1
|
Farooq R, Gendron T, Edwards RS, Witney TH. Compact and cGMP-compliant automated synthesis of [ 18F]FSPG on the Trasis AllinOne™. EJNMMI Radiopharm Chem 2025; 10:2. [PMID: 39821860 PMCID: PMC11748660 DOI: 10.1186/s41181-024-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND (S)-4-(3-18F-Fluoropropyl)-ʟ-glutamic acid ([18F]FSPG) is a positron emission tomography radiotracer used to image system xc-, an antiporter that is upregulated in several cancers. Not only does imaging system xc- with [18F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [18F]FSPG has been hampered by a lack of robust, cGMP-compliant methods. Here, we report the automated synthesis of [18F]FSPG on the Trasis AllinOne™, overcoming previous limitations to provide a user-friendly method ready for clinical adoption. RESULTS The optimised method provided [18F]FSPG in 33.5 ± 4.9% radiochemical yield in just 35 min when starting with 18-25 GBq. Importantly, this method could be scaled up to > 100 GBq starting activity with only a modest reduction in radiochemical yield, providing [18F]FSPG with a molar activity of 372 ± 65 GBq/µmol and excellent radiochemical purity (96.8 ± 1.1%). The formulated product was stable when produced with these high starting activities. CONCLUSIONS We have developed the first automated synthesis of [18F]FSPG on the Trasis AllinOne™. The method produces [18F]FSPG with excellent radiochemical purity and in high amounts suitable for large clinical trials and off-site distribution. The method expands the number of synthesis modules capable of producing [18F]FSPG and has been carefully designed for cGMP compliance to simplify regulatory approval for clinical production. The methods developed for the purification of high-activity [18F]FSPG are transferrable and should aid the development of clinical [18F]FSPG productions on other synthesis modules.
Collapse
Affiliation(s)
- Rizwan Farooq
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Thibault Gendron
- GIGA-CRC Human Imaging, Cyclotron Research Centre, University of Liege, Liege, Belgium
| | - Richard S Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
2
|
Qin Q, Wang D, Qu Y, Li J, An K, Mao Z, Li J, Xiong Y, Min Z, Xue Z. Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson's disease via histone lactylation. NPJ Parkinsons Dis 2025; 11:3. [PMID: 39753581 PMCID: PMC11698869 DOI: 10.1038/s41531-024-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice. Notably, we observed a marked increase in histone lactylation, particularly H3K9 lactylation, in microglia in the substantia nigra of PD mice. Mechanistically, CUT&Tag and Chip-qPCR analyses revealed that H3K9 lactylation enriched at the SLC7A11promoter and activated its expression. Importantly, inhibiting SLC7A11 by sulfasalazine mitigated microglia-mediated neuroinflammation and improved motor function in PD mice. Moreover, we found that lactate-induce histone lactylation is dependent on P300/CBP. Collectively, our findings demonstrate that glycolysis-derived lactate promotes microglial activation via histone lactylation and provide a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Gowtham A, Chauhan C, Rahi V, Kaundal RK. An update on the role of ferroptosis in ischemic stroke: from molecular pathways to Neuroprotection. Expert Opin Ther Targets 2024; 28:1149-1175. [PMID: 39710973 DOI: 10.1080/14728222.2024.2446319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Ischemic stroke (IS), a major cause of mortality and disability worldwide, remains a significant healthcare challenge due to limited therapeutic options. Ferroptosis, a distinct iron-dependent form of regulated cell death characterized by lipid peroxidation and oxidative stress, has emerged as a crucial mechanism in IS pathophysiology. This review explores the role of ferroptosis in IS and its potential for driving innovative therapeutic strategies. AREA COVERED This review delves into the practical implications of ferroptosis in IS, focusing on molecular mechanisms like lipid peroxidation, iron accumulation, and their interplay with inflammation, reactive oxygen species (ROS), and the Nrf2-ARE antioxidant system. It highlights ferroptotic proteins, small-molecule inhibitors, and non-coding RNA modulators as emerging therapeutic targets to mitigate neuroinflammation and neuronal cell death. Studies from PubMed (1982-2024) were identified using MeSH terms such as 'Ferroptosis' and 'Ischemic Stroke,' and only rigorously screened articles were included. EXPERT OPINION Despite preclinical evidence supporting the neuroprotective effects of ferroptosis inhibitors, clinical translation faces hurdles such as suboptimal pharmacokinetics and safety concerns. Advances in drug delivery systems, bioinformatics, and AI-driven drug discovery may optimize ferroptosis-targeting strategies, develop biomarkers, and improve therapeutic outcomes for IS patients.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Vikrant Rahi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
4
|
Heit BS, Chu A, McRay A, Richmond JE, Heckman CJ, Larson J. Interference with glutamate antiporter system x c - enables post-hypoxic long-term potentiation in hippocampus. Exp Physiol 2024; 109:1572-1592. [PMID: 39153228 PMCID: PMC11363115 DOI: 10.1113/ep092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Our group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system xc -, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia-induced changes in neuronal responsiveness from wild-type and xCT KO (xCT-/-) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild-type and xCT-/- slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re-oxygenation, an effect we termed 'post-hypoxic long-term potentiation (LTP)'. Blocking synaptic suppression during hypoxia by antagonizing adenosine A1 receptors did not preclude post-hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post-hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired-pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta-burst stimulation-induced LTP was equivalent between genotypes. Importantly, post-hypoxic LTP was generated in wild-type slices pretreated with system xc - inhibitor, S-4-carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system xc - interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post-ischaemic recovery of the penumbra.
Collapse
Affiliation(s)
- Bradley S. Heit
- Department of Neuroscience and Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alex Chu
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alyssa McRay
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Janet E. Richmond
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Charles J. Heckman
- Department of Neuroscience and Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
| | - John Larson
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
5
|
Wang XP, Yan D, Jin XP, Zhang WY, Shi T, Wang X, Song W, Xiong X, Guo D, Chen S. The role of amino acid metabolism alterations in acute ischemic stroke: From mechanism to application. Pharmacol Res 2024; 207:107313. [PMID: 39025169 DOI: 10.1016/j.phrs.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Dan Yan
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, China
| | - Xia-Ping Jin
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wen-Yan Zhang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Tao Shi
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wenjuan Song
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xing Xiong
- Traditional Chinese Medical Hospital of Xiaoshan, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 311200, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Sheng Chen
- First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311200, China.
| |
Collapse
|
6
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
7
|
Wang H, Wang Z, Gao Y, Wang J, Yuan Y, Zhang C, Zhang X. STZ-induced diabetes exacerbates neurons ferroptosis after ischemic stroke by upregulating LCN2 in neutrophils. Exp Neurol 2024; 377:114797. [PMID: 38670252 DOI: 10.1016/j.expneurol.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Diabetic is a major contributor to the unfavorable prognosis of ischemic stroke. However, intensive hypoglycemic strategies do not improve stroke outcomes, implying that diabetes may affect stroke outcomes through other ways. Ferroptosis is a novel programmed cell death pathway associated with the development of diabetes and ischemic stroke. This study aimed to investigate the effect of streptozotocin (STZ)-induced diabetes on ferroptosis after stroke from the immune cell perspective, and to provide a theoretical foundation for the clinical management of ischemic stroke in patients with diabetes. The results revealed that STZ-induced diabetes not only facilitates the infiltration of neutrophils into the brain after stroke, but also upregulates the expression of lipocalin 2 (LCN2) in neutrophils. LCN2 promotes lipid peroxide accumulation by increasing intracellular ferrous ions, which intensify ferroptosis in major brain cell populations, especially neurons. Our findings suggest that STZ-induced diabetes aggravates ischemic stroke partially by mediating ferroptosis through neutrophil-derived LCN2. These data contribute to improved understanding of post-stroke immune regulation in diabetes, and offer a potentially novel therapeutic target for the management of acute-stage ischemic stroke complicated with diabetes.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China.
| |
Collapse
|
8
|
Tang P, Liu Y, Peng S, Cai Z, Tang G, Zhou Z, Hu K, Zhong Y. Cerebral [ 18F]AIF-FAPI-42-Based PET Imaging of Fibroblast Activation Protein for Non-invasive Quantification of Fibrosis After Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01269-2. [PMID: 38940873 DOI: 10.1007/s12975-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.
Collapse
Affiliation(s)
- Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhikai Cai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
10
|
Cipriani R, Domerq M, Martín A, Matute C. Role of Microglia in Stroke. ADVANCES IN NEUROBIOLOGY 2024; 37:405-422. [PMID: 39207705 DOI: 10.1007/978-3-031-55529-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.
Collapse
Affiliation(s)
| | - Maria Domerq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain.
| |
Collapse
|
11
|
Sharkey AR, Witney TH, Cook GJR. Is System x c- a Suitable Target for Tumour Detection and Response Assessment with Imaging? Cancers (Basel) 2023; 15:5573. [PMID: 38067277 PMCID: PMC10705217 DOI: 10.3390/cancers15235573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
System xc- is upregulated in cancer cells and can be imaged using novel radiotracers, most commonly with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid (18F-FSPG). The aim of this review was to summarise the use of 18F-FSPG in humans, explore the benefits and limitations of 18F-FSPG, and assess the potential for further use of 18F-FSPG in cancer patients. To date, ten papers have described the use of 18F-FSPG in human cancers. These studies involved small numbers of patients (range 1-26) and assessed the use of 18F-FSPG as a general oncological diagnostic agent across different cancer types. These clinical trials were contrasting in their findings, limiting the scope of 18F-FSPG PET/CT as a purely diagnostic agent, primarily due to heterogeneity of 18F-FSPG retention both between cancer types and patients. Despite these limitations, a potential further application for 18F-FSPG is in the assessment of early treatment response and prediction of treatment resistance. Animal models of cancer have shown that changes in 18F-FSPG retention following effective therapy precede glycolytic changes, as indicated by 18F-FDG, and changes in tumour volume, as measured by CT. If these results could be replicated in human clinical trials, imaging with 18F-FSPG PET/CT would offer an exciting route towards addressing the currently unmet clinical needs of treatment resistance prediction and early imaging assessment of therapy response.
Collapse
Affiliation(s)
- Amy R. Sharkey
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Timothy H. Witney
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Gary J. R. Cook
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
- King’s College London and Guy’s and St. Thomas’ PET Centre, St. Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
12
|
Brown G, Soloviev D, Lewis DY. Radiosynthesis and Analysis of (S)-4-(3-[ 18F]Fluoropropyl)-L-Glutamic Acid. Mol Imaging Biol 2023; 25:586-595. [PMID: 36525163 PMCID: PMC10172245 DOI: 10.1007/s11307-022-01793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid ([18F]FSPG) is an L-glutamate derivative used as a PET biomarker to assess intracellular redox status in vivo through targeting of the cystine/glutamate antiporter protein, xc- transporter. In this report, we describe a radiosynthesis of [18F]FSPG for use in PET studies that address specific challenges in relation to the radiotracer purity, molar activity, and quality control testing methods. PROCEDURES The radiosynthesis of [18F]FSPG was performed using a customised RNPlus Research automated radiosynthesis system (Synthra GmbH, Hamburg, Germany). [18F]FSPG was labelled in the 3-fluoropropylmoiety at the 4-position of the glutamic acid backbone with fluorine-18 via substitution of nucleophilic [18F]fluoride with a protected naphthylsulfonyloxy-propyl-L-glutamate derivative. Radiochemical purity of the final product was determined by radio HPLC using a new method of direct analysis using a Hypercarb C18 column. RESULTS The average radioactivity yield of [18F]FSPG was 4.2 GBq (range, 3.4-4.8 GBq) at the end of synthesis, starting from 16 GBq of [18F]fluoride at the end of bombardment (n = 10) in a synthesis time of 50 min. The average molar activity and radioactivity volumetric concentration at the end of synthesis were 66 GBq µmol-1 (range, 48-73 GBq µmol-1) and 343-400 MBq mL-1, respectively. CONCLUSION Stability tests using a 4.6 GBq dose with a radioactivity volumetric concentration of 369 MBq mL-1 at the end of synthesis showed no observable radiolysis 3 h after production. The formulated product is of high radiochemical purity (> 95%) and higher molar activity compared to previous methods and is safe to inject into mice up to 3 h after production.
Collapse
Affiliation(s)
- Gavin Brown
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Dmitry Soloviev
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Y Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, G611QH, UK.
| |
Collapse
|
13
|
Wang Z, Song Y, Bai S, Xiang W, Zhou X, Han L, Zhu D, Guan Y. Imaging of microglia in post-stroke inflammation. Nucl Med Biol 2023; 118-119:108336. [PMID: 37028196 DOI: 10.1016/j.nucmedbio.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Microglia constantly survey the central nervous system microenvironment and maintain brain homeostasis. Microglia activation, polarization and inflammatory response are of great importance in the pathophysiology of ischemic stroke. For exploring biochemical processes in vivo, positron emission tomography (PET) is a superior imaging tool. Translocator protein 18 kDa (TSPO), is a validated neuroinflammatory biomarker which is widely used to evaluate various central nervous system (CNS) pathologies in both preclinical and clinical studies. TSPO level can be elevated due to peripheral inflammatory cells infiltration and glial cells activation. Therefore, a clear understanding of the dynamic changes between microglia and TSPO is critical for interpreting PET studies and understanding the pathophysiology after ischemic stroke. Our review discusses alternative biological targets that have attracted considerable interest for the imaging of microglia activation in recent years, and the potential value of imaging of microglia in the assessment of stroke therapies.
Collapse
|
14
|
Montilla A, Zabala A, Er-Lukowiak M, Rissiek B, Magnus T, Rodriguez-Iglesias N, Sierra A, Matute C, Domercq M. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death Dis 2023; 14:16. [PMID: 36635255 PMCID: PMC9835747 DOI: 10.1038/s41419-023-05551-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
In multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, both resident microglia and infiltrating macrophages contribute to demyelination as well as spontaneous remyelination. Nevertheless, the specific roles of microglia versus macrophages are unknown. We investigated the influence of microglia in EAE using the colony stimulating factor 1 receptor (CSF-1R) inhibitor, PLX5622, to deplete microglial population and Ccr2RFP/+ fmsEGFP/+ mice, to distinguish blood-derived macrophages from microglia. PLX5622 treatment depleted microglia and meningeal macrophages, and provoked a massive infiltration of CCR2+ macrophages into demyelinating lesions and spinal cord parenchyma, albeit it did not alter EAE chronic phase. In contrast, microglia and meningeal macrophages depletion reduced the expression of major histocompatibility complex II and CD80 co-stimulatory molecule in dendritic cells, macrophages and microglia. In addition, it diminished T cell reactivation and proliferation in the spinal cord parenchyma, inducing a significant delay in EAE onset. Altogether, these data point to a specific role of CNS microglia and meningeal macrophages in antigen presentation and T cell reactivation at initial stages of EAE.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Noelia Rodriguez-Iglesias
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|
15
|
Rejc L, Gómez-Vallejo V, Joya A, Arsequell G, Egimendia A, Castellnou P, Ríos-Anglada X, Cossío U, Baz Z, Iglesias L, Capetillo-Zarate E, Ramos-Cabrer P, Martin A, Llop J. Longitudinal evaluation of neuroinflammation and oxidative stress in a mouse model of Alzheimer disease using positron emission tomography. Alzheimers Res Ther 2022; 14:80. [PMID: 35676734 PMCID: PMC9178858 DOI: 10.1186/s13195-022-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Background Validation of new biomarkers of Alzheimer disease (AD) is crucial for the successful development and implementation of treatment strategies. Additional to traditional AT(N) biomarkers, neuroinflammation biomarkers, such as translocator protein (TSPO) and cystine/glutamine antiporter system (xc-), could be considered when assessing AD progression. Herein, we report the longitudinal investigation of [18F]DPA-714 and [18F]FSPG for their ability to detect TSPO and xc- biomarkers, respectively, in the 5xFAD mouse model for AD. Methods Expression of TSPO and xc- system was assessed longitudinally (2–12 months of age) on 5xFAD mice and their respective controls by positron emission tomography (PET) imaging using radioligands [18F]DPA-714 and [18F]FSPG. In parallel, in the same mice, amyloid-β plaque deposition was assessed with the amyloid PET radiotracer [18F]florbetaben. In vivo findings were correlated to ex vivo immunofluorescence staining of TSPO and xc- in microglia/macrophages and astrocytes on brain slices. Physiological changes of the brain tissue were assessed by magnetic resonance imaging (MRI) in 12-month-old mice. Results PET studies showed a significant increase in the uptake of [18F]DPA-714 and [18F]FSPG in the cortex, hippocampus, and thalamus in 5xFAD but not in WT mice over time. The results correlate with Aβ plaque deposition. Ex vivo staining confirmed higher TSPO overexpression in both, microglia/macrophages and astrocytes, and overexpression of xc- in non-glial cells of 5xFAD mice. Additionally, the results show that Aβ plaques were surrounded by microglia/macrophages overexpressing TSPO. MRI studies showed significant tissue shrinkage and microstructural alterations in 5xFAD mice compared to controls. Conclusions TSPO and xc- overexpression can be assessed by [18F]DPA-714 and [18F]FSPG, respectively, and correlate with the level of Aβ plaque deposition obtained with a PET amyloid tracer. These results position the two tracers as promising imaging tools for the evaluation of disease progression. Graphical abstract Longitudinal in vivo study in the 5xFAD mouse model shows that TSPO and oxidative stress assessment through [18F]DPA-714 and [18F]FSPG-PET imaging, respectively, could serve as a potential tool for the evaluation of Alzheimer disease progression. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01016-5.
Collapse
|
16
|
Lin M, Coll RP, Cohen AS, Georgiou DK, Manning HC. PET Oncological Radiopharmaceuticals: Current Status and Perspectives. Molecules 2022; 27:6790. [PMID: 36296381 PMCID: PMC9609795 DOI: 10.3390/molecules27206790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2024] Open
Abstract
Molecular imaging is the visual representation of biological processes that take place at the cellular or molecular level in living organisms. To date, molecular imaging plays an important role in the transition from conventional medical practice to precision medicine. Among all imaging modalities, positron emission tomography (PET) has great advantages in sensitivity and the ability to obtain absolute imaging quantification after corrections for photon attenuation and scattering. Due to the ability to label a host of unique molecules of biological interest, including endogenous, naturally occurring substrates and drug-like compounds, the role of PET has been well established in the field of molecular imaging. In this article, we provide an overview of the recent advances in the development of PET radiopharmaceuticals and their clinical applications in oncology.
Collapse
Affiliation(s)
- Mai Lin
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ryan P. Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Allison S. Cohen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimitra K. Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Henry Charles Manning
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed Pharmacother 2022; 154:113611. [PMID: 36081288 DOI: 10.1016/j.biopha.2022.113611] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cerebrovascular diseases, such as ischemic stroke, pose serious medical challenges worldwide due to their high morbidity and mortality and limitations in clinical treatment strategies. Studies have shown that reactive oxygen species (ROS)-mediated inflammation, excitotoxicity, and programmed cell death of each neurovascular unit during post-stroke hypoxia and reperfusion play an important role in the pathological cascade. Ferroptosis, a programmed cell death characterized by iron-regulated accumulation of lipid peroxidation, is caused by abnormal metabolism of lipids, glutathione (GSH), and iron, and can accelerate acute central nervous system injury. Recent studies have gradually uncovered the pathological process of ferroptosis in the neurovascular unit of acute stroke. Some drugs such as iron chelators, ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) can protect nerves after neurovascular unit injury in acute stroke by inhibiting ferroptosis. In addition, combined with our previous studies on ferroptosis mediated by natural compounds in ischemic stroke, this review summarized the progress in the regulation mechanism of natural chemical components and herbal chemical components on ferroptosis in recent years, in order to provide reference information for future research on ferroptosis and lead compounds for the development of ferroptosis inhibitors.
Collapse
|
18
|
He Y, Hewett SJ. The Cystine/Glutamate Antiporter, System xc– Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice. Front Cell Neurosci 2022; 16:821036. [PMID: 35669109 PMCID: PMC9165760 DOI: 10.3389/fncel.2022.821036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding the mechanisms underlying ischemic brain injury is of importance to the goal of devising novel therapeutics for protection and/or recovery. Previous work in our laboratory and in others has shown that activation of cystine/glutamate antiporter, system xc– (Sxc–), facilitates neuronal injury in several in vitro models of energy deprivation. However, studies on the contribution of this antiporter to ischemic brain damage in vivo are more limited. Since embolic or thrombotic transient or permanent occlusion of a cerebral blood vessel eventually leads to brain infarction in most stroke cases, we evaluated the contribution of Sxc– to cerebral ischemic damage by comparing brain infarction between mice naturally null for SLC7a11 (SLC7a11sut/sut mice). The gene the encodes for the substrate specific light chain for system xcc– — with their wild type (SLC7a11 + / +)littermates following photothrombotic ischemic stroke of the middle cerebral artery (PTI) and permanent middle cerebral artery occlusion (pMCAo) rendered by cauterization. In the PTI model, we found a time-dependent reduction in cerebral blood flow that reached 50% from baseline in both genotypes 47–48 h post-illumination. Despite this, a remarkable reduction in incidence and total infarct volume of SLC7a11sut/sut mice was revealed 48 h following PTI as compared to SLC7a11+/+ mice. No difference in injury markers and/or infarct volume was measured between genotypes when occlusion of the MCA was permanent, however. Present data demonstrate a model-dependent differential role for Sxc– in focal cerebral ischemic damage, further highlighting that ischemic severity activates heterogeneous biochemical events that lead to damage engendered by stroke.
Collapse
|
19
|
Van Camp N, Lavisse S, Roost P, Gubinelli F, Hillmer A, Boutin H. TSPO imaging in animal models of brain diseases. Eur J Nucl Med Mol Imaging 2021; 49:77-109. [PMID: 34245328 PMCID: PMC8712305 DOI: 10.1007/s00259-021-05379-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Over the last 30 years, the 18-kDa TSPO protein has been considered as the PET imaging biomarker of reference to measure increased neuroinflammation. Generally assumed to image activated microglia, TSPO has also been detected in endothelial cells and activated astrocytes. Here, we provide an exhaustive overview of the recent literature on the TSPO-PET imaging (i) in the search and development of new TSPO tracers and (ii) in the understanding of acute and chronic neuroinflammation in animal models of neurological disorders. Generally, studies testing new TSPO radiotracers against the prototypic [11C]-R-PK11195 or more recent competitors use models of acute focal neuroinflammation (e.g. stroke or lipopolysaccharide injection). These studies have led to the development of over 60 new tracers during the last 15 years. These studies highlighted that interpretation of TSPO-PET is easier in acute models of focal lesions, whereas in chronic models with lower or diffuse microglial activation, such as models of Alzheimer's disease or Parkinson's disease, TSPO quantification for detection of neuroinflammation is more challenging, mirroring what is observed in clinic. Moreover, technical limitations of preclinical scanners provide a drawback when studying modest neuroinflammation in small brains (e.g. in mice). Overall, this review underlines the value of TSPO imaging to study the time course or response to treatment of neuroinflammation in acute or chronic models of diseases. As such, TSPO remains the gold standard biomarker reference for neuroinflammation, waiting for new radioligands for other, more specific targets for neuroinflammatory processes and/or immune cells to emerge.
Collapse
Affiliation(s)
- Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, M20 3LJ, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng JC, Feng J. Emerging Role of Ferroptosis in the Pathogenesis of Ischemic Stroke: A New Therapeutic Target? ASN Neuro 2021; 13:17590914211037505. [PMID: 34463559 PMCID: PMC8424725 DOI: 10.1177/17590914211037505] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the main causes of high morbidity, mortality, and disability
worldwide; however, the treatment methods are limited and do not always achieve
satisfactory results. The pathogenesis of ischemic stroke is complex, defined by multiple
mechanisms; among them, programmed death of neuronal cells plays a significant role.
Ferroptosis is a novel type of regulated cell death characterized by iron redistribution
or accumulation and increased lipid peroxidation in the membrane. Ferroptosis is
implicated in many pathological conditions, such as cancer, neurodegenerative diseases,
and ischemia-reperfusion injury. In this review, we summarize current research findings on
ferroptosis, including possible molecular mechanisms and therapeutic applications of
ferroptosis regulators, with a focus on the involvement of ferroptosis in the pathogenesis
and treatment of ischemic stroke. Understanding the role of ferroptosis in ischemic stroke
will throw some light on the development of methods for diagnosis, treatment, and
prevention of this devastating disease.
Collapse
Affiliation(s)
- Zhong-Qi Bu
- Department of Neurology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Hai-Yang Yu
- Department of Neurology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin He
- Department of Neurology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue-Ran Cui
- Department of Neurology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Chun Feng
- Department of Neurology and Neuroscience Center, 117971The First Hospital of Jilin University, Changchun, China
| | - Juan Feng
- Department of Neurology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Cystine-glutamate antiporter deletion accelerates motor recovery and improves histological outcomes following spinal cord injury in mice. Sci Rep 2021; 11:12227. [PMID: 34108554 PMCID: PMC8190126 DOI: 10.1038/s41598-021-91698-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
xCT is the specific subunit of System xc-, an antiporter importing cystine while releasing glutamate. Although xCT expression has been found in the spinal cord, its expression and role after spinal cord injury (SCI) remain unknown. The aim of this study was to characterize the role of xCT on functional and histological outcomes following SCI induced in wild-type (xCT+/+) and in xCT-deficient mice (xCT−/−). In the normal mouse spinal cord, slc7a11/xCT mRNA was detected in meningeal fibroblasts, vascular mural cells, astrocytes, motor neurons and to a lesser extent in microglia. slc7a11/xCT gene and protein were upregulated within two weeks post-SCI. xCT−/− mice recovered muscular grip strength as well as pre-SCI weight faster than xCT+/+ mice. Histology of xCT−/− spinal cords revealed significantly more spared motor neurons and a higher number of quiescent microglia. In xCT−/− mice, inflammatory polarization shifted towards higher mRNA expression of ym1 and igf1 (anti-inflammatory) while lower levels of nox2 and tnf-a (pro-inflammatory). Although astrocyte polarization did not differ, we quantified an increased expression of lcn2 mRNA. Our results show that slc7a11/xCT is overexpressed early following SCI and is detrimental to motor neuron survival. xCT deletion modulates intraspinal glial activation by shifting towards an anti-inflammatory profile.
Collapse
|
22
|
Edwards R, Greenwood HE, McRobbie G, Khan I, Witney TH. Robust and Facile Automated Radiosynthesis of [ 18F]FSPG on the GE FASTlab. Mol Imaging Biol 2021; 23:854-864. [PMID: 34013395 PMCID: PMC8578107 DOI: 10.1007/s11307-021-01609-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
Purpose (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. Procedures An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. Results The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/μmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. Conclusions We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01609-w.
Collapse
Affiliation(s)
- Richard Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Graeme McRobbie
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Imtiaz Khan
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
23
|
Mi Y, Jiao K, Xu JK, Wei K, Liu JY, Meng QQ, Guo TT, Zhang XN, Zhou D, Qing DG, Sun Y, Li N, Hou Y. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113718. [PMID: 33352239 DOI: 10.1016/j.jep.2020.113718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferula sinkiangensis K. M. Shen is a traditional Chinese medicine that has a variety of pharmacological properties relevant to neurological disorders and inflammations. Kellerin, a novel compound extracted from Ferula sinkiangensis, exerts a strong anti-neuroinflammatory effect by inhibiting microglial activation. Microglial activation plays a vital role in ischemia-induced brain injury. However, the potential therapeutic effect of kellerin on focal cerebral ischemia is still unknown. AIM OF THE STUDY To explore the effect of kellerin on cerebral ischemia and clarify its possible mechanisms, we applied the middle cerebral artery occlusion (MCAO) model and the LPS-activated microglia model in our study. MATERIALS AND METHODS Neurological outcome was examined according to a 4-tiered grading system. Brain infarct size was measured using TTC staining. Brain edema was calculated using the wet weight minus dry weight method. Neuron damage and microglial activation were observed by immunofluorescence in MCAO model in rats. In in vitro studies, microglial activation was examined by flow cytometry and the viability of neuronal cells cultured in microglia-conditioned medium was measured using MTT assay. The levels of pro-inflammatory cytokines were measured by qRT-PCR and ELISA. The proteins involved in NF-κB signaling pathway were determined by western blot. Intracellular ROS was examined using DCFH-DA method and NADPH oxidase activity was measured using the NBT assay. RESULTS We found that kellerin improved neurological outcome, reduced brain infarct size and decreased brain edema in MCAO model in rats. Under the pathologic conditions of focal cerebral ischemia, kellerin alleviated neuron damage and inhibited microglial activation. Moreover, in in vitro studies of LPS-stimulated BV2 cells kellerin protected neuronal cells from being damaged by inhibiting microglial activation. Kellerin also reduced the levels of pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and decreased ROS generation and NADPH oxidase activity. CONCLUSIONS Our discoveries reveal that the neuroprotective effects of kellerin may largely depend on its inhibitory effect on microglial activation. This suggests that kellerin could serve as a novel anti-inflammatory agent which may have therapeutic effects in ischemic stroke.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ji-Kai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Jing-Yu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Qi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue-Ni Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - De-Gang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
24
|
Joya A, Ardaya M, Montilla A, Garbizu M, Plaza-García S, Gómez-Vallejo V, Padro D, Gutiérrez JJ, Rios X, Ramos-Cabrer P, Cossío U, Pulagam KR, Higuchi M, Domercq M, Cavaliere F, Matute C, Llop J, Martín A. In vivo multimodal imaging of adenosine A 1 receptors in neuroinflammation after experimental stroke. Theranostics 2021; 11:410-425. [PMID: 33391483 PMCID: PMC7681082 DOI: 10.7150/thno.51046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/24/2020] [Indexed: 01/21/2023] Open
Abstract
Adenosine A1 receptors (A1ARs) are promising imaging biomarkers and targets for the treatment of stroke. Nevertheless, the role of A1ARs on ischemic damage and its subsequent neuroinflammatory response has been scarcely explored so far. Methods: In this study, the expression of A1ARs after transient middle cerebral artery occlusion (MCAO) was evaluated by positron emission tomography (PET) with [18F]CPFPX and immunohistochemistry (IHC). In addition, the role of A1ARs on stroke inflammation using pharmacological modulation was assessed with magnetic resonance imaging (MRI), PET imaging with [18F]DPA-714 (TSPO) and [18F]FLT (cellular proliferation), as well as IHC and neurofunctional studies. Results: In the ischemic territory, [18F]CPFPX signal and IHC showed the overexpression of A1ARs in microglia and infiltrated leukocytes after cerebral ischemia. Ischemic rats treated with the A1AR agonist ENBA showed a significant decrease in both [18F]DPA-714 and [18F]FLT signal intensities at day 7 after cerebral ischemia, a feature that was confirmed by IHC results. Besides, the activation of A1ARs promoted the reduction of the brain lesion, as measured with T2W-MRI, and the improvement of neurological outcome including motor, sensory and reflex responses. These results show for the first time the in vivo PET imaging of A1ARs expression after cerebral ischemia in rats and the application of [18F]FLT to evaluate glial proliferation in response to treatment. Conclusion: Notably, these data provide evidence for A1ARs playing a key role in the control of both the activation of resident glia and the de novo proliferation of microglia and macrophages after experimental stroke in rats.
Collapse
|
25
|
Shih KT, Huang YY, Yang CY, Cheng MF, Tien YW, Shiue CY, Yen RF, Hsin LW. Synthesis and analysis of 4-(3-fluoropropyl)-glutamic acid stereoisomers to determine the stereochemical purity of (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) for clinical use. PLoS One 2020; 15:e0243831. [PMID: 33315962 PMCID: PMC7735610 DOI: 10.1371/journal.pone.0243831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
(4S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid ([18F]FSPG) is a positron emission tomography (PET) imaging agent for measuring the system xC− transporter activity. It has been used for the detection of various cancers and metastasis in clinical trials. [18F]FSPG is also a promising diagnostic tool for evaluation of multiple sclerosis, drug resistance in chemotherapy, inflammatory brain diseases, and infectious lesions. Due to the very short half-life (110 min) of 18F nuclide, [18F]FSPG needs to be produced on a daily basis; therefore, fast and efficient synthesis and analytical methods for quality control must be established to assure the quality and safety of [18F]FSPG for clinical use. To manufacture cGMP-compliant [18F]FSPG, all four nonradioactive stereoisomers of FSPG were prepared as reference standards for analysis. (2S,4S)-1 and (2R,4R)-1 were synthesized starting from protected L- and D-glutamate derivatives in three steps, whereas (2S,4R)-1 and (2R,4S)-1 were prepared in three steps from protected (S)- and (R)-pyroglutamates. A chiral HPLC method for simultaneous determination of four FSPG stereoisomers was developed by using a 3-cm Chirex 3126 column and a MeCN/CuSO4(aq) mobile phase. In this method, (2R,4S)-1, (2S,4S)-1, (2R,4R)-1, and (2S,4R)-1 were eluted in sequence with sufficient resolution in less than 25 min without derivatization. Scale-up synthesis of intermediates for the production of [18F]FSPG in high optical purity was achieved via stereo-selective synthesis or resolution by recrystallization. The enantiomeric excess of intermediates was determined by HPLC using a Chiralcel OD column and monitored at 220 nm. The nonradioactive precursor with >98% ee can be readily distributed to other facilities for the production of [18F]FSPG. Based on the above accomplishments, cGMP-compliant [18F]FSPG met the acceptance criteria in specifications and was successfully manufactured for human use. It has been routinely prepared and used in several pancreatic ductal adenocarcinoma metastasis-related clinical trials.
Collapse
Affiliation(s)
- Kai-Ting Shih
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Yao Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Probes Development Core, Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.,Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Probes Development Core, Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Rouh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Probes Development Core, Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Probes Development Core, Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.,Center for Innovative Therapeutics Discovery, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Ardaya M, Joya A, Padro D, Plaza-García S, Gómez-Vallejo V, Sánchez M, Garbizu M, Cossío U, Matute C, Cavaliere F, Llop J, Martín A. In vivo PET Imaging of Gliogenesis After Cerebral Ischemia in Rats. Front Neurosci 2020; 14:793. [PMID: 32848565 PMCID: PMC7406641 DOI: 10.3389/fnins.2020.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
In vivo positron emission tomography of neuroinflammation has mainly focused on the evaluation of glial cell activation using radiolabeled ligands. However, the non-invasive imaging of neuroinflammatory cell proliferation has been scarcely evaluated so far. In vivo and ex vivo assessment of gliogenesis after transient middle cerebral artery occlusion (MCAO) in rats was carried out using PET imaging with the marker of cell proliferation 3′-Deoxy-3′-[18F] fluorothymidine ([18F]FLT), magnetic resonance imaging (MRI) and fluorescence immunohistochemistry. MRI-T2W studies showed the presence of the brain infarction at 24 h after MCAO affecting cerebral cortex and striatum. In vivo PET imaging showed a significant increase in [18F]FLT uptake in the ischemic territory at day 7 followed by a progressive decline from day 14 to day 28 after ischemia onset. In addition, immunohistochemistry studies using Ki67, CD11b, and GFAP to evaluate proliferation of microglia and astrocytes confirmed the PET findings showing the increase of glial proliferation at day 7 after ischemia followed by decrease later on. Hence, these results show that [18F]FLT provides accurate quantitative information on the time course of glial proliferation in experimental stroke. Finally, this novel brain imaging method might guide on the imaging evaluation of the role of gliogenesis after stroke.
Collapse
Affiliation(s)
- María Ardaya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | | | | | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
Pulagam KR, Gómez-Vallejo V, Llop J, Rejc L. Radiochemistry: A Useful Tool in the Ophthalmic Drug Discovery. Curr Med Chem 2020; 27:501-522. [PMID: 31142249 DOI: 10.2174/0929867326666190530122032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are ultra-sensitive, fully translational and minimally invasive nuclear imaging techniques capable of tracing the spatiotemporal distribution of positron (PET) or gamma (SPECT) emitter-labeled molecules after administration into a living organism. Besides their impact in the clinical diagnostic, PET and SPECT are playing an increasing role in the process of drug development, both during the evaluation of the pharmacokinetic properties of new chemical entities as well as in the proof of concept, proof of mechanism and proof of efficacy studies. However, they have been scarcely applied in the context of ophthalmic drugs. In this paper, the basics of nuclear imaging and radiochemistry are briefly discussed, and the few examples of the use of these imaging modalities in ophthalmic drug development reported in the literature are presented and discussed. Finally, in a purely theoretical exercise, some labeling strategies that could be applied to the preparation of selected ophthalmic drugs are proposed and potential applications of nuclear imaging in ophthalmology are projected.
Collapse
Affiliation(s)
- Krishna R Pulagam
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| | | | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| | - Luka Rejc
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| |
Collapse
|
28
|
Leclercq K, Liefferinge JV, Albertini G, Neveux M, Dardenne S, Mairet‐Coello G, Vandenplas C, Deprez T, Chong S, Foerch P, Bentea E, Sato H, Maher P, Massie A, Smolders I, Kaminski RM. Anticonvulsant and antiepileptogenic effects of system xc− inactivation in chronic epilepsy models. Epilepsia 2019; 60:1412-1423. [DOI: 10.1111/epi.16055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Joeri Van Liefferinge
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | | | | | | | | | | | | | | | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Hideyo Sato
- Faculty of Medicine Niigata University Niigata Japan
| | - Pamela Maher
- Cellular Neurobiology Laboratory The Salk Institute for Biological Studies La Jolla California
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | | |
Collapse
|
29
|
Beinat C, Gowrishankar G, Shen B, Alam IS, Robinson E, Haywood T, Patel CB, Azevedo EC, Castillo JB, Ilovich O, Koglin N, Schmitt-Willich H, Berndt M, Mueller A, Zerna M, Srinivasan A, Gambhir SS. The Characterization of 18F-hGTS13 for Molecular Imaging of xC− Transporter Activity with PET. J Nucl Med 2019; 60:1812-1817. [DOI: 10.2967/jnumed.119.225870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
|
30
|
Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, Perez-Samartín A, Pulagam KR, Lukowiak M, Capetillo-Zarate E, Llop J, Magnus T, Koch-Nolte F, Rassendren F, Matute C, Domercq M. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med 2019; 10:emmm.201708743. [PMID: 29973381 PMCID: PMC6079537 DOI: 10.15252/emmm.201708743] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Microglia survey the brain microenvironment for signals of injury or infection and are essential for the initiation and resolution of pathogen‐ or tissue damage‐induced inflammation. Understanding the mechanism of microglia responses during pathology is hence vital to promote regenerative responses. Here, we analyzed the role of purinergic receptor P2X4 (P2X4R) in microglia/macrophages during autoimmune inflammation. Blockade of P2X4R signaling exacerbated clinical signs in the experimental autoimmune encephalomyelitis (EAE) model and also favored microglia activation to a pro‐inflammatory phenotype and inhibited myelin phagocytosis. Moreover, P2X4R blockade in microglia halted oligodendrocyte differentiation in vitro and remyelination after lysolecithin‐induced demyelination. Conversely, potentiation of P2X4R signaling by the allosteric modulator ivermectin (IVM) favored a switch in microglia to an anti‐inflammatory phenotype, potentiated myelin phagocytosis, promoted the remyelination response, and ameliorated clinical signs of EAE. Our results provide evidence that P2X4Rs modulate microglia/macrophage inflammatory responses and identify IVM as a potential candidate among currently used drugs to promote the repair of myelin damage.
Collapse
Affiliation(s)
- Alazne Zabala
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - Nuria Vazquez-Villoldo
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - Björn Rissiek
- Department of Neurology, University Medical Center, Hamburg, Germany
| | - Jon Gejo
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - Abraham Martin
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastian, Spain
| | - Aitor Palomino
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - Alberto Perez-Samartín
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | | | - Marco Lukowiak
- Department of Neurology, University Medical Center, Hamburg, Germany
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jordi Llop
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastian, Spain
| | - Tim Magnus
- Department of Neurology, University Medical Center, Hamburg, Germany
| | | | | | - Carlos Matute
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| |
Collapse
|
31
|
Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, Wilcox KS. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol 2019; 318:50-60. [PMID: 31022385 DOI: 10.1016/j.expneurol.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
The contribution of glial transporters to glutamate movement across the membrane has been identified as a potential target for anti-seizure therapies. Two such glutamate transporters, GLT-1 and system xc-, are expressed on glial cells, and modulation of their expression and function have been identified as a means by which seizures, neuronal injury, and gliosis can be reduced in models of brain injury. While GLT-1 is responsible for the majority of glutamate uptake in the brain, system xc- releases glutamate in the extracellular cleft in exchange for cystine and represents as such the major source of hippocampal extracellular glutamate. Using the Theiler's Murine Encephalomyelitis Virus (TMEV) model of viral-induced epilepsy, we have taken two well-studied approaches, one pharmacological, one genetic, to investigate the potential role(s) of GLT-1 and system xc- in TMEV-induced pathology. Our findings suggest that the methods we utilized to modulate these glial transporters, while effective in other models, are not sufficient to reduce the number or severity of behavioral seizures in TMEV-infected mice. However, genetic knockout of xCT, the specific subunit of system xc-, may have cellular effects, as we observed a slight decrease in neuronal injury caused by TMEV and an increase in astrogliosis in the CA1 region of the hippocampus. Furthermore, xCT knockout caused an increase in GLT-1 expression selectively in the cortex. These findings have significant implications for both the characterization of the TMEV model as well as for future efforts to discover novel and effective anti-seizure drugs.
Collapse
Affiliation(s)
- Jaycie L Loewen
- Department of Pharmacology and Toxicology, University of Utah, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Belgium
| | - E Jill Dahle
- Department of Pharmacology and Toxicology, University of Utah, USA
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Japan
| | - Ilse J Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, C4N, Vrije Universiteit Brussel, Belgium
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, USA; Interdepartmental Program in Neuroscience, University of Utah, USA.
| |
Collapse
|
32
|
PET Imaging of Crossed Cerebellar Diaschisis after Long-Term Cerebral Ischemia in Rats. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2483078. [PMID: 30627057 PMCID: PMC6305055 DOI: 10.1155/2018/2483078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022]
Abstract
Crossed cerebellar diaschisis (CCD) is a decrease of regional blood flow and metabolism in the cerebellar hemisphere contralateral to the injured brain hemisphere as a common consequence of stroke. Despite CCD has been detected in patients with stroke using neuroimaging modalities, the evaluation of this phenomenon in rodent models of cerebral ischemia has been scarcely evaluated so far. Here, we report the in vivo evaluation of CCD after long-term cerebral ischemia in rats using positron emission tomography (PET) imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Imaging studies were combined with neurological evaluation to assess functional recovery. In the ischemic territory, imaging studies showed a significant decrease in glucose metabolism followed by a progressive recovery later on. Conversely, the cerebellum showed a contralateral hypometabolism from days 7 to 14 after reperfusion. Neurological behavior showed major impaired outcome at day 1 after ischemia followed by a significant recovery of the sensorimotor function from days 7 to 28 after experimental stroke. Taken together, these results suggest that the degree of CCD after cerebral ischemia might be predictive of neurological recovery.
Collapse
|
33
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
34
|
Chaney A, Cropper HC, Johnson EM, Lechtenberg KJ, Peterson TC, Stevens MY, Buckwalter MS, James ML. 11C-DPA-713 Versus 18F-GE-180: A Preclinical Comparison of Translocator Protein 18 kDa PET Tracers to Visualize Acute and Chronic Neuroinflammation in a Mouse Model of Ischemic Stroke. J Nucl Med 2018; 60:122-128. [PMID: 29976695 PMCID: PMC6354224 DOI: 10.2967/jnumed.118.209155] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/23/2018] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation plays a key role in neuronal injury after ischemic stroke. PET imaging of translocator protein 18 kDa (TSPO) permits longitudinal, noninvasive visualization of neuroinflammation in both preclinical and clinical settings. Many TSPO tracers have been developed, however, it is unclear which tracer is the most sensitive and accurate for monitoring the in vivo spatiotemporal dynamics of neuroinflammation across applications. Hence, there is a need for head-to-head comparisons of promising TSPO PET tracers across different disease states. Accordingly, the aim of this study was to directly compare 2 promising second-generation TSPO tracers, 11C-DPA-713 and 18F-GE-180, for the first time at acute and chronic time points after ischemic stroke. Methods: After distal middle cerebral artery occlusion or sham surgery, mice underwent consecutive PET/CT imaging with 11C-DPA-713 and 18F-GE-180 at 2, 6, and 28 d after stroke. T2-weighted MR images were acquired to enable delineation of ipsilateral (infarct) and contralateral brain regions of interest (ROIs). PET/CT images were analyzed by calculating percentage injected dose per gram in MR-guided ROIs. SUV ratios were determined using the contralateral thalamus (SUVTh) as a pseudoreference region. Ex vivo autoradiography and immunohistochemistry were performed to verify in vivo findings. Results: Significantly increased tracer uptake was observed in the ipsilateral compared with contralateral ROI (SUVTh, 50-60 min summed data) at acute and chronic time points using 11C-DPA-713 and 18F-GE-180. Ex vivo autoradiography confirmed in vivo findings demonstrating increased TSPO tracer uptake in infarcted versus contralateral brain tissue. Importantly, a significant correlation was identified between microglial/macrophage activation (cluster of differentiation 68 immunostaining) and 11C-DPA-713- PET signal, which was not evident with 18F-GE-180. No significant correlations were observed between TSPO PET and activated astrocytes (glial fibrillary acidic protein immunostaining). Conclusion: 11C-DPA-713 and 18F-GE-180 PET enable detection of neuroinflammation at acute and chronic time points after cerebral ischemia in mice. 11C-DPA-713 PET reflects the extent of microglial activation in infarcted distal middle cerebral artery occlusion mouse brain tissue more accurately than 18F-GE-180 and appears to be slightly more sensitive. These results highlight the potential of 11C-DPA-713 for tracking microglial activation in vivo after stroke and warrant further investigation in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Aisling Chaney
- Department of Radiology, Stanford University, Stanford California
| | - Haley C Cropper
- Department of Radiology, Stanford University, Stanford California
| | - Emily M Johnson
- Department of Radiology, Stanford University, Stanford California
| | - Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford University, Stanford California; and
| | - Todd C Peterson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford California; and
| | - Marc Y Stevens
- Department of Radiology, Stanford University, Stanford California
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford California; and.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford California .,Department of Neurology and Neurological Sciences, Stanford University, Stanford California; and
| |
Collapse
|
35
|
Chaney AM, Johnson EM, Cropper HC, James ML. PET Imaging of Neuroinflammation Using [11C]DPA-713 in a Mouse Model of Ischemic Stroke. J Vis Exp 2018. [PMID: 29985311 PMCID: PMC6101726 DOI: 10.3791/57243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is central to the pathological cascade following ischemic stroke. Non-invasive molecular imaging methods have the potential to provide critical insights into the temporal dynamics and role of certain neuroimmune interactions in stroke. Specifically, Positron Emission Tomography (PET) imaging of translocator protein 18 kDa (TSPO), a marker of activated microglia and peripheral myeloid-lineage cells, provides a means to detect and track neuroinflammation in vivo. Here, we present a method to accurately quantify neuroinflammation using [11C]N,N-Diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl]acetamide ([11C]DPA-713), a promising second generation TSPO-PET radiotracer, in distal middle cerebral artery occlusion (dMCAO) compared to sham-operated mice. MRI was performed 2 days post-dMCAO surgery to confirm stroke and define the infarct location and volume. PET/Computed Tomography (CT) imaging was carried out 6 days post-dMCAO to capture the peak increase in TSPO levels following stroke. Quantitation of PET images was conducted to assess the uptake of [11C]DPA-713 in the brain and spleen of dMCAO and sham mice to assess central and peripheral levels of inflammation. In vivo [11C]DPA-713 brain uptake was confirmed using ex vivo autoradiography.
Collapse
Affiliation(s)
| | | | | | - Michelle L James
- Department of Radiology, Stanford University; Department of Neurology and Neurological Sciences, Stanford University;
| |
Collapse
|
36
|
Martín A, Domercq M, Matute C. Inflammation in stroke: the role of cholinergic, purinergic and glutamatergic signaling. Ther Adv Neurol Disord 2018; 11:1756286418774267. [PMID: 29774059 PMCID: PMC5949933 DOI: 10.1177/1756286418774267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The inflammatory response is a major factor in stroke pathophysiology and contributes to secondary neuronal damage in both acute and chronic stages of the ischemic injury. Recent work in experimental cerebral ischemia has demonstrated the involvement of neurotransmitter signaling in the modulation of neuroinflammation. The present review discusses recent findings on the therapeutic potential and diagnostic perspectives of cholinergic, purinergic and glutamatergic receptors and transporters in experimental stroke. It provides evidence of the role of neurotransmission signaling as a promising inflammatory biomarker in stroke. Finally, recent molecular imaging studies using positron emission tomography of cholinergic receptors and glutamatergic transporters are outlined along with their potential as novel anti-inflammatory therapy to reduce the outcome of cerebral ischemia.
Collapse
Affiliation(s)
- Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, Pº Miramon 182, San Sebastian, Spain
| | - María Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain Achucarro Basque Center for Neuroscience-UPV/EHU, Zamudio, Spain Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain Achucarro Basque Center for Neuroscience-UPV/EHU, Zamudio, Spain Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
37
|
Albertini G, Deneyer L, Ottestad-Hansen S, Zhou Y, Ates G, Walrave L, Demuyser T, Bentea E, Sato H, De Bundel D, Danbolt NC, Massie A, Smolders I. Genetic deletion of xCT attenuates peripheral and central inflammation and mitigates LPS-induced sickness and depressive-like behavior in mice. Glia 2018; 66:1845-1861. [PMID: 29693305 DOI: 10.1002/glia.23343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow> <mml:mrow><mml:mi>c</mml:mi></mml:mrow> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> . This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow> <mml:mrow><mml:mi>c</mml:mi></mml:mrow> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.
Collapse
Affiliation(s)
- Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Lauren Deneyer
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Sigrid Ottestad-Hansen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Yun Zhou
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Gamze Ates
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Laura Walrave
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Thomas Demuyser
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Niigata University, Niigata, 951-8518, Japan
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Niels C Danbolt
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
38
|
Zinnhardt B, Wiesmann M, Honold L, Barca C, Schäfers M, Kiliaan AJ, Jacobs AH. In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics 2018; 8:2603-2620. [PMID: 29774062 PMCID: PMC5956996 DOI: 10.7150/thno.24128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Modulation of the inflammatory microenvironment after stroke opens a new avenue for the development of novel neurorestorative therapies in stroke. Understanding the spatio-temporal profile of (neuro-)inflammatory imaging biomarkers in detail thereby represents a crucial factor in the development and application of immunomodulatory therapies. The early integration of quantitative molecular imaging biomarkers in stroke drug development may provide key information about (i) early diagnosis and follow-up, (ii) spatio-temporal drug-target engagement (pharmacodynamic biomarker), (iii) differentiation of responders and non-responders in the patient cohort (inclusion/exclusion criteria; predictive biomarkers), and (iv) the mechanism of action. The use of targeted imaging biomarkers for may thus allow clinicians to decipher the profile of patient-specific inflammatory activity and the development of patient-tailored strategies for immunomodulatory and neuro-restorative therapies in stroke. Here, we highlight the recent developments in preclinical and clinical molecular imaging biomarkers of neuroinflammation (endothelial markers, microglia, MMPs, cell labeling, future developments) in stroke and outline how imaging biomarkers can be used in overcoming current translational roadblocks and attrition in order to advance new immunomodulatory compounds within the clinical pipeline.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
- EU 7 th FP Programme “Imaging Inflammation in Neurodegenerative Diseases (INMiND)”
- Cells in Motion (CiM) Cluster of Excellence, University of Münster, Münster, Germany
- PET Imaging in Drug Design and Development (PET3D)
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Lisa Honold
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
- PET Imaging in Drug Design and Development (PET3D)
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
- Cells in Motion (CiM) Cluster of Excellence, University of Münster, Münster, Germany
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
- EU 7 th FP Programme “Imaging Inflammation in Neurodegenerative Diseases (INMiND)”
- Cells in Motion (CiM) Cluster of Excellence, University of Münster, Münster, Germany
- PET Imaging in Drug Design and Development (PET3D)
- Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
39
|
Colás L, Domercq M, Ramos-Cabrer P, Palma A, Gómez-Vallejo V, Padro D, Plaza-García S, Pulagam KR, Higuchi M, Matute C, Llop J, Martín A. In vivo imaging of Α7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Glia 2018. [PMID: 29528142 DOI: 10.1002/glia.23326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vivo positron emission tomography (PET) imaging of nicotinic acetylcholine receptors (nAChRs) is a promising tool for the imaging evaluation of neurologic and neurodegenerative diseases. However, the role of α7 nAChRs after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. In vivo and ex vivo evaluation of α7 nAChRs expression after transient middle cerebral artery occlusion (MCAO) was carried out using PET imaging with [11 C]NS14492 and immunohistochemistry (IHC). Pharmacological activation of α7 receptors was evaluated with magnetic resonance imaging (MRI), [18 F]DPA-714 PET, IHC, real time polymerase chain reaction (qPCR) and neurofunctional studies. In the ischemic territory, [11 C]NS14492 signal and IHC showed an expression increase of α7 receptors in microglia and astrocytes after cerebral ischemia. The role played by α7 receptors on neuroinflammation was supported by the decrease of [18 F]DPA-714 binding in ischemic rats treated with the α7 agonist PHA 568487 at day 7 after MCAO. Moreover, compared with non-treated MCAO rats, PHA-treated ischemic rats showed a significant reduction of the cerebral infarct volumes and an improvement of the neurologic outcome. PHA treatment significantly reduced the expression of leukocyte infiltration molecules in MCAO rats and in endothelial cells after in vitro ischemia. Despite that, the activation of α7 nAChR had no influence to the blood brain barrier (BBB) permeability measured by MRI. Taken together, these results suggest that the nicotinic α7 nAChRs play a key role in the inflammatory reaction and the leukocyte recruitment following cerebral ischemia in rats.
Collapse
Affiliation(s)
- Lorena Colás
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Maria Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ana Palma
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Daniel Padro
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Sandra Plaza-García
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Krishna R Pulagam
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| |
Collapse
|
40
|
Pulagam KR, Colás L, Padro D, Plaza-García S, Gómez-Vallejo V, Higuchi M, Llop J, Martín A. Evaluation of the novel TSPO radiotracer [ 18F] VUIIS1008 in a preclinical model of cerebral ischemia in rats. EJNMMI Res 2017; 7:93. [PMID: 29177913 PMCID: PMC5701906 DOI: 10.1186/s13550-017-0343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In vivo positron-emission tomography (PET) imaging of transporter protein (TSPO) expression is an attractive and indispensable tool for the diagnosis and therapy evaluation of neuroinflammation after cerebral ischemia. Despite several radiotracers have shown an excellent capacity to image neuroinflammation, novel radiotracers such as [18F] VUIIS1008 have shown promising properties to visualize and quantify the in vivo expression of TSPO. METHODS Longitudinal in vivo magnetic resonance (MRI) and PET imaging studies with the novel TSPO radiotracer 2-(5,7-diethyl-2-(4-(2-[18F] fluoroethoxy) phenyl) pyrazolo [1,5-a] pyrimidin-3-yl)-N, N-diethylacetamide ([18F] VUIIS1008), and (N, N-diethyl-2-(2-[4-(2-fluoroethoxy)-phenyl]-5,7-dimethyl-pyrazolo [1,5-a] yrimidin-3-yl)-acetamide ([18F] DPA-714) were carried out before and at days 1, 3, 7, 14, 21, and 28 following the transient middle cerebral artery occlusion (MCAO) in rats. RESULTS MRI images showed the extension and evolution of the brain infarction after ischemic stroke in rats. PET imaging with [18F] VUIIS1008 and [18F] DPA714 showed a progressive increase in the ischemic brain hemisphere during the first week, peaking at day 7 and followed by a decline from days 14 to 28 after cerebral ischemia. [18F] DPA714 uptake showed a mild uptake increase compared to [18F] VUIIS1008 in TSPO-rich ischemic brain regions. In vivo [18F] VUIIS1008 binding displacement with VUIIS1008 was more efficient than DPA714. Finally, immunohistochemistry confirmed a high expression of TSPO in microglial cells at day 7 after the MCAO in rats. CONCLUSIONS Altogether, these results suggest that [18F] VUIIS1008 could become a valuable tool for the diagnosis and treatment evaluation of neuroinflammation following ischemic stroke.
Collapse
Affiliation(s)
- Krishna R Pulagam
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Lorena Colás
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Daniel Padro
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Sandra Plaza-García
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.
| |
Collapse
|
41
|
Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18040785. [PMID: 28387722 PMCID: PMC5412369 DOI: 10.3390/ijms18040785] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Denis Guilloteau
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Claire Tronel
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Nicolas Arlicot
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|