1
|
Sun J, Yuan H, Yu Y, Li A, Zhao Z, Tang Y, Zheng F. Immunomodulatory potential of primary cilia in the skin. Front Immunol 2024; 15:1456875. [PMID: 39676858 PMCID: PMC11638010 DOI: 10.3389/fimmu.2024.1456875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Primary cilia (PC) are essential signaling hubs for proper epithelial formation and the maintenance of skin homeostasis. Found on most cells in the human body, including skin cells, PC facilitate signal transduction that allows ciliated cells to interact with the immune system via multiple pathways, helping to maintain immune system homeostasis. PC can be altered by various microenvironmental stimuli to develop corresponding regulatory functions. Both PC and ciliary signaling pathways have been shown to be involved in the immune processes of various skin lesions. However, the mechanisms by which PC regulate cellular functions and maintain immune homeostasis in tissues are highly complex, and our understanding of them in the skin remains limited. In this paper, we discuss key ciliary signaling pathways and ciliated cells in the skin, with a focus on their immunomodulatory functions. We have compiled evidence from various cells, tissues and disease models to help explore the potential immunomodulatory effects of PC in the skin and their molecular mechanisms.
Collapse
Affiliation(s)
- Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aorou Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
3
|
Shin EY, Jeong S, Lee JE, Jeong DS, Han DK, Hong SH, Lee DR. Multiple treatments with human embryonic stem cell-derived mesenchymal progenitor cells preserved the fertility and ovarian function of perimenopausal mice undergoing natural aging. Stem Cell Res Ther 2024; 15:58. [PMID: 38433223 PMCID: PMC10910829 DOI: 10.1186/s13287-024-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES Currently, no approved stem cell-based therapies for preserving ovarian function during aging. To solve this problem, we developed a long-term treatment for human embryonic stem cell-derived mesenchymal progenitor cells (hESC-MPCs). We investigated whether the cells retained their ability to resist ovarian aging, which leads to delayed reproductive senescence. MATERIALS AND METHODS In a middle-aged female model undergoing natural aging, we analyzed whether hESC-MPCs benefit the long-term maintenance of reproductive fecundity and ovarian reservoirs and how their transplantation regulates ovarian function. RESULTS The number of primordial follicles and mice with regular estrous cycles were increased in perimenopausal mice who underwent multiple introductions of hESC-MPCs compared to age-matched controls. The estradiol levels in the hESC-MPCs group were restored to those in the young and adult groups. Embryonic development and live birth rates were higher in the hESC-MPC group than in the control group, suggesting that hESC-MPCs delayed ovarian senescence. In addition to their direct effects on the ovary, multiple-treatments with hESC-MPCs reduced ovarian fibrosis by downregulating inflammation and fibrosis-related genes via the suppression of myeloid-derived suppressor cells (MDSCs) produced in the bone marrow. CONCLUSIONS Multiple introductions of hESC-MPCs could be a useful approach to prevent female reproductive senescence and that these cells are promising sources for cell therapy to postpone the ovarian aging and retain fecundity in perimenopausal women.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Suji Jeong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24431, Gangwon-do, Republic of Korea
| | - Jeoung Eun Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, 335 Pangyo-ro, Bundang- gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Seok Jeong
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24431, Gangwon-do, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
- CHA Advanced Research Institute, Bundang CHA Medical Center, 335 Pangyo-ro, Bundang- gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
4
|
Golob-Schwarzl N, Pilic J, Benezeder T, Bordag N, Painsi C, Wolf P. Eukaryotic Initiation Factor 4E (eIF4E) as a Target of Anti-Psoriatic Treatment. J Invest Dermatol 2024; 144:500-508.e3. [PMID: 37865179 DOI: 10.1016/j.jid.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 10/23/2023]
Abstract
Eukaryotic initiation factor 4E (eIF4E) has been known to play a critical role in the regulation of gene expression and essential cellular processes, such as proliferation, apoptosis and differentiation. In this study, we explored its role in the pathophysiology of psoriasis. The inhibition of eIF4E by small interfering RNA or briciclib, an eIF4E small molecule inhibitor, downregulated the expression of eIF4E itself and its two complex partners eIF4A and G, as well as other eIFs (eg, eIF1A, eIF2α, eIF3A, eIF3B, eIF5, and eIF6). This inhibition also abolished psoriatic inflammation in both the imiquimod and TGFß mouse model, as well as in a human 3 dimensional-psoriasis tissue model. Downregulation of eIF4E and the other eIFs by application of briciclib (particularly when given topically) was linked to the normalization of cellular proliferation, epidermal hyperplasia, levels of proinflammatory cytokines (eg, TNFα, IL-1b, IL-17, and IL-22), and keratinocyte differentiation markers (eg, KRT16 and FLG). These results demonstrate translational imbalance and underline the crucial role played by eIF4E and other eIFs in the pathophysiology of psoriasis. This work opens up avenues for the development of novel topical antipsoriatic treatment strategies by targeting eIF4E.
Collapse
Affiliation(s)
| | - Johannes Pilic
- Department of Dermatology and Venereology, Medical University of Graz, Austria
| | - Theresa Benezeder
- Department of Dermatology and Venereology, Medical University of Graz, Austria
| | - Natalie Bordag
- Department of Dermatology and Venereology, Medical University of Graz, Austria
| | - Clemens Painsi
- Department of Dermatology and Venereology, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
5
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
6
|
Sun J, Yang R, Fu J, Huo D, Qu X, Tan C, Chen H, Wang X. TGFβ1-induced hedgehog signaling suppresses the immune response of brain microvascular endothelial cells elicited by meningitic Escherichia coli. Cell Commun Signal 2024; 22:123. [PMID: 38360663 PMCID: PMC10868028 DOI: 10.1186/s12964-023-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Meningitic Escherichia coli (E. coli) is the major etiological agent of bacterial meningitis, a life-threatening infectious disease with severe neurological sequelae and high mortality. The major cause of central nervous system (CNS) damage and sequelae is the bacterial-induced inflammatory storm, where the immune response of the blood-brain barrier (BBB) is crucial. METHODS Western blot, real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and dual-luciferase reporter assay were used to investigate the suppressor role of transforming growth factor beta 1 (TGFβ1) in the immune response of brain microvascular endothelial cells elicited by meningitic E. coli. RESULT In this work, we showed that exogenous TGFβ1 and induced noncanonical Hedgehog (HH) signaling suppressed the endothelial immune response to meningitic E. coli infection via upregulation of intracellular miR-155. Consequently, the increased miR-155 suppressed ERK1/2 activation by negatively regulating KRAS, thereby decreasing IL-6, MIP-2, and E-selectin expression. In addition, the exogenous HH signaling agonist SAG demonstrated promising protection against meningitic E. coli-induced neuroinflammation. CONCLUSION Our work revealed the effect of TGFβ1 antagonism on E. coli-induced BBB immune response and suggested that activation of HH signaling may be a potential protective strategy for future bacterial meningitis therapy. Video Abstract.
Collapse
Affiliation(s)
- Jinrui Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiyang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
7
|
Isali I, Wong TR, Wu CHW, Scarberry K, Gupta S, Erickson BA, Breyer BN. Genomic Risk Factors for Urethral Stricture: A Systematic Review and Gene Network Analysis. Urology 2024; 184:251-258. [PMID: 38160764 DOI: 10.1016/j.urology.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To identify genes that may play a role in urethral stricture and summarize the results of studies that have documented variations in gene expression among individuals with urethral stricture compared to healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, Web of Science, and PubMed, limiting the results to articles published between January 1, 2000 and January 30, 2023. Only studies comparing the difference in gene expression between individuals with urethral stricture and healthy individuals utilizing molecular techniques to measure gene expression in blood, urine, or tissue samples were included in this systematic review. Gene network and pathway analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in urethral stricture. RESULTS Four studies met our criteria for inclusion. The studies used molecular biology methods to quantify gene expression data from specimens. The analysis revealed gene expressions of CXCR3 and NOS2 were downregulated in urethral tissue samples, while TGFB1, UPK3A, and CTGF were upregulated in plasma, urine and urethral tissue samples, respectively, in patients with urethral stricture compared to healthy controls. The analysis demonstrated that the most significant pathways were associated with phosphoinositide 3-kinase (PI3 kinase) and transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/SMAD) signaling pathways. CONCLUSION This systematic review identified gene expression variations in several candidate genes and identified underlying biological pathways associated with urethral stricture. These findings could inform further research and potentially shift treatment and prevention strategies for urethral stricture.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Chen-Han Wilfred Wu
- Department of Urology, Case Western Reserve University, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Kyle Scarberry
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Shubham Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Benjamin N Breyer
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
8
|
Janjetovic Z, Qayyum S, Reddy SB, Podgorska E, Scott SG, Szpotan J, Mobley AA, Li W, Boda VK, Ravichandran S, Tuckey RC, Jetten AM, Slominski AT. Novel Vitamin D3 Hydroxymetabolites Require Involvement of the Vitamin D Receptor or Retinoic Acid-Related Orphan Receptors for Their Antifibrogenic Activities in Human Fibroblasts. Cells 2024; 13:239. [PMID: 38334631 PMCID: PMC10854953 DOI: 10.3390/cells13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - S. Gates Scott
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Justyna Szpotan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Alisa A. Mobley
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Vijay K. Boda
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Senthilkumar Ravichandran
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Robert C. Tuckey
- School of Molecular Science, The University of Western Australia, Perth 6009, Australia;
| | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Mandal M, Rakib A, Kiran S, Al Mamun MA, Raghavan S, Kumar S, Singla B, Park F, Leo MD, Singh UP. Inhibition of microRNA-34c reduces detrusor ROCK2 expression and urinary bladder inflammation in experimental cystitis. Life Sci 2024; 336:122317. [PMID: 38040245 PMCID: PMC10872291 DOI: 10.1016/j.lfs.2023.122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Interstitial cystitis (IC), also called painful bladder syndrome (PBS), is 2 to 5 times more common in women than in men, yet its cause and pathogenesis remain unclear. In our study using the cyclophosphamide (CYP)-induced mouse model of cystitis, histological evaluation of the urinary bladder (UB) lamina propria (LP) showed immune cell infiltrations, indicating moderate to severe inflammation. In this study, we noticed a differential expression of a subset of microRNAs (miRs) in the UB cells (UBs) of CYP-induced cystitis as compared to the control. UB inflammatory scores and inflammatory signaling were also elevated in CYP-induced cystitis as compared to control. We identified eight UBs miRs that exhibited altered expression after CYP induction and are predicted to have a role in inflammation and smooth muscle function (miRs-34c-5p, -34b-3p, -212-3p, -449a-5p, -21a-3p, -376b-3p, -376b-5p and - 409-5p). Further analysis using ELISA for inflammatory markers and real-time PCR (RT-PCR) for differentially enriched miRs identified miR-34c as a potential target for the suppression of UB inflammation in cystitis. Blocking miR-34c by antagomir ex vivo reduced STAT3, TGF-β1, and VEGF expression in the UBs, which was induced during cystitis as compared to control. Interestingly, miR-34c inhibition also downregulated ROCK2 but elevated ROCK1 expression in bladder and detrusor cells. Thus, the present study shows that targeting miR-34c can mitigate the STAT3, TGF-β, and VEGF, inflammatory signaling in UB, and suppress ROCK2 expression in UBs to effectively suppress the inflammatory response in cystitis. This study highlights miR-34c as a potential biomarker and/or serves as the basis for new therapies for the treatment of cystitis.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Somasundaram Raghavan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - M Dennis Leo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA.
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Hou D, Li M, Li P, Chen B, Huang W, Guo H, Cao J, Zhao H. Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass ( Micropterus salmoides). Front Immunol 2023; 14:1265963. [PMID: 38022555 PMCID: PMC10656595 DOI: 10.3389/fimmu.2023.1265963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-β1, IL-1β and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.
Collapse
Affiliation(s)
- Dongqiang Hou
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Min Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Peijia Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Junming Cao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Ke Y, Li BZ, Nguyen K, Wang D, Wang S, Young CD, Wang XJ. IL-22RA2 Is a SMAD7 Target Mediating the Alleviation of Dermatitis and Psoriatic Phenotypes in Mice. J Invest Dermatol 2023; 143:2243-2254.e10. [PMID: 37211203 PMCID: PMC11127768 DOI: 10.1016/j.jid.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Long-term management of inflammatory skin diseases is challenging because of side effects from repeated use of systemic treatments or topical corticosteroids. This study sought to identify the mechanisms and developmental therapeutics for these diseases using genetic models and pharmacological approaches. We found that mice overexpressing SMAD7 in keratinocytes but not mice overexpressing the N-terminal domain of SMAD7 (i.e., N-SMAD7) were resistant to imiquimod-induced T helper 1/17- and T helper 2-type inflammation. We generated a Tat-PYC-SMAD7 (truncated SMAD7 protein encompassing C-terminal SMAD7 and PY motif fused with cell-penetrating Tat peptide). Topically applied Tat-PYC-SMAD7 to inflamed skin entered cells upon contact and attenuated imiquimod-, 2,4-dinitrofluorobenzene-, and tape-stripping-induced inflammation. RNA-sequencing analyses of mouse skin exposed to these insults showed that in addition to inhibiting TGFβ/NF-κB, SMAD7 blunted IL-22/signal transducer and activator of transcription 3 activation and associated pathogenesis, which is due to SMAD7 transcriptionally upregulating IL-22 antagonist IL-22RA2. Mechanistically, SMAD7 facilitated nuclear translocation and DNA binding of C/EBPβ to IL22RA2 promoter for IL22RA2 transactivation. Consistent with the observations in mice mentioned earlier, transcript levels of IL22RA2 were increased in human atopic dermatitis and psoriasis lesions with clinical remission. Our study identified the anti-inflammation functional domain of SMAD7 and suggests the mechanism and feasibility for developing SMAD7-based biologics as a topical therapy for skin inflammatory disorders.
Collapse
Affiliation(s)
- Yao Ke
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Khoa Nguyen
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Donna Wang
- Allander Biotechnologies, Aurora, Colorado, USA
| | - Suyan Wang
- Allander Biotechnologies, Aurora, Colorado, USA
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Allander Biotechnologies, Aurora, Colorado, USA.
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA; Allander Biotechnologies, Aurora, Colorado, USA.
| |
Collapse
|
12
|
Ghorbaninejad M, Abdollahpour-Alitappeh M, Shahrokh S, Fayazzadeh S, Asadzadeh-Aghdaei H, Meyfour A. TGF-β receptor I inhibitor may restrict the induction of EMT in inflamed intestinal epithelial cells. Exp Biol Med (Maywood) 2023; 248:665-676. [PMID: 36775873 PMCID: PMC10408554 DOI: 10.1177/15353702231151959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/15/2022] [Indexed: 02/14/2023] Open
Abstract
Despite the extensive body of research, understanding the exact molecular mechanisms governing inflammatory bowel diseases (IBDs) still demands further investigation. Transforming growth factor-β1 (TGF-β1) signaling possesses a multifacial effect on a broad range of context-dependent cellular responses. However, long-term TGF-β1 activity may trigger epithelial-mesenchymal transition (EMT), followed by fibrosis. This study aimed to determine the role of epithelial TGF-β1 signaling in inflammatory bowel disease (IBD) pathogenesis. The expression of TGF-β1 signaling components and EMT-related and epithelial tight junction markers was examined in IBD patients (n = 60) as well as LPS-induced Caco-2/RAW264.7 co-culture model using quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence staining. Furthermore, the effect of A83-01, as a TGF-β receptor I (TβRI) inhibitor, on the inflamed epithelial cells was evaluated in vitro. To evaluate the cytotoxic effects of the TβRI inhibitor, a cell viability assay was performed by the MTS method. Considering the activation of canonical and non-canonical TGF-β1 signaling pathways in IBD patients, expression results indicated that administering A83-01 in inflamed Caco-2 cells substantially blocked the expression level of TGF-β1, SMAD4, and PI3K and the phosphorylation of p-SMAD2/3, p-AKT, and p-RPS6 as well as prevented downregulation of LncGAS5 and LncCDKN2B. Further analysis revealed that the inhibition of TGF-β1 signaling in inflamed epithelial cells by the small molecule could suppress the EMT-related markers as well as improve the expression of epithelial adherens and tight junctions. Collectively, these findings indicated that the inhibition of the TGF-β1 signaling could suppress the induction of EMT in inflamed epithelial cells as well as exert a protective effect on preserving tight junction integrity. There is a pressing need to determine the exact cellular mechanisms by which TGF-β1 exerts its effect on IBD pathogenesis.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | | | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| |
Collapse
|
13
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
14
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. The Expression of TGF-β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24032453. [PMID: 36768775 PMCID: PMC9917033 DOI: 10.3390/ijms24032453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
The molecular pathogenesis of endometriosis has been associated with pathological alterations of protein expression via disturbances in homeostatic genes, miRNA expression profiles, and signaling pathways that play an essential role in the epithelial-mesenchymal transition (EMT) process. TGF-β1 has been hypothesized to play a key role in the development and progression of endometriosis, but the activation of a specific mechanism via the TGF-β-SMAD-ILK axis in the formation of endometriotic lesions is poorly understood. The aim of this study was to assess the expression of EMT markers (TGF-β1, SMAD3, ILK) and miR-21 in ectopic endometrium (ECE), in its eutopic (EUE) counterpart, and in the endometrium of healthy women. The expression level of the tested genes and miRNA was also evaluated in peripheral blood mononuclear cells (PBMC) in women with and without endometriosis. Fifty-four patients (n = 54; with endometriosis, n = 29, and without endometriosis, n = 25) were enrolled in the study. The expression levels (RQ) of the studied genes and miRNA were evaluated using qPCR. Endometriosis patients manifested higher TGF-β1, SMAD3, and ILK expression levels in the eutopic endometrium and a decreased expression level in the ectopic lesions in relation to control tissue. Compared to the endometrium of healthy participants, miR-21 expression levels did not change in the eutopic endometrium of women with endometriosis, but the RQ was higher in their endometrial implants. In PBMC, negative correlations were found between the expression level of miR-21 and the studied genes, with the strongest statistically significant correlation observed between miR-21 and TGF-β1. Our results suggest the loss of the endometrial epithelial phenotype defined by the differential expression of the TGF-β1, SMAD3 and ILK genes in the eutopic and ectopic endometrium. We concluded that the TGF-β1-SMAD3-ILK signaling pathway, probably via a mechanism related to the EMT, may be important in the pathogenesis of endometriosis. We also identified miR-21 as a possible inhibitor of this TGF-β1-SMAD3-ILK axis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Sławomir Jędrzejczyk
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Institute of Medical Expertises, 91-205 Lodz, Poland
| | | |
Collapse
|
15
|
Ahmed WMS, Ibrahim MA, Helmy NA, ElKashlan AM, Elmaidomy AH, Zaki AR. Amelioration of aluminum-induced hepatic and nephrotoxicity by Premna odorata extract is mediated by lowering MMP9 and TGF-β gene alterations in Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72827-72838. [PMID: 35614356 PMCID: PMC9522688 DOI: 10.1007/s11356-022-20735-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
This study aims to investigate the effect of Premna odorata (P. odorata) (Lamiaceae) on the hepatic and nephrotoxicity induced by aluminum chloride (AlCl3) in rat. Wistar male rats were equally classified into four groups: control, P. odorata extract (500 mg/kg B.W.), AlCl3 (70 mg/kg B.W.), and P. odorata extract plus AlCl3 groups. All treatments were given orally for 4 weeks. Serum transaminases and some biochemical parameters, hepatic and renal antioxidant/oxidant biomarker; tumor necrosis factor-α (TNF-α); matrix metalloproteinase (MMP9) and transforming growth factor-β (TGF-β) mRNA expression; histopathological examination of the liver, and kidneys were investigated. The obtained results revealed that AlCl3 significantly increased the activities of serum aspartate transaminase, alanine transaminase, and alkaline phosphatase as well as produced a significant increase in total cholesterol, triglyceride, urea, and creatinine concentrations, while there were no changes observed in the total protein, albumin, and globulin concentrations. Also, aluminum administration significantly decreased the reduced glutathione content and increased the catalase activity, malondialdehyde, and TNF-α concentrations in the liver and kidney tissue. Moreover, AlCl3 results in congestion, degeneration, and inflammation of the liver and kidney tissue. Co-treatment of P. odorata extract with AlCl3 alleviated its harmful effects on the previous parameters and reduced the histopathological alterations induced by AlCl3. Therefore, Premna odorata may have a potent protective effect against oxidative stress induced by Al toxicity through downregulation of MMP9 and TGF-β gene expression.
Collapse
Affiliation(s)
- Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Nermeen A Helmy
- Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amr R Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Sehsah R, Wu W, Ichihara S, Hashimoto N, Zong C, Yamazaki K, Sato H, Itoh K, Yamamoto M, Elsayed AA, El-Bestar S, Kamel E, Ichihara G. Protective role of Nrf2 in zinc oxide nanoparticles-induced lung inflammation in female mice and sexual dimorphism in susceptibility. Toxicol Lett 2022; 370:24-34. [PMID: 36100149 DOI: 10.1016/j.toxlet.2022.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnO-NPs) are currently employed in various products such as rubber, paint, and cosmetics. Our group reported recently that Nrf2 protein provides protection against pulmonary inflammation induced by ZnO-NPs in male mice. The current study investigated the effect of Nrf2 deletion on the lung inflammatory response in female mice exposed to ZnO-NPs. METHODS An equal number of female Nrf2-/- mice and female Nrf2+/+ mice (24 each) were allocated into three equal groups, and each was exposed to ZnO-NPs at either 0, 10 or 30 µg ZnO-NPs/mouse through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were examined 14 days later to determine the number of inflammatory cells, the protein level, and for scoring inflammation histopathologically. The mRNA levels of Nrf2-dependent antioxidant enzymes and proinflammatory cytokine in lung tissue were also measured. RESULTS Exposure to ZnO-NPs increased all types of BALF cells and lung inflammation scores in both of female Nrf2-null (Nrf2-/-) and wild-type (Nrf2+/+) mice, and Nrf2 deletion enhanced ZnO-NPs-induced increase in the number of eosinophils in BALF. Exposure to ZnO-NPs dose-dependently increased the level of oxidized glutathione (GSSG), and mRNA levels of proinflammatory cytokines/chemokines; KC, MIP-2, IL-6, IL-1β and MCP-1 only in wild-type mice. Nrf2 deletion decreased total glutathione levels and basal mRNA levels of SOD1 and NQO1, and increased the basal mRNA level of above proinflammatory cytokines/chemokines. Nrf2 deletion enhanced ZnO-NPs-induced downregulation of GcLc, GR and TGF-β and upregulation of HO-1 and TNF-α. Taken together with our previous results in male mice, our results showed a lower susceptibility of females to lung tissue inflammation, relative to males, irrespective of Nrf2 deletion, and that enhancement of ZnO-NPs-induced upregulation of HO-1 and TNF-α and downregulation of GcLc, GR and TGF-β by deletion of Nrf2 is specific to female mice. CONCLUSION We conclude that Nrf2 provides protection in female mice against increase in BALF eosinophils, probably through down-regulation of proinflammatory cytokines/chemokines and upregulation of oxidative stress-related genes. The study also suggests lower susceptibility to lung tissue inflammation in female mice relative to their male counterparts and the synergistic effects of Nrf2 and exposure to ZnO-NPs on mRNA expression of GcLc, GR, HO-1, TGF-β or TNF-α in female mice.
Collapse
Affiliation(s)
- Radwa Sehsah
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Cai Zong
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | - Kyoka Yamazaki
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | - Harue Sato
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Ahmed Ali Elsayed
- Department of Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Soheir El-Bestar
- Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Emily Kamel
- Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan; Center for Health Management, Tokyo University of Science, Shinjuku, Tokyo.
| |
Collapse
|
17
|
Priyadarshini M, Navarro G, Reiman DJ, Sharma A, Xu K, Lednovich K, Manzella CR, Khan MW, Garcia MS, Allard S, Wicksteed B, Chlipala GE, Szynal B, Bernabe BP, Maki PM, Gill RK, Perdew GH, Gilbert J, Dai Y, Layden BT. Gestational Insulin Resistance Is Mediated by the Gut Microbiome-Indoleamine 2,3-Dioxygenase Axis. Gastroenterology 2022; 162:1675-1689.e11. [PMID: 35032499 PMCID: PMC9040389 DOI: 10.1053/j.gastro.2022.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Normal gestation involves a reprogramming of the maternal gut microbiome (GM) that contributes to maternal metabolic changes by unclear mechanisms. This study aimed to understand the mechanistic underpinnings of the GM-maternal metabolism interaction. METHODS The GM and plasma metabolome of CD1, NIH-Swiss, and C57 mice were analyzed with the use of 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry throughout gestation. Pharmacologic and genetic knockout mouse models were used to identify the role of indoleamine 2,3-dioxygenase (IDO1) in pregnancy-associated insulin resistance (IR). Involvement of gestational GM was studied with the use of fecal microbial transplants (FMTs). RESULTS Significant variation in GM alpha diversity occurred throughout pregnancy. Enrichment in gut bacterial taxa was mouse strain and pregnancy time point specific, with the species enriched at gestation day 15/19 (G15/19), a point of heightened IR, being distinct from those enriched before or after pregnancy. Metabolomics revealed elevated plasma kynurenine at G15/19 in all 3 mouse strains. IDO1, the rate-limiting enzyme for kynurenine production, had increased intestinal expression at G15, which was associated with mild systemic and gut inflammation. Pharmacologic and genetic inhibition of IDO1 inhibited kynurenine levels and reversed pregnancy-associated IR. FMT revealed that IDO1 induction and local kynurenine level effects on IR derive from the GM in both mouse and human pregnancy. CONCLUSIONS GM changes accompanying pregnancy shift IDO1-dependent tryptophan metabolism toward kynurenine production, intestinal inflammation, and gestational IR, a phenotype reversed by genetic deletion or inhibition of IDO1. (Gestational Gut Microbiome-IDO1 Axis Mediates Pregnancy Insulin Resistance; EMBL-ENA ID: PRJEB45047. MetaboLights ID: MTBLS3598).
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Guadalupe Navarro
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Derek J Reiman
- Department of Biomedical Engineering, UIC, Chicago-IL, U.S.A
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Main Campus, Cleveland-OH, U.S.A
| | - Kai Xu
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Kristen Lednovich
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | | | - Md Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Mariana Salas Garcia
- Department of Pediatrics, University of California San Diego (UCSD) School of Medicine, La Jolla-CA, U.S.A
| | - Sarah Allard
- Department of Pediatrics, University of California San Diego (UCSD) School of Medicine, La Jolla-CA, U.S.A
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - George E Chlipala
- Research Informatics Core, Research Resources Center, UIC, Chicago-IL, U.S.A
| | - Barbara Szynal
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | | | - Pauline M Maki
- Department of Psychiatry, UIC, Chicago-IL, U.S.A.; Department of Psychology, and UIC, Chicago-IL, U.S.A.; Department of Obstetrics and Gynecology, UIC, Chicago-IL, U.S.A
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, UIC, Chicago-IL, U.S.A
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, Pennsylvania, U.S.A
| | - Jack Gilbert
- Department of Pediatrics, University of California San Diego (UCSD) School of Medicine, La Jolla-CA, U.S.A.; Scripps Institution of Oceanography, UCSD, La Jolla-CA, U.S.A
| | - Yang Dai
- Department of Biomedical Engineering, UIC, Chicago-IL, U.S.A
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois, Chicago, Illinois; Jesse Brown Veterans Affair Medical Center, Chicago, Illinois.
| |
Collapse
|
18
|
Aulanni’am A, Raissa R, Riawan W, Wuragil DK, Permata FS, Beltran MAG. Epidermal Stem Cell in Wound Healing of Gliricidia sepium Leaves from Indonesia and the Philippines in Rats (Rattus norvegicus). Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study intended to investigate the regenerate wound, due to the ointment therapy containing Gliricidia sepium leaves that has potential-induced epidermal stem cells producing. It determined its effect on the expression of transforming growth factor-β1 (TGF-β1), Smad-3, β-catenin, LGR-6.
MATERIALS AND METHODS: About 16 Wistar male rats aged approximately 2 months (150–200g) were used and were divided into four treatment groups (T1, positive control; T2, negative control; T3, wounds treated with G. sepium from Indonesia; and T4, wounds treated with G. sepium from the Philippines). The treatment of ointment was applied to the wound for 3 days. The expression of TGF-β1, Smad-3, β-catenin, and LGR-6 was observed by immunohistochemistry staining.
RESULTS: G. sepium leaves significantly (p < 0.05) upregulated the expression of TGF-β1, Smad-3, β-catenin, and LGR-6 in the group treated with Indonesian G. sepium leaves were higher than that in the group treated with G. sepium leaves from the Philippines.
CONCLUSIONS: Both leaves Varian contain flavonoids, saponins, and tannins, which act as producing epidermal stem cell agents to enhance the wound healing process. It can be concluded that both Gl. sepium Varian Indonesia and the Philippines have a potential effect on wound healing.
Collapse
|
19
|
Graham RLJ, McMullen AA, Moore G, Dempsey-Hibbert NC, Myers B, Graham C. SWATH-MS identification of CXCL7, LBP, TGFβ1 and PDGFRβ as novel biomarkers in human systemic mastocytosis. Sci Rep 2022; 12:5087. [PMID: 35332176 PMCID: PMC8948255 DOI: 10.1038/s41598-022-08345-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Mastocytosis is a rare myeloproliferative disease, characterised by accumulation of neoplastic mast cells in one or several organs. It presents as cutaneous or systemic. Patients with advanced systemic mastocytosis have a median survival of 3.5 years. The aetiology of mastocytosis is poorly understood, patients present with a broad spectrum of varying clinical symptoms that lack specificity to point clearly to a definitive diagnosis. Discovery of novel blood borne biomarkers would provide a tractable method for rapid identification of mastocytosis and its sub-types. Moving towards this goal, we carried out a clinical biomarker study on blood from twenty individuals (systemic mastocytosis: n = 12, controls: n = 8), which were subjected to global proteome investigation using the novel technology SWATH-MS. This identified several putative biomarkers for systemic mastocytosis. Orthogonal validation of these putative biomarkers was achieved using ELISAs. Utilising this workflow, we identified and validated CXCL7, LBP, TGFβ1 and PDGF receptor-β as novel biomarkers for systemic mastocytosis. We demonstrate that CXCL7 correlates with neutrophil count offering a new insight into the increased prevalence of anaphylaxis in mastocytosis patients. Additionally, demonstrating the utility of SWATH-MS for the discovery of novel biomarkers in the systemic mastocytosis diagnostic sphere.
Collapse
Affiliation(s)
- R L J Graham
- School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, BT9 5DL, UK
| | - A A McMullen
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - G Moore
- School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, BT9 5DL, UK
| | - N C Dempsey-Hibbert
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - B Myers
- University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - C Graham
- School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
20
|
Evaluation of Cell Migration and Cytokines Expression Changes under the Radiofrequency Electromagnetic Field on Wound Healing In Vitro Model. Int J Mol Sci 2022; 23:ijms23042205. [PMID: 35216321 PMCID: PMC8879593 DOI: 10.3390/ijms23042205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes’ migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH.
Collapse
|
21
|
Jaurila H, Koskela M, Koivukangas V, Gäddnäs F, Salo T, Ala-Kokko TI. Growth factor expression is enhanced and extracellular matrix proteins are depressed in healing skin wounds in septic patients compared with healthy controls. APMIS 2021; 130:155-168. [PMID: 34939229 PMCID: PMC9305760 DOI: 10.1111/apm.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
Sepsis manifests as a dysregulated immune response to infection, damaging organs. Skin has a critical role in protecting the body. In sepsis, skin wound healing is impaired. The mechanisms behind it have been poorly studied. In this study, suction blister wounds were induced on intact abdominal skin in 15 septic patients. A single blister wound was biopsied from each patient and from 10 healthy controls. Immunohistochemical staining of growth factors and extracellular matrix (ECM) proteins was performed. Significance (p < 0.05) of the differences was calculated. The following growth factors were overexpressed in the skin of septic patients compared with healthy controls: epithelial growth factor (intact epithelium p = 0.007, migrating epithelium p = 0.038), vascular epithelial growth factor (intact epithelium p < 0.001, migrating epithelium p = 0.011) and transforming growth factor beta (migrating epithelium p = 0.002). The expression of syndecan‐1 was upregulated in the skin of septic patients compared with healthy controls (intact epithelium p = 0.048, migrating epithelium p = 0.028). The following ECM proteins had lower expression in the epithelium in septic patients than in healthy controls: tenascin‐C (migrating epithelium p = 0.03) and laminin‐332 (intact epithelium p = 0.036). In sepsis, growth factor and syndecan expression was enhanced, while ECM and basement membrane proteins were mostly depressed.
Collapse
Affiliation(s)
- Henna Jaurila
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland.,Cancer and Translational Medicine Research Unit, Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Finland
| | - Marjo Koskela
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Vesa Koivukangas
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Fiia Gäddnäs
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Finland.,Research Group of Oral Health Sciences, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Finland
| | - Tero I Ala-Kokko
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| |
Collapse
|
22
|
Yang JH, Cho SI, Kim DH, Yoon JY, Moon J, Kim JW, Choi S, Suh DH. Pilot study of fractional microneedling radiofrequency for hidradenitis suppurativa assessed by clinical response and histology. Clin Exp Dermatol 2021; 47:335-342. [PMID: 34431555 DOI: 10.1111/ced.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a devastating chronic inflammatory skin disease with frequent recurrences. Various systemic treatments and procedures have been used but the efficacy of fractional microneedling radiofrequency (FMR) has not been reported. AIM To evaluate the clinical and histological efficacy of FMR in the treatment of HS lesions. METHODS An 8-week, prospective, split-body, unblinded study was conducted, which enrolled 10 adult patients with mild to moderate HS to receive 3 sessions of FMR treatment biweekly. HS severity was assessed using the number and type of lesions, HS Physician Global Assessment (HS-PGA) and the modified Sartorius score (mSS). Skin biopsies were performed on participants to assess change in inflammation before and after FMR. RESULTS Severity of HS was significantly reduced on the FMR-treated side of the body, but not on the control side. Inflammatory HS lesions were significantly reduced after 4 weeks, while HS-PGA and mSS were significantly decreased after 6 weeks. Immunohistochemistry staining showed decreased expression of inflammatory markers including neutrophil elastases, interleukin (IL)-8 and IL-17, tumour necrosis factor-α, transforming growth factor-β1 and matrix metalloproteinases. CONCLUSION FMR may be a viable treatment option for mild to moderate HS.
Collapse
Affiliation(s)
- J H Yang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, South Korea
| | - S I Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - D H Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - J Y Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, South Korea
| | - J Moon
- Reone Skin Clinic, Seoul, South Korea
| | - J W Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - S Choi
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - D H Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
23
|
Al-Hakeim HK, Twayej AJ, Al-Dujaili AH, Maes M. Plasma Indoleamine-2,3-Dioxygenase (IDO) is Increased in Drug-Naï ve Major Depressed Patients and Treatment with Sertraline and Ketoprofen Normalizes IDO in Association with Pro-Inflammatory and Immune- Regulatory Cytokines. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:44-54. [PMID: 31894751 DOI: 10.2174/1871527319666200102100307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Major Depression Disorder (MDD) is accompanied by an immune response characterized by increased levels of inflammatory and immune-regulatory cytokines and stimulation of indoleamine-2,3-dioxygenase (IDO). There is also evidence that anti-inflammatory drugs may have clinical efficacy in MDD. METHODS This study examined a) IDO in association with interferon (IFN)-γ, Interleukin (IL)-4 and Transforming Growth Factor (TGF)-β1 in 140 drug-naïve MDD patients and 40 normal controls; and b) the effects of an eight-week treatment of sertraline with or without ketoprofen (a nonsteroidal antiinflammatory drug) on the same biomarkers in 44 MDD patients. RESULTS Baseline IDO, IFN-γ, TGF-β1 and IL-4 were significantly higher in MDD patients as compared with controls. Treatment with sertraline with or without ketoprofen significantly reduced the baseline levels of all biomarkers to levels which were in the normal range (IDO, TGF-β1, and IL-4) or still somewhat higher than in controls (IFN-γ). Ketoprofen add-on had a significantly greater effect on IDO as compared with placebo. The reductions in IDO, IL-4, and TGF-β1 during treatment were significantly associated with those in the BDI-II. CONCLUSION MDD is accompanied by activated immune-inflammatory pathways (including IDO) and the Compensatory Immune-Regulatory System (CIRS). The clinical efficacy of antidepressant treatment may be ascribed at least in part to decrements in IDO and the immune-inflammatory response. These treatments also significantly reduce the more beneficial properties of T helper-2 and T regulatory (Treg) subsets. Future research should develop immune treatments that target the immune-inflammatory response in MDD while enhancing the CIRS.
Collapse
Affiliation(s)
| | - Ahmed Jasim Twayej
- Pathological Analysis Department, College of Health and Medical, Al-Kafeel University, Najaf, Iraq
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.,IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
24
|
de Moraes ACP, Ribeiro LDS, de Camargo ER, Lacava PT. The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture. 3 Biotech 2021; 11:318. [PMID: 34194902 PMCID: PMC8190246 DOI: 10.1007/s13205-021-02870-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
The impacts of chemical fertilizers and pesticides have raised public concerns regarding the sustainability and security of food supplies, prompting the investigation of alternative methods that have combinations of both agricultural and environmental benefits, such as the use of biofertilizers involving microbes. These types of microbial inoculants are living microorganisms that colonize the soil or plant tissues when applied to the soil, seeds, or plant surfaces, facilitating plant nutrient acquisition. They can enhance plant growth by transforming nutrients into a form assimilable by plants and by acting as biological control agents, known as plant growth-promoting bacteria. The potential use of bacteria as biofertilizers in agriculture constitutes an economical and eco-friendly way to reduce the use of chemical fertilizers and pesticides. In this context, nanotechnology has emerged as a new source of quality enrichment for the agricultural sector. The use of nanoparticles can be an effective method to meet the challenges regarding the effectiveness of biofertilizers in natural environments. Given the novel sustainable strategies applied in agricultural systems, this review addresses the effects of nanoparticles on beneficial plant bacteria for promoting plant growth.
Collapse
Affiliation(s)
- Amanda Carolina Prado de Moraes
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
- Biotechnology Graduation Program (PPG-Biotec), Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| | - Lucas da Silva Ribeiro
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| | - Emerson Rodrigues de Camargo
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| | - Paulo Teixeira Lacava
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
- Biotechnology Graduation Program (PPG-Biotec), Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| |
Collapse
|
25
|
Kolobarić N, Drenjančević I, Matić A, Šušnjara P, Mihaljević Z, Mihalj M. Dietary Intake of n-3 PUFA-Enriched Hen Eggs Changes Inflammatory Markers' Concentration and Treg/Th17 Cells Distribution in Blood of Young Healthy Adults-A Randomised Study. Nutrients 2021; 13:nu13061851. [PMID: 34071714 PMCID: PMC8229500 DOI: 10.3390/nu13061851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
In the present study, we aimed to determine the effects of n-3 polyunsaturated acid (PUFA) supplementation (~1053 mg/per day), i.e., α-linolenic (~230 mg), eicosapentaenoic (~15 mg), and docosahexaenoic acid (~105 mg), through hen eggs, on pro- and anti-inflammatory parameters in healthy individuals (23.8 ± 2.57 years old). Here, we demonstrate differential effects of regular hen eggs (N = 21; W/M = 10/11) and n-3 PUFA-enriched hen eggs (N = 19; W/M = 10/9) consumption on the serum levels of lipid mediators, representation of peripheral T helper cell subsets (recently activated T-helper cells, nTreg, Th17 and non-Th17-IL-17A secreting T-helper lymphocytes) and their functional capacity for cytokine secretion. Both diets significantly altered systemic levels of pro-inflammatory and inflammation resolving lipid mediators; however, only the n-3 PUFAs group showed a significant shift towards anti-inflammatory prostanoids and increased levels of pro-resolving oxylipins. Both study groups showed reduced frequencies of peripheral nTreg lymphocytes and decreased rates of peripheral Th17 cells. Their functional capacity for cytokine secretion was significantly altered only in the n-3 PUFAs group in terms of increased transforming growth factor β-1 and reduced interleukin 6 secretion. Diet supplemented with n-3 PUFAs alters immune response towards inflammation resolving conditions through effects on lipid mediators and cytokine secretion by T lymphocytes in human model without underlying comorbidities.
Collapse
Affiliation(s)
- Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-3151-2800
| |
Collapse
|
26
|
Yu D, Xu C, Tu H, Ye A, Wu L. miR-384-5p regulates inflammation in Candida albicans-induced acute lung injury by downregulating PGC1β and enhancing the activation of Candida albicans-triggered signaling pathways. Sci Prog 2021; 104:368504211014361. [PMID: 33970047 PMCID: PMC10358457 DOI: 10.1177/00368504211014361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) is one of the most prevalent respiratory syndromes of excessive inflammatory reaction during lung infection. Candida albicans (C. albicans) infection is among the leading causes of ALI. MicroRNAs (miRNAs) regulate the expression of target mRNAs, including those involved in inflammatory processes, by binding to the 3'UTR. To date, the roles of miRNAs in C. albicans-induced ALI remain unclear. In this study, we investigated the role of miR-384-5p in C. albicans-induced ALI and its underlying molecular mechanism. RT-PCR, Western blot, ELISA, Myeloperoxidase (MPO) assay, microRNA target analysis, transient transfection, and luciferase reporter assay were utilized. In vivo study was conducted on mouse model. The expression of miR-384-5p was upregulated and positively correlated with inflammatory cytokine production in lung tissues and RAW264.7 and J774A.1 macrophages infected with C. albicans. The miR-384-5p inhibitor alleviated the inflammatory reaction induced by C. albicans. Target prediction analysis revealed that PGC1β was a target of miR-384-5p, which was further validated by the PGC1β 3'-UTR luciferase assay and the inverse correlation between the expression of miR-384-5p and PGC1β in C. albicans-infected ALI tissues and macrophages. Moreover, macrophages transfected with miR-384-5p mimic exhibited reduced levels of PGC1β. The suppression of the expression of PGC1β by C. albicans infection in the macrophages was abrogated by miR-384-5p inhibitor. Then, we demonstrated that PGC1β played an inhibitory role in C. albicans-induced production of inflammatory cytokines. Furthermore, suppression of miR-384-5p in macrophages inhibited the activation of the NF-κB, MAPK, and Akt signaling pathways triggered by C. albicans, but not the STAT3 pathway. These results demonstrate that miR-384-5p contributes to C. albicans-induced ALI at least in part by targeting PGC1β and enhancing the activation of the NF-κB, MAPK, and Akt inflammatory signaling pathways. Thus, targeting miR-384-5p might exert a protective effect on C. albicans-induced ALI.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chunquan Xu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hongxiang Tu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Aifang Ye
- Translational Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lingjian Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
27
|
Lee KJ, Ulrich N'deh KP, Kim GJ, Choi JW, Kim J, Kim EK, An JH. Fe 2+: Fe 3+ Molar Ratio Influences the Immunomodulatory Properties of Maghemite (γ-Fe 2O 3) Nanoparticles in an Atopic Dermatitis Model. ACS APPLIED BIO MATERIALS 2021; 4:1252-1267. [PMID: 35014478 DOI: 10.1021/acsabm.0c01092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report the different antioxidant and physiological effects of maghemite nanoparticles (γ-Fe2O3 NPs) obtained using various Fe2+: Fe3+ molar ratios (FM1 = 1: 1, FM2 = 1: 2, and FM3 = 2: 3) via coprecipitation from ferrous/ferric salts. We investigated the physical, optical, and antioxidant properties of FM1, FM2, and FM3 nanoparticles by conducting UV, Raman, FTIR, and EDX spectroscopic analyses along with DPPH radical scavenging activity. Results showed the highest DPPH scavenging activity in the FM2 group (50.76%), while the activity in the FM1 and FM3 groups was 23.60% and 34.63%, respectively. In addition, topical application of nanoparticles induced significant but different anti-inflammatory and immunomodulatory effects in Dermatophagoides farinae extract/2,4-dinitrochlorobenzene (DFE/DNCB)-sensitized BALB/c mice. The FM2 treatment alleviates more effectively the DFE/DNCB-induced atopic dermatitis-like (AD-like) symptoms in mouse ears (edema, excoriation, scaling, and hemorrhage). In comparison with the DFE/DNCB-sensitized mice, FM2 treatment greatly reduced the size and weight of the spleen and the lymph nodes. It also suppressed mast cell infiltration (2-fold) and reduced dermal and epidermal thickness in mice. In addition, FM2 treatment exhibited better inhibition of the mRNA levels of Th1 (IFN-γ and TNF-α) and Th2 cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, and IL-31), as well as the levels of various inflammation-related proteins (COX-2, iNOS, and TNF-α). Moreover, we demonstrated that an increasing proportion of Fe3+ in Fe2+: Fe3+ enhances the antioxidant activity and increases the anti-inflammatory and immunomodulatory effects of γ-Fe2O3 NPs in an AD mouse model. Thus, γ-Fe2O3 NPs could be used in the formulation of nonsteroidal drugs for AD treatment.
Collapse
Affiliation(s)
- Kwon-Jai Lee
- College of H-LAC, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Kaudjhis Patrick Ulrich N'deh
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Gyeong-Ji Kim
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jeong Woo Choi
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jooyoung Kim
- Office of Academic Affairs, Konkuk University, Chungju-si 27478, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeung Hee An
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| |
Collapse
|
28
|
Casale GP, Thompson JR, Carpenter LC, Kim J, Lackner TJ, Mietus CJ, Ha DM, Myers SA, Brunette KE, Li S, Shields C, Willcockson G, Pipinos II. Cytokine signature of inflammation mediated by autoreactive Th-cells, in calf muscle of claudicating patients with Fontaine stage II peripheral artery disease. Transl Res 2021; 228:94-108. [PMID: 32835907 PMCID: PMC7779738 DOI: 10.1016/j.trsl.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Peripheral artery disease (PAD), a severe atherosclerotic condition primarily of the elderly, afflicts 200 million individuals, worldwide, and is associated with lower extremity myopathy. Circulating markers of inflammation have been linked to risk and severity of PAD but the contribution of local inflammation to myopathy remains unknown. We evaluated, by ELISA, calf muscle of PAD patients (N = 23) and control subjects (N = 18) for local expression of inflammatory cytokines including Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF), Interleukin 17A (IL-17A), Interferon ϒ (IFN-ϒ), tumor necrosis factor α (TNF-α), and Interleukin 6 (IL-6). One or more of these cytokines were expressed in nineteen patients and 2 controls and coordinated expression of GM-CSF, IL-17A, IFN-ϒ, and TNF-α, a signature of activated, MHC Class II dependent autoreactive Th-cells, was unique to 11 patients. GM-CSF is the central driver of tissue-damaging myeloid macrophages. Patients with this cytokine signature had a shorter (P= 0.017) Claudication Onset Distance (17 m) compared with patients lacking the signature (102 m). Transforming Growth Factor β1 (TGFβ1) and Chemokine Ligand 5 (CCL5) were expressed coordinately in all PAD and control muscles, independently of GM-CSF, IL-17A, IFN-ϒ, TNF-α, or IL-6. TGFβ1 and CCL5 and their gene transcripts were increased in PAD muscle, consistent with increased age-associated inflammation in these patients. Serum cytokines were not informative of muscle cytokine expression. We have identified a cytokine profile of autoimmune inflammation in calf muscles of a significant proportion of claudicating PAD patients, in association with decreased limb function, and a second independent profile consistent with increased "inflammaging" in all PAD patients.
Collapse
Affiliation(s)
- George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lauren C Carpenter
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Julian Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy J Lackner
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Duy M Ha
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sara A Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska
| | | | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christina Shields
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gregory Willcockson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
29
|
Effects and mechanism of Chinese medicine Jiawei Yupingfeng in a mouse model of allergic rhinitis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:354-361. [PMID: 33863693 DOI: 10.1016/j.joim.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Chinese medicine has the potential to modulate allergic rhinitis (AR). There have been studies investigating the treatment efficacy of Yupingfeng San, alone or in combination with other ingredients, in AR, though few have studied the potential mechanisms of these drugs. In the present study, we measured the effects of Jiawei Yupingfeng (JWYPF), a traditional Chinese medicine formula, on mice with ovalbumin-induced AR and explored its underlying mechanism of action. METHODS Forty BALB/c mice were randomly divided into normal control, allergy control and two treatment groups of ten mice each. In the normal control group, mice were sensitized and challenged with saline. The mice in the allergy control and treatment groups were sensitized and challenged with ovalbumin and aluminum hydroxide gel. The treatments of JWYPF and Nasonex were administered intranasally in the AR mice for one week. Several signs of allergic inflammation, such as nasal eosinophils and inflammatory cytokines, were measured to determine the underlying mechanisms. RESULTS Mice in the JWYPF and Nasonex groups had significantly lower AR symptom scores than those in the allergy control group (the mean differences between JWYPF and the allergy control, and Nasonex and the allergy control were -2.00 ± 0.35 and -2.40 ± 0.32). After treatment with JWYPF and Nasonex, the levels of ovalbumin-specific IgE and histamine were significantly reduced, as were the levels of interlukin-4 and transforming growth factor-β, while interferon-γ levels were increased (all P < 0.0001, vs. allergy control). These two treatments also significantly inhibited eosinophil and mast cell infiltration into the nasal cavity but were not statistically different from one-another. CONCLUSION JWYPF has a potential therapeutic effect on AR via adjusting the rebalance of T helper 1 and T helper 2.
Collapse
|
30
|
Cihankaya H, Theiss C, Matschke V. Little Helpers or Mean Rogue-Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22030993. [PMID: 33498186 PMCID: PMC7863915 DOI: 10.3390/ijms22030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1–5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.
Collapse
Affiliation(s)
- Hilal Cihankaya
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| |
Collapse
|
31
|
YOUSEFI J, KHAKZAD MR, HOJATI M, EBRAHIMI SA, HOSSEINPOUR M, AKHONDIAN J. Is Serum TGF-β1 and TGF-β2 levels Correlated to Children with Autism Intensity? IRANIAN JOURNAL OF CHILD NEUROLOGY 2021; 15:57-67. [PMID: 36213156 PMCID: PMC9376023 DOI: 10.22037/ijcn.v15i1.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/17/2019] [Indexed: 11/07/2022]
Abstract
Objective Transforming growth factor-beta (TGF-β), a group of multifunctional growth factors, plays an important role in the neuron survival and neurodevelopmental functions. Some studies have evaluated the correlation between TGF-β1 and TGF-β2 abnormalities and autism spectrum disorders. In this study, we compared the TGF-β1 and TGF-β2 levels between autistic and intellectually normal individuals. Materials & Methods The study population consisted of 39 autistic and 30 age-matched intellectually normal individuals (control group). Blood samples were taken from all individuals, and all patients were divided into 2 groups (mild-to-moderate and severe) according to the childhood autism rating scale. The cytokines levels were measured by Enzyme Linked Immunosorbent Assay (ELISA). Results The mean concentration of TGF-β1 was significantly lower (P < 0.0001) in children with autism compared to the control group (25.3 ± 6.5 versus 35.1 ± 9.4 ng/mL, respectively). Also, the mean concentration of TGF-β2 in children with autism (32.35± 7.75 ng/ mL) was higher compared to those in the control group (30.47± 4.36 ng/mL); however, this difference did not reach statistical significance (P = 0.21). A positive correlation was observed between TGF-β1 concentration and autism severity (r = 0.41; P = 0.02), whereas a negative correlation was found between TGF-β2 concentration and autism severity (r = -0.41; P = 0.02). severity (r = 0.41; P = 0.02), whereas a negative correlation was found between TGF-β2 concentration and autism severity (r = -0.41; P = 0.02). Conclusion The results of the present investigation suggest that there is a decrease in the levels of TGF-β1 in the serum of patients with autism and this cytokine may be effective in the treatment of the pathophysiological aspects of autism.
Collapse
Affiliation(s)
- Jamshid YOUSEFI
- Department of Pediatrics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza KHAKZAD
- Innovated Medical Research Center& Department of Immunology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam HOJATI
- Noor Hedayat, Center of Autism Spectrum Disorders, Mashhad, Iran
| | - Seyed Ali EBRAHIMI
- Student Research Committee, Medical Faculty, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Mitra HOSSEINPOUR
- 15 Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad AKHONDIAN
- Department of Pediatric Neurology, Ghaem hospital, Mashhad University of Medical sciences, Mashhad, Iran
| |
Collapse
|
32
|
Zhan X, Liu Y, Yu CY, Wang TF, Zhang J, Ni D, Huang K. A pan-kidney cancer study identifies subtype specific perturbations on pathways with potential drivers in renal cell carcinoma. BMC Med Genomics 2020; 13:190. [PMID: 33371886 PMCID: PMC7771093 DOI: 10.1186/s12920-020-00827-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a complex disease and is comprised of several histological subtypes, the most frequent of which are clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (PRCC) and chromophobe renal cell carcinoma (ChRCC). While lots of studies have been performed to investigate the molecular characterizations of different subtypes of RCC, our knowledge regarding the underlying mechanisms are still incomplete. As molecular alterations are eventually reflected on the pathway level to execute certain biological functions, characterizing the pathway perturbations is crucial for understanding tumorigenesis and development of RCC. METHODS In this study, we investigated the pathway perturbations of various RCC subtype against normal tissue based on differential expressed genes within a certain pathway. We explored the potential upstream regulators of subtype-specific pathways with Ingenuity Pathway Analysis (IPA). We also evaluated the relationships between subtype-specific pathways and clinical outcome with survival analysis. RESULTS In this study, we carried out a pathway-based analysis to explore the mechanisms of various RCC subtypes with TCGA RNA-seq data. Both commonly altered pathways and subtype-specific pathways were detected. To identify the distinctive characteristics of each subtype, we focused on subtype-specific perturbed pathways. Specifically, we observed that some of the altered pathways were regulated by several recurrent upstream regulators which presenting different expression patterns among distinct RCC subtypes. We also noticed that a large number of perturbed pathways were controlled by the subtype-specific upstream regulators. Moreover, we also evaluated the relationships between perturbed pathways and clinical outcome. Prognostic pathways were identified and their roles in tumor development and progression were inferred. CONCLUSIONS In summary, we evaluated the relationships among pathway perturbations, upstream regulators and clinical outcome for differential subtypes in RCC. We hypothesized that the alterations of common upstream regulators as well as subtype-specific upstream regulators work together to affect the downstream pathway perturbations and drive cancer initialization and prognosis. Our findings not only increase our understanding of the mechanisms of various RCC subtypes, but also provide targets for personalized therapeutic intervention.
Collapse
Affiliation(s)
- Xiaohui Zhan
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, China.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Yusong Liu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- College of Automation, Harbin Engineering University, Harbin, 150001, Heilongjiang, China
| | - Christina Y Yu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Tian-Fu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, China
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, China.
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Regenstrief Institute, Indianapolis, 46202, USA.
| |
Collapse
|
33
|
The Inhibition of Prolyl Oligopeptidase as New Target to Counteract Chronic Venous Insufficiency: Findings in a Mouse Model. Biomedicines 2020; 8:biomedicines8120604. [PMID: 33322134 PMCID: PMC7764674 DOI: 10.3390/biomedicines8120604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Chronic venous insufficiency (CVI) is a common disorder related to functional and morphological abnormalities of the venous system. Inflammatory processes and angiogenesis alterations greatly concur to the onset of varicose vein. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic molecules. The aim of the present study is to evaluate the capacity of KYP-2047 to influence the angiogenic and inflammatory mechanisms involved in the pathophysiology of CVI. (2) Methods: An in vivo model of CVI-induced by saphene vein ligation (SVL) and a tissue block culture study were performed. Mice were subjected to SVL followed by KYP-2047 treatment (intraperitoneal, 10 mg/kg) for 7 days. Histological analysis, Masson's trichrome, Van Gieson staining, and mast cells evaluation were performed. Release of cytokines, nitric oxide synthase production, TGF-beta, VEGF, α-smooth muscle actin, PREP, Endoglin, and IL-8 quantification were investigated. (3) Results: KYP-2047 treatment ameliorated the histological abnormalities of the venous wall, reduced the collagen increase and modulated elastin content, lowered cytokines levels and prevented mast degranulation. Moreover, a decreased expression of TGF-beta, eNOS, VEGF, α-smooth muscle actin, IL-8, and PREP was observed in in vivo study; also a reduction in VEGF and Endoglin expression was confirmed in tissue block culture study. (4) Conclusions: For the first time, this research, highlighting the importance of POP as new target for vascular disorders, revealed the therapeutic potential of KYP-2047 as a helpful treatment for the management of CVI.
Collapse
|
34
|
Kent-Dennis C, Penner GB. Effects of lipopolysaccharide exposure on the inflammatory response, butyrate flux, and metabolic function of the ruminal epithelium using an ex vivo model. J Dairy Sci 2020; 104:2334-2345. [PMID: 33246619 DOI: 10.3168/jds.2020-19002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 01/30/2023]
Abstract
Acidotic conditions in the rumen have been associated with compromised barrier function of the ruminal epithelium and translocation of microbe-associated molecular patterns (MAMP) such as lipopolysaccharide (LPS). Interaction of MAMP with the ruminal epithelium may also induce a local proinflammatory response. The aim of this study was to evaluate the potential proinflammatory response of the ruminal epithelium following LPS exposure in Ussing chambers, to investigate whether LPS exposure affects the flux and metabolism of butyrate. Ruminal epithelial tissue from 9 Holstein bull calves were mounted into Ussing chambers and exposed to 0, 10,000, 50,000, or 200,000 endotoxin units (EU)/mL LPS for a duration of 5 h. Radiolabeled 14C-butyrate (15 mM) was added to the mucosal buffer to assess the mucosal-to-serosal flux of 14C-butyrate. Additional Ussing chambers, without radioisotope, were exposed to either 0 or 200,000 EU/mL LPS and were used to measure the release of β-hydroxybutyrate (BHB) and IL1B into the buffer, and to collect epithelial tissue for analysis of gene expression. Genes associated with inflammation (TNF, IL1B, CXCL8, PTGS2, TGFB1, TLR2, TLR4), nutrient transport (MCT1, MCT4, SLC5A8, GLUT1), and metabolic function (ACAT1, BDH1, MCU, IGFBP3, IGFBP5) were selected and analyzed using quantitative real-time PCR. Butyrate flux was not significantly affected by LPS exposure; however, we detected a tendency for the mucosal-to-serosal butyrate flux to increase linearly with LPS dose. Bidirectional releases of BHB and IL1B were not affected by LPS exposure. Expression of PTGS2, TGFB1, TLR4, and MCU were downregulated following exposure to LPS ex vivo. We detected no effects on the expression of genes associated with nutrient transport. The results of the present study are interpreted to indicate that, although the inflammatory response of the ruminal epithelium was slightly suppressed, exposure to LPS may have altered metabolic function.
Collapse
Affiliation(s)
- C Kent-Dennis
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8.
| |
Collapse
|
35
|
Fragiadaki M, Macleod FM, Ong ACM. The Controversial Role of Fibrosis in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2020; 21:ijms21238936. [PMID: 33255651 PMCID: PMC7728143 DOI: 10.3390/ijms21238936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the progressive growth of cysts but it is also accompanied by diffuse tissue scarring or fibrosis. A number of recent studies have been published in this area, yet the role of fibrosis in ADPKD remains controversial. Here, we will discuss the stages of fibrosis progression in ADPKD, and how these compare with other common kidney diseases. We will also provide a detailed overview of some key mechanistic pathways to fibrosis in the polycystic kidney. Specifically, the role of the 'chronic hypoxia hypothesis', persistent inflammation, Transforming Growth Factor beta (TGFβ), Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and microRNAs will be examined. Evidence for and against a pathogenic role of extracellular matrix during ADPKD disease progression will be provided.
Collapse
|
36
|
Khanna K, Mishra KP, Chanda S, Ganju L, Singh SB, Kumar B. Effect of Synbiotics on Amelioration of Intestinal Inflammation Under Hypobaric Hypoxia. High Alt Med Biol 2020; 22:32-44. [PMID: 33185493 DOI: 10.1089/ham.2020.0062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Khanna, Kunjan, Kamla Prasad Mishra, Sudipta Chanda, Lilly Ganju, Shashi Bala Singh, and Bhuvnesh Kumar. Effect of synbiotics on amelioration of intestinal inflammation under hypobaric hypoxia. High Alt Med Biol. 22:32-44, 2021. Aim: High-altitude exposure alters the gastrointestinal (GI) system, which may be a cause of hypobaric hypoxia (HH)-induced microbial dysbiosis. Therefore, we investigated the effect of a combination of beneficial bacteria and nondigestible fiber popularly known as "synbiotics" (Syn) to mitigate intestinal inflammation and microbial dysbiosis post-HH exposure. Methods: Syn, that is, a combination of probiotics and prebiotics, was given to male Sprague-Dawley rats 3 days prior and along with the HH exposure to assess its effect on mucosal barrier injury and inflammation. Changes in the gut microbiota and functional analysis were assessed using 16S rRNA and whole-genome sequencing (WGS) analysis. Results: Syn treatment significantly improved mucosal barrier injury in terms of decreased serum fluorescein isothiocyanate dextran from 96.1 ± 7.95 μg/ml in HH-alone group to 38.35 ± 4.55 μg/ml in HH + Syn group (p < 0.01) and decreased serum zonulin levels, that is, from 134.7 ± 19.05 ng/ml (HH alone) to 64.02 ± 7.33 ng/ml (HH + Syn) (p < 0.05), along with improvement in the intestinal villi under HH exposure. Levels of proinflammatory cytokines and chemokines significantly reduced upon Syn treatment, indicating attenuation of inflammation and immune cell migration. Syn treatment significantly reduced Th17 biased immune response preventing interleukin (IL)-17-induced inflammatory response with 8.1 ± 0.5 ng/mg protein in HH exposure group, while treatment with Syn in HH-exposed group reduced IL-17 levels to 2.01 ± 0.3 ng/mg protein (p < 0.001). Analysis of 16S rRNA showed significant (p < 0.05) alterations in Deferribacteres, Firmicutes, and Verrucomicrobia at the phylum levels, whereas Prevotella, Paenibacillus, Clostridium, Turicibacter, Bacillus, Anoxybacillus, Enterococcus, SMB53, Mucispirillum, Allobaculum, and Lactococcus were significantly altered (p < 0.05) in abundance at the genus level. WGS analysis revealed improvement in GI health by regulating functional pathways post-Syn treatment. Conclusion: Our findings indicate that Syn treatment improves intestinal barrier function and curtailed inflammation in the HH-exposed rat models, proving it to be a promising potential countermeasure for HH-induced gut problems.
Collapse
Affiliation(s)
- Kunjan Khanna
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Kamla Prasad Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Sudipta Chanda
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Lilly Ganju
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Shashi Bala Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Bhuvnesh Kumar
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
37
|
Molecular structure and supramolecular assembly of a TGF-β1 mimetic oligopeptide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Drizi A, Djokovic D, Laganà AS, van Herendael B. Impaired inflammatory state of the endometrium: a multifaceted approach to endometrial inflammation. Current insights and future directions. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2020; 19:90-100. [PMID: 32802019 PMCID: PMC7422289 DOI: 10.5114/pm.2020.97863] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
New insights into the complex and fine-regulated inflammatory mechanisms involved in the endometrium reveal multiple facets to the problem of endometrial inflammation. However, the entity termed chronic endometritis is to date restricted to infectious etiology and managed with antibiotics. Conversely, the concept of impaired inflammatory state of the endometrium (IISE) provides a more global approach to defective endometrial inflammation, considering both infectious and non-infectious etiology. A non-systematic review was done through a search on MEDLINE, EMBASE, Global Health, The Cochrane Library, Health Technology Assessment Database and Web of Science, research registers. Pertinent original and review articles, published in English or French until December 31, 2019, were selected. A compelling body of evidence demonstrates transient, repeated and persistent IISE to be a major factor of most problematic disorders in obstetrics/gynecology, such as endometrial polyps, unexplained infertility, miscarriage, placenta-related pathology and endometrial cancer. When scheduled accordingly, hysteroscopy can play a key role in the IISE assessment. Robust data suggests the pertinence of minimal-effective anti-inflammatory regimens for therapeutic IISE targeting. This review provides a comprehensive update on the multiple facets of inflammation in the endometrial physiology and pathology. Further research is needed to improve classification, diagnosis and treatment of IISE.
Collapse
Affiliation(s)
- Amal Drizi
- Independent consultant in Obstetrics and Gynecology, Algiers, Algeria
| | - Dusan Djokovic
- Department of Obstetrics and Gynecology, Nova Medical School – Faculdade de Ciências Médicas, Nova University of Lisbon, Lisbon, Portugal
- Department of Obstetrics and Gynecology, Hospital S. Francisco Xavier – Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Varese, Italy
| | - Bruno van Herendael
- Department of Minimally Invasive Gynecologic Surgery, Stuivenberg General Hospital, Antwerp, Belgium
| |
Collapse
|
39
|
Intraglomerular Monocyte/Macrophage Infiltration and Macrophage-Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A 2B Adenosine Receptor. Cells 2020; 9:cells9041051. [PMID: 32340145 PMCID: PMC7226348 DOI: 10.3390/cells9041051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetic nephropathy (DN) is considered the main cause of kidney disease in which myofibroblasts lead to renal fibrosis. Macrophages were recently identified as the major source of myofibroblasts in a process known as macrophage–myofibroblast transition (MMT). Adenosine levels increase during DN and in vivo administration of MRS1754, an antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerular fibrosis (glomerulosclerosis). We aimed to investigate the association between A2BAR and MMT in glomerulosclerosis during DN. Kidneys/glomeruli of non-diabetic, diabetic, and MRS1754-treated diabetic (DM+MRS1754) rats were processed for histopathologic, transcriptomic, flow cytometry, and cellular in vitro analyses. Macrophages were used for in vitro cell migration/transmigration assays and MMT studies. In vivo MRS1754 treatment attenuated the clinical and histopathological signs of glomerulosclerosis in DN rats. Transcriptomic analysis demonstrated a decrease in chemokine-chemoattractants/cell-adhesion genes of monocytes/macrophages in DM+MRS1754 glomeruli. The number of intraglomerular infiltrated macrophages and MMT cells increased in diabetic rats. This was reverted by MRS1754 treatment. In vitro cell migration/transmigration decreased in macrophages treated with MRS1754. Human macrophages cultured with adenosine and/or TGF-β induced MMT, a process which was reduced by MRS1754. We concluded that pharmacologic blockade of A2BAR attenuated some clinical signs of renal dysfunction and glomerulosclerosis, and decreased intraglomerular macrophage infiltration and MMT in DN rats.
Collapse
|
40
|
Efficacy and Safety of Pirfenidone in Patients with Second-Degree Burns: A Proof-of-Concept Randomized Controlled Trial. Adv Skin Wound Care 2020; 33:1-7. [PMID: 32195729 DOI: 10.1097/01.asw.0000655484.95155.f7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Several studies suggest that pirfenidone may have a potential off-label use for wound healing. However, the effectiveness of this medication in patients with burns remains uncertain. Accordingly, investigators sought to assess wound re-epithelialization in patients with second-degree burns after adding pirfenidone to usual care. DESIGN AND SETTING Single-center pilot, proof-of-concept, single-blind randomized controlled trial. PATIENTS AND INTERVENTION Eight patients with second-degree burns were treated with occlusive hydrocolloid dressings and were randomly allocated to receive either no additional treatment or pirfenidone. OUTCOME MEASURES The primary outcome of the study was to evaluate wound healing between groups based on the thickness of the re-epithelialized epidermis at day 7. Secondary outcomes were to qualitatively assess the development of fibrotic tissue in the dermis, anomalies in the basal membrane, and the development of collagen fibers by histologic analysis. Liver and renal functions were measured daily to assess the overall safety of oral pirfenidone. MAIN RESULTS Patients treated with pirfenidone showed a remarkable improvement in wound re-epithelialization at day 7 (148.98 ± 13.64 vs 119.27 ± 15.55 μm; P = .029; 95% confidence interval, 4.14-55.29). Histologic evaluations showed less wound fibrosis in the pirfenidone group. CONCLUSIONS A decrease in wound healing time by enhancing wound re-epithelialization was observed with pirfenidone. Larger clinical trials are needed to reach more reliable conclusions.
Collapse
|
41
|
Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020; 9:cells9020306. [PMID: 32012802 PMCID: PMC7072438 DOI: 10.3390/cells9020306] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-β in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-β during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-β research in chronic wounds are discussed.
Collapse
|
42
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
43
|
Mitchell A, Wanczyk H, Jensen T, Finck C. Human induced pluripotent stem cells ameliorate hyperoxia-induced lung injury in a mouse model. Am J Transl Res 2020; 12:292-307. [PMID: 32051754 PMCID: PMC7013222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Hyperoxia-induced lung injury occurs in neonates on oxygen support due to premature birth, often leading to the development of bronchopulmonary dysplasia. Current treatment options have limited effect. The aim of this study was to determine if human induced pluripotent stem cells (iPSCs) and those differentiated to an alveolar-like phenotype (diPSCs) could repair hyperoxia-induced lung damage in a mouse model. Neonatal C57BL6/J mice were separated into two groups and exposed to 75% oxygen over 6 or 14 days. Cell treatments were instilled intra-orally following removal. Controls included hyperoxia, normoxia, and a vehicle. 7 and 14 days post treatment, lungs were extracted and histomorphometric analysis performed. Gene expression of markers mediating inflammation (Tgfβ1, Nfkb1, and Il-6) were investigated. In addition, exosomes from each cell type were isolated and administered as a cell free alternative. There was a significant difference between the mean linear intercept (MLI) in hyperoxic vs. normoxic lungs prior to treatment. No difference existed between the MLI in iPSC-treated lungs vs. normoxic lungs after 6 and 14 days of hyperoxia. For mice exposed to 6 days of hyperoxia, gene expression in iPSC-treated lungs returned to normal 14 days later. At the same time points, diPSCs were not as effective. Exosomes were also not as effective in reversing hyperoxic lung damage as their cellular counterparts. This study highlights the potential benefit of using iPSCs to repair damaged lung tissue through possible modulation of the inflammatory response, leading to novel therapies for acute hyperoxia-induced lung injury and the prevention of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Adam Mitchell
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
| | - Heather Wanczyk
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
| | - Todd Jensen
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
| | - Christine Finck
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
- Connecticut Children’s Medical Center282 Washington St, Hartford, CT, USA
| |
Collapse
|
44
|
The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. Contemp Oncol (Pozn) 2019; 23:187-194. [PMID: 31992949 PMCID: PMC6978756 DOI: 10.5114/wo.2019.91543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LA) is the most common cause of cancer-related death worldwide. Despite the advances over last decade in new targeted therapies, cancer genetics, diagnostics, staging, and surgical techniques as well as new chemotherapy and radiotherapy protocols, the death rate from LA remains high. The tumour microenvironment is composed of several cytokines, one of which is transforming growth factor β1 (TGF-β1), which modulates and mediates the expression of epithelial-mesenchymal transition (EMT), correlated with invasive growth in LAs, and exhibits its pleiotropic effects through binding to transmembrane receptors TβR-1 (also termed activin receptor-like kinases – ALKs) and TβR-2. Accordingly, there is an urgent need to elucidate the molecular mechanisms associated with the tumoural spreading process and therapeutic resistance of this serious pathology. In this review, we briefly discuss the current role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases, and give an overview of our current mechanistic understanding of the TGF-β1-related pathways in brain metastases progression, TGF-β1 pathway inhibitors that could be used for clinical treatment, and examination of models used to study these processes. Finally, we summarise the current progress in the therapeutic approaches targeting TGF-β1.
Collapse
|
45
|
Lagus H, Klaas M, Juteau S, Elomaa O, Kere J, Vuola J, Jaks V, Kankuri E. Discovery of increased epidermal DNAH10 expression after regeneration of dermis in a randomized with-in person trial - reflections on psoriatic inflammation. Sci Rep 2019; 9:19136. [PMID: 31836722 PMCID: PMC6910998 DOI: 10.1038/s41598-019-53874-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Because molecular memories of past inflammatory events can persist in epidermal cells, we evaluated the long-term epidermal protein expression landscapes after dermal regeneration and in psoriatic inflammation. We first characterized the effects of two dermal regeneration strategies on transplants of indicator split-thickness skin grafts (STSGs) in ten adult patients with deep burns covering more than 20% of their body surface area. After fascial excision, three adjacent areas within the wound were randomized to receive a permanent dermal matrix, a temporary granulation-tissue-inducing dressing or no dermal component as control. Control areas were covered with STSG immediately, and treated areas after two-weeks of dermis formation. Epidermis-dermis-targeted proteomics of one-year-follow-up samples were performed for protein expression profiling. Epidermal expression of axonemal dynein heavy chain 10 (DNAH10) was increased 20-fold in samples having had regenerating dermis vs control. Given the dermal inflammatory component found in our dermal regeneration samples as well as in early psoriatic lesions, we hypothesized that DNAH10 protein expression also would be affected in psoriatic skin samples. We discovered increased DNAH10 expression in inflammatory lesions when compared to unaffected skin. Our results associate DNAH10 expression with cell proliferation and inflammation as well as with the epidermal memory resulting from the previous regenerative signals of dermis. This study (ISRCTN14499986) was funded by the Finnish Ministry of Defense and by government subsidies for medical research.
Collapse
Affiliation(s)
- Heli Lagus
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Susanna Juteau
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Outi Elomaa
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Jyrki Vuola
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
46
|
Kuffler DP. Injury-Induced Effectors of Neuropathic Pain. Mol Neurobiol 2019; 57:51-66. [PMID: 31701439 DOI: 10.1007/s12035-019-01756-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
47
|
Simpson S, Preston D, Schwerk C, Schroten H, Blazer-Yost B. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol 2019; 317:C881-C893. [PMID: 31411921 PMCID: PMC6879874 DOI: 10.1152/ajpcell.00205.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022]
Abstract
The choroid plexus (CP), composed of capillaries surrounded by a barrier epithelium, is the main producer of cerebrospinal fluid (CSF). The CP epithelium regulates the transport of ions and water between the blood and the ventricles, contributing to CSF production and composition. Several studies suggest a connection between the cation channel transient receptor potential vanilloid-4 (TRPV4) and transepithelial ion movement. TRPV4 is a nonselective, calcium-permeable cation channel present in CP epithelia reported to be activated by cytokines and inflammatory mediators. Utilizing the PCP-R (porcine choroid plexus-Riems) cell line, we investigated the effects of various cytokines and inflammatory mediators on TRPV4-mediated activity. Select proinflammatory cytokines (TNF-α, IL-1β, TGF-β1) had inhibitory effects on TRPV4-stimulated transepithelial ion flux and permeability changes, whereas anti-inflammatory cytokines (IL-10, IL-4, and IL-6) had none. Quantitative mRNA analysis showed that these cytokines had no effect on TRPV4 transcription levels. Inhibition of the transcription factor NF-κB, involved in the production and regulation of several inflammatory cytokines, inhibited TRPV4-mediated activity, suggesting a link between TRPV4 and cytokine production. Contrary to published studies, the proinflammatory mediator arachidonic acid (AA) had inhibitory rather than stimulatory effects on TRPV4-mediated responses. However, inhibition of AA metabolism also caused inhibitory effects on TRPV4, suggesting a complex interaction of AA and its metabolites in the regulation of TRPV4 activity. Together these data imply that TRPV4 activity is involved in the inflammatory response; it is negatively affected by proinflammatory mediators. Furthermore, arachidonic acid metabolites, but not arachidonic acid itself, are positive regulators of TRPV4.
Collapse
Affiliation(s)
- Stefanie Simpson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Daniel Preston
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
48
|
Ono-Ohmachi A, Ueno HM, Morita Y, Kato K. Collagen production ability of milk basic protein is dependent on stimulatory effect of transforming growth factor-β1 and β2. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Isac L, Jiquan S. Interleukin 10 promotor gene polymorphism in the pathogenesis of psoriasis. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Breed, Diet, and Interaction Effects on Adipose Tissue Transcriptome in Iberian and Duroc Pigs Fed Different Energy Sources. Genes (Basel) 2019; 10:genes10080589. [PMID: 31382709 PMCID: PMC6723240 DOI: 10.3390/genes10080589] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, we analyzed the effects of breed, diet energy source, and their interaction on adipose tissue transcriptome in growing Iberian and Duroc pigs. The study comprised 29 Iberian and 19 Duroc males, which were kept under identical management conditions except the nutritional treatment. Two isoenergetic diets were used with 6% high oleic sunflower oil (HO) or carbohydrates (CH) as energy sources. All animals were slaughtered after 47 days of treatment at an average live weight of 51.2 kg. Twelve animals from each breed (six fed each diet) were employed for ham subcutaneous adipose tissue RNA-Seq analysis. The data analysis was performed using two different bioinformatic pipelines. We detected 837 and 1456 differentially expressed genes (DEGs) according to breed, depending on the pipeline. Due to the strong effect of breed on transcriptome, the effect of the diet was separately evaluated in the two breeds. We identified 207 and 57 DEGs depending on diet in Iberian and Duroc pigs, respectively. A joint analysis of both effects allowed the detection of some breed–diet interactions on transcriptome, which were inferred from RNA-Seq and quantitative PCR data. The functional analysis showed the enrichment of functions related to growth and tissue development, inflammatory response, immune cell trafficking, and carbohydrate and lipid metabolism, and allowed the identification of potential regulators. The results indicate different effects of diet on adipose tissue gene expression between breeds, affecting relevant biological pathways.
Collapse
|