1
|
Sivakumar B, Kurian GA. Increased Susceptibility of Cardiac Tissue to PM 2.5-Induced Toxicity in Uremic Cardiomyopathic Rats Is Linked to Elevated Levels of Mitochondrial Dysfunction. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39462878 DOI: 10.1002/tox.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Patients with chronic kidney disease (CKD) frequently develop uremic cardiomyopathy, characterized by mitochondrial dysfunction as one of its pathologically significant mediators. Given that PM2.5 specifically targets cardiac mitochondria, exacerbating toxicity, this study addresses the potential alterations in the severity of PM2.5 toxicity in the context of CKD conditions. Female Wistar rats were exposed to PM2.5 at a concentration of 250 μg/m3 daily for 3 h for 21 days after which an adenine-induced CKD model was developed. While both PM2.5 exposure and the induction of CKD in rats lead to cardiomyopathy, the CKD animals exposed to PM2.5 exhibited a notably severe extent of myocardial hypertrophy and fibrosis. ECG recordings in CKD+ PM2.5 animals revealed a depressed ST segment and prolonged QRS interval, with both PM2.5 and CKD animals displaying an elevated ST segment. Subcellular level analysis confirmed a significantly low mitochondrial copy number and a severe decline in mitochondrial bioenergetic function in the CKD+ PM2.5 group. The prominent decline in PGC1-α further affirmed the severe mitochondrial functional deterioration in CKD+ PM2.5 animals compared to other experimental groups. Additionally, myocardial calcification was enhanced in CKD+ PM2.5 animals, heightening the susceptibility of CKD animals to PM2.5 toxicity. In summary, our findings suggest that the increased vulnerability of CKD myocardium to PM2.5-induced toxicity may be attributed to severe mitochondrial damage and increased calcification in the myocardium.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
2
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Abdellatif DA. Social and humanitarian issues in nephrology and hypertension. Curr Opin Nephrol Hypertens 2024:00041552-990000000-00186. [PMID: 39258991 DOI: 10.1097/mnh.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Chronic kidney disease and hypertension, two widely prevalent conditions worldwide, present an urgent and pressing need for immediate action. The review describes how social conditions and humanitarian issues can influence hypertension and kidney disease. RECENT FINDINGS Undoubtedly, social determinants of health (SDoH) are key influencers in the development of many noncommunicable diseases, including hypertension and kidney disease. Healthcare professionals, including public health workers, play a crucial role in addressing these issues. Poverty, low education level, poor nutrition, housing, exposure to environmental hazards, and stress-related disorders are all factors that can be addressed, either directly or indirectly, through improved awareness and access to proper healthcare services. Besides personal factors, national, regional, or global factors cause serious apprehension. Disasters, whether natural or man-made, can lead to significant aftermaths on the healthy person and certainly on kidney disease and hypertensive patients. A Global Overview Report, 2023 turned out to be one of the most violent years since the end of the Cold War. In 2023, 59 state-based conflicts were recorded in 34 countries, the highest number registered since 1946. The wars in Ukraine and Gaza were the primary contributors with a significant impact on the kidney population, especially people living on dialysis and transplantation patients. They also yielded many refugees or displaced persons with ongoing suffering. SUMMARY It is crucial to recognize that social and humanitarian conditions can quickly exacerbate the health of vulnerable populations, particularly those with noncommunicable diseases like hypertension and chronic kidney disease. These patients, who often require continuous follow-up, especially those on dialysis, are particularly vulnerable during difficult times. Their lives depend on uninterrupted access to dialysis or transplantation medications, making the need for special attention and care more pressing. Further research and advocacy are needed to address these issues and ensure the health and well being of these populations.
Collapse
|
4
|
Troost JP, D’Souza J, Buxton M, Kshirsagar AV, Engel LS, O’Lenick CR, Smoyer WE, Klein J, Ju W, Eddy S, Helmuth M, Mariani LH, Kretzler M, Trachtman H. Elevated Exposure to Air Pollutants Accelerates Primary Glomerular Disease Progression. Kidney Int Rep 2024; 9:2527-2536. [PMID: 39156153 PMCID: PMC11328569 DOI: 10.1016/j.ekir.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Environmental contributors to kidney disease progression remain elusive. We explored how residential air pollution affects disease progression in patients with primary glomerulopathies. Methods Nephrotic Syndrome Study Network (NEPTUNE) and CureGlomerulonephropathy (CureGN) participants with residential census tract data and ≥2 years of follow-up were included. Using Cox proportional hazards models, the associations per doubling in annual average baseline concentrations of total particulate matter with diameter ≤2.5 μm (PM2.5) and its components, black carbon (BC), and sulfate, with time to ≥40% decline in estimated glomerular filtration rate (eGFR) or kidney failure were estimated. Serum tumour necrosis factor levels and kidney tissue transcriptomic inflammatory pathway activation scores were used as molecular markers of disease progression. Results PM2.5, BC, and sulfate exposures were comparable in NEPTUNE (n = 228) and CureGN (n = 697). In both cohorts, participants from areas with higher levels of pollutants had lower eGFR, were older and more likely self-reported racial and ethnic minorities. In a fully adjusted model combining both cohorts, kidney disease progression was associated with PM2.5 (adjusted hazard ratio 1.55 [95% confidence interval: 1.00-2.38], P = 0.0489) and BC (adjusted hazard ratio 1.43 [95% confidence interval: 0.98-2.07], P = 0.0608) exposure. Sulfate and PM2.5 exposure were positively correlated with serum tumour necrosis factor (TNF) (P = 0.003) and interleukin-1β levels (P = 0.03), respectively. Sulfate exposure was also directly associated with transcriptional activation of the TNF and JAK-STAT signaling pathways in kidneys (r = 0.55-0.67, P-value <0.01). Conclusion Elevated exposure to select air pollutants is associated with increased risk of disease progression and systemic inflammation in patients with primary.
Collapse
Affiliation(s)
- Jonathan P. Troost
- Michigan Institute for Clinical & Health Research, University of Michigan, Ann Arbor Michigan, USA
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Miatta Buxton
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Abhijit V. Kshirsagar
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lawrence S. Engel
- Departments of Epidemiology and Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cassandra R. O’Lenick
- Departments of Epidemiology and Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William E. Smoyer
- Department of Pediatrics, Ohio State University, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Jon Klein
- Division of Nephrology and Hypertension, Department of Medicine, Christina Lee Brown Environment Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Administration Medical Center, Louisville, Kentucky, USA
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor Michigan, USA
| | - Sean Eddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Margaret Helmuth
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura H. Mariani
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor Michigan, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Wang SS, Wang CC, Wang CL, Lin YC, Tung CW. Incorporating Tissue-Specific Gene Expression Data to Improve Chemical-Disease Inference of in Silico Toxicogenomics Methods. J Xenobiot 2024; 14:1023-1035. [PMID: 39189172 PMCID: PMC11348041 DOI: 10.3390/jox14030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
In silico toxicogenomics methods are resource- and time-efficient approaches for inferring chemical-protein-disease associations with potential mechanism information for exploring toxicological effects. However, current in silico toxicogenomics systems make inferences based on only chemical-protein interactions without considering tissue-specific gene/protein expressions. As a result, inferred diseases could be overpredicted with false positives. In this work, six tissue-specific expression datasets of genes and proteins were collected from the Expression Atlas. Genes were then categorized into high, medium, and low expression levels in a tissue- and dataset-specific manner. Subsequently, the tissue-specific expression datasets were incorporated into the chemical-protein-disease inference process of our ChemDIS system by filtering out relatively low-expressed genes. By incorporating tissue-specific gene/protein expression data, the enrichment rate for chemical-disease inference was largely improved with up to 62.26% improvement. A case study of melamine showed the ability of the proposed method to identify more specific disease terms that are consistent with the literature. A user-friendly user interface was implemented in the ChemDIS system. The methodology is expected to be useful for chemical-disease inference and can be implemented for other in silico toxicogenomics tools.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan;
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan;
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chien-Lun Wang
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan;
| | - Ying-Chi Lin
- Master and Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan;
- Master and Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| |
Collapse
|
6
|
Nagai K, Araki S, Sairenchi T, Ueda K, Yamagishi K, Shima M, Yamamoto K, Iso H, Irie F. Particulate Matter and Incident Chronic Kidney Disease in Japan: The Ibaraki Prefectural Health Study (IPHS). JMA J 2024; 7:334-341. [PMID: 39114627 PMCID: PMC11301005 DOI: 10.31662/jmaj.2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Global health hazards caused by air pollution, such as chronic kidney disease (CKD), have been gaining attention; however, air pollution-associated CKD has not been explored in Japan. Methods We examined 77,770 men and women with estimated glomerular filtration rate (eGFR) ≥60 ml/min/1.73 m2 in the Ibaraki Prefecture who participated in annual community-based health checkups from 1993 at 40-75 years old and were followed up through December 2020. The outcome was newly developed kidney dysfunction with eGFR of <60 ml/min/1.73 m2 during follow-up. To assess air pollution, a PM2.5 exposure model was employed to estimate yearly means at 1 × 1-km resolution, converted into means at the municipal level. Hazard modeling was employed to examine PM2.5 concentrations in residential areas as a risk factor for outcomes. Results Participants were distributed across 23 municipalities in the Ibaraki Prefecture, with PM2.5 concentrations between 16.2 and 33.4 μg/m3 (mean, 22.7 μg/m3) in 1987-1995 as the exposure period. There were 942 newly developed kidney dysfunctions during follow-up. Based on 1987-1995 PM2.5 concentrations as the baseline exposure, the multivariate-adjusted hazard ratio per 10-μg/m3 increase in PM2.5 for newly developed kidney dysfunction was 1.02 (95%CI, 0.80-1.24) in men and 1.19 (95%CI, 0.95-1.44) in women. Conclusions Elevated PM2.5 did not represent a significant risk factor for incident CKD in a prefecture in Japan.
Collapse
Affiliation(s)
- Kei Nagai
- Department of Nephrology, Hitachi General Hospital, Hitachi, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shin Araki
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Toshimi Sairenchi
- Medical Science of Nursing, Dokkyo Medical University School of Nursing, Shimotsuga, Japan
- Department of Public Health, Institute of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Kazumasa Yamagishi
- Department of Public Health, Institute of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kouhei Yamamoto
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroyasu Iso
- Institute of Global Health Policy Research (iGHP), National Center for Global Health and Medicine, Tokyo, Japan
| | - Fujiko Irie
- Tsuchiura Public Health Center of Ibaraki Prefectural Government, Tsuchiura, Japan
| |
Collapse
|
7
|
Maneeprakorn W, Tumcharern G, Bamrungsap S, Chansaenpak K, Segkhoonthod K, Rattanabut C, Karn-orachai K, Ngamaroonchote A, Sangkaew P, Wongsuwan P, Pimalai D, Yong N, Ouiram T, Phattrapornpisit P, Lert-itthiporn A, Gerdsapaya S, Pimpha N, Thanayupong E, Ngammuangtueng P, Rattanopas S, Piyanuch P, Butmee P, Noipitak P, Bunsri T, Somboonkaew A, Rayanasukha S, Wannason U, Chanhorm S, Chaitavon K, Thananawanukul M, Cha’on U, Anutrakulchai S, Japrung D. Addressing Water Contamination and Associated Health Issues through Community-Based Interventions: A Case Study in Khon Kaen Province. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:729. [PMID: 38928976 PMCID: PMC11204361 DOI: 10.3390/ijerph21060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
A recent study conducted in Khon Kaen Province, Thailand, evaluated the effectiveness of a technology-assisted intervention aimed at improving water quality and addressing related health issues in communities around key water bodies. The intervention targeted health concerns associated with water contamination, including chronic kidney diseases, skin conditions, hypertension, and neurological symptoms. The study included water quality assessments and health evaluations of 586 residents and implemented a Learning Innovation Platform (LIP) across 13 communities. Results showed significant improvements in the community, including a decrease in hypertension and skin-related health issues, as well as enhanced community awareness and proficiency in implementing simple water quality assessments and treatment. The study demonstrated the value of a comprehensive, technology-driven community approach, effectively enhancing water quality and health outcomes, and promoting greater community awareness and self-sufficiency in managing environmental health risks.
Collapse
Affiliation(s)
- Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Gamolwan Tumcharern
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Kantapat Chansaenpak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Khoonsake Segkhoonthod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Chanoknan Rattanabut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Kullavadee Karn-orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Aroonsri Ngamaroonchote
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Prapaporn Sangkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Pornpimol Wongsuwan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Nararat Yong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Tik Ouiram
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Peraya Phattrapornpisit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Aurachat Lert-itthiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Satita Gerdsapaya
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Nuttaporn Pimpha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Pitak Ngammuangtueng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Sopita Rattanopas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Pornthip Piyanuch
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Preeyanut Butmee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Phongthep Noipitak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Thitiya Bunsri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| | - Armote Somboonkaew
- National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (A.S.); (S.R.); (U.W.); (S.C.); (K.C.)
| | - Sirajit Rayanasukha
- National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (A.S.); (S.R.); (U.W.); (S.C.); (K.C.)
| | - Uayphorn Wannason
- National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (A.S.); (S.R.); (U.W.); (S.C.); (K.C.)
| | - Sataporn Chanhorm
- National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (A.S.); (S.R.); (U.W.); (S.C.); (K.C.)
| | - Kosom Chaitavon
- National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (A.S.); (S.R.); (U.W.); (S.C.); (K.C.)
| | - Mongkol Thananawanukul
- 10th Environment and Pollution Control Office (Khon Kaen), Ministry of Natural Resources and Environment, Khon Kaen 40000, Thailand;
| | - Ubon Cha’on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirirat Anutrakulchai
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand; (G.T.); (S.B.); (K.C.); (K.S.); (C.R.); (K.K.-o.); (A.N.); (N.Y.); (A.L.-i.); (S.G.); (N.P.); (S.R.); (P.P.); (P.B.); (P.N.); (T.B.)
| |
Collapse
|
8
|
Yadav R, Kumar D, Singh J, Jangra A. Environmental toxicants and nephrotoxicity: Implications on mechanisms and therapeutic strategies. Toxicology 2024; 504:153784. [PMID: 38518838 DOI: 10.1016/j.tox.2024.153784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Kidneys are one of the most important organs in the human body. In addition to filtering 200 liters of fluid every 24 hours, the kidney also regulates acid-base balance, maintains electrolyte balance, and removes waste and toxicants from the body. Nephrotoxicity is the term used to describe the deterioration of kidney function caused by the harmful effects of medications and various types of environmental toxicants. Exposure to environmental toxicants is an inevitable side effect in the world's increasing industrialization and even more prevalent in underdeveloped nations. Growing data over the past few years has illuminated the probable connection between environmental toxicants and nephrotoxicity. Phthalates, microplastics, acrylamide and bisphenol A are environmental toxicants of particular concern, which are known to have nephrotoxic effects. Such toxicants may accumulate in the kidneys of humans after being consumed, inhaled, or come into contact with the skin. They can enter cells through endocytosis and accumulate in the cytoplasm. Small-sized nephrotoxicants can cause a variety of ailments including inflammation with increased production of pro-inflammatory cytokines, oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. This study uncovers the potential for new insights concerning the relationship between various environmental toxicants and kidney health. The objectives of this review is to establish information gaps, assess and identify the toxicity mechanisms of different nephrotoxicants, identify innovative pharmacological therapies that demonstrate promising therapeutic benefits/ relevance, and discuss the predictions for the future based on the analysis of the literature.
Collapse
Affiliation(s)
- Rachna Yadav
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| | - Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| |
Collapse
|
9
|
Alexiuk M, Tangri N. Prediction models for earlier stages of chronic kidney disease. Curr Opin Nephrol Hypertens 2024; 33:325-330. [PMID: 38420892 DOI: 10.1097/mnh.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Identifying patients with risk of developing progressive chronic kidney disease (CKD) early is an important step in improving kidney care. This review discusses four recently developed models, two which predict risk of new onset disease, and two which predict progression earlier in the course of disease. RECENT FINDINGS Several models predicting CKD incidence and progression have been recently developed and externally validated. A connecting theme across these models is the use of data beyond estimated glomerular filtration rate, allowing for greater accuracy and personalization. Two models were developed with stratification by diabetes status, displaying excellent model fit with and without variables like use of diabetes medication and hemoglobin A1C. Another model was designed to be patient facing, not requiring the knowledge of any laboratory values for use. The final model was developed using lab data and machine learning. These models demonstrated high levels of discrimination and calibration in external validation, suggesting suitability for clinical use. SUMMARY Models that predict risk of CKD onset and progression have the potential to significantly reduce disease burden, financial cost, and environmental output from CKD through upstream disease prevention and slowed progression. These models should be implemented and evaluated prospectively in primary care settings.
Collapse
Affiliation(s)
- Mackenzie Alexiuk
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba
| | - Navdeep Tangri
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba
- Chronic Disease Innovation Centre, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Wang Y, Zhang H, Tang P, Jiao B, Chen Y, Liu S, Yi M, Dai Y. Association between blood metals mixture and chronic kidney disease in adults: NHANES 2013-2016. J Trace Elem Med Biol 2024; 83:127395. [PMID: 38290270 DOI: 10.1016/j.jtemb.2024.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The association between single metal exposure and chronic kidney disease (CKD) has been established. However, there is limited research on the effects of multi-metal mixtures and their potential age-specific associations with kidney injury. This study aimed to examine the relationship between metal mixtures and kidney function in adults, while also exploring the modifying effects of age. METHODS We included a subset (n = 4250) of a nationally representative adult population in the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Kidney function was assessed using the glomerular filtration rate (eGFR) and creatinine albumin ratio (ACR). The individual and combined effects of lead (Pb), cadmium (Cd), mercury, and manganese on kidney injury and the risk of CKD were evaluated. RESULTS Pb and Cd were found to be positively associated with decreased kidney function. For a one Ln-unit increase in lead and cadmium, the adjusted ORs of CKD were 1.60 (95% CI: 1.35, 1.90) and 1.41 (95% CI:1.12, 1.77), respectively. We also observed an interaction between lead and cadmium for ACR. We also observed the joint effect between Pb and Cd on eGFR, ACR and CKD. Stratified analysis found a higher risk of decreased kidney function among older individuals. The quantile-g calculation model further showed that metal mixture was associated with decreased kidney function and the risk of CKD (OR = 1.53, 95% CI: 1.22, 1.90). And lead and cadmium were the main contributors. And Pb and Cd were the major components that increased the risk of CKD. CONCLUSION Co-exposure to metal mixture were associated with reduced kidney function in adults, especially in older. Our findings support co-exposure to lead and cadmium as risk factors of CKD in adults.
Collapse
Affiliation(s)
- Yican Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Zhang
- Department of Occupational disease, Qingdao Central Hospital, Shandong 266042, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuanyuan Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mengnan Yi
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
11
|
Dillon D, Ward-Caviness C, Kshirsagar AV, Moyer J, Schwartz J, Di Q, Weaver A. Associations between long-term exposure to air pollution and kidney function utilizing electronic healthcare records: a cross-sectional study. Environ Health 2024; 23:43. [PMID: 38654228 PMCID: PMC11036746 DOI: 10.1186/s12940-024-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental exposures. METHODS Our primary objective is to examine creatinine-based estimated glomerular filtration rate (eGFRcr) and diagnosis of CKD and potential associations with fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated eGFRcr using the serum creatinine-based 2021 CKD-EPI equation. PM2.5 and NO2 data come from a hybrid model using 1 km2 grids and O3 data from 12 km2 CMAQ grids. Exposure concentrations were 1-year averages. We used linear mixed models to estimate eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, temporality, and 2010 census block group variables. RESULTS We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was associated with a 1.63 mL/min/1.73m2 (95% CI: -1.96, -1.31) reduction in eGFRcr, with O3 and NO2 showing positive associations. There were 1,015 patients identified with CKD through e-phenotyping and ICD codes. None of the environmental exposures were positively associated with a first-time measure of eGFRcr < 60 mL/min/1.73m2. NO2 was inversely associated with a first-time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90). CONCLUSIONS One-year average PM2.5 was associated with reduced eGFRcr, while O3 and NO2 were inversely associated. Neither PM2.5 or O3 were associated with a first-time identification of CKD, NO2 was inversely associated. We recommend future research examining the relationship between air pollution and impaired renal function.
Collapse
Affiliation(s)
- David Dillon
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Cavin Ward-Caviness
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Abhijit V Kshirsagar
- Division of Nephrology and Hypertension, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua Moyer
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joel Schwartz
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Qian Di
- Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
| | - Anne Weaver
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Haruna I, Obeng-Gyasi E. Association of Combined Per- and Polyfluoroalkyl Substances and Metals with Chronic Kidney Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:468. [PMID: 38673379 PMCID: PMC11050583 DOI: 10.3390/ijerph21040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Background: Exposure to environmental pollutants such as metals and Per- and Polyfluoroalkyl Substances (PFAS) has become common and increasingly associated with a decrease in the estimated Glomerular Filtration Rate (eGFR), which is a marker often used to measure chronic kidney disease (CKD). However, there are limited studies involving the use of both eGFR and the urine albumin creatinine ratio (uACR), which are more comprehensive markers to determine the presence of CKD and the complexity of pollutant exposures and response interactions, especially for combined metals and PFAS, which has not been comprehensively elucidated. Objective: This study aims to assess the individual and combined effects of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), Cadmium (Cd), Mercury (Hg), and Lead (Pb) exposure on CKD using data from the National Health and Nutritional Examination Survey (NHANES) 2017-2018. Methods: We employed the use of bivariate logistic regression and Bayesian Kernel Machine Regression (BKMR) in our analysis of the data. Results: Logistic regression results revealed a positive association between PFOA and CKD. Our BKMR analysis revealed a non-linear and bi-phasic relationship between the metal exposures and CKD. In our univariate exposure-response function plot, Cd and Hg exhibited a U and N-shaped interaction, which indicated a non-linear and non-additive relationship with both low and high exposures associated with CKD. In addition, the bivariate exposure-response function between two exposures in a mixture revealed that Cd had a U-shaped relationship with CKD at different quantiles of Pb, Hg, PFOA, and PFOS, indicating that both low and high levels of Cd is associated with CKD, implying a non-linear and complex biological interaction. Hg's interaction plot demonstrated a N-shaped association across all quantiles of Cd, with the 75th quantile of Pb and the 50th and 75th quantiles of PFOA and PFOS. Furthermore, the PIP results underscored Cd's consistent association with CKD (PIP = 1.000) followed by Hg's (PIP = 0.9984), then PFOA and PFOS with a closely related PIP of 0.7880 and 0.7604, respectively, and finally Pb (PIP = 0.6940), contributing the least among the five environmental pollutants on CKD, though significant. Conclusions: Our findings revealed that exposure to environmental pollutants, particularly Hg and Cd, are associated with CKD. These findings highlight the need for public health interventions and strategies to mitigate the cumulative effect of PFAS and metal exposure and elucidate the significance of utilizing advanced statistical methods and tools to understand the impact of environmental pollutants on human health. Further research is needed to understand the mechanistic pathways of PFAS and metal-induced kidney injury and CKD, and longitudinal studies are required to ascertain the long-term impact of these environmental exposures.
Collapse
Affiliation(s)
- Issah Haruna
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
13
|
Mun S, Lee YR, Lee J, Lee S, Yun Y, Kim J, Kwon JY, Kim WJ, Cho YM, Hong YS, Kang HG. Cadmium-associated protein changes in residents of contaminated areas: Abandoned mine and smelter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123512. [PMID: 38341060 DOI: 10.1016/j.envpol.2024.123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd), a serious environmental contaminant, is associated with adverse health effects. However, the specific changes that the human body experiences in response to exposure to varying concentrations of cadmium remain unknown. The high levels of heavy metal contamination, especially Cd, in abandoned mines and smelter sites make them ideal locations to investigate the physiological manifestations of Cd exposure. This study found that individuals inhabiting abandoned mine and smelter areas had higher concentrations of Cd in their urine and blood compared to those living outside these areas (i.e., the controls). Furthermore, proteomic profiling of blood samples from all study groups was performed to identify proteomic biomarkers associated with chronic and severe Cd exposure. This analysis showed statistically significant correlations between urine Cd levels and sixteen proteins. Among these proteins, seven exhibited significantly altered expressions in samples from contaminated areas compared with those from control areas. Therefore, these proteins were selected as potential markers representing Cd-related protein alterations. Multiple reaction monitoring analysis was performed to validate the expression patterns of the proteins and four proteins were found to exhibit consistent trends. The findings show that Cd exposure significantly affects the expression of certain proteins in the human body. Understanding the underlying mechanisms and diseases associated with Cd-induced protein alterations can aid in the development of effective preventive and therapeutic strategies for individuals exposed to Cd-linked pollution.
Collapse
Affiliation(s)
- Sora Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, 13135, Republic of Korea
| | - You-Rim Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu, 11759, Republic of Korea; Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Seungyeon Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Yeeun Yun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung-Yeon Kwon
- Department of Preventive Medicine, College of Medicine, Dong-A University, 32, Daesin Gongwon-ro, Seo-gu, Busan, 49201, Republic of Korea; Busan Environmental Health Center, Dong-A University, Busan, 49201, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong Min Cho
- Department of Nano, Chemical and Biological Engineering, SeoKyeong University, Seoul, 02713, Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, 32, Daesin Gongwon-ro, Seo-gu, Busan, 49201, Republic of Korea; Busan Environmental Health Center, Dong-A University, Busan, 49201, Republic of Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, 13135, Republic of Korea; Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea.
| |
Collapse
|
14
|
Jang TY, Ho CC, Liang PC, Wu CD, Wei YJ, Tsai PC, Hsu PY, Hsieh MY, Lin YH, Hsieh MH, Wang CW, Yang JF, Yeh ML, Huang CF, Chuang WL, Huang JF, Cheng YY, Dai CY, Chen PC, Yu ML. Air pollution associate with advanced hepatic fibrosis among patients with chronic liver disease. Kaohsiung J Med Sci 2024; 40:304-314. [PMID: 37947277 DOI: 10.1002/kjm2.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
We aimed to investigate the association between air pollution and advanced fibrosis among patients with metabolic associated fatty liver disease (MAFLD) and chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. A total of 1376 participants who were seropositive for HBV surface antigen (HBsAg) or antibodies to HCV (anti-HCV) or had abnormal liver function in a community screening program from 2019 to 2021 were enrolled for the assessment of liver fibrosis using transient elastography. Daily estimates of air pollutants (particulate matter ≤2.5 μm in diameter [PM2.5 ], nitrogen dioxide [NO2 ], ozone [O3 ] and benzene) were aggregated into mean estimates for the previous year based on the date of enrolment. Of the 1376 participants, 767 (52.8%) and 187 (13.6) had MAFLD and advanced fibrosis, respectively. A logistic regression analysis revealed that the factors associated with advanced liver fibrosis were HCV viremia (odds ratio [OR], 3.13; 95% confidence interval [CI], 2.05-4.77; p < 0.001), smoking (OR, 1.79; 95% CI, 1.16-2.74; p = 0.01), age (OR, 1.04; 95% CI, 1.02-1.05; p < 0.001) and PM2.5 (OR, 1.10; 95% CI, 1.05-1.16; p < 0.001). Linear regression analysis revealed that LSM was independently correlated with PM2.5 (β: 0.134; 95% CI: 0.025, 0.243; p = 0.02). There was a dose-dependent relationship between different fibrotic stages and the PM2.5 level (the PM2.5 level in patients with fibrotic stages 0, 1-2 and 3-4: 27.9, 28.4, and 29.3 μg/m3 , respectively; trend p < 0.001). Exposure to PM2.5 , as well as HBV and HCV infections, is associated with advanced liver fibrosis in patients with MAFLD. There was a dose-dependent correlation between PM2.5 levels and the severity of hepatic fibrosis.
Collapse
Affiliation(s)
- Tyng-Yuan Jang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Ping-Tung, Taiwan
| | - Chi-Chang Ho
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Tainan, Taiwan
| | - Yu-Ju Wei
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yao Hsu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Fu Yang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Yun Cheng
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Nan Y, Yang J, Yang J, Wei L, Bai Y. Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older. Biol Trace Elem Res 2024; 202:850-865. [PMID: 37291467 DOI: 10.1007/s12011-023-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The effects of metal exposure on kidney function have been reported in previous literature. There is limited and inconsistent information on the associations between individual and combined exposures to metals and kidney function among the middle-aged and older population. The aim of this study was to clarify the associations of exposure to individual metals with kidney function while accounting for potential coexposure to metal mixtures and to evaluate the joint and interactive associations of blood metals with kidney function. A total of 1669 adults aged 40 years and older were enrolled in the present cross-sectional study using the 2015-2016 National Health and Nutrition Examination Survey (NHANES). Single-metal and multimetal multivariable logistic regression models, quantile G-computation, and Bayesian kernel machine regression models (BKMR) were fitted to explore the individual and joint associations of whole blood metals [lead (Pb), cadmium (Cd), mercury (Hg), cobalt (Co), manganese (Mn), and selenium (Se)] with the odds of decreased estimated glomerular filtration rate (eGFR) and albuminuria. A decreased eGFR was defined as an eGFR ≤ 60 mL/min per 1.73 m2, and albuminuria was categorized as a urinary albumin-creatinine ratio (UACR) of ≥ 30.0 mg/g. The results from quantile G-computation and BKMR indicated positive associations between exposure to the metal mixture and the prevalence of decreased eGFR and albuminuria (all P values < 0.05). These positive associations were mainly driven by blood Co, Cd, and Pb. Furthermore, blood Mn was identified as an influential element contributing to an inverse correlation with kidney dysfunction within metal mixtures. Increasing blood Se levels were negatively associated with the prevalence of decreased eGFR and positively associated with albuminuria. In addition, a potential pairwise interaction between Mn-Co on decreased eGFR was identified by BKMR analysis. Findings from our study suggested a positive association between exposure to the whole blood metal mixture and decreased kidney function, with blood Co, Pb, and Cd being the main contributors to this association, while Mn demonstrated an inverse relationship with renal dysfunction. However, as our study was cross-sectional in nature, further prospective studies are warranted to better understand the individual and combined effects of metals on kidney function.
Collapse
Affiliation(s)
- Yaxing Nan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jinyu Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Lili Wei
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China.
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
16
|
Lee J, Oh S, Byon JY, Lee W, Weon B, Ko A, Jin W, Kim DK, Kim S, Oh YK, Kim YS, Lim CS, Lee JP. Long-term exposure to high perceived temperature and risk of mortality among patients with chronic kidney disease. Heliyon 2024; 10:e25222. [PMID: 38322898 PMCID: PMC10844275 DOI: 10.1016/j.heliyon.2024.e25222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Health risks due to climate change are emerging, particularly from high-temperature exposure. The perceived temperature is an equivalent temperature based on the complete heat budget model of the human body. Therefore, we aimed to analyze the effect of perceived temperature on overall mortality among patients with chronic kidney disease. In total, 32,870 patients with chronic kidney disease in Seoul participated in this retrospective study (2001-2018) at three medical centers. The perceived temperature during the summer season was calculated using meteorological factors, including the air temperature near the automated weather station, dew point temperature, wind velocity, and total cloud amount. We assessed the association between perceived temperature using Kriging spatial interpolation and mortality in patients with CKD in the time-varying Cox proportional hazards model that was adjusted for sex, age, body mass index, hypertension, diabetes mellitus, estimated glomerular filtration rate, smoking, alcohol consumption, and educational level. During the 6.14 ± 3.96 years of follow-up, 3863 deaths were recorded. In multivariable analysis, the average level of perceived temperature and maximum level of perceived temperature demonstrated an increased risk of overall mortality among patients with chronic kidney disease. The concordance index for mortality of perceived temperature was higher than temperature, discomfort index, and heat index. When stratified by age, diabetes mellitus, and estimated glomerular filtration rate, patients with chronic kidney disease with young age (age <65 years) showed higher hazard ratio for mortality (interaction P = 0.049). Moreover, the risk of death in the winter and spring seasons was more significant compared to that of the summer and autumn seasons. Therefore, long-term exposure to high perceived temperature during summer increases the risk of mortality among patients with chronic kidney disease.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sohee Oh
- Medical Research Collaborating Center, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jae-Young Byon
- National Meteorological Satellite Center, Korea Meteorological Administration, Jincheon, Chungcheongbuk-do, Republic of Korea
| | - Whanhee Lee
- Data Science, School of Biomedical Convergence Engineering, Pusan National University, Pusan, Republic of Korea
| | - Boram Weon
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ara Ko
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wencheng Jin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
17
|
Sun X, Liu X, Wang X, Pang C, Yin Z, Zang S. Association between residential proximity to major roadways and chronic multimorbidity among Chinese older adults: a nationwide cross-sectional study. BMC Geriatr 2024; 24:111. [PMID: 38287240 PMCID: PMC10826232 DOI: 10.1186/s12877-024-04712-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Multiple negative health outcomes were linked to residential proximity to major roadways. Nevertheless, there is limited knowledge regarding the association between residential proximity to major roadways and chronic multimorbidity. METHODS We used data from the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey, which included 12,214 individuals aged ≥ 60. We derived the residential proximity to major roadways from self-reported data, defining chronic multimorbidity as the presence of two or more concurrent chronic diseases. A binary logistic regression model was utilized to investigate the association between residential proximity to major roadways and chronic multimorbidity. The model accounted for some demographic features, socioeconomic conditions, social participation, and health conditions. Subsequently, we conducted subgroup analyses to examine potential interaction effects. RESULTS Residential proximity to major roadways was associated with chronic multimorbidity, even after adjusting for confounding factors. Compared with those living > 300 m from major roadways, the OR for those living 201-300 m, 101-200 m, 50-100 m, and < 50 m were increased. When subgroup analyses were conducted using a cutoff point of 200 m, the risk of chronic multimorbidity associated with residential proximity to major roadways was stronger in participants with education levels > 6 years (P = 0.017). CONCLUSION Our findings provide important implications for improving residential area siting, transportation policies, and environmental regulations to reduce the risk of chronic multimorbidity caused by traffic-related exposure.
Collapse
Affiliation(s)
- Xuange Sun
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, China
| | - Xu Liu
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, China
| | - Xue Wang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, China
| | - Chang Pang
- Department of General Practice, The Second Affiliated Hospital of Shenyang Medical College, No.20 Bei Jiu Road, Heping District, 110002, Shenyang, Liaoning Province, China
| | - Zhihua Yin
- Department of epidemiology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, China
| | - Shuang Zang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, China.
| |
Collapse
|
18
|
Mallamaci F, Tripepi G. Risk Factors of Chronic Kidney Disease Progression: Between Old and New Concepts. J Clin Med 2024; 13:678. [PMID: 38337372 PMCID: PMC10856768 DOI: 10.3390/jcm13030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a condition characterized by the gradual loss of kidney function over time and it is a worldwide health issue. The estimated frequency of CKD is 10% of the world's population, but it varies greatly on a global scale. In absolute terms, the staggering number of subjects affected by various degrees of CKD is 850,000,000, and 85% of them are in low- to middle-income countries. The most important risk factors for chronic kidney disease are age, arterial hypertension, diabetes, obesity, proteinuria, dyslipidemia, and environmental risk factors such as dietary salt intake and a more recently investigated agent: pollution. In this narrative review, we will focus by choice just on some risk factors such as age, which is the most important non-modifiable risk factor, and among modifiable risk factors, we will focus on hypertension, salt intake, obesity, and sympathetic overactivity.
Collapse
Affiliation(s)
- Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Bianchi-Melacrino-Morelli (BMM), 89124 Reggio Calabria, Italy
- Research Unit of Clinical Epidemiology of Reggio Calabria, Institute of Clinical Physiology (IFC), National Research Council (CNR), 89124 Reggio Calabria, Italy
| | - Giovanni Tripepi
- Research Unit of Clinical Epidemiology of Reggio Calabria, Institute of Clinical Physiology (IFC), National Research Council (CNR), 89124 Reggio Calabria, Italy
| |
Collapse
|
19
|
Tao HW, Han WW, Liu YJ, Du HZ, Li ZN, Qin LQ, Chen GC, Chen JS. Association of phthalate exposure with all-cause mortality across renal function status: The U.S. National Health and Nutrition Examination Survey, 2005-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115881. [PMID: 38147775 DOI: 10.1016/j.ecoenv.2023.115881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Wide phthalate exposure has been associated with both declines in renal function and an elevated risk of mortality. Whether phthalate-associated risk of premature mortality differs by renal function status remains unclear. METHODS This study included 9605 adults from the U.S. National Health and Nutrition Examination Survey. Urinary concentrations of 11 phthalate metabolites were assessed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. According to estimated glomerular filtration rate (eGFR), participants were grouped as having normal or modestly declined renal functions, or chronic kidney disease (CKD). Multivariable Cox regression models estimated all-cause mortality associated with phthalate exposure, overall and by renal function status. RESULTS Overall, Mono-n-butyl phthalate (MnBP), Mono-benzyl phthalate (MBzP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and Mono-(2-ethyl-5-carbox-ypentyl) phthalate (MECPP) were associated with an elevated risk of mortality (P-trend across tertile <0.05). Moreover, significant interactions were observed between eGFR and MEHHP, MEOHP, MECPP, DEHP in the whole population (P for interactions <0.05). After stratification by renal function, total Di (2-ethylhexyl) phthalate (DEHP) was additionally found to be associated with mortality risk in the CKD group (HR = 1.12; 95% CI: 1.01, 1.25). Co-exposure to the 11 phthalate metabolites was associated with a higher risk of all-cause mortality in the CKD (HR = 1.47; 95% CI: 1.18, 1.84) and modestly declined renal function group (HR = 1.25; 95% CI: 1.09, 1.44). CONCLUSIONS The associations between phthalate exposure and risk of all-cause mortality were primarily observed in CKD patients, reinforcing the need for monitoring phthalate exposure in this patient population.
Collapse
Affiliation(s)
- Hao-Wei Tao
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen-Wen Han
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu-Jie Liu
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Zhen Du
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Zeng-Ning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China; Hospital of Stomatology of Hebei Medical University Shijiazhuang, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jing-Si Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Mishra B, Tiwari A, Mishra S. Metabolic Changes and Immunity Suppression Parameters as Biomarkers of Environmental Pollutants. BIOMONITORING OF POLLUTANTS IN THE GLOBAL SOUTH 2024:693-719. [DOI: 10.1007/978-981-97-1658-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Barrera-Chimal J, Henley N, Grant MP, Cenatus S, Geraldes P, Pichette V, Gerarduzzi C. Tungsten toxicity on kidney tubular epithelial cells induces renal inflammation and M1-macrophage polarization. Cell Biol Toxicol 2023; 39:3061-3075. [PMID: 37368165 DOI: 10.1007/s10565-023-09817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Tungsten is widely used in medical, industrial, and military applications. The environmental exposure to tungsten has increased over the past several years, and few studies have addressed its potential toxicity. In this study, we evaluated the effects of chronic oral tungsten exposure (100 ppm) on renal inflammation in male mice. We found that 30- or 90-day tungsten exposure led to the accumulation of LAMP1-positive lysosomes in renal tubular epithelial cells. In addition, the kidneys of mice exposed to tungsten showed interstitial infiltration of leukocytes, myeloid cells, and macrophages together with increased levels of proinflammatory cytokines and p50/p65-NFkB subunits. In proximal tubule epithelial cells (HK-2) in vitro, tungsten induced a similar inflammatory status characterized by increased mRNA levels of CSF1, IL34, CXCL2, and CXCL10 and NFkB activation. Moreover, tungsten exposure reduced HK-2 cell viability and enhanced reactive oxygen species generation. Conditioned media from HK-2 cells treated with tungsten induced an M1-proinflammatory polarization of RAW macrophages as evidenced by increased levels of iNOS and interleukin-6 and decreased levels of the M2-antiinflammatory marker CD206. These effects were not observed when RAW cells were exposed to conditioned media from HK-2 cells treated with tungsten and supplemented with the antioxidant N-acetylcysteine (NAC). Similarly, direct tungsten exposure induced M1-proinflammatory polarization of RAW cells that was prevented by NAC co-treatment. Altogether, our data suggest that prolonged tungsten exposure leads to oxidative injury in the kidney ultimately leading to chronic renal inflammation characterized by a proinflammatory status in kidney tubular epithelial cells and immune cell infiltration.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Michael Philip Grant
- Department of Orthopaedics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Schrodinger Cenatus
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Pedro Geraldes
- Research Center, Centre Hospitalier, Université de Sherbrooke, Quebec, Canada
| | - Vincent Pichette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Casimiro Gerarduzzi
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Valle-Hita C, Díaz-López A, Becerra-Tomás N, Toledo E, Cornejo-Pareja I, Abete I, Sureda A, Bes-Rastrollo M, Martínez JA, Tinahones FJ, Tur JA, Garcidueñas-Fimbres TE, París-Pallejá F, Goday A, Goñi-Ruiz N, Salas-Salvadó J, Babio N. Associations between ultra-processed food consumption and kidney function in an older adult population with metabolic syndrome. Clin Nutr 2023; 42:2302-2310. [PMID: 37852024 DOI: 10.1016/j.clnu.2023.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND & AIMS Ultra-processed food (UPF) consumption has increased dramatically over the last decades worldwide. Although it has been linked to some cardiometabolic comorbidities, there is limited evidence regarding kidney function. This study aimed to cross-sectionally and longitudinally assess the association between UPF consumption and estimated-glomerular filtration rate (eGFR) based on Cystatin C (CysC). METHODS Older adults (mean age 65 ± 5.0 years, 46% women) with overweight/obesity and metabolic syndrome (MetS) who had available data of CysC at baseline (n = 1909), at one-year and at 3-years of follow-up (n = 1700) were analyzed. Food consumption was assessed using a validated 143-item semi-quantitative food frequency questionnaire and UPF consumption (% of g/d) at baseline and changes after one-year of follow-up were estimated according to NOVA classification system. Multivariable-adjusted linear and logistic regression models were performed to evaluate the cross-sectional associations between UPF consumption with eGFR levels and decreased kidney function (eGFR <60 ml/min/1.73 m2) at baseline. Multivariable-adjusted mixed-effects linear regression models were fitted to investigate the associations between one-year changes in UPF and eGFR over 3-years of follow-up. RESULTS Individuals with the highest baseline UPF consumption showed lower eGFR (β: -3.39 ml/min/1.73 m2; 95% CI: -5.59 to -1.20) and higher odds of decreased kidney function (OR: 1.64; 95% CI: 1.21 to 2.22) at baseline, compared to individuals in the lowest tertile. Participants in the highest tertile of one-year changes in UPF consumption presented a significant decrease in eGFR after one-year of follow-up (β: -1.45 ml/min/1.73 m2; 95% CI: -2.90 to -0.01) as well as after 3-years of follow-up (β: -2.18 ml/min/1.73 m2; 95% CI: -3.71 to -0.65) compared to those in the reference category. CONCLUSIONS In a Mediterranean population of older adults with overweight/obesity and MetS, higher UPF consumption at baseline and one-year changes towards higher consumption of UPF were associated with worse kidney function at baseline and over 3-years of follow-up, respectively. CLINICAL TRIAL REGISTRY NUMBER ISRCTN89898870.
Collapse
Affiliation(s)
- Cristina Valle-Hita
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, 43201 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - Andrés Díaz-López
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, 43201 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Serra Hunter Fellow, Universitat Rovira i Virgili, Nutrition and Mental Health Research Group (NUTRISAM), 43201 Reus, Spain
| | - Nerea Becerra-Tomás
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, 43201 Reus, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Estefania Toledo
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA, 31008 Pamplona, Spain
| | - Isabel Cornejo-Pareja
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, 29010 Málaga, Spain
| | - Itziar Abete
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, IdiSNA, 31008 Pamplona, Spain
| | - Antoni Sureda
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain
| | - Maira Bes-Rastrollo
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA, 31008 Pamplona, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, 29010 Málaga, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain
| | - Tany E Garcidueñas-Fimbres
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, 43201 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | | | - Albert Goday
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), Departament de Medicina, Universitat Autònoma de Barcelona, 08003 Barcelona, Spain
| | - Nuria Goñi-Ruiz
- Servicio Navarro de Salud-Osasunbidea, Gerencia de Atención Primaria de Navarra, Navarra, Spain; Navarra Institute for Health Reseach, IdiSNA, Pamplona, Navarra, Spain
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, 43201 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, 43201 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
23
|
Karam S, Wong MM, Jha V. Sustainable Development Goals: Challenges and the Role of the International Society of Nephrology in Improving Global Kidney Health. KIDNEY360 2023; 4:1494-1502. [PMID: 37535906 PMCID: PMC10617794 DOI: 10.34067/kid.0000000000000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The United Nations 2030 agenda for sustainable development includes 17 sustainable development goals (SDGs) that represent a universal call to end poverty and protect the planet, and are intended to guide government and private sector policies for international cooperation and optimal mobilization of resources. At the core of their achievement is reducing mortality by improving the global burden of noncommunicable diseases (NCDs), the leading causes of death and disability worldwide. CKD is the only NCD with a consistently rising age-adjusted mortality rate and is rising steadily up the list of the causes of lives lost globally. Kidney disease is strongly affected by social determinants of health, with a strong interplay between CKD incidence and progression and other NCDs and SDGs. Tackling the shared CKD and NCD risk factors will help with progress toward the SDGs and vice versa . Challenges to global kidney health include both preexisting socioeconomic factors and natural and human-induced disasters, many of which are intended to be addressed through actions proposed in the sustainable development agenda. Opportunities to address these challenges include public health policies focused on integrated kidney care, kidney disease surveillance, building strategic partnerships, building workforce capacity, harnessing technology and virtual platforms, advocacy/public awareness campaigns, translational and implementation research, and environmentally sustainable kidney care.
Collapse
Affiliation(s)
- Sabine Karam
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, Minnesota
| | - Michelle M.Y. Wong
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, United Kingdom
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| |
Collapse
|
24
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
25
|
Huang Y, Wan Z, Zhang M, Hu L, Song L, Wang Y, Lv Y, Wang L. The association between urinary metals/metalloids and chronic kidney disease among general adults in Wuhan, China. Sci Rep 2023; 13:15321. [PMID: 37714886 PMCID: PMC10504376 DOI: 10.1038/s41598-023-42282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
The relation between exposure to single metal/metalloid and the risk of chronic kidney disease (CKD) remains unclear. We aimed to determine the single and mixed associations of 21 heavy metals/metalloids exposure and the risk of CKD. We performed a cross-sectional study that recruited 4055 participants. Multivariate logistic regression, linear regression and weighted quantile sum (WQS) regression were conducted to explore the possible effects of single and mixed metals/metalloids exposure on the risk of CKD, the risk of albuminuria and changes in the estimated glomerular filtration rate (eGFR). In single-metal models, Cu, Fe, and Zn were positively associated with increased risks of CKD (P-trend < 0.05). Compared to the lowest level, the highest quartiles of Cu (OR = 2.94; 95% CI: 1.70, 5.11; P-trend < 0.05), Fe (OR = 2.39; 95% CI: 1.42, 4.02; P-trend < 0.05), and Zn (OR = 2.35; 95% CI: 1.31, 4.24; P-trend < 0.05) were associated with an increased risk of CKD. After multi-metal adjustment, the association with the risk of CKD remained robust for Cu (P < 0.05). Weighted quantile sum regression revealed a positive association between mixed metals/metalloids and the risk of CKD, and the association was largely driven by Cu (43.7%). Specifically, the mixture of urinary metals/metalloids was positively associated with the risk of albuminuria and negatively associated with eGFR.
Collapse
Affiliation(s)
- Yuchai Huang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Li SS, Chen JJ, Su MW, Lin CW, Chen CC, Wang YH, Liu CC, Tsai YC, Hsieh TJ, Wu MT, Wu CF. Sex-specific interactive effect of melamine and DEHP on a marker of early kidney damage in Taiwanese adults: A national population-based study from the Taiwan Biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115208. [PMID: 37413945 DOI: 10.1016/j.ecoenv.2023.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Taiwan had the high incidence of chronic kidney disease (CKD) worldwide. Our objective was to examine associations between daily exposure of phthalates and melamine, two common nephrotoxins, and kidney damage risk in a well-established nationwide cohort. Study subjects were from Taiwan Biobank (TWB) with existing data of questionnaire and biochemical examinations. Average daily intake (ADI) levels of melamine and seven parental phthalates, including DEHP (di-2-ethylhexylphthalate), DiBP (Dibutyl phthalate), DnBP (Di-n-butyl phthalate), BBzP (Butyl benzyl phthalate), DEP (Diethyl phthalate), and DMP (Dimethyl phthalate) were estimated using a creatinine excretion-based model from urine melamine and 10 phthalate metabolites. Urine microalbumin to creatinine ratio (ACR) was used to represent for the outcome of kidney damage. Two statistical strategies were used: First, a weighted quantile sum (WQS) regression model to select the most important exposure variables of ADI levels of phthalates and melamine associated with ACR; Second, to examine effects of those most important exposure variables on ACR in multivariable linear regression models. In total, 1153 eligible adults were left for analyses. Of them, 591 (51.3%) and 562 (48.7%) were men and women, respectively, with a median age of 49 years old. By WQS, a significant and positive association was found between ADI of melamine and phthalates and ACR (β = 0.14, p = 0.002). ADI levels of melamine had the highest weight (0.57), followed by DEHP (0.13). Next, examining the two most important exposures in association with ACR, we found that the higher the melamine and DEHP intakes, the higher the ACR levels were found. An interaction effect was also found between melamine and DEHP intakes on urine ACR (p = 0.015). This result was more prominent in men (p = 0.008) than in women (p = 0.651). Environmental co-exposure of melamine and DEHP can potentially affect ACR in the community-dwelling Taiwanese adult population.
Collapse
Affiliation(s)
- Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jia-Jen Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Wei Su
- Taiwan Biobank, Academia Sinica, Taipei, Taiwan.
| | | | - Chu-Chih Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
| | - Yin-Han Wang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
| | - Chia-Chu Liu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Chun Tsai
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan.
| |
Collapse
|
27
|
Méndez-Durán A, Duque-Molina C, Teva-Luna R, Avilés-Hernández R. [Renoprotection. About World Kidney Day]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:631-637. [PMID: 37769134 PMCID: PMC10599775 DOI: 10.5281/zenodo.8316457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/26/2023] [Indexed: 09/30/2023]
Abstract
The World Kidney Day was founded in 2003 by doctor Joel D. Kopple, American nephrologist, who in the session in the Congress of the International Federation of Kidney Foundations explained the need to implement the celebration on a day that alludes to this organ, in order to direct preventive actions for kidney disease and raise awareness in the medical community and the general population on the importance of caring for the kidneys. 3 years later, the proposal was accepted and as of 2006 World Kidney Day is celebrated. The diffusion is found throughout the world and in each place there are talks, courses, workshops, cultural activities and even marathons related to the prevention, diagnosis and treatment of kidney disease. Chronic kidney disease (CKD) is a disorder with a chronic, degenerative, and lethal evolution. Managing CKD requires a large amount of human, financial, and infrastructure resources. It impairs the quality of life and negatively affects survival. On the other hand, it leads to dialysis and kidney transplant treatments, which are expensive enough to put any health institution at financial risk, especially those most vulnerable. The main idea of these non-profit international organizations is to promote the well-being and improve the quality of life of people with CKD with and without dialysis, and to promote kidney transplantation as the first treatment option.
Collapse
Affiliation(s)
- Antonio Méndez-Durán
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas, Unidad de Planeación e Innovación en Salud. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Célida Duque-Molina
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Roberto Teva-Luna
- Instituto Mexicano del Seguro Social, Coordinación de Atención Integral de Segundo Nivel, División de Hospitales de Segundo Nivel. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Ricardo Avilés-Hernández
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas, Unidad de Planeación e Innovación en Salud. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
28
|
Du G, Song X, Zhou F, Ouyang L, Li Q, Ruan S, Yang S, Rao S, Wan X, Xie J, Feng C, Fan G. Association between multiple metal(loid)s exposure and renal function: a cross-sectional study from southeastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94552-94564. [PMID: 37532974 DOI: 10.1007/s11356-023-29001-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
In the real world, humans are exposed to multiple metal(loid)s (designated hereafter metals) that contain essential metals as well as toxic metals. Exposure to the metal mixture was assumed to be associated with renal function impairment; however, there is no consensus on available studies. Therefore, we here explored the association between multiple metals exposure and indicators of renal function in the general population from southeastern China. A total of 11 metals with 6 human essential metals and 5 toxic metals were determined in the selected 720 subjects. In addition, serum uric acid (SUA), serum creatinine (SCR), and the estimated glomerular filtration rate (eGFR) were measured or calculated as indicators of renal function. Using multiple flexible statistical models of generalized linear model, elastic net regression, and Bayesian kernel machine regression, the joint as well as the individual effect of metals within the mixture, and the interactions between metals were explored. When exposed to the metal mixture, the statistically non-significantly increased SUA, the significantly increased SCR, and the significantly declined eGFR were observed. In addition, the declined renal function may be primarily attributed to lead (Pb), arsenic (As), and nickel (Ni) exposure. Finally, interactions, such as the synergistic effect between Pb and Mo on SUA, whereas the antagonistic effect between Ni and Cd on SCR and eGFR were identified. Our finding suggests that combined exposure to multiple metals would impair renal function. Therefore, reducing exposure to toxic heavy metals of Pb, As, and Cd and limiting exposure to the human essential metal of Ni would protect renal function.
Collapse
Affiliation(s)
- Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiaoguang Song
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Province Center for Disease Control and Prevention, Institute of Environmental Health, 555 Beijingdong Road, Qingshanhu District, Nanchang, Jiangxi, 330046, People's Republic of China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shiying Ruan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Stress, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
29
|
Lee G, Kim S, Lee I, Kang H, Lee JP, Lee J, Choi YW, Park J, Choi G, Choi K. Association between environmental chemical exposure and albumin-to-creatinine ratio is modified by hypertension status in women of reproductive age. ENVIRONMENTAL RESEARCH 2023; 231:116234. [PMID: 37236389 DOI: 10.1016/j.envres.2023.116234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Chemicals have been identified as a potential risk factor of renal dysfunction. However, studies that consider both multiple chemicals and non-chemical risk factors, such as hypertension, are rare. In this study, we assessed the associations between exposure to several chemicals, including major metals, phthalates, and phenolic compounds, and the albumin-to-creatinine ratio (ACR). A group of Korean adult women in reproductive age (n = 438, aged between 20 and 49 years), who had previously been studied for association of several organic chemicals, was chosen for this purpose. We constructed multivariable linear regression models for individual chemicals and weighted-quantile sum (WQS) mixtures, by hypertension status. Among the study population, approximately 8.5% of the participants exhibited micro/macro-albuminuria (ACR ≥30 mg/g), and 18.5% and 3.9% exhibited prehypertension and hypertension, respectively. Blood cadmium and lead levels showed a stronger association with ACR only among women with prehypertension or hypertension. Among organic chemicals, depending on the statistial model, benzophenone-1 (BP-1) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) showed a significant association regardless of hypertension status, but most associations disappeared in the (pre)hypertensive group. These findings clearly indicate that hypertension status can modify and may potentiate the association of environmental chemicals with ACR. Our observations suggest that low-level environmental pollutant exposure may have potential adverse effects on kidney function among general adult women. Considering the prevalence of prehypertension in the general population, efforts to reduce exposure to cadmium and lead are necessary among adult women to minimize the risk of adverse kidney function.
Collapse
Affiliation(s)
- Gowoon Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Chemical Analysis Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; College of Health Science, Korea University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Young Wook Choi
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeongim Park
- Department of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Feng M, Bai X, Thorpe AE, Nguyen LT, Wang M, Oliver BG, Chou ASY, Pollock CA, Saad S, Chen H. Effect of E-Vaping on Kidney Health in Mice Consuming a High-Fat Diet. Nutrients 2023; 15:3140. [PMID: 37513558 PMCID: PMC10384319 DOI: 10.3390/nu15143140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
High-fat diet (HFD) consumption and tobacco smoking are risk factors for chronic kidney disease. E-cigarettes have gained significant popularity among younger populations worldwide, especially among overweight individuals. It is unclear whether vaping interacts with HFD consumption to impact renal health. In this study, Balb/c mice (male, 7 weeks old) were fed a pellet HFD (43% fat, 20 kJ/g) for 16 weeks when exposed to nicotine or nicotine-free e-vapour from weeks 11 to 16. While HFD alone increased collagen Ia and IV depositions, it did not cause significant oxidative stress and inflammatory responses in the kidney itself. On the other hand, e-vapour exposure alone increased oxidative stress and damaged DNA and mitochondrial oxidative phosphorylation complexes without significant impact on fibrotic markers. However, the combination of nicotine e-vapour and HFD increased inflammatory responses, oxidative stress-induced DNA injury, and pro-fibrotic markers, suggesting accelerated development of renal pathology. Nicotine-free e-vapour exposure and HFD consumption suppressed the production of mitochondrial OXPHOS complexes and extracellular matrix protein deposition, which may cause structural instability that can interrupt normal kidney function in the future. In conclusion, our study demonstrated that a HFD combined with e-cigarette vapour exposure, especially when containing nicotine, can increase susceptibility to kidney disease.
Collapse
Affiliation(s)
- Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Andrew E Thorpe
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Long The Nguyen
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Meng Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Angela S Y Chou
- NSW Health Pathology, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Carol A Pollock
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
31
|
Bevan J, Blyth R, Russell B, Holtgrewe L, Cheung AHC, Austin I, Shah V, Butler M, Fraser S. Planetary health and sustainability teaching in UK medical education: A review of medical school curricula. MEDICAL TEACHER 2023; 45:623-632. [PMID: 36503358 DOI: 10.1080/0142159x.2022.2152190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND The doctors of the future need to be empowered to deliver healthcare sustainably while protecting their patients' health in the context of a degrading environment. This study aimed to objectively review the extent and nature of the teaching of planetary health and sustainability topics in UK medical education. METHODS A multi-centre national review of the timetabled teaching sessions in medical courses in the UK during the academic year 2020/2021 against the General Medical Council's adopted 'Educating for Sustainable Healthcare - Priority Learning Outcomes'. Medical students were recruited and reviewed the entirety of their own institution's online teaching materials associated with core teaching sessions using a standardised data collection tool. Learning outcome coverage and estimated teaching time were calculated and used to rank participating medical schools. RESULTS 45% of eligible UK medical schools were included in the study. The extent of teaching varied considerably amongst courses. Mean coverage of the 13 learning outcomes was 9.9 (SD:2.5) with a mean estimated teaching time of 140 min (SD:139). Courses with dedicated planetary health and sustainability sessions ranked best. CONCLUSION There is large disparity in the education that medical students receive on these topics. Teaching may not adequately prioritise sustainability or reflect advances in planetary health knowledge.[Box: see text].
Collapse
Affiliation(s)
- James Bevan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rachel Blyth
- NHS Foundation Trust, St. George's University Hospitals, London, UK
| | | | - Lydia Holtgrewe
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Isobel Austin
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Viraj Shah
- Faculty of Medicine, Imperial College, London, UK
| | - Megan Butler
- Medical School, University of Bristol, Bristol, UK
| | - Simon Fraser
- School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
32
|
He YT, Zhang YC, Huang W, Wang RN, He LX, Li B, Zhang YL. Impact of digital economic development and environmental pollution on residents' health: an empirical analysis based on 279 prefecture-level cities in China. BMC Public Health 2023; 23:959. [PMID: 37231366 DOI: 10.1186/s12889-023-15788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The digital economy based on the internet and IT is developing rapidly in China, which makes a profound impact on urban environmental quality and residents' health activities. Thus, this study introduces environmental pollution as a mediating variable based on Grossman's health production function to explore the impact of digital economic development on the health of the population and its influence path. METHODS Based on the panel data of 279 prefecture-level cities in China from 2011 to 2017, this paper investigates the acting mechanism of digital economic development on residents' health by employing a combination of mediating effects model and spatial Durbin model. RESULTS The development of digital economy makes direct improvement on residents' health condition, which is also obtained indirectly by means of environmental pollution mitigation. Besides, from the perspective of spatial spillover effect, the development of digital economy also has a significant promoting effect on the health of adjacent urban residents, and further analysis reveals that the promoting effect in the central and western regions of China is more pronounced than that in the eastern region. CONCLUSIONS Digital economy can have a direct promoting effect on the health of residents, and environmental pollution has an intermediary effect between digital economy and residents' health; At the same time, there is also a regional heterogeneity among the three relationships. Therefore, this paper believes that the government should continue to formulate and implement scientific digital economy development policies at the macro and micro levels to narrow the regional digital divide, improve environmental quality and enhance the health level of residents.
Collapse
Affiliation(s)
- Yan-Ting He
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Yue-Chi Zhang
- School of Social & Political Sciences, College of Social Sciences, University of Glasgow, Glasgow, UK
| | - Wen Huang
- The Fifth Affiliate Hospital of Southern Medical University, Guangzhou, China
| | - Ruo-Nan Wang
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Luo-Xuan He
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Bei Li
- School of Health Management, Southern Medical University, Guangzhou, 510515, China.
| | - Yi-Li Zhang
- School of Health Management, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Tsai YC, Wu CF, Hung WW, Yu PS, Liu CC, Hsieh TJ, Chen CC, Li SS, Chen JJ, Chiu YW, Hwang SJ, Wu MT. Environmental melamine exposure and adverse kidney outcomes in patients with type 2 diabetes mellitus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121883. [PMID: 37236580 DOI: 10.1016/j.envpol.2023.121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The impact of melamine exposure on kidney outcomes in type 2 diabetes mellitus (T2D) patients remains unclear. In this prospective cohort study, 561 T2D patients during October 2016 and June 2020 were enrolled and followed until December 2021. Baseline one-spot urinary corrected melamine levels were measured by LC-MS/MS. Average daily intake (ADI) of melamine represented environmental melamine exposure in daily life, and was estimated using urinary corrected melamine level by creatinine excretion (CE)-based model. Primary kidney outcomes were defined as doubling of serum creatinine levels or end stage kidney disease (ESKD), and secondary kidney outcomes included rapid decline in kidney function as estimated glomerular filtration rate (eGFR) decline >5 ml/min/1.73 m2/year. Baseline median urinary corrected melamine levels and estimated DI of melamine were 0.8 μg/mmol and 0.3 μg/kg/day in 561 T2D patients. During 3.7 years of follow-up, urinary corrected melamine level was positively correlated with reaching composite outcomes of either doubling of serum creation levels or ESKD and rapid decline in kidney function. Those with the highest quartile of urinary corrected melamine had 2.96-fold risk of composite outcomes of either doubling of serum creation levels or ESKD and 2.47-fold risk of eGFR decline >5 ml/min/1.73 m2/year. Estimated ADI of melamine also had significant correlation with adverse kidney outcomes. Furthermore, the positive relationship between melamine exposure and rapid decline in kidney function was only found in T2D patients with male, baseline eGFR ≥60 ml/min/1.73 m2 or glycated hemoglobin ≤7%. In conclusion, melamine exposure is significantly associated with adverse kidney outcomes in T2D patients, especially in those with male, well sugar control or good baseline kidney function.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Fang Wu
- International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Shaou Yu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Kaohsiung Municipal CiJin Hospital, Kaohsiung, Taiwan
| | - Chia-Chu Liu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Chih Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan
| | - Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Jen Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
34
|
Priya PS, Guru A, Meenatchi R, Haridevamuthu B, Velayutham M, Seenivasan B, Pachaiappan R, Rajagopal R, Kuppusamy P, Juliet A, Arockiaraj J. Syringol, a wildfire residual methoxyphenol causes cytotoxicity and teratogenicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160968. [PMID: 36549541 DOI: 10.1016/j.scitotenv.2022.160968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.
Collapse
Affiliation(s)
- P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, 600 077 Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, SIMATS, 600 077, Chennai, Tamil Nadu, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, South Korea
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
35
|
Hu W, Li G, He J, Zhao H, Zhang H, Lu H, Liu J, Huang F. Association of exposure to multiple serum metals with the risk of chronic kidney disease in the elderly: a population-based case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17245-17256. [PMID: 36194333 DOI: 10.1007/s11356-022-23303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In the world, chronic kidney disease (CKD) has been recognized as one of the critical public health problems, and the prevalence is higher in the elderly people. However, there are few studies on the association between exposure to multiple serum metal levels and CKD. A case-control study, we established, for elderly people in Anhui Province, China, to explore the effects of different metals and analyze the effect of mixed exposure on CKD. In this study, 287 cases of CKD and 287 controls were selected in the elderly health physical examination project in Tongling City, Anhui Province. Questionnaire survey, physical examination, and blood collection were conducted. Graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to measure the concentration of serum metals. After selecting by least absolute shrinkage and selection operator (LASSO), 5 metals were brought into the multi-metal model. After adjusting all potential covariates additionally, the concentrations of lead (Pb), cadmium (Cd), cobalt (Co), and manganese (Mn) were significantly associated with CKD risk, whereas Pb, Se, and Cd had significant non-linearity with CKD. Besides, patients with highest quartiles of cobalt (Co), lead (Pb), and manganese (Mn) were 1.64, 1.39, and 0.64 times more possible to have CKD, respectively, as compared with the lowest levels. In the Bayesian kernel machine regression (BKMR) model, cadmium (Cd) had a combined effect with lead (Pb) possibly. This study suggested that the CKD risk was associated with exposure of multiple metals in elderly people. The underlying mechanisms of serum metals and CKD need more experimental and prospective studies to elucidate.
Collapse
Affiliation(s)
- Wenlei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
36
|
Zhang L, Tang L, Chen S, Chen C, Peng B. A nomogram for predicting the 4-year risk of chronic kidney disease among Chinese elderly adults. Int Urol Nephrol 2023; 55:1609-1617. [PMID: 36720744 DOI: 10.1007/s11255-023-03470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) has become a major public health problem across the globe, leading to various complications. This study aimed to construct a nomogram to predict the 4-year risk of CKD among Chinese adults. METHODS The study was based on the China Health and Retirement Longitudinal Study (CHARLS). A total of 3562 participants with complete information in CHARLS2011 and CHARLS2015 were included, and further divided into the training cohort and the validation cohort by a ratio of 7:3. Univariate and multivariate logistic regression analyses were used to select variables of the nomogram. The nomogram was evaluated by receiver-operating characteristic curve, calibration plots, and decision curve analysis (DCA). RESULTS In all, 2494 and 1068 participants were included in the training cohort and the validation cohort, respectively. A total of 413 participants developed CKD in the following 4 years. Five variables selected by multivariate logistic regression were incorporated in the nomogram, consisting of gender, hypertension, the estimated glomerular filtration rate (eGFR), hemoglobin, and Cystatin C. The area under curve was 0.809 and 0.837 in the training cohort and the validation cohort, respectively. The calibration plots showed agreement between the nomogram-predicted probability and the observed probability. DCA indicated that the nomogram had potential clinical use. CONCLUSIONS A predictive nomogram was established and internally validated in aid of identifying individuals at increased risk of CKD.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lan Tang
- Physical Examination Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Chen
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Bin Peng
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Yao J, Dong Z, Wang Q, Li Z, Zhang W, Lin W, Luo Y, Li H, Guo X, Zhang L, Cai G, Shen W, Duan S, Chen X. Clinical Factors Associated with Arterial Stiffness in Chronic Kidney Disease. J Clin Med 2023; 12:jcm12031077. [PMID: 36769724 PMCID: PMC9917394 DOI: 10.3390/jcm12031077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Arterial stiffness influences the prognosis of patients with end-stage kidney disease; however, the factors that promote arterial stiffness in chronic kidney disease (CKD) patients remain unknown. We aimed to explore the clinical factors associated with arterial stiffness in CKD. METHODS Between September 2017 and September 2022, all CKD patients treated at the Department of Nephrology, General Hospital of the Chinese People's Liberation Army, excluding dialysis patients, were screened and their medical records within the last month were collected. Arterial stiffness was measured by the augmentation index (AIx). The correlative clinical factors with arterial stiffness were explored in different linear regression models. RESULTS 559 patients were included in the study. AIx@75 increased as the deterioration of CKDG1-CKDG5, with values of 1 (-9, 11), 5.5 (-4, 13.25), 9 (0, 16), 12 (1.5, 23.5), and 22 (13, 28), respectively (Z = 63.03, p < 0.001). Multivariate linear regression analysis showed that AIx@75 was positively associated with female sex (β = 8.926, 95% confidence interval (CI) 6.291, 11.562, p < 0.001), age (β = 0. 485, 95% CI 0.39, 0.58, p < 0.001), mean arterial pressure (MAP) (β = 0.255, 95% CI 0.159, 0.35, p < 0.001), and was negatively associated with ACEI/ARB (β = -4.466, 95% CI -6.963, -1.969, p < 0.001) and glucocorticoid (β = -3.163, 95% CI -6.143, -0.183, p = 0.038). Smoking, eGFR, hemoglobin, and cause of disease were associated with AIx@75 in multivariate linear regression models when considering factors partly. CONCLUSIONS Female, age, smoking, MAP, eGFR, cause of disease, ACEI/ARB, and glucocorticoid were found to be associated with atherosclerosis in CKD patients.
Collapse
Affiliation(s)
- Jin Yao
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zhe Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Weiguang Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Wenwen Lin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yayong Luo
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hangtian Li
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xinru Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Shuwei Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Correspondence: (S.D.); (X.C.)
| | - Xiangmei Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Correspondence: (S.D.); (X.C.)
| |
Collapse
|
38
|
Wang W, Guan J, Feng Y, Nie L, Xu Y, Xu H, Fu F. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats. Front Nutr 2023; 9:1059660. [PMID: 36687698 PMCID: PMC9853403 DOI: 10.3389/fnut.2022.1059660] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Unintended intake of microplastic particles has been demonstrated to exert adverse health effects, however, studies on relevant nephrotoxicity in juvenile mammals are lacking. Methods Therefore, we investigated the potential nephrotoxicity of oral-exposed polystyrene microplastics (PSMPs) (1,000 nm, 2.0 mg/kg/d) for 28 days in juvenile rats. Levels of oxidative stress, inflammation, and endoplasmic reticulum (ER) stress in kidneys were analyzed. Results and discussion Results revealed that PSMPs noticeably decreased the growth rate of bodyweight, and organ index of the kidney, cardiac, and ovary. The intestinal injury caused by PSMPs exposure was also observed, which was distinctly alleviated with N-acetyl-cysteine (NAC) and Salubrinal (Sal) treatment compared with the single PSMPs group. PSMPs caused histological lesions of the kidney via disrupting the serum blood urea nitrogen (BUN), creatinine (CRE), and pro-inflammatory mediators IL-1β, IL-6, and TNF-α. Furthermore, PSMPs exposure induced ER stress and inflammation presumably potentially mediated by oxidative stress in kidneys of rats. Eventually, PSMPs also promoted renal cells apoptosis, manifested as an obvious increase in the number of positive cells for the dUTP nick end labeling of Terminal deoxynucleotidyl transferase, which also can be confirmed by the elevated expression of genes associated with apoptosis Bcl-2, Bax, Caspase-12, Caspase-9, Caspase-3, and IHC score of Caspase-12 in the PSMPs group. Supplementation of NAC and Sal not only ameliorated the PSMPs-induced oxidative stress and ER stress but also the inflammation and apoptosis in the kidney. Collectively, this study suggested that PSMPs caused nephrotoxicity in juvenile rats potentially through oxidative damage and ER stress, which call for greater efforts to be taken on regulating the PSMPs ingestion in children.
Collapse
Affiliation(s)
- Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiafu Guan
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang, China,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liju Nie
- Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,*Correspondence: Hengyi Xu, ,
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China,Fen Fu,
| |
Collapse
|
39
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Dhaouefi Z, Lahmar A, Khlifi R, Ben Toumia I, Elgueder D, Chekir-Ghedira L. Evaluation of eventual toxicities of treated textile wastewater using anoxic-aerobic algal-bacterial photobioreactor. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4285-4297. [PMID: 34989959 DOI: 10.1007/s10653-021-01187-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the major challenges and is of serious concern in the world. Toxicities generated by industrial activities severely deteriorate aquatic and terrestrial ecosystems during their uncontrolled discharge and accentuate water scarcity problems. An adequate treatment of released effluents seems to be mandatory. This study investigated the effect of synthetic textile wastewater (STWW) before and after an innovative algal-bacterial treatment occurred under anoxic-aerobic conditions on growth and mineral contents of radish plants. The health risk assessment was performed after the consumption of irrigated plants by rats. Results revealed a significant reduction in heavy metals content in plants irrigated with treated STWW, and rats fed with these plants showed normal health status. Rats fed with plants irrigated with raw STWW showed a disturbance of their homeostasis. The innovative treatment using algal-bacteria under anoxic-aerobic conditions succeeds to reduce the toxicity of raw STWW and provide an alternative water resource able to tackle water shortage.
Collapse
Affiliation(s)
- Zaineb Dhaouefi
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Aida Lahmar
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Rihab Khlifi
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Imene Ben Toumia
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Dorra Elgueder
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Leila Chekir-Ghedira
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie.
| |
Collapse
|
41
|
García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103960. [PMID: 35995378 DOI: 10.1016/j.etap.2022.103960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and inflammation are two possible mechanisms related to nephrotoxicity caused by environmental pollutants. Ellagic acid, a powerful antioxidant phytochemical, may have great relevance in mitigating pollutant-induced nephrotoxicity and preventing the progression of kidney disease. This review discusses the latest findings on the protective effects of ellagic acid, its metabolic derivatives, the urolithins, against kidney toxicity caused by heavy metals, pesticides, mycotoxins, and organic air pollutants. We describe the chelating, antioxidant, anti-inflammatory, antifibrotic, antiautophagic, and antiapoptotic properties of ellagic acid to attenuate nephrotoxicity. Furthermore, we present the molecular targets and signaling pathways that are regulated by these antioxidants, and suggest some others that should be explored. Nevertheless, the number of reports is still limited to establish the efficacy of ellagic acid against kidney damage induced by environmental pollutants. Therefore, additional preclinical studies on this topic are required, as well as the development of well-designed clinical trials.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Elisabeth Armada
- Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
42
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Su F, Zeeshan M, Xiong LH, Lv JY, Wu Y, Tang XJ, Zhou Y, Ou YQ, Huang WZ, Feng WR, Zeng XW, Dong GH. Co-exposure to perfluoroalkyl acids and heavy metals mixtures associated with impaired kidney function in adults: A community-based population study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156299. [PMID: 35643130 DOI: 10.1016/j.scitotenv.2022.156299] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have separately linked either perfluoroalkyl acid (PFAA) or heavy metal exposure with kidney dysfunction. However, the relationships of co-exposure to PFAAs and heavy metals with kidney function are still unclear. OBJECTIVES To explore the associations between exposure to PFAAs and heavy metals mixtures and kidney function in adults. METHODS We conducted a cross-sectional community-based population study in Guangzhou, China, enrolling 1312 adults from November 2018 to August 2019. We quantified 13 PFAAs in serum and 14 heavy metals in plasma. We chose estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD) as outcomes of interest. Distributed lag non-linear models (DLNMs) were used to check nonlinearity of individual pollutant with kidney function. Joint associations of pollutant mixtures on kidney function were assessed by Bayesian Kernel Machine Regression (BKMR) models. We further explored modification effects of gender. RESULTS Most individual PFAA and heavy metal were associated with declined kidney function in single-pollutant models. We also observed significant dose-response relationships of pollutant mixtures with reduced eGFR levels and increased odds of CKD in BKMR models. Perfluoroheptanesulfonic acid (PFHpS), arsenic (As) and strontium (Sr) were the predominant contributors among pollutant mixtures. A change in log PFHpS, As and Sr concentrations from the 25th to the 75th percentile were associated with a decrease in eGFR of -5.42 (95% confidence interval (CI): -6.86, -3.98), -2.14 (95% CI: -3.70, -0.58) and -1.87 (95% CI: -3.03, -0.72) mL/min/1.73 m2, respectively, when other pollutants were at their median values. In addition, the observed associations were more obvious in females. CONCLUSIONS We provided new evidence that co-exposure to PFAAs and heavy metals mixtures was associated with reduced kidney function in adults and PFHpS, As and Sr appeared to be the major contributors. Further studies are warranted to confirm our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hua Xiong
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia-Yun Lv
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yan Wu
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xiao-Jiang Tang
- Guangzhou JES+US Pharmaceutical Technology Co., Ltd., Guangzhou 510530, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wen-Zhong Huang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
44
|
Scharf P, Rizzetto F, Xavier LF, Farsky SHP. Xenobiotics Delivered by Electronic Nicotine Delivery Systems: Potential Cellular and Molecular Mechanisms on the Pathogenesis of Chronic Kidney Disease. Int J Mol Sci 2022; 23:10293. [PMID: 36142207 PMCID: PMC9498982 DOI: 10.3390/ijms231810293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized as sustained damage to the renal parenchyma, leading to impaired renal functions and gradually progressing to end-stage renal disease (ESRD). Diabetes mellitus (DM) and arterial hypertension (AH) are underlying diseases of CKD. Genetic background, lifestyle, and xenobiotic exposures can favor CKD onset and trigger its underlying diseases. Cigarette smoking (CS) is a known modified risk factor for CKD. Compounds from tobacco combustion act through multi-mediated mechanisms that impair renal function. Electronic nicotine delivery systems (ENDS) consumption, such as e-cigarettes and heated tobacco devices, is growing worldwide. ENDS release mainly nicotine, humectants, and flavorings, which generate several byproducts when heated, including volatile organic compounds and ultrafine particles. The toxicity assessment of these products is emerging in human and experimental studies, but data are yet incipient to achieve truthful conclusions about their safety. To build up the knowledge about the effect of currently employed ENDS on the pathogenesis of CKD, cellular and molecular mechanisms of ENDS xenobiotic on DM, AH, and kidney functions were reviewed. Unraveling the toxic mechanisms of action and endpoints of ENDS exposures will contribute to the risk assessment and implementation of proper health and regulatory interventions.
Collapse
Affiliation(s)
| | | | | | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
45
|
Anetor GO, Nwobi NL, Igharo GO, Sonuga OO, Anetor JI. Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front Physiol 2022; 13:931386. [PMID: 35936919 PMCID: PMC9353710 DOI: 10.3389/fphys.2022.931386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is current great international concern about the contribution of environmental pollution to the global burden of disease particularly in the developing, low- and medium-income countries. Industrial activities, urbanization, developmental projects as well as various increased anthropogenic activities involving the improper generation, management and disposal of pollutants have rendered today's environment highly polluted with various pollutants. These pollutants include toxic metals (lead, cadmium, mercury, arsenic), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and diesel exhaust particles most of which appear to be ubiquitous as well as have long-term environmental persistence with a wide range of toxicities such as oxidative stress among others. Oxidative stress, which may arise from increased production of damaging free radicals emanating from increased pollutant burden and depressed bioavailability of antioxidant defenses causes altered biochemical and physiological mechanisms and has been implicated in all known human pathologies most of which are chronic. Oxidative stress also affects both flora and fauna and plants are very important components of the terrestrial environment and significant contributors of nutrients for both man and animals. It is also remarkable that the aquatic environment in which sea animals and creatures are resident is also highly polluted, leading to aquatic stress that may affect the survival of the aquatic animals, sharing in the oxidative stress. These altered terrestrial and aquatic environments have an overarching effect on human health. Antioxidants neutralize the damaging free radicals thus, they play important protective roles in the onset, progression and severity of the unmitigated generation of pollutants that ultimately manifest as oxidative stress. Consequently, human health as well as that of aquatic and terrestrial organisms may be protected from environmental pollution by mitigating oxidative stress and employing the principles of nutritional medicine, essentially based on antioxidants derived mainly from plants, which serve as the panacea of the vicious state of environmental pollutants consequently, the health of the population. Understanding the total picture of oxidative stress and integrating the terrestrial and aquatic effects of environmental pollutants are central to sustainable health of the population and appear to require multi-sectoral collaborations from diverse disciplinary perspectives; basically the environmental, agricultural and health sectors.
Collapse
Affiliation(s)
- Gloria Oiyahumen Anetor
- Department of Human Kinetics and Health Education, National Open University of Nigeria, Abuja, Nigeria
| | - Nnenna Linda Nwobi
- Department of Chemical Pathology, BenCarson School of Medicine, Babcock University, Ilishan, Nigeria
| | - Godwin Osaretin Igharo
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin, Nigeria
| | | | - John Ibhagbemien Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
46
|
Danziger J, Dodge LE, Hu H, Mukamal KJ. Susceptibility to Environmental Heavy Metal Toxicity among Americans with Kidney Disease. KIDNEY360 2022; 3:1191-1196. [PMID: 35919521 PMCID: PMC9337884 DOI: 10.34067/kid.0006782021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/28/2022] [Indexed: 01/11/2023]
Abstract
Background The consequences of low levels of environmental heavy metal exposure, as found widely in the United States, in those with impaired renal function remain underexplored. Methods We examined the cross-sectional association of indices of renal function with lead and cadmium levels in blood and urine among National Health and Nutrition Examination Survey (NHANES) participants. We used the 1999-2002 cycle, which included measures of cystatin C, in order to quantify renal function most precisely and defined chronic kidney disease (CKD) as an estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2. Results In weighted and adjusted analyses of 5638 participants, lead levels were 0.23 (95% CI, 0.03 to 0.42) μg/dl higher among participants with CKD, and 0.05 (95% CI, 0.01 to 0.09) μg/dL higher per 10 ml/min per 1.73 m2 lower eGFR. Cadmium levels were 0.02 (95% CI, 0.01 to 0.03) μg/L higher per 10 ml/min per 1.73 m2 lower eGFR. Black race significantly modified the association of lower eGFR with higher circulating lead levels (P interaction <0.001). A 10 ml/min per 1.73 m2 lower eGFR was associated with a 0.13 (95% CI, 0.06 to 0.21) μg/dl higher lead level among Black participants compared with 0.03 (95% CI, -0.04 to 0.11) μg/dl higher level among White participants. Among the 1852 participants with urinary metal measurements, despite higher circulating levels, those with CKD had significantly lower urinary lead levels (-0.16 [95% CI, -0.30 to -0.01] ng/ml) and urinary lead/creatinine ratios (-0.003 [95% CI, -0.004 to -0.001]). Conclusions CKD is associated with higher blood lead levels, particularly among Blacks, and simultaneously, lower urinary lead levels, consistent with the hypothesis that CKD confers a state of heighted susceptibility to heavy metal environmental exposure by reducing its elimination. Given that low levels of exposure remain highly prevalent in the United States, further efforts to protect patients with CKD from heavy metal toxicity may be warranted.
Collapse
Affiliation(s)
- John Danziger
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Laura E. Dodge
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Howard Hu
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Chung MC, Hsu HT, Mao YC, Wu CC, Ho CT, Liu CS, Chung CJ. Association and mediation analyses among multiple metals exposure, plasma folate, and community-based impaired estimated glomerular filtration rate in central Taiwan. Environ Health 2022; 21:44. [PMID: 35461256 PMCID: PMC9034511 DOI: 10.1186/s12940-022-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is increasing, with heavy metal exposure an important risk factor. Additionally, the antioxidant folic acid has been studied for reducing blood arsenic levels and related tissue damage. Therefore, we explored the association and mediation effects among various heavy metal levels in blood, plasma folate, other CKD risk factors, and impaired estimated glomerular filtration rate (eGFR). METHODS We constructed a community-based cross-sectional study from the Human Biomonitoring and Environmental Health Program in central Taiwan. A total of 1643 participants had lived locally for > 5 years, > 40 years old, and completely received health examinations and biospecimen collections. Impaired eGFR was defined as one single eGFR < 60 mL/min/1.73 m2. Plasma folate and metal levels in blood were determined, as well as urinary 8-hydroxy-2'-deoxyguanosine as an oxidative stress marker. Generalized weighted quantile sum (WQS) regression analysis was used to calculate a WQS score, reflecting overall body-burden of multiple metals (arsenic, cadmium, chromium, nickel, and lead) in blood. RESULTS Impaired eGFR was identified in 225 participants. Participants with high WQS scores had increased risk of impaired eGFR (odds ratio = 1.67; 95% confidence interval [CI]: 1.34, 2.07). Of five metals, arsenic, lead, and cadmium were weighted highly in impaired eGFR. Participants with high WQS and folate insufficiency (< 6 ng/mL) had 2.38-fold risk of impaired eGFR compared to those with low WQS and high folate (≥6 ng/mL) (95% CI: 1.55, 5.17). Similar increased 4.16-fold risk of impaired eGFR was shown in participants with high WQS and uric acid levels (95% CI: 2.63, 6.58). However, there were no significant WQS-folate (p = 0.87) or WQS-uric acid (p = 0.38) interactions on impaired eGFR risk. As a mediator, uric acid contributed 24% of the association between WQS score and impaired eGFR risk (p < 0.0001). However, no mediation effect of plasma folate was observed. CONCLUSION WQS analysis could be applied to evaluate the joint effects of multiple metals exposure. High WQS scores may influence impaired eGFR risk through increased uric acid levels. A large-scale and prospective cohort study is necessary to validate these results and demonstrate any causal relationship.
Collapse
Affiliation(s)
- Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hui-Tsung Hsu
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Chih-Te Ho
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Jung Chung
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
48
|
Costa Peluzo BMT, Kraka E. Uranium: The Nuclear Fuel Cycle and Beyond. Int J Mol Sci 2022; 23:ijms23094655. [PMID: 35563047 PMCID: PMC9101921 DOI: 10.3390/ijms23094655] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
This review summarizes the recent developments regarding the use of uranium as nuclear fuel, including recycling and health aspects, elucidated from a chemical point of view, i.e., emphasizing the rich uranium coordination chemistry, which has also raised interest in using uranium compounds in synthesis and catalysis. A number of novel uranium coordination features are addressed, such the emerging number of U(II) complexes and uranium nitride complexes as a promising class of materials for more efficient and safer nuclear fuels. The current discussion about uranium triple bonds is addressed by quantum chemical investigations using local vibrational mode force constants as quantitative bond strength descriptors based on vibrational spectroscopy. The local mode analysis of selected uranium nitrides, N≡U≡N, U≡N, N≡U=NH and N≡U=O, could confirm and quantify, for the first time, that these molecules exhibit a UN triple bond as hypothesized in the literature. We hope that this review will inspire the community interested in uranium chemistry and will serve as an incubator for fruitful collaborations between theory and experimentation in exploring the wealth of uranium chemistry.
Collapse
|
49
|
Massey W, Osborn LJ, Banerjee R, Horak A, Fung KK, Orabi D, Chan ER, Sangwan N, Wang Z, Brown JM. Flavin-Containing Monooxygenase 3 (FMO3) Is Critical for Dioxin-Induced Reorganization of the Gut Microbiome and Host Insulin Sensitivity. Metabolites 2022; 12:364. [PMID: 35448550 PMCID: PMC9029240 DOI: 10.3390/metabo12040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood. Here, we show that TCDD exposure in mice profoundly stimulates the hepatic expression of flavin-containing monooxygenase 3 (Fmo3), which is a hepatic xenobiotic metabolizing enzyme that is also responsible for the production of the gut microbiome-associated metabolite trimethylamine N-oxide (TMAO). Interestingly, an enzymatic product of FMO3 (TMAO) has been associated with the same cardiometabolic diseases that these environmental pollutants promote. Therefore, here, we examined TCDD-induced alterations in the gut microbiome, host liver transcriptome, and glucose tolerance in Fmo3+/+ and Fmo3-/- mice. Our results show that Fmo3 is a critical component of the transcriptional response to TCDD, impacting the gut microbiome, host liver transcriptome, and systemic glucose tolerance. Collectively, this work uncovers a previously underappreciated role for Fmo3 in integrating diet-pollutant-microbe-host interactions.
Collapse
Affiliation(s)
- William Massey
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kevin K. Fung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E. Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Naseer Sangwan
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Microbial Sequencing & Analytics Core Facility, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
50
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|