1
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
2
|
Li S, Zhang X, Yao Y, Zhu Y, Zheng X, Liu F, Feng W. Inducible miR-150 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Genome and Suppressor of Cytokine Signaling 1. Viruses 2022; 14:1485. [PMID: 35891465 PMCID: PMC9318191 DOI: 10.3390/v14071485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Hosts exploit various approaches to defend against porcine reproductive and respiratory syndrome virus (PRRSV) infection. microRNAs (miRNAs) have emerged as key negative post-transcriptional regulators of gene expression and have been reported to play important roles in regulating virus infection. Here, we identified that miR-150 was differentially expressed in virus permissive and non-permissive cells. Subsequently, we demonstrated that PRRSV induced the expression of miR-150 via activating the protein kinase C (PKC)/c-Jun amino-terminal kinases (JNK)/c-Jun pathway, and overexpression of miR-150 suppressed PRRSV replication. Further analysis revealed that miR-150 not only directly targeted the PRRSV genome, but also facilitated type I IFN signaling. RNA immunoprecipitation assay demonstrated that miR-150 targeted the suppressor of cytokine signaling 1 (SOCS1), which is a negative regulator of Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway. The inverse correlation between miR-150 and SOCS1 expression implies that miR-150 plays a role in regulating ISG expression. In conclusion, miR-150 expression is upregulated upon PRRSV infection. miR-150 feedback positively targets the PRRSV genome and promotes type I IFN signaling, which can be seen as a host defensive strategy.
Collapse
Affiliation(s)
- Sihan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingqi Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
4
|
Othumpangat S, Beezhold DH, Umbright CM, Noti JD. Influenza Virus-Induced Novel miRNAs Regulate the STAT Pathway. Viruses 2021; 13:v13060967. [PMID: 34071096 PMCID: PMC8224765 DOI: 10.3390/v13060967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of gene expression in humans and can control pathogenesis and host–virus interactions. Notably, the role of specific host miRNAs during influenza virus infections are still ill-defined. The central goal of this study was to identify novel miRNAs and their target genes in response to influenza virus infections in airway epithelium. Human airway epithelial cells exposed to influenza A virus (IAV) induced several novel miRNAs that were identified using next-generation sequencing (NGS) and their target genes by biochemical methods. NGS analysis predicted forty-two RNA sequences as possible miRNAs based on computational algorithms. The expression patterns of these putative miRNAs were further confirmed using RT-PCR in human bronchial epithelial cells exposed to H1N1, H9N1(1P10), and H9N1 (1WF10) strains of influenza virus. A time-course study showed significant downregulation of put-miR-34 in H1N1 and put-miR-35 in H9N1(1P10)-infected cells, which is consistent with the NGS data. Additionally, put-miR-34 and put-miR-35 showed a high fold enrichment in an argonaute-immunoprecipitation assay compared to the controls, indicating their ability to form a complex with argonaute protein and RNA-induced silencing complex (RISC), which is a typical mode of action found with miRNAs. Our earlier studies have shown that the replication and survival of influenza virus is modulated by certain transcription factors such as NF-ĸB. To identify the target(s) of these putative miRNAs, we screened 84 transcription factors that have a role in viral pathogenesis. Cells transfected with mimic of the put-miR-34 showed a significant decrease in the expression of Signal Transducers and Activators of Transcription 3 (STAT3), whereas the inhibitor of put-miR-34 showed a significant increase in STAT3 expression and its phosphorylation. In addition, put-miR-34 had 76% homology to the untranslated region of STAT3. NGS and PCR array data submitted to the Gene Ontology project also predicted the role of transcription factors modulated by put-miR-34. Our data suggest that put-miR-34 may be a good target for antiviral therapy.
Collapse
Affiliation(s)
- Sreekumar Othumpangat
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (D.H.B.); (J.D.N.)
- Correspondence: ; Tel.: +1-304-2855839
| | - Donald H. Beezhold
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (D.H.B.); (J.D.N.)
| | - Christina M. Umbright
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA;
| | - John D. Noti
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (D.H.B.); (J.D.N.)
| |
Collapse
|
5
|
miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int J Mol Sci 2021; 22:ijms22063080. [PMID: 33802936 PMCID: PMC8002598 DOI: 10.3390/ijms22063080] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3′ untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.
Collapse
|
6
|
Role of microRNA and Oxidative Stress in Influenza A Virus Pathogenesis. Int J Mol Sci 2020; 21:ijms21238962. [PMID: 33255826 PMCID: PMC7728370 DOI: 10.3390/ijms21238962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate diverse cellular pathways by controlling gene expression. Increasing evidence has revealed their critical involvement in influenza A virus (IAV) pathogenesis. Host–IAV interactions induce different levels of oxidative stress (OS) by disrupting the balance between reactive oxygen species (ROS) and antioxidant factors. It is thought that miRNA may regulate the expression of ROS; conversely, ROS can induce or suppress miRNA expression during IAV infection. Thus, miRNA and OS are the two key factors of IAV infection and pathogenesis. Accordingly, interactions between OS and miRNA during IAV infection might be a critical area for further research. In this review, we discuss the crosstalk between miRNAs and OS during IAV infection. Additionally, we highlight the potential of miRNAs as diagnostic markers and therapeutic targets for IAV infections. This knowledge will help us to study host–virus interactions with novel intervention strategies.
Collapse
|
7
|
Bamunuarachchi G, Yang X, Huang C, Liang Y, Guo Y, Liu L. MicroRNA-206 inhibits influenza A virus replication by targeting tankyrase 2. Cell Microbiol 2020; 23:e13281. [PMID: 33099847 DOI: 10.1111/cmi.13281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
Due to the frequent mutations, influenza A virus (IAV) becomes resistant to anti-viral drugs targeting influenza viral proteins. There are increasing interests in anti-viral agents that target host cellular proteins required for virus replication. Tankyrase (TNKS) has poly (ADP-ribose) polymerase activity and is a negative regulator of many host proteins. The objectives of this study are to study the role of TNKS2 in IAV infection, identify the microRNAs targeting TNKS2, and to understand the mechanisms involved. We found that TNKS2 expression was elevated in human lung epithelial cells and mouse lungs during IAV infection. Knock-down of TNKS2 by RNA interference reduced viral replication. Using a computation approach and 3'-untranslation regions (3'-UTR) reporter assay, we identified miR-206 as the microRNA that targeted TNKS2. Overexpression of miR-206 reduced viral protein levels and virus production in cell culture. The effect of miR-206 on IAV replication was strain-independent. miR-206 activated JNK/c-Jun signalling, induced type I interferon expression and enhanced Stat signalling. Finally, the delivery of an adenovirus expressing miR-206 into the lung of mice challenged with IAV increased type I interferon response, suppressed viral load in the lungs and increased survival. Our results indicate that miR-206 has anti-influenza activity by targeting TNKS2 and subsequently activating the anti-viral state.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Keshavarz M, Dianat-Moghadam H, Sofiani VH, Karimzadeh M, Zargar M, Moghoofei M, Biglari H, Ghorbani S, Nahand JS, Mirzaei H. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10:829-844. [DOI: 10.2217/epi-2017-0170] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Influenza A virus is known worldwide as a threat associated with human and livestock diseases. Hence, identification of physiological and molecular aspects of influenza A could contribute to better design of therapeutic approaches for reducing adverse effects associated with disease caused by this virus. miRNAs are epigenetic regulators playing important roles in many pathological processes that help in progression of influenza A. Besides miRNAs, exosomes have ememrged as other effective players in influenza A pathogenesis. Exosomes exert their effects via targeting their cargos (e.g., DNAs, mRNA, miRNAs and proteins) to recipient cells. Here, we summarized various roles of miRNAs and exosomes in influenza A pathogenesis. Moreover, we highlighted therapeutic applications of miRNAs and exosomes in influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medicine Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering & Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
10
|
Zhou P, Tu L, Lin X, Hao X, Zheng Q, Zeng W, Zhang X, Zheng Y, Wang L, Li S. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells. Viruses 2017; 9:v9120360. [PMID: 29186842 PMCID: PMC5744135 DOI: 10.3390/v9120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Liqing Tu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Qingxu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| |
Collapse
|
11
|
Luo P, Yang Q, Cong LL, Wang XF, Li YS, Zhong XM, Xie RT, Jia CY, Yang HQ, Li WP, Cong XL, Xia Q, Fu D, Zeng QH, Ma YS. Identification of miR‑124a as a novel diagnostic and prognostic biomarker in non‑small cell lung cancer for chemotherapy. Mol Med Rep 2017; 16:238-246. [PMID: 28534972 PMCID: PMC5482144 DOI: 10.3892/mmr.2017.6595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/20/2017] [Indexed: 01/18/2023] Open
Abstract
Previous studies have suggested that dysregulation of microRNA (miR) −124a is associated with various types of human cancer. However, there are few studies reporting the level of miR-124a expression in non-small cell lung cancer (NSCLC). The present study investigated the association between miR-124a and NSCLC by analyzing the differential expression of miR-124a in NSCLC using the GEO database, as well as subsequently performing reverse transcription-quantitative polymerase chain reaction analysis on 160 NSCLC biopsies, 32 of which were paired with adjacent normal tissues. The results indicated that mir-124a expression levels were decreased in NSCLC tumor biopsies compared with adjacent normal tissues. The overall survival (OS) in patients with a high expression of miR-124a was prolonged relative to patients with low expression of miR-124a. The expression levels of miR-124a were associated with clinical characteristics, including lymph-node metastasis, tumor differentiation, tumor node metastasis (TNM) stage and diameter. Frequently, lymph-node metastasis, TNM stage, diameter and lack of chemotherapy have been associated with a worse prognosis in patients. In addition, the present study identified that high expression of miR-124awith chemotherapy may increase OS. In conclusion, the current study demonstrated that miR-124a was downregulated in NSCLC, and miR-124a was a potential prognostic tumor biomarker response to chemotherapy.
Collapse
Affiliation(s)
- Pei Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Le-Le Cong
- Department of Neurology, China Japan Union Hospital, Jilin University, Changchun, Jilin 130031, P.R. China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central‑South University, Changsha, Hunan 410008, P.R. China
| | - Xiao-Ming Zhong
- Department of Radiology, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Ru-Ting Xie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui-Qiong Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Wen-Ping Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xian-Ling Cong
- Tissue Bank, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qing Xia
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qing-Hua Zeng
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
12
|
Zhang S, Wang R, Su H, Wang B, Sizhu S, Lei Z, Jin M, Chen H, Cao J, Zhou H. Sus scrofa miR-204 and miR-4331 Negatively Regulate Swine H1N1/2009 Influenza A Virus Replication by Targeting Viral HA and NS, Respectively. Int J Mol Sci 2017; 18:ijms18040749. [PMID: 28368362 PMCID: PMC5412334 DOI: 10.3390/ijms18040749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
The prevalence of swine pandemic H1N1/2009 influenza A virus (SIV-H1N1/2009) in pigs has the potential to generate novel reassortant viruses, posing a great threat to human health. Cellular microRNAs (miRNAs) have been proven as promising small molecules for regulating influenza A virus replication by directly targeting viral genomic RNA. In this study, we predicted potential Sus scrofa (ssc-, swine) miRNAs targeting the genomic RNA of SIV-H1N1/2009 by RegRNA 2.0, and identified ssc-miR-204 and ssc-miR-4331 to target viral HA and NS respectively through dual-luciferase reporter assays. The messenger RNA (mRNA) levels of viral HA and NS were significantly suppressed when newborn pig trachea (NPTr) cells respectively overexpressed ssc-miR-204 and ssc-miR-4331 and were infected with SIV-H1N1/2009, whereas the suppression effect could be restored when respectively decreasing endogenous ssc-miR-204 and ssc-miR-4331 with inhibitors. Because of the importance of viral HA and NS in the life cycle of influenza A virus, ssc-miR-204 and ssc-miR-4331 exhibited an inhibition effect on SIV-H1N1/2009 replication. The antiviral effect was sequence-specific of SIV-H1N1/2009, for the target sites in HA and NS of H5N1 or H9N2 influenza A virus were not conserved. Furthermore, SIV-H1N1/2009 infection reversely downregulated the expression of ssc-miR-204 and ssc-miR-4331, which might facilitate the virus replication in the host. In summary, this work will provide us some important clues for controlling the prevalence of SIV-H1N1/2009 in pig populations.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cells, Cultured
- Gene Expression Regulation, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Host-Pathogen Interactions/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sus scrofa
- Trachea/cytology
- Trachea/metabolism
- Trachea/virology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Shishuo Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huijuan Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Biaoxiong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Suolang Sizhu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Zhixin Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jiyue Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
13
|
Lee YR, Yeh SF, Ruan XM, Zhang H, Hsu SD, Huang HD, Hsieh CC, Lin YS, Yeh TM, Liu HS, Gan DD. Honeysuckle aqueous extract and induced let-7a suppress dengue virus type 2 replication and pathogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:109-121. [PMID: 28052239 DOI: 10.1016/j.jep.2016.12.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/07/2016] [Accepted: 12/31/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honeysuckle (Lonicera japonica Thunb.), a traditional Chinese herb, has widely been used to treat pathogen infection. However, the underlying-mechanism remains elusive. AIMS OF THE STUDY To reveal the host microRNA (miRNA) profile with the anti-viral activity after honeysuckle treatment. MATERIALS AND METHODS Here we reveal the differentially expressed miRNAs by Solexa® deep sequencing from the blood of human and mice after the aqueous extract treatment. Among these overexpressed innate miRNAs both in human and mice, let-7a is able to target the NS1 region (nt 3313-3330) of dengue virus (DENV) serotypes 1, 2 and 4 predicated by the target predication software. RESULTS We confirmed that let-7a could target DENV2 at the predicated NS1 sequence and suppress DENV2 replication demonstrated by luciferase-reporter activity, RT-PCR, real-time PCR, Western blotting and plaque assay. ICR-suckling mice consumed honeysuckle aqueous extract either before or after intracranial injection with DENV2 showed decreased levels of NS1 RNA and protein expression accompanied with alleviated disease symptoms, decreased virus load, and prolonged survival time. Similar results were observed when DENV2-infected mice were intracranially injected with let-7a. CONCLUSION We reveal that honeysuckle attenuates DENV replication and related pathogenesis in vivo through induction of let-7a expression. This study opens a new direction for prevention and treatment of DENV infection through induction of the innate miRNA let-7a by honeysuckle.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Siao-Fen Yeh
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Xiao-Ming Ruan
- College of Biological Life Science, Nanjing University, Nanjing 210023, PR China
| | - Hao Zhang
- College of Biological Life Science, Nanjing University, Nanjing 210023, PR China
| | - Sheng-Da Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Molecular Bioinformatics Center, National Chiao Tung University, Hsinchu, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Dai-Di Gan
- College of Biological Life Science, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
14
|
Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus. Int J Mol Sci 2016; 18:ijms18010039. [PMID: 28035991 PMCID: PMC5297674 DOI: 10.3390/ijms18010039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a new type of regulators that play important roles in various cellular processes, including cell growth, differentiation, survival, and apoptosis. ncRNAs, including small non-coding RNAs (e.g., microRNAs, small interfering RNAs) and long non-coding RNAs (lncRNAs), are pervasively transcribed in human and mammalian cells. Recently, it has been recognized that these ncRNAs are critically implicated in the virus-host interaction as key regulators of transcription or post-transcription during viral infection. Influenza A virus (IAV) is still a major threat to human health. Hundreds of ncRNAs are differentially expressed in response to infection with IAV, such as infection by pandemic H1N1 and highly pathogenic avian strains. There is increasing evidence demonstrating functional involvement of these regulatory microRNAs, vault RNAs (vtRNAs) and lncRNAs in pathogenesis of influenza virus, including a variety of host immune responses. For example, it has been shown that ncRNAs regulate activation of pattern recognition receptor (PRR)-associated signaling and transcription factors (nuclear factor κ-light-chain-enhancer of activated B cells, NF-κB), as well as production of interferons (IFNs) and cytokines, and expression of critical IFN-stimulated genes (ISGs). The vital functions of IAV-regulated ncRNAs either to against defend viral invasion or to promote progeny viron production are summarized in this review. In addition, we also highlight the potentials of ncRNAs as therapeutic targets and diagnostic biomarkers.
Collapse
|
15
|
Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med 2016; 23:80-93. [PMID: 27989642 PMCID: PMC5836316 DOI: 10.1016/j.molmed.2016.11.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Some RNA viruses possess miRNA-binding sites in a range of locations within the viral genome, including the 5′ and 3′ non-translated regions. Host cell miRNAs can bind to RNA virus genomes, enhancing genome stability, repressing translation of the viral genome, or altering free miRNA levels within the cell. miRNAs contribute to viral pathogenesis by promoting evasion of the host antiviral immune response, enhancing viral replication, or, potentially, altering miRNA-mediated host gene regulation. RNA virus infection can lead to widespread changes in the host transcriptome by modulating cell-specific miRNA levels.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Genetic resistance - an alternative for controlling PRRS? Porcine Health Manag 2016; 2:27. [PMID: 28405453 PMCID: PMC5382513 DOI: 10.1186/s40813-016-0045-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
PRRS is one of the most challenging diseases for world-wide pig production. Attempts for a sustainable control of this scourge by vaccination have not yet fully satisfied. With an increasing knowledge and methodology in disease resistance, a new world-wide endeavour has been started to support the combat of animal diseases, based on the existence of valuable gene variants with regard to any host-pathogen interaction. Several groups have produced a wealth of evidence for natural variability in resistance/susceptibility to PRRS in our commercial breeding lines. However, up to now, exploiting existing variation has failed because of the difficulty to detect the carriers of favourable and unfavourable alleles, especially with regard to such complex polygenic traits like resistance to PRRS. New hope comes from new genomic tools like next generation sequencing which have become extremely fast and low priced. Thus, research is booming world-wide and the jigsaw puzzle is filling up – slowly but steadily. On the other hand, knowledge from virological and biomedical basic research has opened the way for an “intervening way”, i.e. the modification of identified key genes that occupy key positions in PRRS pathogenesis, like CD163. CD163 was identified as the striking receptor in PRRSV entry and its knockout from the genome by gene editing has led to the production of pigs that were completely resistant to PRRSV – a milestone in modern pig breeding. However, at this early step, concerns remain about the acceptance of societies for gene edited products and regulation still awaits upgrading to the new technology. Further questions arise with regard to upcoming patents from an ethical and legal point of view. Eventually, the importance of CD163 for homeostasis, defence and immunity demands for more insight before its complete or partial silencing can be answered. Whatever path will be followed, even a partial abolishment of PRRSV replication will lead to a significant improvement of the disastrous herd situation, with a significant impact on welfare, performance, antimicrobial consumption and consumer protection. Genetics will be part of a future solution.
Collapse
|
17
|
Peng F, He J, Loo JFC, Yao J, Shi L, Liu C, Zhao C, Xie W, Shao Y, Kong SK, Gu D. Identification of microRNAs in Throat Swab as the Biomarkers for Diagnosis of Influenza. Int J Med Sci 2016; 13:77-84. [PMID: 26917988 PMCID: PMC4747873 DOI: 10.7150/ijms.13301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Influenza is a serious worldwide disease that captures global attention in the past few years after outbreaks. The recent discoveries of microRNA (miRNA) and its unique expression profile in influenza patients have offered a new method for early influenza diagnosis. The aim of this study was to examine the utility of miRNAs for the diagnosis of influenza. METHODS Thirteen selected miRNAs were investigated with the hosts' throat swabs (25 H1N1, 20 H3N2, 20 influenza B and 21 healthy controls) by real-time quantitative polymerase chain reaction (RT-qPCR) using U6 snRNA as endogenous control for normalization, and receiver operating characteristic (ROC) curve/Area under curve (AUC) for analysis. RESULTS miR-29a-3p, miR-30c-5p, miR-34c-3p and miR-181a-5p are useful biomarkers for influenza A detection; and miR-30c-5p, miR-34b-5p, miR-205-5p and miR-449b-5p for influenza B detection. Also, use of both miR-30c-5p and miR-34c-3p (AUC=0.879); and miR-30c-5p and miR-449b-5p (AUC=0.901) are better than using one miRNA to confirm influenza A and influenza B infection, respectively. CONCLUSIONS Given its simplicity, non-invasiveness and specificity, we found that the throat swab-derived miRNAs miR-29a-3p, miR-30c-5p, miR-34b-5p, miR-34c-3p, miR-181a-5p, miR-205-5p and miR-449b-5p are a useful tool for influenza diagnosis on influenza A and B.
Collapse
Affiliation(s)
- Fang Peng
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jianan He
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jacky Fong Chuen Loo
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyu Yao
- 4. Guangdong Medical University, Zhanjiang, China
| | - Lei Shi
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunxiao Liu
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunzhong Zhao
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Weidong Xie
- 5. Shenzhen Key Lab of Health Science and Technology, Division of Life Sciences & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yonghong Shao
- 6. College of Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems, Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, China
| | - Siu Kai Kong
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dayong Gu
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| |
Collapse
|
18
|
Khongnomnan K, Makkoch J, Poomipak W, Poovorawan Y, Payungporn S. Human miR-3145 inhibits influenza A viruses replication by targeting and silencing viral PB1 gene. Exp Biol Med (Maywood) 2015; 240:1630-9. [PMID: 26080461 PMCID: PMC4935342 DOI: 10.1177/1535370215589051] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in many cellular processes including inhibition of viral replication in infected cells. In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) were analyzed to identify candidate human miRNAs targeting and silencing viral genes expression. Candidate human miRNAs were predicted by miRBase and RNAhybrid based on minimum free energy (MFE) and hybridization patterns between human miRNAs and viral target genes. In silico analysis presented 76 miRNAs targeting influenza A viruses, including 70 miRNAs that targeted specific subtypes (21 for pH1N1, 27 for H5N1 and 22 for H3N2) and 6 miRNAs (miR-216b, miR-3145, miR-3682, miR-4513, miR-4753 and miR-5693) that targeted multiple subtypes of influenza A viruses. Interestingly, miR-3145 is the only candidate miRNA targeting all three subtypes of influenza A viruses. The miR-3145 targets to PB1 encoding polymerase basic protein 1, which is the main component of the viral polymerase complex. The silencing effect of miR-3145 was validated by 3'-UTR reporter assay and inhibition of influenza viral replication in A549 cells. In 3'-UTR reporter assay, results revealed that miR-3145 triggered significant reduction of the luciferase activity. Moreover, expression of viral PB1 genes was also inhibited considerably (P value < 0.05) in viral infected cells expressing mimic miR-3145. In conclusion, this study demonstrated that human miR-3145 triggered silencing of viral PB1 genes and lead to inhibition of multiple subtypes of influenza viral replication. Therefore, hsa-miR-3145 might be useful for alternative treatment of influenza A viruses in the future.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Gene Silencing/drug effects
- Genes, Viral/drug effects
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/physiology
- Alphainfluenzavirus/drug effects
- Alphainfluenzavirus/genetics
- Alphainfluenzavirus/physiology
- MicroRNAs/pharmacology
- Real-Time Polymerase Chain Reaction
- Viral Proteins/antagonists & inhibitors
- Viral Proteins/genetics
- Virus Replication/drug effects
- Virus Replication/genetics
Collapse
Affiliation(s)
- Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jarika Makkoch
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of excellent in clinical virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Huang XL, Zhang L, Li JP, Wang YJ, Duan Y, Wang J. MicroRNA-150: A potential regulator in pathogens infection and autoimmune diseases. Autoimmunity 2015; 48:503-10. [DOI: 10.3109/08916934.2015.1072518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|
21
|
Zhou A, Li S, Zhang S. miRNAs and genes expression in MARC-145 cell in response to PRRSV infection. INFECTION GENETICS AND EVOLUTION 2014; 27:173-80. [PMID: 25077995 DOI: 10.1016/j.meegid.2014.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/30/2023]
Abstract
The regulation of viral replication is under control of miRNAs and their target genes. Several articles report the cross-talk between host and virus. The drastic effects of Porcine reproductive and respiratory syndrome virus (PRRSV) pressed us to investigate the expression profiling of miRNAs and immunity related genes during PRRSV infection. This was performed by qPCR in MARC145 cells during PRRSV infection. It was observed that miRNAs and genes show different expression patterns at different time points during PRRSV infection. The early infected stage was accompanied with increased expression of some miRNAs including miR-204, miR-21, miR-181a, miR-29 while a decrease was observed for the same in late infection stage. The opposite condition also existed in parallel. An interesting observation was seen when miR-145 was strongly induced by PRRSV infection, whereas miR-127 expression was significantly reduced in all infection points. Taken together, our studies have revealed that the expressions of miRNAs and immune-related genes were regulated in PRRSV infected MARC-145 cells and had important roles in the immune response, providing a basis for further investigations.
Collapse
Affiliation(s)
- Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuaifeng Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
A. Hicks J, Yoo D, Liu HC. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS One 2013; 8:e82054. [PMID: 24339989 PMCID: PMC3855409 DOI: 10.1371/journal.pone.0082054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a member of the arterivirus family, is the causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS). PRRS is characterized by late term abortions and respiratory disease, particularly in young pigs. Small regulatory RNAs termed microRNA (miRNA) are associated with gene regulation at the post-transcriptional level. MiRNAs are known to play many diverse and complex roles in viral infections. To discover the impact of PRRSV infections on the cellular miRNAome, Illumina deep sequencing was used to construct small RNA expression profiles from in vitro cultured PRRSV-infected porcine alveolar macrophages (PAMs). A total of forty cellular miRNAs were significantly differentially expressed within the first 48 hours post infection (hpi). The expression of six miRNAs, miR-30a-3p, miR-132, miR-27b*, miR-29b, miR-146a and miR-9-2, were altered at more than one time point. Target gene identification suggests that these miRNAs are involved in regulating immune signaling pathways, cytokine, and transcription factor production. The most highly repressed miRNA at 24 hpi was miR-147. A miR-147 mimic was utilized to maintain miR-147 levels in PRRSV-infected PAMs. PRRSV replication was negatively impacted by high levels of miR-147. Whether down-regulation of miR-147 is directly induced by PRRSV or if it is part of the cellular response and PRRSV indirectly benefits remains to be determined. No evidence could be found of PRRSV-encoded miRNAs. Overall, the present study has revealed that a large and diverse group of miRNAs are expressed in swine alveolar macrophages and that the expression of a subset of these miRNAs is altered in PRRSV infected macrophages.
Collapse
Affiliation(s)
- Julie A. Hicks
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Singh SP, Gogoi D, Bezbaruah RL, Bordoloi MJ, Barua NC. Virtual screening on potential neuraminidase inhibitors of influenza A virus H1N1. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.dit.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Lam WY, Yeung ACM, Ngai KLK, Li MS, To KF, Tsui SKW, Chan PKS. Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol 2013; 13:104. [PMID: 23663545 PMCID: PMC3663648 DOI: 10.1186/1471-2180-13-104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/04/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Avian influenza remains a serious threat to human health. The consequence of human infection varies markedly among different subtypes of avian influenza viruses. In addition to viral factors, the difference in host cellular response is likely to play a critical role. This study aims at elucidating how avian influenza infection perturbs the host's miRNA regulatory pathways that may lead to adverse pathological events, such as cytokine storm, using the miRNA microarray approach. RESULTS The results showed that dysregulation of miRNA expression was mainly observed in highly pathogenic avian influenza A H5N1 infection. We found that miR-21*, miR-100*, miR-141, miR-574-3p, miR-1274a and miR1274b were differentially expressed in response to influenza A virus infection. Interestingly, we demonstrated that miR-141, which was more highly induced by H5N1 than by H1N1 (p < 0.05), had an ability to suppress the expression of a cytokine - transforming growth factor (TGF)-β2. This was supported by the observation that the inhibitory effect could be reversed by antagomiR-141. CONCLUSIONS Since TGF-β2 is an important cytokine that can act as both an immunosuppressive agent and a potent proinflammatory molecule through its ability to attract and regulate inflammatory molecules, and previous report showed that only seasonal influenza H1N1 (but not the other avian influenza subtypes) could induce a persistent expression of TGF-β2, we speculate that the modulation of TGF-β2 expression by different influenza subtypes via miR-141 might be a critical step for determining the outcome of either normal or excessive inflammation progression.
Collapse
Affiliation(s)
- Wai-Yip Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong Special Administration Region, Shatin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Foster PS, Plank M, Collison A, Tay HL, Kaiko GE, Li J, Johnston SL, Hansbro PM, Kumar RK, Yang M, Mattes J. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev 2013; 253:198-215. [DOI: 10.1111/imr.12058] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Paul S. Foster
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Maximilian Plank
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Adam Collison
- Priority Research Centre for Asthma and Respiratory Disease, Discipline of Paediatrics and Child Health, School of Medicine and Public Health, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Hock L. Tay
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Gerard E. Kaiko
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - JingJing Li
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Sebastian L. Johnston
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma; Imperial College London; London; UK
| | - Philip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Rakesh K. Kumar
- Department of Pathology, School of Medical Sciences; University of New South Wales; Sydney; Australia
| | - Ming Yang
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Joerg Mattes
- Priority Research Centre for Asthma and Respiratory Disease, Discipline of Paediatrics and Child Health, School of Medicine and Public Health, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| |
Collapse
|
26
|
Skovgaard K, Cirera S, Vasby D, Podolska A, Breum SØ, Dürrwald R, Schlegel M, Heegaard PMH. Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2). Innate Immun 2013; 19:531-44. [PMID: 23405029 DOI: 10.1177/1753425912473668] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were quantified in lung tissue at different time points after challenge (24 h, 72 h and 14 d post-infection (p.i.). Several groups of genes were significantly regulated according to time point and infection status including pattern recognition receptors (TLR2, TLR3, TLR7, retinoic acid-inducible gene I, melanoma differentiation associated protein-5), IFN and IFN-induced genes (IFN-β, IFN-γ, IRF7, STAT1, ISG15 and OASL), cytokines (IL-1 β, IL-1RN, IL-6, IL-7, IL-10, IL-12A, TNF-α, CCL2, CCL3 and CXCL10) and several acute phase proteins. Likewise, the following miRNAs were differentially expressed in one or more time groups compared with the control pigs: miR-15a, miR-21, miR-146, miR-206, miR-223 and miR-451. At d 1 p.i. lung tissue protein levels of IL-6, IL-12 and IFN-α were significantly increased compared with the control group, and haptoglobin and C-reactive protein were significantly increased at d 3 p.i. Our results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs.
Collapse
Affiliation(s)
- Kerstin Skovgaard
- 1Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 2012; 7:e37169. [PMID: 22606348 PMCID: PMC3351457 DOI: 10.1371/journal.pone.0037169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/16/2012] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.
Collapse
|
28
|
Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol 2011; 128:160-167.e4. [PMID: 21571357 DOI: 10.1016/j.jaci.2011.04.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Glucocorticoids are used as mainstay therapy for asthma, but some patients remain resistant to therapy. MicroRNAs (miRNAs) are important regulators of the immune system by promoting the catabolism of their target transcripts as well as attenuating their translation. The role of miRNA in regulating allergic inflammation remains largely unknown. Blocking miRNA function may provide a new nonsteroidal anti-inflammatory approach to treatment. OBJECTIVES To (1) determine the role of specific miRNAs in the regulation of hallmark features of allergic airways inflammation and (2) compare the efficacy of antagonizing miRNA function with that of steroid treatment. METHODS Mice were sensitized and then aeroallergen-challenged with house dust mite to induce allergic airways disease, and alterations in the expression of miRNAs were characterized. Next mice were treated with antagomirs that inhibited the function of specific miRNAs in the lung or treated with dexamethasone and inflammatory lesions, and airway hyperresponsiveness was measured. RESULTS miR-145, miR-21, and let-7b have been implicated in airway smooth muscle function, inflammation, and airways epithelial cell function, respectively. Inhibition of miR-145, but not miR-21 or lethal-7b, inhibited eosinophilic inflammation, mucus hypersecretion, T(H)2 cytokine production, and airway hyperresponsiveness. The anti-inflammatory effects of miR-145 antagonism were comparable to steroid treatment. CONCLUSION Our study highlights the importance of understanding the contribution of miRNAs to pathogenesis of human allergic disease and their potential as novel anti-inflammatory targets.
Collapse
Affiliation(s)
- Adam Collison
- Experimental and Translational Respiratory Group, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Co-operative Research Centre for Asthma and Airways and Hunter Medical Research Institute, Callaghan, Australia
| | | | | | | |
Collapse
|
29
|
Tuggle CK, Bearson SMD, Uthe JJ, Huang TH, Couture OP, Wang YF, Kuhar D, Lunney JK, Honavar V. Methods for transcriptomic analyses of the porcine host immune response: application to Salmonella infection using microarrays. Vet Immunol Immunopathol 2010; 138:280-91. [PMID: 21036404 DOI: 10.1016/j.vetimm.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, where tools to measure the expression of tens of thousands of transcripts, as well as unprecedented data on the porcine genome sequence, have combined to expand our abilities to elucidate the porcine immune system. In this review, we describe these recent developments in the context of our work using primarily microarrays to explore gene expression changes during infection of pigs by Salmonella. Thus while the focus is not a comprehensive review of all possible approaches, we provide links and information on both the tools we use as well as alternatives commonly available for transcriptomic data collection and analysis of porcine immune responses. Through this review, we expect readers will gain an appreciation for the necessary steps to plan, conduct, analyze and interpret the data from transcriptomic analyses directly applicable to their research interests.
Collapse
Affiliation(s)
- C K Tuggle
- Department of Animal Science, and Center for Integrated Animal Genomics, 2255 Kildee Hall, Iowa State University, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|