1
|
Li Y, Zhou M, Yang L, Liu S, Yang L, Xu B, Li X, Zhao H, Song Z. LncRNA DDX11-AS1 promotes breast cancer progression by targeting the miR-30c-5p/MTDH axis. Sci Rep 2024; 14:26745. [PMID: 39501057 PMCID: PMC11538490 DOI: 10.1038/s41598-024-78413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play a significant role in the occurrence and development of malignant tumours. However, ceRNAs, which are significantly associated with the prognosis of breast cancer (BC), need to be further investigated. Therefore, the current study aimed to investigate the effect of the lncRNA DDX11-AS1 on BC progression. Bioinformatics analysis via a public microarray revealed that DDX11-AS1 was upregulated in BC. The above findings were verified via RT‒qPCR analysis of BC tissues. Additionally, our study revealed that the expression levels of DDX11-AS1 increased with increasing pathological grade and lymph node metastasis. Furthermore, DDX11-AS1 knockdown markedly inhibited the proliferation, migration and invasion abilities of BC cells. Mechanistically, DDX11-AS1 could prevent the degradation of MTDH in BC via competitively binding with miR-30c-5p, which could act as a tumour promoter factor. Additionally, miR-30c-5p was downregulated and MTDH was upregulated in BC cells and tissues. The promoting effect of DDX11-AS1 on BC cells was enhanced by miR-30c-5p silencing and reduced by treatment with MTDH inhibitors. Collectively, the above results suggest that the DDX11-AS1/miR-30c-5p/MTDH axis could be associated with the progression of BC and that DDX11-AS1 could be a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Yanting Li
- Department of Breast Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Mengsi Zhou
- Department of Breast Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Liu Yang
- Department of Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Shuo Liu
- Department of Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, 054001, China
| | - Bin Xu
- Department of Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Xiaolong Li
- Department of Breast Surgery, the Fourth Hospital of Shijiazhuang, Shijiazhuang, 050035, China
| | - Haijun Zhao
- Department of Breast Surgery, the Fourth Hospital of Shijiazhuang, Shijiazhuang, 050035, China
| | - Zhenchuan Song
- Breast Center, Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, 050035, China.
| |
Collapse
|
2
|
Zhang RN, Fan JG. Lipid metabolism-related long noncoding RNAs: A potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2024; 30:3799-3802. [PMID: 39351428 PMCID: PMC11438626 DOI: 10.3748/wjg.v30.i33.3799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The incidence rates of hepatocellular carcinoma (HCC) have increased in recent decades. Despite advancements in therapy and early diagnosis improving short-term prognosis, long-term outcomes remain poor. Long noncoding RNAs (lncRNAs) and lipid metabolism play crucial roles in the development and progression of HCC. Enhanced lipid synthesis promotes HCC progression, and lncRNAs can reprogram the expression of lipogenic enzymes. Consequently, lipid metabolism-related (LMR)-lncRNAs regulate lipid anabolism, accelerating the onset and progression of HCC. This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui-Nan Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
3
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9244. [PMID: 39273193 PMCID: PMC11395304 DOI: 10.3390/ijms25179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Lipid disorders increase the risk for the development of cardiometabolic disorders, including type 2 diabetes, atherosclerosis, and cardiovascular disease. Lipids levels, apart from diet, smoking, obesity, alcohol consumption, and lack of exercise, are also influenced by genetic factors. Recent studies suggested the role of long noncoding RNAs (lncRNAs) in the regulation of lipid formation and metabolism. Despite their lack of protein-coding capacity, lncRNAs are crucial regulators of various physiological and pathological processes since they affect the transcription and epigenetic chromatin remodelling. LncRNAs act as molecular signal, scaffold, decoy, enhancer, and guide molecules. This review summarises available data concerning the impact of lncRNAs on lipid levels and metabolism, as well as impact on cardiovascular disease risk. This relationship is significant because altered lipid metabolism is a well-known risk factor for cardiovascular diseases, and lncRNAs may play a crucial regulatory role. Understanding these mechanisms could pave the way for new therapeutic strategies to mitigate cardiovascular disease risk through targeted modulation of lncRNAs. The identification of dysregulated lncRNAs may pose promising candidates for therapeutic interventions, since strategies enabling the restoration of their levels could offer an effective means to impede disease progression without disrupting normal biological functions. LncRNAs may also serve as valuable biomarker candidates for various pathological states, including cardiovascular disease. However, still much remains unknown about the functions of most lncRNAs, thus extensive studies are necessary elucidate their roles in physiology, development, and disease.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Aleksandra Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation in Warsaw, 02-637 Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
4
|
Fang X, Chen J, Meng F, Chen F, Chen X, Wang Y, Fang X, Zhang C, Song C. Linc-smad7 is involved in the regulation of lipid synthesis in mouse mammary epithelial cells. Int J Biol Macromol 2024; 262:129875. [PMID: 38320638 DOI: 10.1016/j.ijbiomac.2024.129875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Long intergenic non-coding RNA(lincRNA) is transcribed from the intermediate regions of coding genes and plays a pivotal role in the regulation of lipid synthesis. N6-methyladenosine (m6A) modification is widely prevalent in eukaryotic mRNAs and serves as a regulatory factor in diverse biological processes. This study aims to delineate the mechanism by which Linc-smad7 mediates m6A methylation to regulate milk fat synthesis. Tissue expression analysis in this study revealed a high expression of Linc-smad7 in breast tissue during pregnancy. Cell proliferation assays, including CCK8 and EdU assays, demonstrated that Linc-smad7 had no significant impact on the proliferation of mammary epithelial cells. However, during mammary epithelial cell differentiation, the overexpression of Linc-smad7 led to reduced lipid formation, whereas interference with Linc-smad7 promoted lipogenesis. Mechanistically, Linc-smad7 was found to modulate RNA m6A levels, as evidenced by dot blot assays and methylated RNA immunoprecipitation sequencing (MeRIP-Seq). Subsequent validation through RT-qPCR corroborated these findings, aligning with the m6A sequencing outcomes. Furthermore, co-transfection experiments elucidated that Linc-smad7 regulates lipid synthesis in mammary epithelial cells by influencing the expression of METTL14. In summary, these findings underscore the regulatory role of Linc-smad7 in controlling METTL14 gene expression, thereby mediating m6A modifications to regulate lipid synthesis in mammary epithelial cells.
Collapse
Affiliation(s)
- Xue Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fantong Meng
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fang Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
5
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
6
|
Yuan X, Liu Y, Yang X, Huang Y, Shen X, Liang H, Zhou H, Wang Q, Zhang X, Li JZ. Long noncoding RNA lnc_217 regulates hepatic lipid metabolism by modulating lipogenesis and fatty acid oxidation. J Biomed Res 2023; 37:448-459. [PMID: 37899542 PMCID: PMC10687534 DOI: 10.7555/jbr.37.20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 10/31/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a major health epidemic with an estimated 32.4% worldwide prevalence. No drugs have yet been approved and therapeutic nodes remain a major unmet need. Long noncoding RNAs are emerging as an important class of novel regulators influencing multiple biological processes and the pathogenesis of NAFLD. Herein, we described a novel long noncoding RNA, lnc_217, which was liver enriched and upregulated in high-fat diet-fed mice, and a genetic animal model of NAFLD. We found that liver specific knockdown of lnc_217 was resistant to high-fat diet-induced hepatic lipid accumulation and decreased serum lipid in mice. Mechanistically, we demonstrated that knockdown of lnc_217 not only decreased de novo lipogenesis by inhibiting sterol regulatory element binding protein-1c cleavage but also increased fatty acid β-oxidation through activation of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1α. Taken together, we conclude that lnc_217 may be a novel regulator of hepatic lipid metabolism and a potential therapeutic target for the treatment of hepatic steatosis and NAFLD-related metabolic disorders.
Collapse
Affiliation(s)
- Xiaoqing Yuan
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yawei Liu
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xule Yang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yun Huang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuan Shen
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hui Liang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
7
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Zhang ZD, Hou XR, Cao XL, Wang XP. Long non‑coding RNAs, lipid metabolism and cancer (Review). Exp Ther Med 2023; 26:470. [PMID: 37664674 PMCID: PMC10468807 DOI: 10.3892/etm.2023.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer has emerged as the most common cause of death in China. The change in lipid metabolism has been confirmed to have a role in several tumor types, such as esophageal, gastric, colorectal and liver cancer. Cancer cells use lipid metabolism for energy and then rapidly proliferate, invade and migrate. The main pathway by which cancer cell lipid metabolism influences cancer progression is increased fatty acid synthesis. Long non-coding (lnc)RNAs are important ncRNAs that were indicated to have significant roles in the development of human tumors. They are considered potential tumor biomarkers. Increased lipid synthesis or uptake due to deregulation of lncRNAs contributes to rapid tumor growth. In the present review, current studies on the relationship between lncRNAs, lipid metabolism and the occurrence and development of tumors were collated and summarized, and their mechanism of action was discussed. The review is expected to provide a theoretical basis for tumor treatment and prognosis evaluation based on the effective regulation of lncRNAs and lipid metabolism.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
9
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang R, Li J, Badescu D, Karaplis AC, Ragoussis J, Kremer R. PTHrP Regulates Fatty Acid Metabolism via Novel lncRNA in Breast Cancer Initiation and Progression Models. Cancers (Basel) 2023; 15:3763. [PMID: 37568579 PMCID: PMC10417726 DOI: 10.3390/cancers15153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) is the primary cause of malignancy-associated hypercalcemia (MAH). We previously showed that PTHrP ablation, in the MMTV-PyMT murine model of breast cancer (BC) progression, can dramatically prolong tumor latency, slow tumor growth, and prevent metastatic spread. However, the signaling mechanisms using lineage tracing have not yet been carefully analyzed. Here, we generated Pthrpflox/flox; Cre+ mT/mG mice (KO) and Pthrpwt/wt; Cre+ mT/mG tumor mice (WT) to examine the signaling pathways under the control of PTHrP from the early to late stages of tumorigenesis. GFP+ mammary epithelial cells were further enriched for subsequent RNA sequencing (RNAseq) analyses. We observed significant upregulation of cell cycle signaling and fatty acid metabolism in PTHrP WT tumors, which are linked to tumor initiation and progression. Next, we observed that the expression levels of a novel lncRNA, GM50337, along with stearoyl-Coenzyme A desaturase 1 (Scd1) are significantly upregulated in PTHrP WT but not in KO tumors. We further validated a potential human orthologue lncRNA, OLMALINC, together with SCD1 that can be regulated via PTHrP in human BC cell lines. In conclusion, these novel findings could be used to develop targeted strategies for the treatment of BC and its metastatic complications.
Collapse
Affiliation(s)
- Rui Zhang
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jiarong Li
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada (J.R.)
| | - Andrew C. Karaplis
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada (J.R.)
| | - Richard Kremer
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
11
|
Shi N, Sun K, Tang H, Mao J. The impact and role of identified long noncoding RNAs in nonalcoholic fatty liver disease: A narrative review. J Clin Lab Anal 2023; 37:e24943. [PMID: 37435630 PMCID: PMC10431402 DOI: 10.1002/jcla.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, but its mechanism and pathophysiology remain unclear. Long noncoding RNAs (lncRNAs) may exert a vital influence on regulating various biological functions in NAFLD. METHODS The databases such as Google Scholar, PubMed, and Medline were searched using the following keywords: nonalcoholic fatty liver disease, nonalcoholic fatty liver disease, NAFLD, nonalcoholic steatohepatitis, nonalcoholic steatohepatitis, NASH, long noncoding RNAs, and lncRNAs. Considering the titles and abstracts, unrelated studies were excluded. The authors evaluated the full texts of the remaining studies. RESULTS We summarized the current knowledge of lncRNAs and the main signaling pathways of lncRNAs involved in NAFLD explored in recent years. As a heterogeneous group of noncoding RNAs (ncRNAs), lncRNAs play crucial roles in biological processes underlying the pathophysiology of NAFLD. The mechanisms, particularly those associated with the regulation of the expression and activities of lncRNAs, play important roles in NAFLD. CONCLUSION A better comprehension of the mechanism controlled by lncRNAs in NAFLD is necessary for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for diagnosis.
Collapse
Affiliation(s)
- Na Shi
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Internal MedicineThe Third People's Hospital of ChengduChengduChina
| | - Kang Sun
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haiying Tang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jingwei Mao
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
12
|
Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab 2023; 34:278-291. [PMID: 36890041 DOI: 10.1016/j.tem.2023.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
The challenges of hepatocellular carcinoma (HCC) pathogenesis, diagnosis, treatment, and prognosis evaluation are obvious. Hepatocyte-specific fatty acid (FA) metabolic reprogramming is an important marker of liver carcinogenesis and progression; elucidating its mechanism will help unravel the complexity of HCC pathogenesis. Noncoding RNAs (ncRNAs) play important roles in HCC development. Moreover, ncRNAs are important mediators of FA metabolism and are directly involved in the reprogramming of FA metabolism in HCC cells. Here we review significant new advances in understanding the mechanisms regulating HCC metabolism by focusing on ncRNA-mediated post-translational modifications of metabolic enzymes, metabolism-related transcription factors, and other proteins in associated signaling pathways. We also discuss the great therapeutic potential of targeting ncRNA-mediated FA metabolism reprogramming in HCC.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Paez I, Prado Y, Loren P, Ubilla CG, Rodríguez N, Salazar LA. Cholesterol-Related lncRNAs as Response Predictors of Atorvastatin Treatment in Chilean Hypercholesterolemic Patients: A Pilot Study. Biomedicines 2023; 11:biomedicines11030742. [PMID: 36979720 PMCID: PMC10045917 DOI: 10.3390/biomedicines11030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Statins are currently the treatment of choice for hypercholesterolemia. However, wide interindividual variability has been observed in the response to treatment. Recent studies have reported the role of lncRNAs in the metabolism of lipids; nevertheless, there are few studies to date that show their role in the response to treatment with statins. Thus, the aim of this study was to assess the levels of expression of three lncRNAs (RP1-13D10.2; MANTIS; lncHR1) associated with genes involved in cholesterol homeostasis in leukocyte cells of hypercholesterolemic patients after treatment with atorvastatin and compare them with levels in subjects with normal cholesterol levels. A secondary aim was to assess the levels of expression in monocytic THP-1 cells differentiated to macrophages. The study included 20 subjects with normal cholesterol (NC) levels and 20 individuals with hypercholesterolemia (HC). The HC patients were treated with atorvastatin (20 mg/day/4 weeks). THP-1 cells were differentiated to macrophages with PMA and treated with different doses of atorvastatin for 24 h. Expression of lncRNAs was determined by RT-qPCR. The lncRNAs RP1-13D10.2 (p < 0.0001), MANTIS (p = 0.0013) and lncHR1 (p < 0.0001) presented increased expression in HC subjects compared with NC subjects. Furthermore, atorvastatin had a negative regulatory effect on the expression of lncHR1 (p < 0.0001) in HC subjects after treatment. In vitro, all the lncRNAs showed significant differences in expression after atorvastatin treatment. Our findings show that the lncRNAs tested present differential expression in HC patients and play a role in the variability reported in the response to atorvastatin treatment. Further research is needed to clarify the biological impact of these lncRNAs on cholesterol homeostasis and treatment with statins.
Collapse
|
14
|
Kudriashov V, Sufianov A, Mashkin A, Beilerli A, Ilyasova T, Liang Y, Lyulin S, Beylerli O. The role of long non-coding RNAs in carbohydrate and fat metabolism in the liver. Noncoding RNA Res 2023; 8:294-301. [PMID: 36970373 PMCID: PMC10031277 DOI: 10.1016/j.ncrna.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The metabolism of carbohydrates and lipids (fat) in the liver is closely interconnected both in physiological conditions and in pathology. This relationship in the body is possible due to the regulation by many factors, including epigenetic ones. Histone modifications, DNA methylation, and non-coding RNAs are considered to be the main epigenetic factors. Non-coding RNAs (ncRNAs) refers to ribonucleic acid (RNA) molecules that do not code for a protein. They cover a huge number of RNA classes and perform a wide range of biological functions such as regulating gene expression, protecting the genome from exogenous DNA, and directing DNA synthesis. One such class of ncRNAs that has been extensively studied are long non-coding RNAs (lncRNAs). The important role of lncRNAs in the formation and maintenance of normal homeostasis of biological systems, as well as participation in many pathological processes, has been proven. The results of recent studies indicate the importance of lncRNAs in lipid and carbohydrate metabolism. Modifications of lncRNAs expression can lead to disruption of biological processes in tissues, including fat and protein, such as adipocyte proliferation and differentiation, inflammation, and insulin resistance. Further study of lncRNAs made it possible to partly determine the regulatory mechanisms underlying the formation of an imbalance in carbohydrate and fat metabolism individually and in their relationship, and the degree of interaction between different types of cells involved in this process. This review will focus on the function of lncRNAs and its relation to hepatic carbohydrate and fat metabolism and related diseases in order to elucidate the underlying mechanisms and prospects for studies with lncRNAs.
Collapse
|
15
|
Regulatory Role of Fatty Acid Metabolism-Related Long Noncoding RNA in Prostate Cancer: A Computational Biology Study Analysis. JOURNAL OF ONCOLOGY 2023; 2023:9736073. [PMID: 36824662 PMCID: PMC9943624 DOI: 10.1155/2023/9736073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
In elderly men, prostate cancer is a leading cause of death. Tumor cells require more energy to progress than normal cells, and this energy is mainly dependent on the large amount of ATP support generated by lipid metabolism. Therefore, in this study, we focused on long noncoding RNAs related to lipid metabolism in prostate cancer to discover the biological mechanisms of lipid metabolism regulation. The TCGA-PRAD cohort was used in this study for computational biology analysis. In lipid metabolism biological pathways, 1959 long noncoding RNAs were identified by Pearson correlation coefficient analysis of protein-coding genes, then univariate regression with P values fewer than 0.05. We further identified 784 lncRNAs that were lipid metabolism-related lncRNAs considered to have prognostic value for disease-free survival. Subsequently, we constructed two lncRNA expression patterns of lipid metabolism based on these lncRNAs by nonnegative matrix dimensionality reduction. These two expression patterns showed significant differences in disease-free survival curves for those diagnosed with prostate cancer. We found significant differences in mRNA surveillance pathway and mRNA processing between C1 and C2 groups based on the WGCNA method to explore the biological characteristics of these two expression patterns. Finally, we constructed a disease-free survival (PFS) model based on these lncRNAs. The results identified lncRNAs involved in lipid metabolism and revealed differences in their expression patterns. Additionally, the results offer candidate ideas and approaches concerning the precision treatment of prostate cancer by studying lipid metabolism by candidate long noncoding RNAs.
Collapse
|
16
|
Sangeeth A, Malleswarapu M, Mishra A, Gutti RK. Long Non-Coding RNAs as Cellular Metabolism and Haematopoiesis Regulators. J Pharmacol Exp Ther 2023; 384:79-91. [PMID: 35667690 DOI: 10.1124/jpet.121.001120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a category of non-coding RNAs (ncRNAs) that are more than 200 bases long and play major regulatory roles in a wide range of biologic processes, including hematopoeisis and metabolism. Metabolism in cells is an immensely complex process that involves the interconnection and unification of numerous signaling pathways. A growing body of affirmation marks that lncRNAs do participate in metabolism, both directly and indirectly, via metabolic regulation of enzymes and signaling pathways, respectively. The complexities are disclosed by the latest studies demonstrating how lncRNAs could indeed alter tissue-specific metabolism. We have entered a new realm for discovery that is both intimidating and intriguing. Understanding the different functions of lncRNAs in various cellular pathways aids in the advancement of predictive and therapeutic capabilities for a wide variety of myelodysplastic and metabolic disorders. This review has tried to give an overview of the different ncRNAs and their effects on hematopoiesis and metabolism. We have focused on the pathway of action of several lncRNAs and have also delved into their prognostic value. Their use as biomarkers and possible therapeutic targets has also been discussed. SIGNIFICANCE STATEMENT: This review has tried to give an overview of the different ncRNAs and their effects on hematopoiesis and metabolism. The pathway of action of several lncRNAs and their prognostic value was discussed. Their use as biomarkers and possible therapeutic targets has also been elaborated.
Collapse
Affiliation(s)
- Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Amit Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| |
Collapse
|
17
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
LINC01468 drives NAFLD-HCC progression through CUL4A-linked degradation of SHIP2. Cell Death Dis 2022; 8:449. [DOI: 10.1038/s41420-022-01234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
AbstractAccumulating evidence suggests that long noncoding RNAs (lncRNAs) are deregulated in hepatocellular carcinoma (HCC) and play a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the current understanding of the role of lncRNAs in NAFLD-associated HCC is limited. In this study, transcriptomic profiling analysis of three paired human liver samples from patients with NAFLD-driven HCC and adjacent samples showed that LINC01468 expression was significantly upregulated. In vitro and in vivo gain- and loss-of-function experiments showed that LINC01468 promotes the proliferation of HCC cells through lipogenesis. Mechanistically, LINC01468 binds SHIP2 and promotes cullin 4 A (CUL4A)-linked ubiquitin degradation, thereby activating the PI3K/AKT/mTOR signaling pathway, resulting in the promotion of de novo lipid biosynthesis and HCC progression. Importantly, the SHIP2 inhibitor reversed the sorafenib resistance induced by LINC01468 overexpression. Moreover, ALKBH5-mediated N6-methyladenosine (m6A) modification led to stabilization and upregulation of LINC01468 RNA. Taken together, the findings indicated a novel mechanism by which LINC01468-mediated lipogenesis promotes HCC progression through CUL4A-linked degradation of SHIP2. LINC01468 acts as a driver of HCC progression from NAFLD, highlights the potential of the LINC01468-SHIP2 axis as a therapeutic target for HCC.
Collapse
|
19
|
Wang G, Sun C, Xie B, Wang T, Liu H, Chen X, Huang Q, Zhang C, Li T, Deng W. Cordyceps guangdongensis lipid-lowering formula alleviates fat and lipid accumulation by modulating gut microbiota and short-chain fatty acids in high-fat diet mice. Front Nutr 2022; 9:1038740. [PMID: 36407511 PMCID: PMC9667106 DOI: 10.3389/fnut.2022.1038740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2023] Open
Abstract
Obesity has caused serious health and economic problems in the world. Cordyceps guangdongensis is a high-value macrofungus with broad application potential in the food and bio-medicine industry. This current study aimed to estimate the role of C. guangdongensis lipid-lowering compound formula (CGLC) in regulating fat and lipid accumulation, gut microbiota balance, short-chain fatty acid (SCFA) contents, and expression levels of genes involved in fat and lipid metabolism in high-fat diet (HFD) mice. The results showed that CGLC intervention markedly reduced body weights and fat accumulation in HFD mice, improved glucose tolerance and blood lipid levels, and decreased lipid droplet accumulation and fat vacuole levels in the liver. CGLC decreased the ratio of Firmicutes and Bacteroidetes and increased the relative abundances of Bacteroides (B. acidifaciens) and Bifidobacterium (B. pseudolongum). In addition, CGLC treatment significantly promoted the production of SCFAs and regulated the relative expression levels of genes involved in fat and lipid metabolism in liver. Association analysis showed that several species of Bacteroides and most of SCFAs were significantly associated with serum lipid indicators. These results suggested that CGLC is a novel candidate formulation for treating obesity and non-alcohol fatty liver by regulating gut microbiota, SCFAs, and genes involved in fat and lipid metabolism.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengyuan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Bojun Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xianglian Chen
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Qiuju Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
20
|
Qian G, Morral N. Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis. Hum Mol Genet 2022; 31:R4-R21. [PMID: 35417923 DOI: 10.1093/hmg/ddac088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity and type 2 diabetes are major contributors to the growing prevalence of non-alcoholic fatty liver disease (NAFLD), a chronic liver condition characterized by the accumulation of fat in individuals without a significant amount of alcohol intake. The NAFLD spectrum ranges from simple steatosis (early stages, known as NAFL) to non-alcoholic steatohepatitis, which can progress to fibrosis and cirrhosis or hepatocellular carcinoma. Obesity, type 2 diabetes and NAFLD are strongly associated with insulin resistance. In the liver, insulin resistance increases hepatic glucose output, lipogenesis and very-low-density lipoprotein secretion, leading to a combination of hyperglycemia and hypertriglyceridemia. Aberrant gene expression is a hallmark of insulin resistance. Non-coding RNAs (ncRNAs) have emerged as prominent regulators of gene expression that operate at the transcriptional, post-transcriptional and post-translational levels. In the last couple of decades, a wealth of studies have provided evidence that most processes of liver metabolism are orchestrated by ncRNAs. This review focuses on the role of microRNAs, long non-coding RNAs and circular RNAs as coordinators of hepatic function, as well as the current understanding on how their dysregulation contributes to abnormal metabolism and pathophysiology in animal models of insulin resistance and NAFLD. Moreover, ncRNAs are emerging as useful biomarkers that may be able to discriminate between the different stages of NAFLD. The potential of ncRNAs as therapeutic drugs for NAFLD treatment and as biomarkers is discussed.
Collapse
Affiliation(s)
- Gene Qian
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Chen E, Yi J, Jiang J, Zou Z, Mo Y, Ren Q, Lin Z, Lu Y, Zhang J, Liu J. Identification and validation of a fatty acid metabolism-related lncRNA signature as a predictor for prognosis and immunotherapy in patients with liver cancer. BMC Cancer 2022; 22:1037. [PMID: 36195833 PMCID: PMC9531484 DOI: 10.1186/s12885-022-10122-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Fatty acid (FA) metabolism is considered the emerging cause of tumor development and metastasis, driving poor prognosis. Long non-coding RNAs (lncRNAs) are closely related to cancer progression and play important roles in FA metabolism. Thus, the discovery of FA metabolism-related lncRNA signatures to predict outcome and immunotherapy response is critical in improving the survival of patients with hepatocellular carcinoma (HCC). Methods FA metabolism scores and a FA metabolism-related lncRNA signature were constructed using a single-sample gene set enrichment analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. “ConsensusClusterPlus” was used to screen molecular subtypes. Chi-squared test and Fisher’s exact test were applied to explore the relationship between clinical, genomic mutation characteristics and subtypes. Transcription factor (TF) activity scores, cellular distributions, immune cell infiltration, and immunotherapy response were employed to investigate the functions of FA metabolism-related lncRNA signatures. FA metabolism microarray and western blot were performed to detect the biological function of candidate lncRNAs. Results A total of 70 lncRNAs that highly correlated with FA metabolism scores in two cohorts were used to construct two distinct clusters. Patients in cluster 2 had lower FA metabolism scores and worse survival than those in cluster 1. Patients in cluster 2 exhibited a high frequency of DNA damage, gene mutations, oncogenic signaling such as epithelial-to-mesenchymal transition, and a high degree of immune cell infiltration. Moreover, the lncRNA signature could predict the effects of immunotherapy in patients with HCC. Furthermore, three lncRNAs (SNHG1, LINC00261, and SNHG7) were identified that were highly correlated with FA metabolism. Additionally, SNHG1 and SNHG7 were found to regulate various FA metabolism-related genes and ferroptosis-related genes in vitro experiments. GSEA analysis revealed that SNHG1 and SNHG7 promote fatty acid beta-oxidation. SNHG1 and SNHG7 silencing dramatically reduced lipid droplets in HCC cells. Many immune-infiltration genes and TFs were overexpressed in HCC tissues with SNHG1 and SNHG7 high expression. Conclusions A novel molecular model of FA metabolism-related lncRNAs was developed, which has significantly prognostic potential in HCC diagnosis and aids in clinical decision making. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10122-4.
Collapse
Affiliation(s)
- Erbao Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jing Yi
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jing Jiang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Qingqi Ren
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Zewei Lin
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Jikui Liu
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
22
|
Zaiou M. Noncoding RNAs as additional mediators of epigenetic regulation in nonalcoholic fatty liver disease. World J Gastroenterol 2022; 28:5111-5128. [PMID: 36188722 PMCID: PMC9516672 DOI: 10.3748/wjg.v28.i35.5111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common cause of chronic liver disorder worldwide. It represents a spectrum that includes a continuum of different clinical entities ranging from simple steatosis to nonalcoholic steatohepatitis, which can evolve to cirrhosis and in some cases to hepatocellular carcinoma, ultimately leading to liver failure. The pathogenesis of NAFLD and the mechanisms underlying its progression to more pathological stages are not completely understood. Besides genetic factors, evidence indicates that epigenetic mechanisms occurring in response to environmental stimuli also contribute to the disease risk. Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are one of the epigenetic factors that play key regulatory roles in the development of NAFLD. As the field of ncRNAs is rapidly evolving, the present review aims to explore the current state of knowledge on the roles of these RNA species in the pathogenesis of NAFLD, highlight relevant mechanisms by which some ncRNAs can modulate regulatory networks implicated in NAFLD, and discuss key challenges and future directions facing current research in the hopes of developing ncRNAs as next-generation non-invasive diagnostics and therapies in NAFLD and subsequent progression to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean Lamour, UMR CNRS 7198, CNRS, University of Lorraine, Nancy 54011, France
| |
Collapse
|
23
|
El Sobky SA, Aboud NK, El Assaly NM, Fawzy IO, El-Ekiaby N, Abdelaziz AI. Regulation of lipid droplet (LD) formation in hepatocytes via regulation of SREBP1c by non-coding RNAs. Front Med (Lausanne) 2022; 9:903856. [PMID: 36203751 PMCID: PMC9530594 DOI: 10.3389/fmed.2022.903856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Increased de novo lipogenesis (DNL) is one of the key factors contributing to fat accumulation and non-alcoholic fatty liver disease (NAFLD). Among the critical transcription factors (TFs) regulating DNL is mTOR and its downstream lipogenic TF, SREBP1c. In recent years, it has been established that non-coding RNAs (ncRNAs) play role in both biological processes and disease pathogenesis. Our group has previously characterized microRNAs that can target and regulate the expression of both mTOR and SREBP1c. Accordingly, this study aimed to broaden our understanding of the role of ncRNAs in regulating the mTOR/SREBP1c axis to elucidate the role of the non-coding transcriptome in DNL and lipid droplet (LD) formation. Hence, short ncRNA, miR-615-5p, and long non-coding RNA (lncRNA), H19, were chosen as they were previously proven to target mTOR by our group and in the published literature, respectively. Methodology Huh-7 cells were treated with 800 μM oleic acid (OA) to promote LD formation. Transfection of miR-615-5p mimics or H19 over-expression vectors was performed, followed by the measurement of their downstream targets, mTOR and SREBP, on the mRNA level by quantitative real-time PCR (qRT-PCR), and on the protein level by Western blot. To determine the functional impact of miR-615-5p and H19 on LD formation and triglyceride (TG) accumulation, post-transfection LDs were stained, imaged, and characterized, and TGs were extracted and quantified. Results miR-615-5p was able to reduce mTOR and SREBP1c significantly on both the mRNA and protein levels compared to control cells, while H19 caused a reduction of both targets on the protein level only. Both miR-615-5p and H19 were able to significantly reduce the LD count and total area, as well as TG levels compared to control cells. Conclusion To conclude, this study shows, for the first time, the impact of miR-615-5p and H19 on the mTOR/SREBP1c axis, and thus, their functional impact on LDs and TG accumulation. These findings might pave the way for using ncRNAs as potential therapeutic targets in the management of fatty liver.
Collapse
Affiliation(s)
| | | | - Nihal M. El Assaly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Injie O. Fawzy
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed I. Abdelaziz
- School of Medicine, Newgiza University (NGU), Giza, Egypt
- *Correspondence: Ahmed I. Abdelaziz
| |
Collapse
|
24
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Chu K, Zhao N, Hu X, Feng R, Zhang L, Wang G, Li W, Liu L. LncNONMMUG027912 alleviates lipid accumulation through AMPKα/mTOR/SREBP1C axis in nonalcoholic fatty liver. Biochem Biophys Res Commun 2022; 618:8-14. [PMID: 35714571 DOI: 10.1016/j.bbrc.2022.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Various metabolic diseases are closely related to lipid metabolism disorders, but the regulatory effect of long noncoding RNAs (lncRNAs) on the function of lipids has been poorly elucidated. Previous our work has found that lncNONMMUG027912 (abbreviated as lnc027912) involved in cholesterol metabolism. Here, we further explored the novel function of lipid metabolism-associated lnc027912. We found that upregulated lnc027912 in AML12 cells treated with oleic acid (OA) and palmitic acid (PA) showed a significant decrease in lipid accumulation, triglyceride (TG) levels, and lipid biosynthesis genes. In terms of regulatory mechanisms, lnc027912 increased the expression of p-AMPKα, inhibited p-mTOR levels, decreased the expression of SREBP1C in nuclei, decreased the promoter activity of SREBP1C, and inhibited the expression of lipid synthesis genes. Most importantly, lnc027912 could reduce lipid accumulation and liver inflammation through AMPKα/mTOR signal axis in nonalcoholic fatty liver disease (NAFLD) mice model. Altogether, our study revealed a novel molecular mechanism of lnc027912 in lipid metabolism through the AMPKα/mTOR/SREBP1C signaling axis and highlights the potential of lnc027912 as a new treatment target for lipid disorder diseases (such as NAFLD).
Collapse
Affiliation(s)
- Kaifei Chu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Niannian Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Feng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ganglin Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
26
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
27
|
Hennessy EJ. LncRNAs and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:71-95. [PMID: 35220566 DOI: 10.1007/978-3-030-92034-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- University of Pennsylvania, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics (ITMAT), Philadelphia, PA, USA.
| |
Collapse
|
28
|
Ghanam AR, Bryant WB, Miano JM. Of mice and human-specific long noncoding RNAs. Mamm Genome 2022; 33:281-292. [PMID: 35106622 PMCID: PMC8806012 DOI: 10.1007/s00335-022-09943-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
The number of human LncRNAs has now exceeded all known protein-coding genes. Most studies of human LncRNAs have been conducted in cell culture systems where various mechanisms of action have been worked out. On the other hand, efforts to elucidate the function of human LncRNAs in an in vivo setting have been limited. In this brief review, we highlight some strengths and weaknesses of studying human LncRNAs in the mouse. Special consideration is given to bacterial artificial chromosome transgenesis and genome editing. The integration of these technical innovations offers an unprecedented opportunity to complement and extend the expansive literature of cell culture models for the study of human LncRNAs. Two different examples of how BAC transgenesis and genome editing can be leveraged to gain insight into human LncRNA regulation and function in mice are presented: the random integration of a vascular cell-enriched LncRNA and a targeted approach for a new LncRNA immediately upstream of the ACE2 gene, which encodes the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent underlying the coronavirus disease-19 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Amr R Ghanam
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA
| | - William B Bryant
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA
| | - Joseph M Miano
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA.
| |
Collapse
|
29
|
HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates foam cell formation in atherosclerosis. Int J Cardiol 2022; 346:53-61. [PMID: 34780888 DOI: 10.1016/j.ijcard.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/17/2021] [Accepted: 11/07/2021] [Indexed: 01/10/2023]
Abstract
The abnormally expressed long non-coding RNAs (lncRNAs) exert an important part in the occurrence and development of cardiovascular disease, however, their roles in atherosclerosis (AS) remains unknown. This work focused on investigating the role of HAND2 Antisense RNA 1 (HAND2-AS1) and the related mechanism. As a result, SIRT1 and HAND2-AS1 expression significantly decreased in plasma from patients with atherosclerotic plaques and macrophages originating from THP-1 induced by ox-LDL. Lentivirus mediated HAND2-AS1 overexpression markedly inhibited lipid absorption and deposition within foam cells originating from THP-1 macrophages. HAND2-AS1 endogenously sponged miR-128 and suppressed its activity via sequence complementation. Furthermore, HAND2-AS1 enhanced the expression of SIRT1 via binding to miR-128, thereby promoting ABCA1/G1 expression. Altogether, HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates the formation of foam cells within AS. Besides, HAND2-AS1 may be used to be the possible anti-AS therapeutic target.
Collapse
|
30
|
Zhu B, Chan SL, Li J, Li K, Wu H, Cui K, Chen H. Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:742382. [PMID: 34557535 PMCID: PMC8452937 DOI: 10.3389/fcvm.2021.742382] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jack Li
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Li
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
31
|
Li X, Yang L, Li J, Lin L, Zheng G. A flavonoid-rich Smilax china L. extract prevents obesity by upregulating the adiponectin-receptor/AMPK signalling pathway and modulating the gut microbiota in mice. Food Funct 2021; 12:5862-5875. [PMID: 34019043 DOI: 10.1039/d1fo00282a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the effects of Smilax china L. flavonoid (SCF) on obesity and changes in gut microbiota high-fat/high-sucrose (HFHS)-fed mice. Male C57BL/6 mice fed either a normal-chow (NC) or a HFHS diet were treated with SCF for 12 weeks. The effect of SCF on the composition of gut microbiota was assessed by 16S rDNA sequencing. SCFA levels in the caecum were quantified by GC-MS. SCF supplementation alleviated the body weight gain, fat accumulation, serum lipid parameters, and hepatic steatosis and improved glucose homeostasis. SCF significantly increased plasma adiponectin level, adiponectin-receptor-gene (AdipoR1 and AdipoR2) expression in the liver, activated AMPKα, downregulated the expression of SREBP1-c, FAS, and ACCα, and upregulated the expression of PPARα, CPT-1α, and UCP-1. The anti-obesity effects of SCF might be through upregulation of adiponectin-receptor/AMPK signalling to improve lipid metabolism. SCF reversed HFHS-induced dysbiosis of gut microbiota and decreased SCFA production in the caecum, thus reducing energy absorption and leading to loss of body weight. Spearman's correlation analysis revealed significant correlations between obesity phenotypes, SCFA levels, and changes in gut microbiota. The results showed that SCF may be an effective dietary supplement that is useful for suppressing the development of obesity and associated disorders.
Collapse
Affiliation(s)
- Xin Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
32
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs. Anim Biosci 2021; 35:115-125. [PMID: 34289582 PMCID: PMC8738936 DOI: 10.5713/ab.21.0092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Intramuscular fat (IMF) is a critical economic indicator of pork quality. Studies on IMF among different pig breeds have been performed via high-throughput sequencing, but comparisons within the same pig breed remain unreported. Methods This study was performed to explore the gene profile and identify candidate long noncoding RNA (lncRNAs) and mRNAs associated with IMF deposition among Laiwu pigs with different IMF contents. Based on the longissimus dorsi muscle IMF content, eight pigs from the same breed and management were selected and divided into two groups: a high IMF (>12%, H) and low IMF group (<5%, L). Whole-transcriptome sequencing was performed to explore the differentially expressed (DE) genes between these two groups. Results The IMF content varied greatly among Laiwu pig individuals (2.17% to 13.93%). Seventeen DE lncRNAs (11 upregulated and 6 downregulated) and 180 mRNAs (112 upregulated and 68 downregulated) were found. Gene Ontology analysis indicated that the following biological processes played an important role in IMF deposition: fatty acid and lipid biosynthetic processes; the extracellular signal-regulated kinase cascade; and white fat cell differentiation. In addition, the peroxisome proliferator-activated receptor, phosphatidylinositol-3-kinase-protein kinase B, and mammalian target of rapamycin pathways were enriched in the pathway analysis. Intersection analysis of the target genes of DE lncRNAs and mRNAs revealed seven candidate genes associated with IMF accumulation. Five DE lncRNAs and 20 DE mRNAs based on the pig quantitative trait locus database were identified and shown to be related to fat deposition. The expression of five DE lncRNAs and mRNAs was verified by quantitative real time polymerase chain reaction (qRT-PCR). The results of qRT-PCR and RNA-sequencing were consistent. Conclusion These results demonstrated that the different IMF contents among pig individuals may be due to the DE lncRNAs and mRNAs associated with lipid droplets and fat deposition.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| |
Collapse
|
33
|
Zhang B, Xu S, Liu J, Xie Y, Xiaobo S. Long Noncoding RNAs: Novel Important Players in Adipocyte Lipid Metabolism and Derivative Diseases. Front Physiol 2021; 12:691824. [PMID: 34168572 PMCID: PMC8217837 DOI: 10.3389/fphys.2021.691824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023] Open
Abstract
Obesity, a global public health issue, is characterized by excessive adiposity and is strongly related to some chronic diseases including cardiovascular diseases and diabetes. Extra energy intake-induced adipogenesis involves various transcription factors and long noncoding RNAs (lncRNAs) that control lipogenic mRNA expression. Currently, lncRNAs draw much attention for their contribution to adipogenesis and adipose tissue function. Increasing evidence also manifests the pivotal role of lncRNAs in modulating white, brown, and beige adipose tissue development and affecting the progression of the diseases induced by adipose dysfunction. The aim of this review is to summarize the roles of lncRNAs in adipose tissue development and obesity-caused diseases to provide novel drug targets for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Saijun Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinyan Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sun Xiaobo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
González-Ortiz A, Galindo-Hernández O, Hernández-Acevedo GN, Hurtado-Ureta G, García-González V. Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. J Cancer 2021; 12:4307-4321. [PMID: 34093831 PMCID: PMC8176427 DOI: 10.7150/jca.54637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
ApoB-lipoproteins and their components modulate intracellular metabolism and have been associated with the development of neoplastic phenomena, such as proliferation, anchorage-independent growth, epithelial-mesenchymal transition, and cancer invasion. In cancer cells, the modulation of targets that regulate cholesterol metabolism, such as synthesis de novo, endocytosis, and oxidation, are contributing factors to cancer development. While mechanisms associated with sterol regulatory element-binding protein 2 (SREBP-2)/mevalonate, the low-density lipoprotein receptor (LDL-R) and liver X receptor (LXR) have been linked with tumor growth; metabolites derived from cholesterol-oxidation, such as oxysterols and epoxy-cholesterols, also have been described as tumor processes-inducers. From this notion, we perform an analysis of the role of lipoproteins, their association with intracellular cholesterol metabolism, and the impact of these conditions on breast cancer development, mechanisms that can be shared during atherogenesis promoted mainly by LDL. Pathways connecting plasma dyslipidemias in conjunction with the effect of cholesterol-derived metabolites on intracellular mechanisms and cellular plasticity phenomena could provide new approaches to elucidate the triggering factors of carcinogenesis, conditions that could be considered in the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, México
| |
Collapse
|
35
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. The role of long noncoding RNAs in livestock adipose tissue deposition - A review. Anim Biosci 2021; 34:1089-1099. [PMID: 33902176 PMCID: PMC8255878 DOI: 10.5713/ab.21.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
With the development of sequencing technology, numerous, long noncoding RNAs (lncRNAs) have been discovered and annotated. Increasing evidence has shown that lncRNAs play an essential role in regulating many biological and pathological processes, especially in cancer. However, there have been few studies on the roles of lncRNAs in livestock production. In animal products, meat quality and lean percentage are vital economic traits closely related to adipose tissue deposition. However, adipose tissue accumulation is also a pivotal contributor to obesity, diabetes, atherosclerosis, and many other diseases, as demonstrated by human studies. In livestock production, the mechanism by which lncRNAs regulate adipose tissue deposition is still unclear. In addition, the phenomenon that different animal species have different adipose tissue accumulation abilities is not well understood. In this review, we summarize the characteristics of lncRNAs and their four functional archetypes and review the current knowledge about lncRNA functions in adipose tissue deposition in livestock species. This review could provide theoretical significance to explore the functional mechanisms of lncRNAs in adipose tissue accumulation in animals.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
36
|
Deng Y, Tu Y, Lao S, Wu M, Yin H, Wang L, Liao W. The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Crit Rev Food Sci Nutr 2021; 62:7591-7614. [PMID: 33905288 DOI: 10.1080/10408398.2021.1915745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cardiovascular diseases (CVDs) have been ranked as the leading cause of death in the world, whose global incidence is increasing year by year. Citrus, one of the most popular fruits in the world, is rich in flavonoids. Citrus flavonoids attract special attention due to a variety of biological activities, especially in the prevention and treatment of CVDs. The research progress of citrus flavonoids on CVDs have been constantly updated, but relatively fragmented, which needed to be systematically summarized. Hence, the recent research about citrus flavonoids and CVDs were reviewed, including the types and in vivo processes of citrus flavonoids, epidemiology study and mechanism on prevention and treatment of CVDs by citrus flavonoids. This review would provide a theoretical basis for the citrus flavonoids research and a new idea in the citrus industry development and application.
Collapse
Affiliation(s)
- Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yali Tu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hantong Yin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Linqing Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:22. [PMID: 33622377 PMCID: PMC7903707 DOI: 10.1186/s12986-021-00552-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
38
|
Zhang D, Xia T, Li H, Li Z, Sun G, Li G, Tian Y, Liu X, Xu D, Kang X. Estrogen enhances the expression of a growth-associated long noncoding RNA in chicken liver via ERα. Br Poult Sci 2021; 62:336-345. [PMID: 33390024 DOI: 10.1080/00071668.2020.1868405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The long noncoding RNA lncGLM is significantly differentially expressed in the livers of peak-laying hens compared with that in the livers of pre-laying hens, but its potential biological role and expression regulation are unclear.2. To explore the potential biological function of lncGLM, single nucleotide polymorphism (SNP) detection and association analysis were carried out in the Gushi×Anka F2 resource population.3. The tissues and spatiotemporal expression characteristics of lncGLM were analysed by real-time quantitative PCR. The effects of 17β-oestradiol on the expression of lncGLM expression were analysed through in vitro and in vivo experiments.4. The results showed that a g.19069338 T > C SNP was present in lncGLM. Association analysis revealed that lncGLM was significantly associated with body slanting length at 12 weeks, body weight at 12 weeks, shank length at four weeks, chest depth at eight weeks, pelvic width at 12 weeks, eviscerated weight, head weight, pancreas weight, pectoralis weight, leg muscle weight, muscular stomach weight rate, pancreas weight rate, carcase weight, aspartate aminotransferase, creatinine and pectoral muscle water loss rate.5. The expression of lncGLM in the liver was higher than that in other sampled tissues. In addition, the expression of lncGLM in the liver was significantly higher in the peak-laying period than at the pre-laying period. Both in vitro and in vivo experiments showed that lncGLM expression was regulated by 17β-oestradiol via oestrogen receptor alpha (ER-α). These results demonstrated that the chicken lncGLM gene is highly expressed in liver tissue and regulated by oestrogen through ER-α.
Collapse
Affiliation(s)
- D Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - T Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - H Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| | - Z Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| | - G Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| | - G Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| | - Y Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| | - X Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| | - D Xu
- Henan Liujiang Ecological Animal Husbandry Co., Ltd, Hebi, China
| | - X Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
39
|
Functions of nuclear receptors SUMOylation. Clin Chim Acta 2021; 516:27-33. [PMID: 33476589 DOI: 10.1016/j.cca.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
The nuclear receptor superfamily is a family of ligand-activated transcription factors that play a key role in cell metabolism and human diseases. They can be modified after translation, such as acetylation, ubiquitination, phosphorylation and SUMOylation. Crosstalk between SUMO and ubiquitin, phosphorylation and acetylation regulates a variety of metabolic and physiological activities. Nuclear receptors play an important role in lipid metabolism, inflammation, bile acid homeostasis and autophagy. SUMOylation nuclear receptors can regulate their function and affect cell metabolism. It also provides a potential therapeutic target for atherosclerosis, tumor and other metabolic and inflammation-related diseases. This review focuses on the function of SUMOylation nuclear receptors.
Collapse
|
40
|
Atorvastatin Increases the Expression of Long Non-Coding RNAs ARSR and CHROME in Hypercholesterolemic Patients: A Pilot Study. Pharmaceuticals (Basel) 2020; 13:ph13110382. [PMID: 33198086 PMCID: PMC7696809 DOI: 10.3390/ph13110382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Atorvastatin is extensively used to treat hypercholesterolemia. However, the wide interindividual variability observed in response to this drug still needs further elucidation. Nowadays, the biology of long non-coding RNAs (lncRNAs) is better understood, and some of these molecules have been related to cholesterol metabolism. Therefore, they could provide additional information on variability in response to statins. The objective of this research was to evaluate the effect of atorvastatin on three lncRNAs (lncRNA ARSR: Activated in renal cell carcinoma (RCC) with sunitinib resistance, ENST00000424980; lncRNA LASER: lipid associated single nucleotide polymorphism locus, ENSG00000237937; and lncRNA CHROME: cholesterol homeostasis regulator of miRNA expression, ENSG00000223960) associated with genes involved in cholesterol metabolism as predictors of lipid-lowering therapy performance. Twenty hypercholesterolemic patients were treated for four weeks with atorvastatin (20 mg/day). The lipid profile was determined before and after drug administration using conventional assays. The expression of lncRNAs was assessed in peripheral blood samples by RT-qPCR. As expected, atorvastatin improved the lipid profile, decreasing total cholesterol, LDL-C, and the TC/HDL-C ratio (p < 0.0001) while increasing the expression of lncRNAs ARSR and CHROME (p < 0.0001) upon completion of treatment. LASER did not show significant differences among the groups (p = 0.50). Our results indicate that atorvastatin modulates the expression of cholesterol-related lncRNAs differentially, suggesting that these molecules play a role in the variability of response to this drug; however, additional studies are needed to disclose the implication of this differential regulation on statin response.
Collapse
|
41
|
Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Mol Cell Biochem 2020; 476:993-1003. [PMID: 33179122 DOI: 10.1007/s11010-020-03965-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the world's most recognized and notorious cause of death. It is known that increased triglyceride-rich lipoproteins (TRLs) and remnants of triglyceride-rich lipoproteins (RLP) are the major risk factor for CVD. Furthermore, hypertriglyceridemia commonly leads to a reduction in HDL and an increase in atherogenic small dense low-density lipoprotein (sdLDL or LDL-III) levels. Thus, the evidence shows that Ω-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a beneficial effect on CVD through reprogramming of TRL metabolism, reducing inflammatory mediators (cytokines and leukotrienes), and modulation of cell adhesion molecules. Therefore, the purpose of this review is to provide the molecular mechanism related to the beneficial effect of Ω-3 PUFA on the lowering of plasma TAG levels and other atherogenic lipoproteins. Taking this into account, this study also provides the TRL lowering and anti-inflammatory mechanism of Ω-3 PUFA metabolites such as RvE1 and RvD2 as a cardioprotective function.
Collapse
|
42
|
Ghafouri-Fard S, Shoorei H, Taheri M. The Role of Long Non-coding RNAs in Cancer Metabolism: A Concise Review. Front Oncol 2020; 10:555825. [PMID: 33123468 PMCID: PMC7573295 DOI: 10.3389/fonc.2020.555825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of metabolic pathways in cancer cells is regarded as a hallmark of cancer. Identification of these abnormalities in cancer cells dates back to more than six decades, far before discovery of oncogenes and tumor suppressor genes. Based on the importance of these pathways, several researchers have aimed at modulation of these functions to intervene with the pathogenic course of cancer. Numerous genes have been shown to participate in the regulation of metabolic pathways, thus aberrant expression of these genes can be involved in the pathogenesis of cancer. The recent decade has experienced a significant attention toward the role of long non-coding RNAs (lncRNAs) in the biological functions. These transcripts regulate expression of genes at several levels, therefore influencing the activity of cancer-related pathways. Among the most affected pathways are those modulating glucose homeostasis, as well as amino acid and lipid metabolism. Moreover, critical roles of lncRNAs in regulation of mitochondrial function potentiate these transcripts as novel targets for cancer treatment. In the current review, we summarize the most recent literature regarding the role of lncRNAs in the cancer metabolism and their significance in the design of therapeutic modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Guo R, Chen Y, Borgard H, Jijiwa M, Nasu M, He M, Deng Y. The Function and Mechanism of Lipid Molecules and Their Roles in The Diagnosis and Prognosis of Breast Cancer. Molecules 2020; 25:E4864. [PMID: 33096860 PMCID: PMC7588012 DOI: 10.3390/molecules25204864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell structure and play important roles in signal transduction between cells and body metabolism. With the continuous development and innovation of lipidomics technology, many studies have shown that the relationship between lipids and cancer is steadily increasing, involving cancer occurrence, proliferation, migration, and apoptosis. Breast cancer has seriously affected the safety and quality of life of human beings worldwide and has become a significant public health problem in modern society, with an especially high incidence among women. Therefore, the issue has inspired scientific researchers to study the link between lipids and breast cancer. This article reviews the research progress of lipidomics, the biological characteristics of lipid molecules, and the relationship between some lipids and cancer drug resistance. Furthermore, this work summarizes the lipid molecules related to breast cancer diagnosis and prognosis, and then it clarifies their impact on the occurrence and development of breast cancer The discussion revolves around the current research hotspot long-chain non-coding RNAs (lncRNAs), summarizes and explains their impact on tumor lipid metabolism, and provides more scientific basis for future cancer research studies.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Qingxiu District, Nanning 530021, China;
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Yu Chen
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa,1955 East West Road, Agricultural Sciences, Honolulu, HI 96822, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Masaki Nasu
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Min He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Qingxiu District, Nanning 530021, China;
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| |
Collapse
|
44
|
Wang Y, Xiao S, Zhou S, Zhang R, Liu H, Lin Y, Yu P. High Glucose Aggravates Cholesterol Accumulation in Glomerular Endothelial Cells Through the LXRs/LncRNAOR13C9/ABCA1 Regulatory Network. Front Physiol 2020; 11:552483. [PMID: 33192550 PMCID: PMC7604427 DOI: 10.3389/fphys.2020.552483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The underlying mechanisms by which diabetes and dyslipidemia contribute to diabetic nephropathy (DN) are not fully understood. In this study, we aimed to investigate the role of high glucose (HG) on intracellular cholesterol accumulation in glomerular endothelial cells (GEnCs) and its potential mechanism. METHODS Oil red O staining, RT-qPCR, Western blotting, and immunocytofluorescence analyses were used to determine cholesterol accumulation and the expressions of LXRs and ABCA1 in GEnCs under high cholesterol (HC) and/or HG conditions, and the effect of these treatments was compared to that of low glucose without adding cholesterol. LncRNA microarrays were used to identify a long non-coding RNA (LncRNA OR13C9), of which levels increased in cells treated with the LXR agonist, GW3965. Fluorescence in situ hybridization (FISH) was conducted to confirm subcellular localization of LncOR13C9 and a bioinformatics analysis was used to identify competing endogenous RNA (ceRNA) regulatory networks between LncOR13C9 and microRNA-23a-5p (miR-23a-5p). Gain and loss of function, rescue assay approaches, and dual-luciferase reporter assay were conducted to study interactions between LncOR13C9, miR-23a-5p, and ABCA1. RESULTS We showed that HG could decrease the response ability of GEnCs to cholesterol load, specifically that HG could downregulate LXRs expression in GEnCs under cholesterol load and that the decrease in LXRs expression suppressed ABCA1 expression and increased cholesterol accumulation. We focused on the targets of LXRs and identified a long non-coding RNA (LncOR13C9) that was downregulated in GEnCs grown in HG and HC conditions, compared with that grown in HC conditions. We speculated that LncRNAOR13C9 was important for LXRs to increase cholesterol efflux via ABCA1 under HC. Furthermore, using gain of function, loss of function, and rescue assay approaches, we showed that LncOR13C9 could regulate ABCA1 by inhibiting the action of miR-23a-5p in the LXR pathway. Furthermore, dual-luciferase reporter assay was conducted to study the interaction of LncOR13C9 with miR-23a-5p. CONCLUSION Overall, our study identified the LXRs/LncOR13C9/miR23A-5p/ABCA1 regulatory network in GEnCs, which may be helpful to better understand the effect of HG on cholesterol accumulation in GEnCs under cholesterol load and to explore new therapeutic tools for the management of DN patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
45
|
Cruz-Gil S, Fernández LP, Sánchez-Martínez R, Gómez de Cedrón M, Ramírez de Molina A. Non-Coding and Regulatory RNAs as Epigenetic Remodelers of Fatty Acid Homeostasis in Cancer. Cancers (Basel) 2020; 12:E2890. [PMID: 33050166 PMCID: PMC7599548 DOI: 10.3390/cancers12102890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells commonly display metabolic fluctuations. Together with the Warburg effect and the increased glutaminolysis, alterations in lipid metabolism homeostasis have been recognized as a hallmark of cancer. Highly proliferative cancer cells upregulate de novo synthesis of fatty acids (FAs) which are required to support tumor progression by exerting multiple roles including structural cell membrane composition, regulators of the intracellular redox homeostasis, ATP synthesis, intracellular cell signaling molecules, and extracellular mediators of the tumor microenvironment. Epigenetic modifications have been shown to play a crucial role in human development, but also in the initiation and progression of complex diseases. The study of epigenetic processes could help to design new integral strategies for the prevention and treatment of metabolic disorders including cancer. Herein, we first describe the main altered intracellular fatty acid processes to support cancer initiation and progression. Next, we focus on the most important regulatory and non-coding RNAs (small noncoding RNA-sncRNAs-long non-coding RNAs-lncRNAs-and other regulatory RNAs) which may target the altered fatty acids pathway in cancer.
Collapse
Affiliation(s)
| | | | | | - Marta Gómez de Cedrón
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-67-213-49-21 (A.R.d.M.); Fax: +34-91-830-59-61 (A.R.d.M.)
| | - Ana Ramírez de Molina
- Laboratory of Molecular Oncology, IMDEA-Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain; (S.C.-G.); (L.P.F.); (R.S.-M.)
| |
Collapse
|
46
|
Pichler M, Rodriguez-Aguayo C, Nam SY, Dragomir MP, Bayraktar R, Anfossi S, Knutsen E, Ivan C, Fuentes-Mattei E, Lee SK, Ling H, Ivkovic TC, Huang G, Huang L, Okugawa Y, Katayama H, Taguchi A, Bayraktar E, Bhattacharya R, Amero P, He WR, Tran AM, Vychytilova-Faltejskova P, Klec C, Bonilla DL, Zhang X, Kapitanovic S, Loncar B, Gafà R, Wang Z, Cristini V, Hanash S, Bar-Eli M, Lanza G, Slaby O, Goel A, Rigoutsos I, Lopez-Berestein G, Calin GA. Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut 2020; 69:1818-1831. [PMID: 31988194 PMCID: PMC7382985 DOI: 10.1136/gutjnl-2019-318903] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.
Collapse
Affiliation(s)
- Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Research Unit of Non-Coding RNA and Genome Editing, Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Su Youn Nam
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Gastroenterology Department, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang Kil Lee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Catela Ivkovic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Guoliang Huang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, Guangdong, P.R. China
| | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ayumu Taguchi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Ruixian He
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anh M. Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petra Vychytilova-Faltejskova
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Czech Republic
| | - Christiane Klec
- Research Unit of Non-Coding RNA and Genome Editing, Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Diana L. Bonilla
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Medical and Molecular Genetics Department, Indiana University, Indianapolis, IN, USA
| | - Sanja Kapitanovic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Bozo Loncar
- Department of Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Zhihui Wang
- Mathematics in Medicine Program, The Houston Methodist Research Institute HMRI R8-122, 6670 Bertner Ave, Houston, TX 77030
| | - Vittorio Cristini
- Mathematics in Medicine Program, The Houston Methodist Research Institute HMRI R8-122, 6670 Bertner Ave, Houston, TX 77030
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Lanza
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ondrej Slaby
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Czech Republic
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX,Present address: Department of Molecular Diagnostics, Therapeutics and Translational Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding authors George A. Calin, M.D., Ph.D. Professor, Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, P.O. Box 301429, Houston, Texas 77030-1429, and Gabriel Lopez-Berestein, M.D., Professor, Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, P.O. Box 301429, Houston, Texas 77030-1429,
| |
Collapse
|
47
|
Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, Moore K, Musunuru K, Wang DZ, Xiao J, Yin KJ. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e000062. [PMID: 32812806 DOI: 10.1161/hcg.0000000000000062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. METHODS The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. RESULTS Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. CONCLUSIONS The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
Collapse
MESH Headings
- American Heart Association
- Biomarkers/metabolism
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- United States
Collapse
|
48
|
Wang X, Guo S, Hu Y, Guo H, Zhang X, Yan Y, Ma J, Li Y, Wang H, He J, Ma R. Microarray analysis of long non-coding RNA expression profiles in low high-density lipoprotein cholesterol disease. Lipids Health Dis 2020; 19:175. [PMID: 32723322 PMCID: PMC7388226 DOI: 10.1186/s12944-020-01348-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Background Low high-density lipoprotein cholesterol (HDL-C) disease with unknown etiology has a high prevalence in the Xinjiang Kazak population. In this study, long noncoding RNAs (lncRNAs) that might play a role in low HDL-C disease were identified. Methods Plasma samples from 10 eligible individuals with low HDL disease and 10 individuals with normal HDL-C levels were collected. The lncRNA profiles for 20 Xinjiang Kazak individuals were measured using microarray analysis. Results Differentially expressed lncRNAs and mRNAs with fold-change values not less than 1.5 and FDR-adjusted P-values less than 0.05 were screened. Bioinformatic analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses, were used to determine relevant signaling pathways and predict potential target genes. In total, 381 lncRNAs and 370 mRNAs were differentially expressed based on microarray analysis. Compared with those in healthy individuals, several lncRNAs were upregulated or downregulated in patients with low HDL-C disease, among which TCONS_00006679 was most significantly upregulated and TCONS_00011823 was most significantly downregulated. GO and KEGG pathway analyses as well as co-expression networks of lncRNAs and mRNAs revealed that the platelet activation pathway and cardiovascular disease were associated with low HDL-C disease. Conclusions Potential target genes integrin beta-3 (ITGB3) and thromboxane A2 receptor (TBXA2R) were regulated by the lncRNAs AP001033.3–201 and AC068234.2–202, respectively. Both genes were associated with cardiovascular disease and were involved in the platelet activation pathway. AP001033.3–201 and AC068234.2–202 were associated with low HDL-C disease and could play a role in platelet activation in cardiovascular disease. These results reveal the potential etiology of dyslipidemia in the Xinjiang Kazakh population and lay the foundation for further validation using large sample sizes.
Collapse
Affiliation(s)
- Xinping Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Shuxia Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Yunhua Hu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Heng Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Xianghui Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yizhong Yan
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jiaolong Ma
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China.
| | - Rulin Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi, China.
| |
Collapse
|
49
|
LncPRYP4-3 serves as a novel diagnostic biomarker for dissecting subtypes of metabolic associated fatty liver disease by targeting RPS4Y2. Clin Exp Med 2020; 20:587-600. [PMID: 32494880 DOI: 10.1007/s10238-020-00636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Longitudinal studies have improved current diagnostics and management of metabolic associated fatty liver disease (MAFLD) patients by liver biopsy and therapeutic intervention, yet the deficiency of biomarker spectrum for dissecting subtypes largely hinders the symptomatic treatment. We originally enriched serum from peripheral blood of 618 healthy donors (HD) and 580 MAFLD (400 NAFL, 180 NASH) patients according to multiple clinicopathological indicators. Microarray profiling and qRT-PCR were conducted to identify lncRNAs as candidate biomarkers of MAFLD. Then, we analyzed the matching score of the indicated lncRNA with CAP or MAFLD-associated pathological parameters as well. Additionally, we took advantage of interaction network together with gene expression profiling analysis to further explore the underlying target genes of the identified lncRNA. Herein, we found CAP in nearly all of the NAFL (399/400) and NASH (179/180) patients was higher than that in the HDs (611/618). The differentially expressed lncRNAs were involved in multiple metabolic or immunologic processes by regulating MAFLD-associated pathways. Of them, serum lncPRYP4-3 was identified as a novel candidate biomarker of MAFLD, which was further confirmed by correlation analysis with clinical indicators. Thereafter, we deduced PRS4Y2 was a candidate target of lncPRYP4-3 and mediated the dysfunction in NAFL and NASH patients. Serum lncPRYP4-3 served as a novel biomarker of MAFLD and helped distinguish the subtypes and benefit precise intervention therapy. Our findings also provided overwhelming new evidence for the alteration in biological processes and gene ontology in MAFLD patients.
Collapse
|
50
|
He J, Huang B, Zhang K, Liu M, Xu T. Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity. Biomed Pharmacother 2020; 127:110209. [PMID: 32559848 DOI: 10.1016/j.biopha.2020.110209] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Genome regions that do not for code for proteins are generally transcribed into long non-coding RNAs. Growing evidence reveals that lncRNAs, defined as transcripts longer than 200 nucleotides, are commonly deregulated in cervical malignancies. New sequencing technologies have revealed a complete picture of the composition of the human transcriptome. LncRNAs perform diverse functions at transcriptional, translation, and post-translational levels through interactions with proteins, RNA and DNA. In the past decade, studies have shown that lncRNAs participate in the pathogenesis of many diseases, including cervical cancer. Hence, illuminating the roles of lncRNA will improve our understanding of cervical cancer. In this work, we summarize the current knowledge on lncRNAs in cervical cancer. We describe the emerging roles of lncRNAs in cervical cancer, particularly in cancer progression, metastasis, treatment resistance, HPV regulation, and metabolic reprogramming. The great promises of lncRNAs as potential biomarkers for cervical cancer diagnosis and prognosis are also discussed. We discuss current technologies used to target lncRNAs and thus control cancers, such as antisense oligonucleotides, CRISPR-Cas9, and exosomes. Overall, we show that lncRNAs hold great potentials as therapeutic agents and innovative biomarkers. Finally, further clinical research is necessary to advance our understanding of the therapeutic value of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Jiaxing He
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Mubiao Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China.
| |
Collapse
|