 2016; 31:1372-1380. [PMID: 25847060 DOI: 10.1002/tox.22142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species-specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro-34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up-regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc-7/cTnT gene in cardiac cells; and (3) significant interference with Ca2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species-specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1372-1380, 2016.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China
| | - Dan Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoxing Zhang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Tao Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
44
|
Zhu L, Gomez-Duran A, Saretzki G, Jin S, Tilgner K, Melguizo-Sanchis D, Anyfantis G, Al-Aama J, Vallier L, Chinnery P, Lako M, Armstrong L. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol 2016; 215:187-202. [PMID: 27810911 PMCID: PMC5084643 DOI: 10.1083/jcb.201601061] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs, we identified a mitochondrial protein, CHCHD2, whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria, resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
Collapse
Affiliation(s)
- Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Gabriele Saretzki
- Institute for Ageing and Health, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Shibo Jin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Katarzyna Tilgner
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | | | - Georgios Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | - Patrick Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| |
Collapse
|
45
|
Youssef AA, Ross EG, Bolli R, Pepine CJ, Leeper NJ, Yang PC. The Promise and Challenge of Induced Pluripotent Stem Cells for Cardiovascular Applications. JACC Basic Transl Sci 2016; 1:510-523. [PMID: 28580434 PMCID: PMC5451899 DOI: 10.1016/j.jacbts.2016.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent discovery of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of stem cells. iPSCs have demonstrated that biological development is not an irreversible process and that mature adult somatic cells can be induced to become pluripotent. This breakthrough is projected to advance our current understanding of many disease processes and revolutionize the approach to effective therapeutics. Despite the great promise of iPSCs, many translational challenges still remain. In this article, we review the basic concept of induction of pluripotency as a novel approach to understand cardiac regeneration, cardiovascular disease modeling and drug discovery. We critically reflect on the current results of preclinical and clinical studies using iPSCs for these applications with appropriate emphasis on the challenges facing clinical translation.
Collapse
Affiliation(s)
- Amr A Youssef
- Division of Cardiology, Ain Shams University, Cairo, Egypt and Aurora Bay Area Medical Center, Marinette, Wisconsin, USA
| | - Elsie Gyang Ross
- Division of Cardiovascular Medicine and Vascular Surgery, Stanford University, California, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicholas J Leeper
- Division of Cardiovascular Medicine and Vascular Surgery, Stanford University, California, USA
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Stanford University, California, USA
| |
Collapse
|
46
|
Jiang G, Herron TJ, Di Bernardo J, Walker KA, O'Shea KS, Kunisaki SM. Human Cardiomyocytes Prior to Birth by Integration-Free Reprogramming of Amniotic Fluid Cells. Stem Cells Transl Med 2016; 5:1595-1606. [PMID: 27465073 DOI: 10.5966/sctm.2016-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/13/2016] [Indexed: 01/26/2023] Open
Abstract
: The establishment of an abundant source of autologous cardiac progenitor cells would represent a major advance toward eventual clinical translation of regenerative medicine strategies in children with prenatally diagnosed congenital heart disease. In support of this concept, we sought to examine whether functional, transgene-free human cardiomyocytes (CMs) with potential for patient-specific and autologous applications could be reliably generated following routine amniocentesis. Under institutional review board approval, amniotic fluid specimens (8-10 ml) at 20 weeks gestation were expanded and reprogrammed toward pluripotency using nonintegrating Sendai virus (SeV) expressing OCT4, SOX2, cMYC, and KLF4. Following exposure of these induced pluripotent stem cells to cardiogenic differentiation conditions, spontaneously beating amniotic fluid-derived cardiomyocytes (AF-CMs) were successfully generated with high efficiency. After 6 weeks, quantitative gene expression revealed a mixed population of differentiated atrial, ventricular, and nodal AF-CMs, as demonstrated by upregulation of multiple cardiac markers, including MYH6, MYL7, TNNT2, TTN, and HCN4, which were comparable to levels expressed by neonatal dermal fibroblast-derived CM controls. AF-CMs had a normal karyotype and demonstrated loss of NANOG, OCT4, and the SeV transgene. Functional characterization of SIRPA+ AF-CMs showed a higher spontaneous beat frequency in comparison with dermal fibroblast controls but revealed normal calcium transients and appropriate chronotropic responses after β-adrenergic agonist stimulation. Taken together, these data suggest that somatic cells present within human amniotic fluid can be used to generate a highly scalable source of functional, transgene-free, autologous CMs before a child is born. This approach may be ideally suited for patients with prenatally diagnosed cardiac anomalies. SIGNIFICANCE This study presents transgene-free human amniotic fluid-derived cardiomyocytes (AF-CMs) for potential therapy in tissue engineering and regenerative medicine applications. Using 8-10 ml of amniotic fluid harvested at 20 weeks gestation from normal pregnancies, a mixed population of atrial, ventricular, and nodal AF-CMs were reliably generated after Sendai virus reprogramming toward pluripotency. Functional characterization of purified populations of beating AF-CMs revealed normal calcium transients and appropriate chronotropic responses after β-adrenergic agonist stimulation in comparison with dermal fibroblast controls. Because AF-CMs can be generated in fewer than 16 weeks, this approach may be ideally suited for eventual clinical translation at birth in children with prenatally diagnosed cardiac anomalies.
Collapse
Affiliation(s)
- Guihua Jiang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Pluripotent Stem Cell Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Todd J Herron
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Julie Di Bernardo
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kendal A Walker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Pluripotent Stem Cell Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K Sue O'Shea
- Pluripotent Stem Cell Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shaun M Kunisaki
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Pluripotent Stem Cell Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
- C.S. Mott Children's Hospital and Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
Bellin M, Mummery CL. Inherited heart disease - what can we expect from the second decade of human iPS cell research? FEBS Lett 2016; 590:2482-93. [PMID: 27391414 PMCID: PMC5113704 DOI: 10.1002/1873-3468.12285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cells (iPSCs) were first generated 10 years ago. Their ability to differentiate into any somatic cell type of the body including cardiomyocytes has already made them a valuable resource for modelling cardiac disease and drug screening. Initially human iPSCs were used mostly to model known disease phenotypes; more recently, and despite a number of recognised shortcomings, they have proven valuable in providing fundamental insights into the mechanisms of inherited heart disease with unknown genetic cause using surprisingly small cohorts. In this review, we summarise the progress made with human iPSCs as cardiac disease models with special focus on the latest mechanistic insights and related challenges. Furthermore, we suggest emerging solutions that will likely move the field forward.
Collapse
Affiliation(s)
- Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands.,Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| |
Collapse
|
48
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev Rep 2016; 11:710-27. [PMID: 26085192 DOI: 10.1007/s12015-015-9596-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Congenital heart disease (CHD) remains a significant health problem, with a growing population of survivors with chronic disease. Despite intense efforts to understand the genetic basis of CHD in humans, the etiology of most CHD is unknown. Furthermore, new models of CHD are required to better understand the development of CHD and to explore novel therapies for this patient population. In this review, we highlight the role that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes can serve to enhance our understanding of the development, pathophysiology and potential therapeutic targets for CHD. We highlight the use of hiPSC-derived cardiomyocytes to model gene regulatory interactions, cell-cell interactions and tissue interactions contributing to CHD. We further emphasize the importance of using hiPSC-derived cardiomyocytes as personalized research models. The use of hiPSCs presents an unprecedented opportunity to generate disease-specific cellular models, investigate the underlying molecular mechanisms of disease and uncover new therapeutic targets for CHD.
Collapse
|
50
|
Genetics of Hypoplastic Left Heart Syndrome. J Pediatr 2016; 173:25-31. [PMID: 26996724 DOI: 10.1016/j.jpeds.2016.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
|