1
|
Washington AM, Kostallari E. Extracellular Vesicles and Micro-RNAs in Liver Disease. Semin Liver Dis 2024. [PMID: 39626790 DOI: 10.1055/a-2494-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Progression of liver disease is dependent on intercellular signaling, including those mediated by extracellular vesicles (EVs). Within these EVs, microRNAs (miRNAs) are packaged to selectively silence gene expression in recipient cells for upregulating or downregulating a specific pathway. Injured hepatocytes secrete EV-associated miRNAs which can be taken up by liver sinusoidal endothelial cells, immune cells, hepatic stellate cells, and other cell types. In addition, these recipient cells will secrete their own EV-associated miRNAs to propagate a response throughout the tissue and the circulation. In this review, we comment on the implications of EV-miRNAs in the progression of alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, viral and parasitic infections, liver fibrosis, and liver malignancies. We summarize how circulating miRNAs can be used as biomarkers and the potential of utilizing EVs and miRNAs as therapeutic methods to treat liver disease.
Collapse
Affiliation(s)
- Alexander M Washington
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Gan L, Zhao J, Yao P, Christopher TA, Lopez B, Lau WB, Koch W, Gao E, Ma X, Wang Y. Adipocyte-derived small extracellular vesicles exacerbate diabetic ischemic heart injury by promoting oxidative stress and mitochondrial-mediated cardiomyocyte apoptosis. Redox Biol 2024; 79:103443. [PMID: 39740363 DOI: 10.1016/j.redox.2024.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R. METHODS AND RESULTS Adult mice were fed a high-fat diet (HFD) for 12 weeks. sEV were isolated from plasma or epididymal adipose tissue. HFD significantly increased the number and size of plasma- and adipocyte-derived sEV. Intramyocardial injection of an equal number of diabetic plasma sEV in nondiabetic hearts significantly increased cardiac apoptosis and exacerbated MI/R-induced cardiac dysfunction. Diabetic plasma sEV significantly activated cardiac caspase 9 but not caspase 8, suggesting that diabetic sEV induces cardiac apoptosis via the mitochondrial pathway. These pathologic alterations were phenotyped by intramyocardial injection of sEV isolated from diabetic adipocytes or HGHL-challenged 3T3L1 adipocytes. To obtain direct evidence that diabetic sEV promotes cardiomyocyte apoptotic cell death, isolated neonatal rat ventricular cardiomyocytes (NRVMs) were treated with sEV and subjected to simulated ischemia/reperfusion (SI/R). Treatment of cardiomyocytes with sEV from diabetic plasma, diabetic adipocytes, or HGHL-challenged 3T3L1 adipocytes significantly enhanced SI/R-induced apoptosis and reduced cell viability. These pathologic effects were replicated by a miR-130b-3p (a molecule increased dramatically in diabetic sEV) mimic and blocked by a miRb-130b-3p inhibitor. Molecular studies identified PGC-1α (i.e. PGC-1α1/-a) as the direct downstream target of miR-130b-3p, whose downregulation causes mitochondrial dysfunction and apoptosis. Finally, treatment with diabetic adipocyte-derived sEV or a miR-130b-3p mimic significantly enhanced mitochondrial reactive oxygen species (ROS) production in SI/R cardiomyocytes. Conversely, treatment with a miR-130b-3p inhibitor or overexpression of PGC-1α extremely attenuated diabetic sEV-induced ROS production. CONCLUSION We obtained the first evidence that diabetic sEV promotes oxidative stress and mitochondrial-mediated cardiomyocyte apoptotic cell death, exacerbating MI/R injury. These pathological phenotypes were mediated by miR-130b-3p-induced suppression of PGC-1α expression and subsequent mitochondrial ROS production. Targeting miR-130b-3p mediated cardiomyocyte apoptosis may be a novel strategy for attenuating diabetic exacerbation of MI/R injury.
Collapse
Affiliation(s)
- Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Jianli Zhao
- Department of Biomedical Engineering, UAB, Birmingham, AL, USA
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wayne B Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Walter Koch
- Department of Cardiovascular Science, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Department of Cardiovascular Science, Temple University, Philadelphia, PA, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA.
| |
Collapse
|
3
|
Yang C, Chen J, Zhao Y, Wu J, Xu Y, Xu J, Chen F, Chen Y, Chen N. Salivary exosomes exacerbate colitis by bridging the oral cavity and intestine. iScience 2024; 27:111061. [PMID: 39759079 PMCID: PMC11700645 DOI: 10.1016/j.isci.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration. In the dextran sulfate sodium (DSS) mouse model, salivary exosomes from patients with active IBD (active IBD-Sexos) exacerbated colitis, while those from IBD patients in remission (remission IBD-Sexos) did not. Possible reasons may include the regulation of macrophage polarization, disruption of intestinal epithelial function, and alteration of the intestinal flora. During co-culture with active IBD-Sexos, THP-1 cells exhibited inflammatory responses, while Caco-2 cells showed reduced tight junction protein expression. Additionally, 35 differentially expressed miRNAs were identified in active IBD-Sexos. In brief, our findings substantiate an intriguing phenomenon whereby active IBD-Sexos exacerbate colitis by bridging the oral cavity and intestine.
Collapse
Affiliation(s)
- Congyi Yang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jingyi Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Yuzheng Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jushan Wu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Yalan Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
4
|
Li B, Jin Y, Zhang B, Lu T, Li J, Zhang J, Zhou Y, Wang Y, Zhang C, Zhao Y, Li H. Adipose tissue-derived extracellular vesicles aggravate temporomandibular joint osteoarthritis associated with obesity. Clin Transl Med 2024; 14:e70029. [PMID: 39350476 PMCID: PMC11442491 DOI: 10.1002/ctm2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Temporomandibular joint osteoarthritis (TMJ OA) is a major disease that affects maxillofacial health and is characterised by cartilage degeneration and subchondral bone remodelling. Obesity is associated with the exacerbation of pathological manifestations of TMJ OA. However, the underlying mechanism between adipose tissue and the TMJ axis remains limited. OBJECTIVES To evaluate the effects of obesity and the adipose tissue on the development of TMJ OA. METHODS The obesity-related metabolic changes in TMJ OA patients were detected by physical signs and plasma metabolites. The effects of adipose tissue-derived EVs (Ad-EVs) on TMJ OA was investigated through histological and cytological experiments as well as gene editing technology. Alterations of Ad-EVs in obese state were identified by microRNA-seq analysis and the mechanism by which EVs affect TMJ OA was explored in vitro and in vivo. RESULTS Obesity and the related metabolic changes were important influencing factors for TMJ OA. Ad-EVs from obese mice induced marked chondrocyte apoptosis, cartilage matrix degradation and subchondral bone remodelling, which exacerbated the development of TMJ OA. Depletion of Ad-EVs secretion by knocking out the geranylgeranyl diphosphate synthase (Ggpps) gene in adipose tissue significantly inhibited the obesity-induced aggravation of TMJ OA. MiR-3074-5p played an important role in this process . CONCLUSIONS Our work unveils an unknown link between obese adipose tissue and TMJ OA. Targeting the Ad-EVs and the miR-3074-5p may represent a promising therapeutic strategy for obesity-related TMJ OA. KEY POINTS High-fat-diet-induced obesity aggravate the progression of TMJ OA in mice. Obese adipose tissue participates in cartilage damage through the altered miRNA in extracellular vesicles. Inhibition of miR-3074-5p/SMAD4 pathway in chondrocyte alleviated the effect of HFD-EVs on TMJ OA.
Collapse
Affiliation(s)
- Baochao Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yuqin Jin
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bingqing Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Tong Lu
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jialing Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jingzi Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of ImmunologyMedical School, Nanjing UniversityNanjingChina
| | - Yiwen Zhou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yanyi Wang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Caixia Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yue Zhao
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Huang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
5
|
Calderón-Peláez MA, Madroñero LJ, Castellanos JE, Velandia-Romero ML. Small extracellular vesicles from the human endothelial cell line EA.hy 926 exert a self-cell activation and modulate DENV-2 genome replication and infection in naïve endothelial cells. PLoS One 2024; 19:e0310735. [PMID: 39325758 PMCID: PMC11426460 DOI: 10.1371/journal.pone.0310735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell signaling and communication, transporting molecules that convey a message to target cells. During infectious diseases, EVs can also carry viral molecules that may contribute to viral spread, as previously reported for dengue virus (DENV). EVs from infected endothelial cells (EC) may harbor viral segments and various sets of molecules that could contribute to endothelial dysfunction during severe dengue. However, the effect of these EVs on non-infected EC (NIC) remain unknown. We characterized the EVs produced by the human EC line EA.hy 926 infected with DENV-2 and assessed their functional impact on polarized NIC. Results showed that infection induced an increased in the quantity of produced EVs, which differentially carried proteins mainly involved in proteosome activity, along with a peptide of the NS5 viral protein. Additionally, all types of Y-RNAs were found, accompanied by a set of differentially loaded microRNAs (miRs) that could regulate DENV genome. Pre-treatment of polarized NIC with small EVs (sEVs) from infected EC before DENV-2 infection caused EC activation, a decrease in viral genome replication, and a protective effect against barrier disruption during the first 24h post-infection, suggesting that sEVs could be important in the pathology or resolution of DENV and a promising therapeutic tool for infectious diseases.
Collapse
Affiliation(s)
| | - L. Johana Madroñero
- Virology group, Vice-chancellor of research, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E. Castellanos
- Virology group, Vice-chancellor of research, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
6
|
Xu F, Dou L, Yu D, Wu X, Liu L, Man Y, Huang X. A Novel "Endocrine Hormone": The Diverse Role of Extracellular Vesicles in Multiorgan Insulin Resistance. Int J Med Sci 2024; 21:2081-2093. [PMID: 39239539 PMCID: PMC11373541 DOI: 10.7150/ijms.97217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Insulin resistance is the primary contributor to the disruption in glucose homeostasis in the body, playing a significant causative role in many metabolic diseases. Insulin resistance is characterized by compensatory insulin secretion and reduced insulin responsiveness in target organs. Dysregulation of the interaction between insulin-secreting cells and insulin-responsive target organs is an important factor driving the progression of insulin resistance. Circulating endocrine hormones are important mediators mediating the interaction between insulin-secreting cells and insulin-responsive target organs. In addition to the classical hormones secreted by endocrine glands and organ-specific hormones secreted by metabolism-related organs (adipose tissue, muscle, liver, etc.), extracellular vesicles have been recognized as a novel class of endocrine hormones with a complex composition. Extracellular vesicles can transport signaling molecules, such as miRNAs and LncRNAs, to vital organs related to insulin resistance, in a manner akin to conventional hormones. The significant role in regulating the development of insulin resistance underscores the increasing interest in extracellular vesicles as essential contributors to this process. In this review, we summarize the three types of hormones (classical hormones, organokines and extracellular vesicles) that play a regulatory role in insulin resistance, and focus on the novel endocrine hormones, extracellular vesicles, to elaborate the mechanism of extracellular vesicles' regulation of insulin resistance progress from two aspects: the impact on insulin-secreting cells and the influence on insulin-responsive target organs. In addition, this paper outlines the clinical applications of extracellular vesicles in insulin resistance. A comprehensive understanding of the regulatory mechanisms and diagnostic status of the inter-organ network in insulin resistance has great potential to advance targeted therapeutic interventions and diagnostic markers, thereby benefiting both the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Dongni Yu
- Department of Dermatology, Beijing hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, P.R. China
| | - Xi Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Longteng Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| |
Collapse
|
7
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Kim B, Park B, You S, Jung SH, Lee S, Lim K, Choi YJ, Kim JH, Lee S. Cell membrane camouflaged nanoparticle strategy and its application in brain disease: a review. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2024; 54:435-451. [DOI: 10.1007/s40005-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 01/06/2025]
|
9
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
10
|
Xu C, Wang Z, Liu YJ, Duan K, Guan J. Harnessing GMNP-loaded BMSC-derived EVs to target miR-3064-5p via MEG3 overexpression: Implications for diabetic osteoporosis therapy in rats. Cell Signal 2024; 118:111055. [PMID: 38246512 DOI: 10.1016/j.cellsig.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Diabetic osteoporosis (DO) is a significant complication of diabetes, characterized by a decrease in bone mineral density and an increase in fracture risk. Magnetic nanoparticles (GMNPs) have emerged as potential drug carriers for various therapeutic applications. This study investigated the molecular mechanism of GMNPs loaded with bone marrow mesenchymal stem cell (BMSC) derived extracellular vesicles (EVs) overexpressing MEG3 target miR-3064-5p to induce NR4A3 for treating DO in rats. Initial analysis was carried out on GEO datasets GSE7158 and GSE62589, revealing a notable downregulation of NR4A3 in osteoporotic samples. Subsequent in vitro studies demonstrated the effective uptake of BMSC-EVs-MEG3 by osteoblasts and its potential to inhibit miR-3064-5p, activating the PINK1/Parkin signaling pathway and thus promoting mitochondrial autophagy, osteoblast proliferation, and differentiation. In vivo, experiments using DO rat models further substantiated the therapeutic efficacy of GMNPE-EVs-MEG3 in alleviating osteoporosis symptoms. In conclusion, GMNPs loaded with BMSC-EVs, through the delivery of MEG3 targeting miR-3064-5p, can effectively promote NR4A3 expression, activate the PINK1/Parkin pathway, and thereby enhance osteoblast proliferation and differentiation, offering a promising treatment for DO.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Zhaodong Wang
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Ya Jun Liu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Keyou Duan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Jianzhong Guan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China.
| |
Collapse
|
11
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Yuan LQ. Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev 2024; 25:e13740. [PMID: 38571458 DOI: 10.1111/obr.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Jun Lin
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Wang Q, Tan X, Wang Y, Zhang D, Li X, Liu S. The role of extracellular vesicles in non-alcoholic steatohepatitis: Emerging mechanisms, potential therapeutics and biomarkers. J Adv Res 2024:S2090-1232(24)00110-3. [PMID: 38494073 DOI: 10.1016/j.jare.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an emerging global healthcare problem, has become the leading cause of liver transplantation in recent decades. No effective therapies in the clinic have been proven due to the incomplete understanding of the pathogenesis of NASH, and further studies are expected to continue to delve into the mechanisms of NASH. Extracellular vesicles (EVs), which are small lipid membrane vesicles carrying proteins, microRNAs and other molecules, have been identified to play a vital role in cell-to-cell communication and are involved in the development and progression of various diseases. In recent years, there has been increasing interest in the role of EVs in NASH. Many studies have revealed that EVs mediate important pathological processes in NASH, and the role of EVs in NASH is distinct and variable depending on their origin cells and target cells. This review outlines the emerging mechanisms of EVs in the development of NASH and the preclinical evidence related to stem cell-derived EVs as a potential therapeutic strategy for NASH. Moreover, possible strategies involving EVs as clinical diagnostic, staging and prognostic biomarkers for NASH are summarized.
Collapse
Affiliation(s)
- Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiangning Tan
- Department of endocrinology, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Danyi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
13
|
Baptista Pereira P, Torrejón E, Ferreira I, Carvalho AS, Teshima A, Sousa-Lima I, Beck HC, Costa-Silva B, Matthiesen R, Macedo MP, de Oliveira RM. Proteomic Profiling of Plasma- and Gut-Derived Extracellular Vesicles in Obesity. Nutrients 2024; 16:736. [PMID: 38474865 DOI: 10.3390/nu16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.
Collapse
Affiliation(s)
- Pedro Baptista Pereira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Estefania Torrejón
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Ferreira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Akiko Teshima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Sousa-Lima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Paula Macedo
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Rita Machado de Oliveira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
14
|
Zhang J, Ma B, Wang Z, Chen Y, Li C, Dong Y. Extracellular vesicle therapy for obesity-induced NAFLD: a comprehensive review of current evidence. Cell Commun Signal 2024; 22:18. [PMID: 38195552 PMCID: PMC10775587 DOI: 10.1186/s12964-023-01292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 01/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) as a chronic disease especially in Western countries, is still a tough question in the clinical therapy. With the rising prevalence of various chronic diseases, liver transplantation is expected to be the most common therapy after the next 10 years. However, there is still no approved drug for NAFLD, and targeted therapy for NAFLD is urgent. Exosomes as a kind of extracellular vesicle are cell-derived nanovesicles, which play an essential role in intercellular communication. Due to complex cell-cell interactions in the liver, exosomes as therapeutic drugs or drug delivery vesicles may be involved in physiological or pathological processes in NAFLD. Compared with other nanomaterials, exosomes as a cell-free therapy, are not dependent on cell number limitation, which means can be administered safely in high doses. Apart from this, exosomes with the advantages of being low-toxic, high stability, and low-immunological are chosen for targeted therapy for many diseases. In this review, firstly we introduced the extracellular vesicles, including the biogenesis, composition, isolation and characterization, and fundamental function of extracellular vesicles. And then we discussed the modification of extracellular vesicles, cargo packing, and artificial exosomes. Finally, the extracellular vesicles for the therapies of NAFLD are summarized. Moreover, we highlight therapeutic approaches using exosomes in the clinical treatment of NAFLD, which provide valuable insights into targeting NAFLD in the clinical setting.
Collapse
Affiliation(s)
- Jiali Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Baochen Ma
- China Animal Husbandry Group, Beijing, 100070, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, People's Republic of China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
16
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
17
|
Liu W, Liu T, Zhao Q, Ma J, Jiang J, Shi H. Adipose Tissue-Derived Extracellular Vesicles: A Promising Biomarker and Therapeutic Strategy for Metabolic Disorders. Stem Cells Int 2023; 2023:9517826. [PMID: 38169960 PMCID: PMC10761228 DOI: 10.1155/2023/9517826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Adipose tissue plays an important role in systemic energy metabolism, and its dysfunction can lead to severe metabolic disorders. Various cells in adipose tissue communicate with each other to maintain metabolic homeostasis. Extracellular vesicles (EVs) are recognized as novel medium for remote intercellular communication by transferring various bioactive molecules from parental cells to distant target cells. Increasing evidence suggests that the endocrine functions of adipose tissue and even the metabolic homeostasis are largely affected by different cell-derived EVs, such as insulin signaling, lipolysis, and metabolically triggered inflammation regulations. Here, we provide an overview focused on the role of EVs released by different cell types of adipose tissue in metabolic diseases and their possible molecular mechanisms and highlight the potential applications of EVs as biomarkers and therapeutic targets. Moreover, the current EVs-based therapeutic strategies have also been discussed. This trial is registered with NCT05475418.
Collapse
Affiliation(s)
- Wenhui Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tianyan Liu
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Qingyu Zhao
- Department of Nephrology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Junqiu Ma
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
18
|
Scavo MP, Negro R, Arrè V, Depalo N, Carrieri L, Rizzi F, Mastrogiacomo R, Serino G, Notarnicola M, De Nunzio V, Lippolis T, Pesole PL, Coletta S, Armentano R, Curri ML, Giannelli G. The oleic/palmitic acid imbalance in exosomes isolated from NAFLD patients induces necroptosis of liver cells via the elongase-6/RIP-1 pathway. Cell Death Dis 2023; 14:635. [PMID: 37752143 PMCID: PMC10522611 DOI: 10.1038/s41419-023-06161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Excessive toxic lipid accumulation in hepatocytes underlies the development of non-alcoholic fatty liver disease (NAFLD), phenotypically characterized by necrosis and steato-fibrosis, whose molecular mechanism is not yet fully understood. Patients with NAFLD display an imbalanced palmitic (PA) to oleic acid (OA) ratio. Moreover, increasing experimental evidence points out a relevant involvement of the exosomal content in disease progression. Aim of the study was to highlight the PA/OA imbalance within circulating exosomes, the subsequent intracellular alterations, and the impact on NALFD. Liver cells were challenged with exosomes isolated from both healthy subjects and NAFLD patients. The exosomal PA/OA ratio was artificially modified, and biological effects were evaluated. A NAFLD-derived exosomal PA/OA imbalance impacts liver cell cycle and cell viability. OA-modified NAFLD-derived exosomes restored cellular viability and proliferation, whereas the inclusion of PA into healthy subjects-derived exosomes negatively affected cell viability. Moreover, while OA reduced the phosphorylation and activation of the necroptosis marker, Receptor-interacting protein 1 (phospho-RIP-1), PA induced the opposite outcome, alongside increased levels of stress fibers, such as vimentin and fibronectin. Administration of NAFLD-derived exosomes led to increased expression of Elongase 6 (ELOVL6), Stearoyl-CoA desaturase 1 (SCD1), Tumor necrosis factor α (TNF-α), Mixed-lineage-kinase-domain-like-protein (MLKL) and RIP-1 in the hepatocytes, comparable to mRNA levels in the hepatocytes of NAFLD patients reported in the Gene Expression Omnibus (GEO) database. Genetic and pharmacological abrogation of ELOVL6 elicited a reduced expression of downstream molecules TNF-α, phospho-RIP-1, and phospho-MLKL upon administration of NAFLD-derived exosomes. Lastly, mice fed with high-fat diet exhibited higher phospho-RIP-1 than mice fed with control diet. Targeting the Elongase 6-RIP-1 signaling pathway offers a novel therapeutic approach for the treatment of the NALFD-induced exosomal PA/OA imbalance.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy.
| | - Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
| | - Livianna Carrieri
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Grazia Serino
- Experimental Immunopathology Laboratory, National Institute of Gastroenterology "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Pasqua Letizia Pesole
- Department of Pathology, "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Sergio Coletta
- Department of Pathology, "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Raffaele Armentano
- Department of Pathology, "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| |
Collapse
|
19
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. Scope of review There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. Major conclusions The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Vp V, Kannan A, Perumal MK. Role of adipocyte-derived extracellular vesicles during the progression of liver inflammation to hepatocellular carcinoma. J Cell Physiol 2023; 238:1125-1140. [PMID: 36960683 DOI: 10.1002/jcp.31008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Extracellular vesicles are membrane-bound cargos that vary in size and are stably transported through various bodily fluids. Extracellular vesicles communicate information between the cells and organs. Extracellular vesicles from the diseased cells alter cellular responses of the recipient cells contributing to disease progression. In obesity, adipocytes become hypertrophic and the extracellular vesicles from these dysfunctional adipocytes showed altered cargo contents instigating pathophysiological response leading to chronic liver diseases. In this review, the role of adipocyte-derived extracellular vesicles on the progression of liver inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma are extensively discussed. Newer approaches are crucial to take advantage of extracellular vesicles and their content as biomarkers to diagnose initial liver inflammation before reaching to an irreversible liver failure stage.
Collapse
Affiliation(s)
- Venkateish Vp
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Zhang X, Duan Y, Zhang X, Jiang M, Man W, Zhang Y, Wu D, Zhang J, Song X, Li C, Lin J, Sun D. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med 2023; 21:197. [PMID: 37237266 DOI: 10.1186/s12916-023-02887-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinglong Song
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
22
|
Ding N, Yin Z, Chen C. Targeting non-coding RNAs in sEVs: The biological functions and potential therapeutic strategy of diabetic cardiomyopathy. Biomed Pharmacother 2023; 163:114836. [PMID: 37156118 DOI: 10.1016/j.biopha.2023.114836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as abnormalities in myocardial structure and function in the setting of diabetes and in the absence of cardiovascular diseases, such as coronary artery disease, hypertension, and valvular heart disease. DCM is one of the leading causes of mortality in patients with diabetes. However, the underlying pathogenesis of DCM has not been fully elucidated. Recent studies have revealed that non-coding RNAs (ncRNAs) in small extracellular vesicles (sEVs) are closely associated with DCM and may act as potential diagnostic and therapeutic targets. Here, we introduced the role of sEV-ncRNAs in DCM, summarized the current therapeutic advancements and limitations of sEV-related ncRNAs against DCM, and discussed their potential improvement.
Collapse
Affiliation(s)
- Nan Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
23
|
Wang K, Zeng C. Extracellular Vesicles and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:143-153. [PMID: 37603278 DOI: 10.1007/978-981-99-1443-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Extracellular vesicles (EVs) are a group of vesicles with membrane structure released by cells, including exosomes, microvesicles, apoptotic bodies, and oncosomes. EVs are now recognized as important tools of cell-to-cell communication, allowing cells to exchange proteins, lipids, and genetic material to participate in physiological and pathological processes. It has been reported that EVs regulate host-pathogen interactions and participate in pathological processes of infectious disease, neurological diseases, cancer, cardiovascular diseases, etc., it also plays an important role in the process of growth and development. EVs have a bright future in clinical application. They can be used to monitor clinical status, therapeutic effect, and disease progression. At the same time, EVs have the potential to be developed as clinical drug delivery vectors due to their ability to deliver biomolecules. However, it is still unclear whether EVs are reliable and useful markers for the diagnosis or early detection of obesity, and whether they can be used as drug vectors for the treatment of obesity. In this review, we summarize the research progress of EVs and obesity. It is hoped that EVs may become a new target in the diagnosis and treatment of obesity.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Zeng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Deng DK, Zhang JJ, Gan D, Zou JK, Wu RX, Tian Y, Yin Y, Li X, Chen FM, He XT. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J Nanobiotechnology 2022; 20:545. [PMID: 36585740 PMCID: PMC9801622 DOI: 10.1186/s12951-022-01757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, leading to proinflammatory periodontal diseases. Bacteria-bacteria and cell-bacteria interactions play pivotal roles in periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles (EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifically, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunctional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical perspectives for the clinical translation of EV-based therapies for periodontitis.
Collapse
Affiliation(s)
- Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiu-Jiu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie-Kang Zou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
25
|
Chen K, Lin T, Yao W, Chen X, Xiong X, Huang Z. Adipocytes-derived exosomal miR-122 promotes non-alcoholic fat liver disease progression via targeting Sirt1. GASTROENTEROLOGIA Y HEPATOLOGIA 2022:S0210-5705(22)00312-0. [PMID: 36584755 DOI: 10.1016/j.gastrohep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease that affects adipose function. This study aimed to explore the function of adipocytes-derived exosomal (ADEs) miR-122 in NAFLD. METHODS A high-fat and high-fructose diet-induced rat model and a palmitic acid (PA)-induced in vitro model were established. The RNA level of miR-122 and Sirt1 was measured using qRT-PCR. The protein levels of exosome biomarkers, and lipogenesis, inflammation and fibrosis biomarkers were determined by western blotting. Cell viability and apoptosis were assessed using cell counting kit-8 and flow cytometry, respectively. Serum alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglyceride levels were measured. Liver tissue damage was assessed using haematoxylin and eosin staining. The interaction between miR-122 and Sirt1 3'UTR was assessed using a luciferase reporter gene assay. RESULTS ADEs exhibited abundant level of miR-122 and promoted lipogenesis, impaired hepatocyte survival, enhanced liver damage and increased serum lipid levels in vivo and in vitro. Inhibition of miR-122 in ADEs alleviated NAFLD progression, lipid and glucose metabolism, liver inflammation and fibrosis both in vivo and in vitro. miR-122 binds directly to the 3'UTR of Sirt1 to suppress its expression. Moreover, Sirt1 overexpression reversed the increase in cell apoptosis, glucose and lipid metabolism, liver inflammation and fibrosis induced by ADEs in vivo and in vitro. CONCLUSIONS The ADEs miR-122 promotes the progression of NAFLD via modulating Sirt1 signalling in vivo and in vitro. The ADEs miR-122 may be a promising diagnostic biomarker and therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Kai Chen
- Digestive Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Tingting Lin
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Weirong Yao
- Inspection Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Xinqiao Chen
- Neurology Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Xiaoming Xiong
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Zhufeng Huang
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China.
| |
Collapse
|
26
|
Catitti G, De Bellis D, Vespa S, Simeone P, Canonico B, Lanuti P. Extracellular Vesicles as Players in the Anti-Inflammatory Inter-Cellular Crosstalk Induced by Exercise Training. Int J Mol Sci 2022; 23:14098. [PMID: 36430575 PMCID: PMC9697937 DOI: 10.3390/ijms232214098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 07/28/2023] Open
Abstract
Extracellular Vesicles (EVs) are circulating particles surrounded by a plasma membrane carrying a cargo consisting of proteins, lipids, RNAs, and DNA fragments, stemming from the cells from which they originated. EV factors (i.e., miRNAs) play relevant roles in intercellular crosstalk, both locally and systemically. As EVs increasingly gained attention as potential carriers for targeted genes, the study of EV effects on the host immune response became more relevant. It has been demonstrated that EVs regulate the host immune response, executing both pro- and anti-inflammatory functions. It is also known that physical exercise triggers anti-inflammatory effects. This review underlines the role of circulating EVs as players in the anti-inflammatory events associated with the regulation of the host's immune response to physical exercise.
Collapse
Affiliation(s)
- Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.C.); (D.D.B.); (S.V.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.C.); (D.D.B.); (S.V.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.C.); (D.D.B.); (S.V.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.C.); (D.D.B.); (S.V.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.C.); (D.D.B.); (S.V.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
27
|
Omics approach to reveal the effects of obesity on the protein profiles of the exosomes derived from different adipose depots. Cell Mol Life Sci 2022; 79:570. [DOI: 10.1007/s00018-022-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
28
|
Su M, Li W, Yuan Y, Liu S, Liang C, Liu HE, Zhang R, Liu Y, Sun LI, Wei Y, Li C, Han X, Hao H, Zhao X, Luo Y, Yan S, Pan Z, Li Y. Epididymal white adipose tissue promotes angiotensin II-induced cardiac fibrosis in an exosome-dependent manner. Transl Res 2022; 248:51-67. [PMID: 35609783 DOI: 10.1016/j.trsl.2022.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Cardiac fibrosis is a process characterized by extracellular matrix accumulation leading to myocardial dysfunction. Angiotensin II (Ang II) has been shown to play an important role in the pathogenesis of cardiac fibrosis. However, the underlying mechanisms are not well established. Dysfunction of adipose tissue has been shown to promote remote organ injury, but its role in Ang II-induced cardiac remodeling is still unclear. In this study, we demonstrated that epididymal white adipose tissue (eWAT) promoted Ang II-induced cardiac fibrosis and subsequent cardiac dysfunction in an exosome-dependent manner. Both eWAT removal and administration of an inhibitor of exosome biogenesis strongly attenuated Ang II-induced abnormalities. Moreover, exosomes isolated from Ang II-stimulated adipocytes promoted cardiac fibroblasts (CFs) activity. A mechanistic study identified that the miR-23a-3p level was significantly increased in exosomes derived from Ang II-challenged adipocytes and serum exosomes from Ang II-infused mice. Importantly, tail vein injection of ago-miR-23a-3p caused cardiac fibrosis and dysfunction, while antago-miR-23a-3p inhibited Ang II-induced cardiac fibrosis. Bioinformatics analysis and further validation experiments revealed that RAP1 is a direct downstream target of miR-23a-3p, and overexpression of RAP1 reversed the profibrotic effect of miR-23a-3p. Taken together, these findings elucidated the role of eWAT in Ang II-induced myocardial fibrosis and indicated that adipocyte-derived exosomes mediate pathologic communication between dysfunctional adipose tissue and the heart by transporting miR-23a-3p into CFs, transforming fibroblasts into myofibroblasts and promoting excessive collagen deposition by targeting RAP1. Prevention of abnormal adipocyte exosome production, inhibition of miR-23a-3p biogenesis, and treatment with a miR-23a-3p antagonist are novel strategies for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Mengqi Su
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wenpeng Li
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Yuan
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Siyao Liu
- Department of Biostatistics, University of Memphis, Memphis, Tennessee
| | - Chen Liang
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - H E Liu
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ruixin Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yang Liu
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - L I Sun
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Wei
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunlei Li
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuejie Han
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongting Hao
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yingchun Luo
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sen Yan
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yue Li
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
29
|
Hong P, Wu Y, Zhang Q, Liu P, Zhang S, Yu M, Tian W. Identification of thermogenesis-related lncRNAs in small extracellular vesicles derived from adipose tissue. BMC Genomics 2022; 23:660. [PMID: 36117155 PMCID: PMC9484231 DOI: 10.1186/s12864-022-08883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is considered as a primary location of adaptive thermogenesis and the thermogenic activities of brown adipocytes are also connected to generating heat and counteracting obesity. Recent studies revealed that BAT could secrete certain batokines-like factors especially small extracellular vesicles (sEVs), which contributed to the systemic consequences of BAT activities. As a newly emerging class of mediators, some long non-coding RNAs (lncRNAs) have exhibited metabolic regulatory effects in adipocyte development. However, besides the well-studied lncRNAs, the lncRNAs carried by sEVs derived from brown adipose tissue (sEV-BAT) have not been identified yet. RESULTS: In this study, we demonstrated that sEV-BAT could induce beige adipocyte differentiation both in ASCs and 3T3-L1 cells, while sEV-WAT had no corresponding effects. The lncRNA microarray assay on sEV-WAT and sEV-BAT revealed a total of 563 types of known lncRNAs were identified to be differentially expressed, among which 232 lncRNAs were upregulated and 331 lncRNAs were downregulated in sEV-BAT. Three novel candidates (AK029592, humanlincRNA1030 and ENSMUST00000152284) were selected for further validation. LncRNA-mRNA network analysis revealed candidate lncRNAs were largely embedded in cellular metabolic pathways. During adipogenic and thermogenic phenotype differentiation in ASCs and 3T3-L1 cells, only the expressions of AK029592 were upregulated. The three lncRNAs were all relatively enriched in brown adipose tissues and brown adipocytes. In different adipocytes, sEV and adipose tissue, the expression of AK029592 and ENSMUST00000152284 were remarkably decreased in obese mice compared to lean mice, while obesity state could not change the expression of humanlincRNA1030. CONCLUSION Collectively, our profiling study provided a comprehensive catalog for the study of lncRNAs specifically carried by sEV-BAT and indicated the potential regulatory role of certain sEV-BAT lncRNAs in thermogenesis.
Collapse
Affiliation(s)
- Pengyu Hong
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Wu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pan Liu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyuan Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Brown Adipose Tissue Sheds Extracellular Vesicles That Carry Potential Biomarkers of Metabolic and Thermogenesis Activity Which Are Affected by High Fat Diet Intervention. Int J Mol Sci 2022; 23:ijms231810826. [PMID: 36142750 PMCID: PMC9504916 DOI: 10.3390/ijms231810826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brown adipose tissue (BAT) is a key target for the development of new therapies against obesity due to its role in promoting energy expenditure; BAT secretory capacity is emerging as an important contributor to systemic effects, in which BAT extracellular vesicles (EVs) (i.e., batosomes) might be protagonists. EVs have emerged as a relevant cellular communication system and carriers of disease biomarkers. Therefore, characterization of the protein cargo of batosomes might reveal their potential as biomarkers of the metabolic activity of BAT. In this study, we are the first to isolate batosomes from lean and obese Sprague–Dawley rats, and to establish reference proteome maps. An LC-SWATH/MS analysis was also performed for comparisons with EVs secreted by white adipose tissue (subcutaneous and visceral WAT), and it showed that 60% of proteins were exclusive to BAT EVs. Precisely, batosomes of lean animals contain proteins associated with mitochondria, lipid metabolism, the electron transport chain, and the beta-oxidation pathway, and their protein cargo profile is dramatically affected by high fat diet (HFD) intervention. Thus, in obesity, batosomes are enriched with proteins involved in signal transduction, cell communication, the immune response, inflammation, thermogenesis, and potential obesity biomarkers including UCP1, Glut1, MIF, and ceruloplasmin. In conclusion, the protein cargo of BAT EVs is affected by the metabolic status and contains potential biomarkers of thermogenesis activity.
Collapse
|
31
|
Zhang B, Zhao J, Jiang M, Peng D, Dou X, Song Y, Shi J. The Potential Role of Gut Microbial-Derived Exosomes in Metabolic-Associated Fatty Liver Disease: Implications for Treatment. Front Immunol 2022; 13:893617. [PMID: 35634340 PMCID: PMC9131825 DOI: 10.3389/fimmu.2022.893617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence and incidence of metabolic-associated fatty liver disease (MAFLD), a clinically heterogeneous disease whose primary clinical therapies include dietary control and exercise therapy, is increasing worldwide and constitutes a significant medical burden. Gut microbes influence the physiopathological processes of the liver through different mechanisms based on the gut-liver axis. Exosomes are essential carriers of intercellular communication. Most previous studies have focused on adipocyte- and hepatocyte-derived exosomes, while the critical role of microbial-derived exosomes and the molecular mechanisms behind them in MAFLD have received little attention. Therefore, we searched and screened the latest relevant studies in the PubMeb database to elucidate the link between microbial-derived exosomes and the pathogenesis of MAFLD, mainly in terms of insulin resistance, intestinal barrier, inflammatory response, lipid metabolism, and liver fibrosis. The aim was to provide a theoretical framework and support for clinical protocols and innovative drug development.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Dandan Peng
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaobing Dou
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
32
|
Lin JR, Ding LLQ, Xu L, Huang J, Zhang ZB, Chen XH, Cheng YW, Ruan CC, Gao PJ. Brown Adipocyte ADRB3 Mediates Cardioprotection via Suppressing Exosomal iNOS. Circ Res 2022; 131:133-147. [PMID: 35652349 DOI: 10.1161/circresaha.121.320470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ADRB3 (β3-adrenergic receptors), which is predominantly expressed in brown adipose tissue (BAT), can activate BAT and improve metabolic health. Previous studies indicate that the endocrine function of BAT is associated with cardiac homeostasis and diseases. Here, we investigate the role of ADRB3 activation-mediated BAT function in cardiac remodeling. METHODS BKO (brown adipocyte-specific ADRB3 knockout) and littermate control mice were subjected to Ang II (angiotensin II) for 28 days. Exosomes from ADRB3 antagonist SR59230A (SR-exo) or agonist mirabegron (MR-exo) treated brown adipocytes were intravenously injected to Ang II-infused mice. RESULTS BKO markedly accelerated cardiac hypertrophy and fibrosis compared with control mice after Ang II infusion. In vitro, ADRB3 KO rather than control brown adipocytes aggravated expression of fibrotic genes in cardiac fibroblasts, and this difference was not detected after exosome inhibitor treatment. Consistently, BKO brown adipocyte-derived exosomes accelerated Ang II-induced cardiac fibroblast dysfunction compared with control exosomes. Furthermore, SR-exo significantly aggravated Ang II-induced cardiac remodeling, whereas MR-exo attenuated cardiac dysfunction. Mechanistically, ADRB3 KO or SR59230A treatment in brown adipocytes resulted an increase of iNOS (inducible nitric oxide synthase) in exosomes. Knockdown of iNOS in brown adipocytes reversed SR-exo-aggravated cardiac remodeling. CONCLUSIONS Our data illustrated a new endocrine pattern of BAT in regulating cardiac remodeling, suggesting that activation of ADRB3 in brown adipocytes offers cardiac protection through suppressing exosomal iNOS.
Collapse
Affiliation(s)
- Jing-Rong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Li-Li-Qiang Ding
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Lian Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Ze-Bei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Yu-Wen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, China (C.-C.R.)
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| |
Collapse
|
33
|
Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Int J Mol Sci 2022; 23:ijms23105779. [PMID: 35628588 PMCID: PMC9147902 DOI: 10.3390/ijms23105779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.
Collapse
|
34
|
Sivanantham A, Jin Y. Impact of Storage Conditions on EV Integrity/Surface Markers and Cargos. Life (Basel) 2022; 12:life12050697. [PMID: 35629364 PMCID: PMC9146501 DOI: 10.3390/life12050697] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small biological particles released into biofluids by every cell. Based on their size, they are classified into small EVs (<100 nm or <200 nm) and medium or large EVs (>200 nm). In recent years, EVs have garnered interest for their potential medical applications, including disease diagnosis, cell-based biotherapies, targeted drug delivery systems, and others. Currently, the long-term and short-term storage temperatures for biofluids and EVs are −80 °C and 4 °C, respectively. The storage capacity of EVs can depend on their number, size, function, temperature, duration, and freeze−thaw cycles. While these parameters are increasingly studied, the effects of preservation and storage conditions of EVs on their integrity remain to be understood. Knowledge gaps in these areas may ultimately impede the widespread applicability of EVs. Therefore, this review summarizes the current knowledge on the effect of storage conditions on EVs and their stability and critically explores prospective ways for improving long-term storage conditions to ensure EV stability.
Collapse
Affiliation(s)
| | - Yang Jin
- Correspondence: ; Tel.: +1-617-358-1356
| |
Collapse
|
35
|
Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14050987. [PMID: 35631573 PMCID: PMC9145636 DOI: 10.3390/pharmaceutics14050987] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) has shown to be a significant obstacle to brain medication delivery. The BBB in a healthy brain is a diffusion barrier that prevents most substances from passing from the blood to the brain; only tiny molecules can pass across the BBB. The BBB is disturbed in specific pathological illnesses such as stroke, diabetes, seizures, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. The goal of this study is to offer a general overview of current brain medication delivery techniques and associated topics from the last five years. It is anticipated that this review will stimulate readers to look into new ways to deliver medications to the brain. Following an introduction of the construction and function of the BBB in both healthy and pathological conditions, this review revisits certain contested questions, such as whether nanoparticles may cross the BBB on their own and if medications are selectively delivered to the brain by deliberately targeted nanoparticles. Current non-nanoparticle options are also discussed, including drug delivery via the permeable BBB under pathological circumstances and the use of non-invasive approaches to improve brain medication absorption.
Collapse
|
36
|
Zhao H, Chen X, Hu G, Li C, Guo L, Zhang L, Sun F, Xia Y, Yan W, Cui Z, Guo Y, Guo X, Huang C, Fan M, Wang S, Zhang F, Tao L. Small Extracellular Vesicles From Brown Adipose Tissue Mediate Exercise Cardioprotection. Circ Res 2022; 130:1490-1506. [PMID: 35387487 DOI: 10.1161/circresaha.121.320458] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Long-term exercise provides reliable cardioprotection via mechanisms still incompletely understood. Although traditionally considered a thermogenic tissue, brown adipose tissue (BAT) communicates with remote organs (eg, the heart) through its endocrine function. BAT expands in response to exercise, but its involvement in exercise cardioprotection remains undefined. OBJECTIVE This study investigated whether small extracellular vesicles (sEVs) secreted by BAT and their contained microRNAs (miRNAs) regulate cardiomyocyte survival and participate in exercise cardioprotection in the context of myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS Four weeks of exercise resulted in a significant BAT expansion in mice. Surgical BAT ablation before MI/R weakened the salutary effects of exercise. Adeno-associated virus 9 vectors carrying short hairpin RNA targeting Rab27a (a GTPase required for sEV secretion) or control viruses were injected in situ into the interscapular BAT. Exercise-mediated protection against MI/R injury was greatly attenuated in mice whose BAT sEV secretion was suppressed by Rab27a silencing. Intramyocardial injection of the BAT sEVs ameliorated MI/R injury, revealing the cardioprotective potential of BAT sEVs. Discovery-driven experiments identified miR-125b-5p, miR-128-3p, and miR-30d-5p (referred to as the BAT miRNAs) as essential BAT sEV components for mediating cardioprotection. BAT-specific inhibition of the BAT miRNAs prevented their upregulation in plasma sEVs and hearts of exercised mice and attenuated exercise cardioprotection. Mechanistically, the BAT miRNAs cooperatively suppressed the proapoptotic MAPK (mitogen-associated protein kinase) pathway by targeting a series of molecules (eg, Map3k5, Map2k7, and Map2k4) in the signaling cascade. Delivery of BAT sEVs into hearts or cardiomyocytes suppressed MI/R-related MAPK pathway activation, an effect that disappeared with the combined use of the BAT miRNA inhibitors. CONCLUSIONS The sEVs secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart. These results provide novel insights into the mechanisms underlying the BAT-cardiomyocyte interaction and highlight BAT sEVs and their contained miRNAs as alternative candidates for exercise cardioprotection.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.).,Department of Pharmacy, the 960th Hospital of the Logistics Support Force, Jinan, China (H.Z.)
| | - Xiyao Chen
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.).,Department of Geriatrics, The Fourth Military Medical University, Xi'an, China. (X.C.)
| | - Guangyu Hu
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Congye Li
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Lanyan Guo
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Ling Zhang
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Fangfang Sun
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Yunlong Xia
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Wenjun Yan
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Ze Cui
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Yongzhen Guo
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.).,Xijing Hospital and Department of Toxicology, School of Public Health, The Fourth Military Medical University, Xi'an, China. (Y.G.)
| | - Xiong Guo
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Chong Huang
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Miaomiao Fan
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Shan Wang
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Fuyang Zhang
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| | - Ling Tao
- Department of Cardiology, The Fourth Military Medical University, Xi'an, China. (H.Z., X.C., G.H., C.L., L.G., L.Z., F.S., Y.X., W.Y., Z.C., Y.G., X.G., C.H., M.F., S.W., F.Z., L.T.)
| |
Collapse
|
37
|
Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022; 101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.
Collapse
|
38
|
Bond ST, Calkin AC, Drew BG. Adipose-Derived Extracellular Vesicles: Systemic Messengers and Metabolic Regulators in Health and Disease. Front Physiol 2022; 13:837001. [PMID: 35283789 PMCID: PMC8905439 DOI: 10.3389/fphys.2022.837001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is comprised of a heterogeneous population of cells that co-operate to perform diverse physiological roles including endocrine-related functions. The endocrine role of adipose tissue enables it to communicate nutritional and health cues to other organs, such as the liver, muscle, and brain, in order to regulate appetite and whole body metabolism. Adipose tissue dysfunction, which is often observed in obesity, is associated with changes in the adipose secretome, which can subsequently contribute to disease pathology. Indeed, secreted bioactive factors released from adipose tissue contribute to metabolic homeostasis and likely play a causal role in disease; however, what constitutes the entirety of the adipose tissue secretome is still poorly understood. Recent advances in nanotechnology have advanced this field substantially and have led to the identification of small, secreted particles known as extracellular vesicles (EVs). These small nano-sized lipid envelopes are released by most cell types and are capable of systemically delivering bioactive molecules, such as nucleic acids, proteins, and lipids. EVs interact with target cells to deliver specific cargo that can then elicit effects in various tissues throughout the body. Adipose tissue has recently been shown to secrete EVs that can communicate with the periphery to maintain metabolic homeostasis, or under certain pathological conditions, drive disease. In this review, we discuss the current landscape of adipose tissue-derived EVs, with a focus on their role in the regulation of metabolic homeostasis and disease pathology.
Collapse
Affiliation(s)
- Simon T Bond
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Narang P, Shah M, Beljanski V. Exosomal RNAs in diagnosis and therapies. Noncoding RNA Res 2022; 7:7-15. [PMID: 35087990 PMCID: PMC8777382 DOI: 10.1016/j.ncrna.2022.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
The field of extracellular vesicles has been rapidly developing after it became evident that a defined subset of vesicles, called exosomes, can modulate several biological functions in distant cells and tissues. Exosomes range in a size from 40 to 160 nm in diameter, are released by majority of cells in our body, and carry molecules which reflect the cell of origin. The types of biomolecules packed, their respective purpose, and their impact on the physiological state of distinct cells and tissues should be understood to advance the using of exosomes as biomarkers of health and disease. Many of such physiological effects can be linked to exosomal RNA molecules which include both coding and non-coding RNAs. The biological role(s) of various exosomal RNAs have started being recognized after RNA sequencing methods became widely available which led to discovery of a variety of RNA molecules in exosomes and their roles in regulating of many biological processes are beginning to be unraveled. In present review, we outline and discuss recent progress in the elucidation of the various biological processes driven by exosomal RNA and their relevance for several major conditions including disorders of central nervous system, cardiovascular system, metabolism, cancer, and immune system. Furthermore, we also discuss potential use of exosomes as valuable therapeutics for tissue regeneration and for conditions resulting from excessive inflammation. While exosome research is still in its infancy, in-depth understanding of exosome formation, their biological effects, and specific cell-targeting will uncover how they can be used as disease biomarkers and therapeutics.
Collapse
Affiliation(s)
- Pranay Narang
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Davie, Florida, United States
| | - Morish Shah
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida, United States
| | - Vladimir Beljanski
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Davie, Florida, United States
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, United States
- Cell Therapy Institute, Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, United States
| |
Collapse
|
40
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
41
|
Yin Z, Chen C. Biological Functions and Clinical Prospects of Extracellular Non-Coding RNAs in Diabetic Cardiomyopathy: an Updated Review. J Cardiovasc Transl Res 2022; 15:469-476. [PMID: 35175553 DOI: 10.1007/s12265-022-10217-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major causes of heart failure in diabetic patients. However, the pathogenesis of diabetic cardiomyopathy has not been fully elucidated. Diagnosis and therapeutic strategy of DCM is still challenging. Various non-coding RNAs (ncRNA) are implicated in the onset and progression of DCM. Interestingly, ncRNAs not only are regulators intracellularly, but also can exist and function in extracellular space. Recent evidences have demonstrated that extracellular ncRNAs play emerging roles in both intracardiac and inter-organ communication during the pathogenesis of DCM; thus, extracellular ncRNAs are attractive diagnostic biomarkers and potential therapeutic targets for DCM. This article will review the current knowledge of the roles of extracellular ncRNAs in DCM, especially focusing on their physio-pathological properties and perspectives of potential clinical translation for biomarkers and therapies. Recent evidences have demonstrated that extracellular ncRNA play emerging roles in both intracardiac and inter-organ communication involved in the pathogenesis of diabetic cardiomyopathy (DCM), thus shown as attractive diagnostic biomarkers and potential therapeutics for DCM. In the current review, we first summarize the progress regarding the paracrine role of extracellular ncRNA in DCM. miRNAs and circRNAs have been shown to mediate the communication among cardiomyocytes, endothelial cells, and vascular smooth muscle cells in the diabetic heart. Subsequently, we systematically describe that extracellular ncRNAs contribute to the crosstalk between the heart and other organs in the context of diabetes. Researches have indicated that miRNAs acted as hepatokines and adipokines to mediates the injure effect of distal organs on hearts. As for clinical application, extracellular ncRNAs are promising biomarker and have therapeutic potential. (Created with BioRender.com).
Collapse
Affiliation(s)
- Zhongwei Yin
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, China.
| |
Collapse
|
42
|
Zuccarini M, Giuliani P, Di Liberto V, Frinchi M, Caciagli F, Caruso V, Ciccarelli R, Mudò G, Di Iorio P. Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents. Int J Mol Sci 2022; 23:ijms23031543. [PMID: 35163472 PMCID: PMC8836090 DOI: 10.3390/ijms23031543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance of the contribution of ASC-derived EVs in the regulation of metabolic processes. In addition, we outlined the advantages/disadvantages of the use of EVs as potential next-generation anti-obesity agents.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90128 Palermo, Italy; (V.D.L.); (M.F.); (G.M.)
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90128 Palermo, Italy; (V.D.L.); (M.F.); (G.M.)
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7001, Australia;
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
- Stem TeCh Group, Center for Advanced Studies and Technologies (CAST), Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90128 Palermo, Italy; (V.D.L.); (M.F.); (G.M.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| |
Collapse
|
43
|
Current understanding of the role of microRNAs from adipose-derived extracellular vesicles in obesity. Biochem Soc Trans 2021; 50:447-457. [PMID: 34940800 DOI: 10.1042/bst20211031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Obesity and its associated metabolic diseases, including diabetes, insulin resistance, and inflammation, are rapidly becoming a global health concern. Moreover, obese individuals are more likely to be infected with COVID-19. New research on adipose tissue is required to help us understand these metabolic diseases and their regulatory processes. Recently, extracellular vesicles (EVs) have been identified as novel intercellular vectors with a wide range of regulatory functions. The miRNAs carried by EVs participate in the regulation of white adipose tissue (WAT) browning, insulin resistance, diabetes, and inflammation. In addition, EV miRNAs demonstrate great potential for helping elucidating the mechanism of metabolic diseases, and for advancing their prevention and treatment. In this review, we focus on the mechanisms underlying the regulation of adipose differentiation and metabolic diseases by adipose-derived EV miRNAs. Understanding the role of these miRNAs should enrich our understanding of the etiology and pathogenesis of metabolic diseases caused by obesity.
Collapse
|
44
|
Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, Wang HQ, Bu LL, Liu B, Chen G. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: Present and future. J Extracell Vesicles 2021; 10:e12175. [PMID: 34918479 PMCID: PMC8678102 DOI: 10.1002/jev2.12175] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid‐bilayer membrane structures secreted by most cell types. EVs act as messengers via the horizontal transfer of lipids, proteins, and nucleic acids, and influence various pathophysiological processes in both parent and recipient cells. Compared to EVs obtained from body fluids or cell culture supernatants, EVs isolated directly from tissues possess a number of advantages, including tissue specificity, accurate reflection of tissue microenvironment, etc., thus, attention should be paid to tissue‐derived EVs (Ti‐EVs). Ti‐EVs are present in the interstitium of tissues and play pivotal roles in intercellular communication. Moreover, Ti‐EVs provide an excellent snapshot of interactions among various cell types with a common histological background. Thus, Ti‐EVs may be used to gain insights into the development and progression of diseases. To date, extensive investigations have focused on the role of body fluid‐derived EVs or cell culture‐derived EVs; however, the number of studies on Ti‐EVs remains insufficient. Herein, we summarize the latest advances in Ti‐EVs for cancers and non‐cancer diseases. We propose the future application of Ti‐EVs in basic research and clinical practice. Workflows for Ti‐EV isolation and characterization between cancers and non‐cancer diseases are reviewed and compared. Moreover, we discuss current issues associated with Ti‐EVs and provide potential directions.
Collapse
Affiliation(s)
- Su-Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fu-Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Hong P, Yu M, Tian W. Diverse RNAs in adipose-derived extracellular vesicles and their therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:665-677. [PMID: 34703651 PMCID: PMC8516999 DOI: 10.1016/j.omtn.2021.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue, which is considered an energy storage and active endocrine organ, produces and secretes a large amount of adipokines to regulate distant targets through blood circulation, especially extracellular vesicles (EVs). As cell-derived, membranous nanoparticles, EVs have recently garnered great attention as novel mediators in establishing intercellular communications as well as in accelerating interorgan crosstalk. Studies have revealed that the RNAs, including coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs) are key bioactive cargoes of EV functions in various pathophysiological processes, such as cell differentiation, metabolic homeostasis, immune signal transduction, and cancer. Moreover, certain EV-contained RNAs have gradually been recognized as novel biomarkers, prognostic indicators, or even therapeutic nanodrugs of diseases. Therefore, in this review, we comprehensively summarize different classes of RNAs presented in adipose-derived EVs and discuss their therapeutic potential according to the latest research progress to provide valuable knowledge in this area.
Collapse
Affiliation(s)
- Pengyu Hong
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
|
47
|
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front Cell Dev Biol 2021; 9:736022. [PMID: 34722517 PMCID: PMC8553038 DOI: 10.3389/fcell.2021.736022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dakai Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
48
|
Liu Y, Sigman J, Bruce L, Wolfson A. Thimet Oligopeptidase—A Classical Enzyme with New Function and New Form. IMMUNO 2021; 1:332-346. [DOI: 10.3390/immuno1040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Peptidases generate bioactive peptides that can regulate cell signaling and mediate intercellular communication. While the processing of peptide precursors is initiated intracellularly, some modifications by peptidases may be conducted extracellularly. Thimet oligopeptidase (TOP) is a peptidase that processes neuroendocrine peptides with roles in mood, metabolism, and immune responses, among other functions. TOP also hydrolyzes angiotensin I to angiotensin 1–7, which may be involved in the pathophysiology of COVID-19 infection. Although TOP is primarily cytosolic, it can also be associated with the cell plasma membrane or secreted to the extracellular space. Recent work indicates that membrane-associated TOP can be released with extracellular vesicles (EVs) to the extracellular space. Here we briefly summarize the enzyme’s classical function in extracellular processing of neuroendocrine peptides, as well as its more recently understood role in intracellular processing of various peptides that impact human diseases. Finally, we discuss new findings of EV-associated TOP in the extracellular space.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, USA
- Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Department of GI/Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Sigman
- Department of Chemistry, St. Mary’s College of California, Moraga, CA 94575, USA
| | - Lisa Bruce
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, USA
- Invetx, Boston, MA 02108, USA
| | - Adele Wolfson
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
49
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|
50
|
Lim KM, Dayem AA, Choi Y, Lee Y, An J, Gil M, Lee S, Kwak HJ, Vellingirl B, Shin HJ, Cho SG. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel) 2021; 10:antiox10081292. [PMID: 34439540 PMCID: PMC8389225 DOI: 10.3390/antiox10081292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are paracrine factors that mediate stem cell therapeutics. We aimed at evaluating the possible therapeutic and esthetic applications of EVs prepared from the waste human facial tissue-derived orbicularis oculi muscle stem cells (OOM-SCs). OOM-SCs were isolated from the ocular tissues (from elders and youngsters) after upper eyelid blepharoplasty or epiblepharon surgeries. EVs were prepared from the OOM-SCs (OOM-SC-EVs) and their three-dimensional spheroids. OOM-SCs showed a spindle-like morphology with trilineage differentiation capacity, positive expression of CD105, CD 90, and CD73, and negative expression of CD45 and CD34, and their stem cell properties were compared with other adult mesenchymal stem cells. OOM-SC-EVs showed a high inhibitory effect on melanin synthesis in B16F10 cells by blocking tyrosinase activity. OOM-SC-EVs treatment led to a significant attenuation of senescence-associated changes, a decrease in reactive oxygen species generation, and an upregulation of antioxidant genes. We demonstrated the regeneration activity of OOM-SC-EVs in in vitro wound healing of normal human dermal fibroblasts and upregulation of anti-wrinkle-related genes and confirmed the therapeutic potential of OOM-SC-EVs in the healing of the in vivo wound model. Our study provides promising therapeutic and esthetic applications of OOM-SC-EVs, which can be obtained from the ocular surgery-derived waste human facial tissues.
Collapse
Affiliation(s)
- Kyung Min Lim
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yujin Choi
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yoonjoo Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Jongyub An
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Minchan Gil
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Soobin Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Hee Jeong Kwak
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Balachandar Vellingirl
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (H.J.S.); (S.-G.C.)
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
- Correspondence: (H.J.S.); (S.-G.C.)
| |
Collapse
|