1
|
Chen F, Jing K, Zhang Z, Liu X. A review on drug repurposing applicable to obesity. Obes Rev 2025; 26:e13848. [PMID: 39384341 DOI: 10.1111/obr.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Obesity is a major public health concern and burden on individuals and healthcare systems. Due to the challenges and limitations of lifestyle adjustments, it is advisable to consider pharmacological treatment for people affected by obesity. However, the side effects and limited efficacy of available drugs make the obesity drug market far from sufficient. Drug repurposing involves identifying new applications for existing drugs and offers some advantages over traditional drug development approaches including lower costs and shorter development timelines. This review aims to provide an overview of drug repurposing for anti-obesity medications, including the rationale for repurposing, the challenges and approaches, and the potential drugs that are being investigated for repurposing. Through advanced computational techniques, researchers can unlock the potential of repurposed drugs to tackle the global obesity epidemic. Further research, clinical trials, and collaborative efforts are essential to fully explore and leverage the potential of drug repurposing in the fight against obesity.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Moka MK, George M, Rathakrishnan D, Jagadeeshwaran V, D K S. Trends in drug repurposing: Advancing cardiovascular disease management in geriatric populations. Curr Res Transl Med 2025; 73:103496. [PMID: 39847829 DOI: 10.1016/j.retram.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Drug repurposing is a promising strategy for managing cardiovascular disease (CVD) in geriatric populations, offering efficient and cost-effective solutions. CVDs are prevalent across all age groups, with a significant increase in prevalence among geriatric populations. The middle-age period (40-65 years) is critical due to factors like obesity, sedentary lifestyle, and psychosocial stress. In individuals aged 65 and older, the incidence of CVDs is highest due to age-related physiological changes and prolonged exposure to risk factors. In this review we find that certain drugs, such as non-cardiovascular drugs like anakinra, probenecid, N-acetyl cysteine, quercetin, resveratrol, rapamycin, colchicine, bisphosphonates, hydroxychloroquine, SGLT-2i drugs, GLP-1Ras drugs and sildenafil are recommended for drug repurposing to achieve cardiovascular benefits in geriatric patients. However, agents such as canakinumab, methotrexate, ivermectin, erythromycin, capecitabine, carglumic acid, chloroquine, and furosemide are constrained in their therapeutic use and warrant meticulous consideration, rendering them less favorable for this specific application. This review emphasizes the importance of exploring alternative therapeutic strategies to improve outcomes in geriatric populations and suggests drug repurposing as a promising avenue to enhance treatment efficacy.
Collapse
Affiliation(s)
- Murali Krishna Moka
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India.
| | - Deepalaxmi Rathakrishnan
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - V Jagadeeshwaran
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Sriram D K
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| |
Collapse
|
3
|
Mansouri M, Imenshahidi M, Rameshrad M, Hosseinzadeh H. Effects of Tinospora cordifolia (giloy) on metabolic syndrome components: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03642-2. [PMID: 39731594 DOI: 10.1007/s00210-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/30/2024]
Abstract
Metabolic syndrome is a cluster of some conditions such as high blood sugar, high blood triglycerides, low HDL cholesterol, abdominal obesity, and high blood pressure. Introducing a drug or a food that manages the majority of these medical conditions is invaluable. Tinospora cordifolia, known as guduchi and giloy, is a medicinal herb in ayurvedic medicine that is used in the treatment of various diseased conditions and also as a food for the maintenance of health. Here, we reviewed the current evidence supporting the role of giloy in the development and treatment of metabolic syndrome components. Appropriate articles that have been published until May 2024 were carefully extracted from PubMed, Scopus, and WOS databases to write a narrative review systematically. Gathered data showed the beneficial effects of giloy on metabolic syndrome components: hyperlipidemia, obesity, atherosclerosis, hypertension, and especially diabetes mellitus. As diabetes and insulin resistance seem to be a central feature of metabolic syndrome and in turn, can cause dyslipidemia, obesity, and, atherosclerosis, these beneficial effects are predictable with the anti-diabetogenic property of giloy. In this review, the main mechanisms of action of giloy in metabolic syndrome components are discussed. Based on the results, although giloy has been less investigated, considerable studies provide evidence of its beneficial effects on different components of metabolic syndrome. Relevant clinical trials are necessary to validate the mentioned effects, safety, and optimum dose of this herbal medicine and its components in managing different components of metabolic syndrome and transition from bench to bedside.
Collapse
Affiliation(s)
- Mehran Mansouri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Paredes-Ruiz D, Martin-Iglesias D, Amo L, Ruiz-Irastorza G. Elucidating the mechanisms and efficacy of antimalarial drugs in systemic lupus erythematosus. Expert Opin Pharmacother 2024; 25:2047-2060. [PMID: 39354741 DOI: 10.1080/14656566.2024.2412252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION Antimalarials (AMs) are old drugs with a wide range of beneficial effects in systemic lupus erythematosus (SLE) beyond the control of activity. The most recent debate is focused on defining the optimal doses to assure the best benefit/risk ratio. AREAS COVERED We have reviewed the pharmacological basis underlying the various therapeutic effects of AMs and the beneficial and toxic effects of HCQ, also discussing the role of mepacrine not only as a substitute in cases of maculopathy, but also as a very effective therapy combined with HCQ. We searched PubMed and Embase for articles published in English at any time. We used the terms "hydroxychloroquine" or "mepacrine" or "chloroquine" or "antimalarials", "pharmacokinetics", "efficacy", "remission", "toxicity", "adherence". We reviewed original research articles, large observational studies, systematic reviews, and expert consensus statements. Additionally, studies were identified through the assessment of the reference lists of the evaluated manuscripts. EXPERT OPINION We advocate for the widespread use of HCQ at stable doses of 200 mg/d (≤4 mg/kg/d for most patients) and also for the early combination therapy with mepacrine to assure a good control of SLE activity, and also a durable and safe use of these essential drugs for the management of SLE.
Collapse
Affiliation(s)
- Diana Paredes-Ruiz
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, The Basque Country, Spain
| | - Daniel Martin-Iglesias
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, The Basque Country, Spain
- Internal Medicine Department, Hospital Universitario de Leon, Leon, Spain
| | - Laura Amo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Guillermo Ruiz-Irastorza
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, The Basque Country, Spain
- Department of Medicine, University of The Basque Country, UPV/EHU, Bizkaia, The Basque Country, Spain
| |
Collapse
|
5
|
Basri NI, Murthi P, Abd Rahman R. Hydroxychloroquine as an Adjunct Therapy for Diabetes in Pregnancy. Int J Mol Sci 2024; 25:9681. [PMID: 39273629 PMCID: PMC11395545 DOI: 10.3390/ijms25179681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
This review discusses the pathophysiology of diabetes in pregnancy in relation to the placental function. We review the potential use of hydroxychloroquine in improving pregnancy outcomes affected by diabetes. The review focuses on the mechanism of action of hydroxychloroquine and its potential effects on diabetes. There are several pathways in which hydroxychloroquine mediates its effects: through the inflammasome complex, inflammatory cytokines, oxidative stress, modulatory effects, and antihyperglycemic effects. As a safe drug to be used in pregnancy, it is worth exploring the possible use hydroxychloroquine as an adjunct treatment to the current therapy of diabetes in pregnancy.
Collapse
Affiliation(s)
- Nurul Iftida Basri
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rahana Abd Rahman
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
7
|
Baeza-Zapata AA, Kammar-García A, Barrera-Vargas A, Merayo-Chalico J, Martínez-Vázquez SE, Moctezuma-Velazquez C. A cross sectional study assessing steatotic liver disease in patients with systemic lupus erythematosus. Sci Rep 2024; 14:14275. [PMID: 38902318 PMCID: PMC11190197 DOI: 10.1038/s41598-024-65105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Patients with immune-mediated inflammatory diseases are prone to steatotic liver disease (SLD), which has been observed in patients with psoriasis and hidradenitis suppurativa. We aimed to assess whether systemic lupus erythematosus (SLE) was associated with SLD and to define factors associated with SLD in SLE. This was a cross-sectional study, we included 106 consecutive patients with SLE who were seen in the rheumatology clinic between June 2021 and March 2022 and we chose two sex-paired controls for each SLE. All the participants underwent FibroScan and anthropometric assessments. SLD was defined as a controlled attenuation parameter ≥ 275dB/m. Prevalence of SLD was lower in patients with SLE (21.7% vs 41.5%, p < 0.001). Patients with SLE and SLD had a lower frequency of hydroxychloroquine use (65% vs 84%, p = 0.04), and higher C3 levels [123mg/dl (IQR 102-136) vs 99mg/dl (IQR 78-121), p = 0.004]. Factors associated with SLD in SLE were body mass index (BMI), waist circumference, glucose, and C3; hydroxychloroquine use was a protective factor. On univariate analysis, SLE was associated with a reduced risk of SLD (OR 0.39, 95%CI 0.23-0.67); however, after adjusting for age, BMI, waist, glucose, triglycerides, high-density cholesterol, low-density cholesterol, leukocytes, and hydroxychloroquine, it was no longer associated (OR 0.43, 95%CI 0.10-1.91). In conclusion, the prevalence of SLD in patients with SLE was not higher than that in the general population, and SLE was not associated with SLD. The factors associated with SLD were anthropometric data, glucose, hydroxychloroquine, and C3 levels.
Collapse
Affiliation(s)
- Armando Antonio Baeza-Zapata
- Gastroenterology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Ashuin Kammar-García
- Research Division, Instituto Nacional de Geriatría, Av Contreras 428, San Jerónimo Lídice, Magdalena Contreras, CP 10200, Mexico City, Mexico
| | - Ana Barrera-Vargas
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Javier Merayo-Chalico
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Sophia Eugenia Martínez-Vázquez
- Gastroenterology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico.
| | - Carlos Moctezuma-Velazquez
- Gastroenterology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico.
- Division of Gastroenterology (Liver Unit), Zeidler Ledcor Centre, University of Alberta, 8540 112 Street NW, Room 1-20B, Edmonton, AB, T6G 2X8, Canada.
| |
Collapse
|
8
|
Bui NL, Hoang DA, Ho QA, Nguyen Thi TN, Singh V, Chu DT. Drug repurposing for metabolic disorders: Scientific, technological and economic issues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:321-336. [PMID: 38942542 DOI: 10.1016/bs.pmbts.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Obesity, diabetes, and other metabolic disorders place a huge burden on both the physical health and financial well-being of the community. While the need for effective treatment of metabolic disorders remains urgent and the reality is that traditional drug development involves high costs and a very long time with many pre-clinical and clinical trials, the need for drug repurposing has emerged as a potential alternative. Scientific evidence has shown the anti-diabetic and anti-obesity effects of old drugs, which were initially utilized for the treatment of inflammation, depression, infections, and even cancers. The drug library used modern technological methods to conduct drug screening. Computational molecular docking, genome-wide association studies, or omics data mining are advantageous and unavoidable methods for drug repurposing. Drug repurposing offers a promising avenue for economic efficiency in healthcare, especially for less common metabolic diseases, despite the need for rigorous research and validation. In this chapter, we aim to explore the scientific, technological, and economic issues surrounding drug repurposing for metabolic disorders. We hope to shed light on the potential of this approach and the challenges that need to be addressed to make it a viable option in the treatment of metabolic disorders, especially in the future fight against metabolic disorders.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Duc-Anh Hoang
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Quang-Anh Ho
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thao-Nguyen Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
9
|
Hasan MA, Ammar OA, Amer MA, Othman AI, Zigheber F, El-Missiry MA. Hydroxychloroquine improves high-fat-diet-induced obesity and organ dysfunction via modulation of lipid level, oxidative stress, and inflammation. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 10:368-379. [DOI: 10.1080/2314808x.2023.2211832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 01/04/2025]
Affiliation(s)
- Mohamed A Hasan
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Omar A. Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa, Egypt
| | - Maher A Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Fawzia Zigheber
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
10
|
Tang SC, Lu CT, Ko JL, Lin CH, Hsiao YP. Hydroxychloroquine repairs burn damage through the Wnt/β-catenin pathway. Chem Biol Interact 2023; 370:110309. [PMID: 36535310 DOI: 10.1016/j.cbi.2022.110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, 40640, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiunn-Liang Ko
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Hui Lin
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
A new use for old drugs: identifying compounds with an anti-obesity effect using a high through-put semi-automated Caenorhabditis elegans screening platform. Heliyon 2022; 8:e10108. [PMID: 36033279 PMCID: PMC9399480 DOI: 10.1016/j.heliyon.2022.e10108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity is one of the most common global health problems for all age groups with obese people at risk of a variety of associated health complications. Consequently, there is a need to develop new therapies that lower body fat without the side effects. However, obesity is a complex and systemic disease, so that in vitro results are not easily translatable to clinical situations. A promising way to circumnavigate these issues is to reposition already approved drugs for new treatments, enabling a more streamlined drug discovery process due to the availability of pre-existing pharmacological and toxicological datasets. Chemical libraries, such as the Prestwick Chemical Library of 1200 FDA approved drugs, are available for this purpose. We have developed a simple semi-automated whole-organism approach to screening the Prestwick Chemical Library for those compounds which reduce fat content using the model organism Caenorhabditis elegans. Our whole-organism approach to high-throughput screening identified 9 “lead” compounds that reduced fat within 2 weeks in the model. Further screening and analysis provided 4 “hit” compounds (Midodrine, Vinpocetine, Fenoprofen and Lamivudine) that showed significant promise as drugs to reduce fat levels. The effects of these candidates were found to further reduce fat content in nematodes where an nhr-49/PPAR mutation resulted in “overweight” worms. Upon unblinding the “hit” compounds, they were found to have recently been shown to have anti-obesity effects in mammalian models too. In developing a whole-animal chemical screen to identify pharmacological agents as potential anti-obesity compounds, we demonstrate how chemical libraries can be rapidly and relatively cheaply profiled for active hits. Using the nematode Caenorhabditis elegans thus enables drugs to be assessed for applicability in humans and provides a new incentive to explore drug repurposing as a feasible and efficient way to identify new anti-obesity compounds.
Collapse
|
12
|
Ashmawy AI, El-Abhar HS, Abdallah DM, Ali MA. Chloroquine modulates the sulforaphane anti-obesity mechanisms in a high-fat diet model: Role of JAK-2/ STAT-3/ SOCS-3 pathway. Eur J Pharmacol 2022; 927:175066. [PMID: 35643302 DOI: 10.1016/j.ejphar.2022.175066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
The phytochemical sulforaphane (SFN) has been studied for its potential anti-obesity effect, but neither its molecular targets nor its interaction with the antimalarial drug chloroquine (CQ) has been fully delineated. Therefore, high-fat diet (HFD) obese rats were randomly allocated into one of five groups and were left untreated or gavaged orally with SFN (0.5 or 1 mg/kg), CQ (5 mg/kg), or their combination (0.5/5 mg/kg) for six successive weeks to assess their potential interaction and the enrolled mechanisms. SFN effectively reduced the HFD-induced weight gain, blood glucose, and serum leptin levels, and improved lipid profile. On the molecular level, SFN inhibited the lipogenesis-related enzymes, namely sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in both liver and visceral white adipose tissue (vWAT) of HFD obese rats. SFN also turned off the inflammatory pathway conserved Janus kinase/signaling transducers and activators of transcription/suppressor of cytokine signaling (JAK-2/STAT-3/SOCS-3) in these tissues, as well as the inflammatory markers nuclear factor-kappa (NF-κ) B and interleukin (IL)-22 in serum. In contrast, SFN downregulated the gene expression of microRNA (miR-200a), while significantly increasing the autophagic parameters; viz., beclin-1, autophagy-related protein (ATG)-7, and microtubule-associated protein 2 light chain 3 (LC3-II) in both liver and vWAT. On most of the parameters mentioned above, treatment with CQ solely produced a satisfactory effect and intensified the low dose of SFN in the combination regimen. These findings demonstrated the beneficial effects of using CQ as an add-on anti-obesity medicine to SFN.
Collapse
Affiliation(s)
- Ahmed I Ashmawy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mennatallah A Ali
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
13
|
Hattori Y, Hattori K, Machida T, Matsuda N. Vascular endotheliitis associated with infections: Its pathogenetic role and therapeutic implication. Biochem Pharmacol 2022; 197:114909. [PMID: 35021044 PMCID: PMC8743392 DOI: 10.1016/j.bcp.2022.114909] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Costanza A, Placenti V, Amerio A, Aguglia A, Serafini G, Amore M, Macchiarulo E, Branca F, Merli R, Bondolfi G, Nguyen KD. Chloroquine/Hydroxychloroquine Use and Suicide Risk: Hypotheses for Confluent Etiopathogenetic Mechanisms? Behav Sci (Basel) 2021; 11:154. [PMID: 34821615 PMCID: PMC8615193 DOI: 10.3390/bs11110154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are classical anti-malarial and anti-inflammatory treatments, which were used as first-line therapy at the beginning of the 2019 coronavirus disease (COVID-19) pandemic. Besides the emerging data on their lack of efficacy against COVID-19 infection, such treatments have been associated with some severe health concerns, including those of neuropsychiatric nature, such as a possible increase in suicide risk. Here we report a case of a patient with no history of psychiatric illnesses, who abruptly developed depression with melancholic features, severe suicidal ideation (SI), and attempted suicide (SA) shortly after receiving HCQ for his COVID-19 infection. The case was followed by a mini-review of the heterogeneous scientific literature on the hypothetical association between neuropsychiatric symptoms, with a focus on SI and suicidal behavior (SB, including SA and death by suicide), when CQ and HCQ are used in COVID-19, rheumatologic diseases, and malaria settings. Considering the anti-inflammatory properties of CQ and HCQ and the implications for neuroinflammation in suicide pathogenesis, the possible increase in suicide risk caused by these medications appears paradoxical and suggests that other underlying pathological trajectories might account for this eventuality. In this regard, some of these latter mechanistic postulates were proposed. Certainly the role and contribution of psycho-social factors that a COVID-19 patient had to face can neither be minimized nor excluded in the attempt to understand his suffering until the development of SI/SB. However, while this case report represents a rare scenario in clinical practice and no consensus exists in the literature on this topic, a psychiatric screening for suicide risk in patients using of CQ and HCQ could be carefully considered.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland;
| | - Valeria Placenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (V.P.); (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (V.P.); (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (V.P.); (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (V.P.); (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (V.P.); (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Elena Macchiarulo
- Department of Mental Health, Mental Health and Suicide Prevention Center, 13900 Biella, Italy; (E.M.); (F.B.); (R.M.)
| | - Francesco Branca
- Department of Mental Health, Mental Health and Suicide Prevention Center, 13900 Biella, Italy; (E.M.); (F.B.); (R.M.)
| | - Roberto Merli
- Department of Mental Health, Mental Health and Suicide Prevention Center, 13900 Biella, Italy; (E.M.); (F.B.); (R.M.)
| | - Guido Bondolfi
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland;
- Department of Psychiatry, Service of Liaison Psychiatry and Crisis Intervention (SPLIC), Geneva University Hospitals (HUG), 1211 Geneva, Switzerland
| | - Khoa Dinh Nguyen
- Hong Kong University of Science and Technology, Hong Kong, China;
- Tranquis Therapeutics, Palo Alto, CA 94304, USA
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
15
|
Güzel M, Akpınar O. Hydroxychloroquine Attenuates Acute Inflammation (LPS)-Induced Apoptosis via Inhibiting TRPV1 Channel/ROS Signaling Pathways in Human Monocytes. BIOLOGY 2021; 10:biology10100967. [PMID: 34681066 PMCID: PMC8533250 DOI: 10.3390/biology10100967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary LPS is a well-known agent in cell line models, including U937 monocytes, for inducing acute inflammation (INF). It is not known whether antioxidant HCQ, through the inhibition of TRPV1 in U937, can decrease oxidative monocyte toxicity and cell death. We investigated the modulator action of HCQ treatment through the modulation of TRPV1 on the levels of mROS, INF, and apoptosis in an LPS-stimulated U937 monocyte model. Acute INF activates apoptotic, inflammatory, and oxidant action through acute INF-dependent excessive cROS, MDA, cytokine generation, and Ca2+ influx in U937 human monocyte cells. Furthermore, treatment with acute INF increases TRPV1 and apoptotic marker (CAS3, CAS9, Bax, and Bcl-2) concentrations via downregulation of glutathione level and glutathione peroxidase activity in U937 monocytes. The acute INF-caused U937 oxidative stress and cytotoxicity is diminished by the treatment of HCQ and TRPV1 inhibitor (CPZ). In summary, treatment with HCQ and CPZ induced anti-inflammatory, anti-apoptotic, and antioxidant action via the inhibition of cROS, cytokine generation, and caspase activation. Abstract Acute inflammation (INF) and apoptosis are induced in monocytes by the generation of several factors, including the products of cytosolic oxygen free radicals (cROS) and the excessive influx of Ca2+ via the stimulation of TRPV1. These are main factors in the etiology of monocyte activation-induced inflammatory and neurodegenerative diseases. Importantly, the protective action of hydroxychloroquine (HCQ) treatment via the inhibition of TRPV1 on the levels of inflammatory factors, cROS, and apoptosis in acute INF (lipopolysaccharide, LPS)-exposed neuronal cells was recently reported. However, the relationships between acute INF via TRPV1 activation and HCQ in monocytes have not been fully clarified yet. The cell membrane of U937 human monocytes contains natural TRPV1. In the study plan, we used U937 cells in four main groups, namely control, HCQ (60 μM for 48 h), INF (1 μg/mL LPS for 16 h), and HCQ + INF. The current data indicate that LPS-induced acute INF caused the upregulation of excessive cytosolic Ca2+ accumulation via the stimulation of TRPV1 in the cells. The treatment of INF additionally upregulated the levels of apoptosis and cytokines (IL6, IL1β, and TNFα), due to upregulated cROS and lipid peroxidation levels as well as upregulated generation of caspase -3 (CAS3) and -9 (CAS9) but a decrease in glutathione and glutathione peroxidase. The expression levels of TRPV1, Bax, CAS3, and CAS9 were also upregulated by the treatment of LPS. However, treatment with HCQ and TRPV1 blocker (capsazepine) modulated the levels of cytokines, caspases, cROS, Ca2+ influx, and apoptosis through the modulation of TRPV1 in the U937 that were stimulated with LPS. In summary, the present data suggest TRPV1 activation through the acute INF (LPS)-induced inflammatory, oxidant, and apoptotic adverse actions in monocyte cells, whereas HCQ prevented adverse actions via the modulation of TRPV1. The results may be significant in the modulation of monocyte activation-caused inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mustafa Güzel
- Labaratory of Medical Microbiology, Private Medical Center of Maltepe, Maltepe Tıp Merkezi, TR-34854 Istanbul, Turkey
- Correspondence:
| | - Orhan Akpınar
- Medical Microbiology Unit, Oral and Maxillofacial Surgery Department, Dentistry School, Suleyman Demirel University, TR-32260 Isparta, Turkey;
- Department of Medical Microbiology, Health Sciences Institute, Suleyman Demirel University, TR-32260 Isparta, Turkey
| |
Collapse
|