1
|
Valent P, Hartmann K, Hoermann G, Reiter A, Alvarez-Twose I, Brockow K, Bonadonna P, Hermine O, Niedoszytko M, Carter MC, Butterfield JH, Siebenhaar F, Zanotti R, Radia DH, Castells M, Sperr WR, Broesby-Olsen S, Triggiani M, Schwartz LB, George TI, Gülen T, Sotlar K, Gotlib J, Galli SJ, Horny HP, Metcalfe DD, Orfao A, Arock M, Akin C. Harmonization of Diagnostic Criteria in Mastocytosis for Use in Clinical Practice: WHO vs ICC vs AIM/ECNM. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:3250-3260.e5. [PMID: 39216803 DOI: 10.1016/j.jaip.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mastocytosis is a clonal myeloid disorder defined by an increase and accumulation of mast cells (MCs) in one or multiple organ systems. The complex pathology of mastocytosis results in variable clinical presentations, courses, and outcomes. The World Health Organization (WHO) divides the disease into cutaneous mastocytosis (CM), several forms of systemic mastocytosis (SM), and MC sarcoma. In most patients with SM, a somatic KIT mutation, usually D816V, is identified. Patients diagnosed with CM or nonadvanced SM, including indolent SM, have a near-normal life expectancy, whereas those with advanced SM, including aggressive SM and MC leukemia, have limited life expectancy. Since 2001, a multidisciplinary consensus group consisting of experts from the European Competence Network on Mastocytosis and the American Initiative in Mast Cell Diseases has supported the field by developing diagnostic criteria for mastocytosis. These criteria served as the basis for the WHO classification of mastocytosis over 2 decades. More recently, an International Consensus Classification group proposed slightly modified diagnostic criteria and a slightly revised classification. In this article, these changes are discussed. Furthermore, we propose harmonization among the proposals of the American Initiative in Mast Cell Diseases/European Competence Network on Mastocytosis consensus group, WHO, and the International Consensus Classification Group. Such harmonization will facilitate comparisons of retrospective study results and the conduct of prospective trials.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Iván Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | | | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre national de référence des mastocytoses, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Roberta Zanotti
- Department of Medicine, IRCSS Ospedale Sacro Cuore Don Calabria di Negrar, Negrar di Valpolicella, Verona, Italy
| | - Deepti H Radia
- Department of Clinical Haematology, Guys and St Thomas' NHS Hospitals, London, United Kingdom
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, Virginia Commonwealth University (VCU), Richmond, Va
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Theo Gülen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Alberto Orfao
- Servicio Central de Citometria (NUCLEUS), Centro de Investigacion del Cancer (IBMCC; CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Michel Arock
- CEREMAST, Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
2
|
Castells M, Madden M, Oskeritzian CA. Mast Cells and Mas-related G Protein-coupled Receptor X2: Itching for Novel Pathophysiological Insights to Clinical Relevance. Curr Allergy Asthma Rep 2024; 25:5. [PMID: 39585499 PMCID: PMC11588779 DOI: 10.1007/s11882-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Clinical interest in non-IgE activation of mast cells has been growing since the description of the human MRGPRX2 receptor. Its participation in many allergic and inflammatory conditions such as non histaminergic itch, urticaria, asthma and drug hypersensitivity has been growing. We present here an updated review of its structure, expression and biology to help understand conditions and diseases attributed to its activation and/or overpexression and the search for agonists and antagonists of clinical utility. RECENT FINDINGS The description of patients presenting anaphylaxis when exposed to one or multiple MRGPRX2 agonists such as general anesthetics, antibiotics, opiods and other agents has provided evidence of potential heterogeneity in humans. This review provides the most recent developments into the receptor structure, tissue expression and signaling pathways including the potential enhancement of IgE-mediated mast cell activation. New insight into its agonists and antagonists is described and future developments to adress its modulations.
Collapse
Affiliation(s)
- Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Smith Building, Room 626D, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| | - Michael Madden
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
3
|
Asero R, Calzari P, Vaienti S, Cugno M. Therapies for Chronic Spontaneous Urticaria: Present and Future Developments. Pharmaceuticals (Basel) 2024; 17:1499. [PMID: 39598410 PMCID: PMC11597230 DOI: 10.3390/ph17111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) is a complex dermatological condition characterized by recurrent wheals and/or angioedema lasting for more than six weeks, significantly impairing patients' quality of life. According to European guidelines, the first step in treatment involves second-generation H1-antihistamines (sgAHs), which block peripheral H1 receptors to alleviate symptoms. In cases with inadequate responses, the dose of antihistamines can be increased by up to fourfold. If symptoms persist despite this adjustment, the next step involves the use of omalizumab, a monoclonal anti-IgE antibody, which has shown efficacy in the majority of cases. However, a subset of patients remains refractory, necessitating alternative treatments such as immunosuppressive agents like cyclosporine or azathioprine. To address these unmet needs, several new therapeutic targets are being explored. Among them, significant attention is being given to drugs that block Bruton's tyrosine kinase (BTK), such as remibrutinib, which reduces mast cell activation. Therapies like dupilumab, which target the interleukin-4 (IL-4) and IL-13 pathways, are also under investigation. Additionally, molecules targeting the Mas-related G protein-coupled receptor X2 (MRGPRX2), and those inhibiting the tyrosine kinase receptor Kit, such as barzolvolimab, show promise in clinical studies. These emerging treatments offer new options for patients with difficult-to-treat CSU and have the potential to modify the natural course of the disease by targeting key immune pathways, helping to achieve longer-term remission. Further research is essential to better elucidate the pathophysiology of CSU and optimize treatment protocols to achieve long-term benefits in managing this condition. Altogether, the future of CSU treatments that target pathogenetic mechanisms seems promising.
Collapse
Affiliation(s)
- Riccardo Asero
- Clinica San Carlo, Ambulatorio di Allergologia, 20037 Paderno Dugnano, Italy;
| | - Paolo Calzari
- Department of Pathophysiology and Transplantation, Scuola di Specializzazione, Allergologia e Immunologia Clinica, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Silvia Vaienti
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy;
| | - Massimo Cugno
- Department of Pathophysiology and Transplantation, Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
4
|
Leveque E, Battut L, Petitfils C, Valitutti S, Cenac N, Dietrich G, Espinosa E. Alternative activation of mast cells by CD4+ T helper cells. J Leukoc Biol 2024; 116:1127-1141. [PMID: 38916515 DOI: 10.1093/jleuko/qiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Effector CD4+ T (Teff) lymphocytes infiltrate sites of inflammation and orchestrate the immune response by instructing local leukocytes. Mast cells (MCs) are tissue sentinel cells strategically located near blood vessels and T cell-rich areas. MC/Teff cell interactions shape Teff cell responses, but in turn, Teff cell action on MCs is still poorly understood. Here, we analyzed the human MC/Teff cell interplay through both the application of RNA sequencing and functional assays. We showed that activated Teff cells induce a specific transcriptomic program in MCs including production of both inflammatory cytokines and chemokines, prostaglandin, and a FcεRI-dependent degranulation facilitation, thereby driving them toward an inflammatory phenotype. Moreover, Teff cells induce in MCs the capacity to interact with CD4+ T cells through a wide range of dedicated soluble and membrane ligands and to play the role of antigen-presenting cells.
Collapse
Affiliation(s)
- Edouard Leveque
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
| | - Louise Battut
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Camille Petitfils
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire de Toulouse, 1 avenue Irène Joliot-Curie, Toulouse F-31059, France
| | - Nicolas Cenac
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Gilles Dietrich
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Eric Espinosa
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| |
Collapse
|
5
|
Bernstein JS, Bernstein JA, Lang DM. Chronic Spontaneous Urticaria: Current and Emerging Biologic Agents. Immunol Allergy Clin North Am 2024; 44:595-613. [PMID: 39389712 DOI: 10.1016/j.iac.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antihistamine refractory chronic spontaneous urticaria (CSU) has a prevalence of up to 50%. Anti-immunoglobulin E (IgE) therapies have revolutionized management of CSU, yet refractory cases persist, suggesting a role for biologic agents that impact alternative routes of mast cell stimulation independent of cross-linking at FcεR1. This review addresses anti-IgE and Th2-targeted therapies in the management of CSU. In addition, we explore novel treatments targeting alternative pathways of mast cell activation including MAS-related G protein-coupled receptor-X2 and sialic acid-binding immunoglobulin-like lectin-6, inhibiting intracellular signaling via Bruton's tyrosine kinase, and disrupting KIT activation by SCF.
Collapse
Affiliation(s)
- Joshua S Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - David M Lang
- Department of Allergy and Clinical Immunology, Cleveland Clinic, 9500 Euclid Avenue, A90, Cleveland, OH 44195, USA.
| |
Collapse
|
6
|
Fang X, Gao F, Zheng L, Xue FS, Zhu T, Zheng X. Reduced microRNA-744 expression in mast cell-derived exosomes triggers epithelial cell ferroptosis in acute respiratory distress syndrome. Redox Biol 2024; 77:103387. [PMID: 39378613 PMCID: PMC11493202 DOI: 10.1016/j.redox.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical disorder characterized by immune-related damage to epithelial cells; however, its underlying mechanism remains elusive. This study investigated the effects of alterations in microRNA (miRNA) expression in mast cell-derived exosomes on human bronchial epithelial (HBE) cells and ARDS development in cellular and mouse models challenged with lipopolysaccharide. Lipopolysaccharide-treated mast cell-derived exosomes reduced glutathione peroxidase 4 (GPX4) expression and increased long-chain acyl-CoA synthetase 4 (ACSL4), 15-lipoxygenase (ALOX15), and inflammatory mediator levels in HBE cells. miRNA sequencing revealed a reduction in mast cell-derived exosomal miR-744 levels, which was associated with the regulation of ACSL4, ALOX15, and GPX4 expression. This downregulation of exosomal miR-744 expression reduced miR-744 levels and promoted ferroptosis in HBE cells, whereas the experimental upregulation of miR-744 reversed these adverse effects. Down-regulation of miR-744 induced the expression of markers for ferroptosis and inflammation in HBE cells and promoted pulmonary ferroptosis, inflammation, and injury in LPS-stimulated mice. In vivo, treatment with ACSL4, ALOX15, and GPX4 inhibitors mitigated these effects, and experimental miR-744 expression rescued the lipopolysaccharide-induced changes in HBE cells and mouse lungs. Notably, miR-744 levels were reduced in the plasma and exosomes of patients with ARDS. We concluded that decreased mast cell-derived exosomal miR-744 levels trigger epithelial cell ferroptosis, promoting lung inflammation and damage in ARDS. This study provides new mechanistic insights into the development and sustained pulmonary damage associated with ARDS and highlights potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China.
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, Sichuan, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Atiakshin D, Kostin A, Alekhnovich A, Volodkin A, Ignatyuk M, Klabukov I, Baranovskii D, Buchwalow I, Tiemann M, Artemieva M, Medvedeva N, LeBaron TW, Noda M, Medvedev O. The Role of Mast Cells in the Remodeling Effects of Molecular Hydrogen on the Lung Local Tissue Microenvironment under Simulated Pulmonary Hypertension. Int J Mol Sci 2024; 25:11010. [PMID: 39456794 PMCID: PMC11507233 DOI: 10.3390/ijms252011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Molecular hydrogen (H2) has antioxidant, anti-inflammatory, and anti-fibrotic effects. In a rat model simulating pulmonary fibrotic changes induced by monocrotaline-induced pulmonary hypertension (MPH), we had previously explored the impact of inhaled H2 on lung inflammation and blood pressure. In this study, we further focused the biological effects of H2 on mast cells (MCs) and the parameters of the fibrotic phenotype of the local tissue microenvironment. MPH resulted in a significantly increased number of MCs in both the pneumatic and respiratory parts of the lungs, an increased number of tryptase-positive MCs with increased expression of TGF-β, activated interaction with immunocompetent cells (macrophages and plasma cells) and fibroblasts, and increased MC colocalization with a fibrous component of the extracellular matrix of connective tissue. The alteration in the properties of the MC population occurred together with intensified collagen fibrillogenesis and an increase in the integral volume of collagen and elastic fibers of the extracellular matrix of the pulmonary connective tissue. The exposure of H2 together with monocrotaline (MCT), despite individual differences between animals, tended to decrease the intrapulmonary MC population and the severity of the fibrotic phenotype of the local tissue microenvironment compared to changes in animals exposed to the MCT effect alone. In addition, the activity of collagen fibrillogenesis associated with MCs and the expression of TGF-β and tryptase in MCs decreased, accompanied by a reduction in the absolute and relative content of reticular and elastic fibers in the lung stroma. Thus, with MCT exposure, inhaled H2 has antifibrotic effects involving MCs in the lungs of rats. This reveals the unknown development mechanisms of the biological effects of H2 on the remodeling features of the extracellular matrix under inflammatory background conditions of the tissue microenvironment.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Alexander Alekhnovich
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Artem Volodkin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Michael Ignatyuk
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia (D.B.)
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia (D.B.)
| | - Igor Buchwalow
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany;
| | - Marina Artemieva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (M.A.); (N.M.)
| | - Nataliya Medvedeva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (M.A.); (N.M.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA;
- Molecular Hydrogen Institute, Cedar City, UT 84720, USA
| | - Mami Noda
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Oleg Medvedev
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia
| |
Collapse
|
8
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
9
|
Abdali SS, Yokoyama T, Yamamoto Y, Narita K, Hirakawa M, Saino T. Immunohistochemical analysis and distribution of epithelial mast cells in the rat larynx and trachea. Histochem Cell Biol 2024; 162:287-297. [PMID: 39031197 DOI: 10.1007/s00418-024-02309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Mast cells (MCs) in rat airways have been classified into two subtypes: epithelial MCs and connective tissue MCs (CTMCs). However, the immunohistochemical characteristics, cellular morphology, and distribution of epithelial MCs in the upper airways remain unclear. The present study investigated the morphological characteristics and distribution of epithelial MCs using 5-hydroxytryptamine (5-HT) and other immunohistochemical markers in sectioned or whole-mount preparations of the rat larynx and trachea. A double immunofluorescence analysis revealed the colocalization of 5-HT immunoreactivity with c-kit, a stem cell factor receptor commonly used as a MC marker, in both epithelial MCs and CTMCs. Dopa decarboxylase, an enzyme involved in 5-HT synthesis, was detected in both subtypes, suggesting their ability to synthesize and release 5-HT. Tryptase and histidine decarboxylase (a biosynthetic enzyme of histamine), which are well-known mediators of MCs, were exclusive to CTMCs. Epithelial MCs were pleomorphic with long cytoplasmic processes, whereas CTMCs were round and lacked cytoplasmic processes. The density of epithelial MCs was significantly higher in the glottis and cranial part of the trachea than in the epiglottis and other parts of the trachea. The present results showed that the morphology and immunohistochemical characteristics of epithelial MCs were different from those of CTMCs in the rat larynx and trachea, and variform epithelial MCs were predominantly located at the entrance of the upper airways. Epithelial MCs may release 5-HT to regulate innate immune responses by modulating epithelial cell functions at the entrance gate of the upper airways.
Collapse
Affiliation(s)
- Sayed Sharif Abdali
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Keishi Narita
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| |
Collapse
|
10
|
Nair B, Kamath AJ, Tergaonkar V, Sethi G, Nath LR. Mast cells and the gut-liver Axis: Implications for liver disease progression and therapy. Life Sci 2024; 351:122818. [PMID: 38866220 DOI: 10.1016/j.lfs.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The role of mast cells, traditionally recognized for their involvement in immediate hypersensitivity reactions, has garnered significant attention in liver diseases. Studies have indicated a notable increase in mast cell counts following hepatic injury, underscoring their potential contribution to liver disorder pathogenesis. Predominantly situated in connective tissue that envelops the hepatic veins, bile ducts, and arteries, mast cells are central to both initiating and perpetuating liver disorders. Additionally, they are crucial for maintaining gastrointestinal barrier function. The gut-liver axis emphasizes the complex, two-way communication between the gut microbiome and the liver. Past research has implicated gut microbiota and their metabolites in the progression of hepatic disorders. This review sheds light on how mast cells are activated in various liver conditions such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, hepatic fibrogenesis, and hepatocellular carcinoma. It also briefly explores the connection between the gut microbiome and mast cell activation in these hepatic conditions.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
11
|
Atiakshin D, Morozov S, Dlin V, Kostin A, Volodkin A, Ignatyuk M, Kuzovleva G, Baiko S, Chekmareva I, Chesnokova S, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Renal Mast Cell-Specific Proteases in the Pathogenesis of Tubulointerstitial Fibrosis. J Histochem Cytochem 2024; 72:495-515. [PMID: 39263893 PMCID: PMC11529666 DOI: 10.1369/00221554241274878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic kidney disease is detected in 8-15% of the world's population. Along with fibrotic changes, it can lead to a complete loss of organ function. Therefore, a better understanding of the onset of the pathological process is required. To address this issue, we examined the interaction between mast cells (MCs) and cells in fibrous and intact regions, focusing on the role of MC proteases such as tryptase, chymase, and carboxypeptidase A3 (CPA3). MCs appear to be involved in the development of inflammatory and fibrotic changes through the targeted secretion of tryptase, chymase, and CPA3 to the vascular endothelium, nephron epithelium, interstitial cells, and components of intercellular substances. Protease-based phenotyping of renal MCs showed that tryptase-positive MCs were the most common phenotype at all anatomic sites. The infiltration of MC in different anatomic sites of the kidney with an associated release of protease content was accompanied by a loss of contact between the epithelium and the basement membrane, indicating the active participation of MCs in the formation and development of fibrogenic niches in the kidney. These findings may contribute to the development of novel strategies for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, Moscow, Russian Federation
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Sergey Morozov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | - Vladimir Dlin
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | | | | | | | - Galina Kuzovleva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Baiko
- Belarusian State Medical University, Minsk, Belarus
| | | | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology, Berlin, Germany
| | - Igor Buchwalow
- RUDN University, Moscow, Russian Federation
- Institute for Hematopathology, Hamburg, Germany
| | | |
Collapse
|
12
|
Podolska MJ, Grützmann R, Pilarsky C, Bénard A. IL-3: key orchestrator of inflammation. Front Immunol 2024; 15:1411047. [PMID: 38938573 PMCID: PMC11208316 DOI: 10.3389/fimmu.2024.1411047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Interleukin (IL)-3 has long been known for its hematopoietic properties. However, recent evidence has expanded our understanding of IL-3 function by identifying IL-3 as a critical orchestrator of inflammation in a wide array of diseases. Depending on the type of disease, the course of inflammation, the cell or the tissue involved, IL-3 promotes either pathologic inflammation or its resolution. Here, we describe the cell-specific functions of IL-3 and summarize its role in diseases. We discuss the current treatments targeting IL-3 or its receptor, and highlight the potential and the limitations of targeting IL-3 in clinics.
Collapse
Affiliation(s)
| | | | | | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Atiakshin D, Kulchenko N, Kostin A, Ignatyuk M, Protasov A, Klabukov I, Baranovskii D, Faniev M, Korovyakova E, Chekmareva I, Buchwalow I, Tiemann M. Cyto- and Histopographic Assessment of CPA3-Positive Testicular Mast Cells in Obstructive and Non-Obstructive Azoospermia. Cells 2024; 13:833. [PMID: 38786055 PMCID: PMC11120214 DOI: 10.3390/cells13100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Nina Kulchenko
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Andrey Kostin
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Michael Ignatyuk
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Andrey Protasov
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia (D.B.)
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia (D.B.)
| | - Mikhail Faniev
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Elina Korovyakova
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Irina Chekmareva
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Igor Buchwalow
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
- Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany;
| |
Collapse
|
14
|
Khoury P, Wechsler JB. Role of Mast Cells in Eosinophilic Gastrointestinal Diseases. Immunol Allergy Clin North Am 2024; 44:311-327. [PMID: 38575226 PMCID: PMC11220468 DOI: 10.1016/j.iac.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Mast cells play a central role in the pathogenesis of eosinophilic gastrointestinal disorders (EGIDs), including eosinophilic esophagitis. Their interactions with immune and structural cells, involvement in tissue remodeling, and contribution to symptoms make them attractive targets for therapeutic intervention. More is being discovered regarding the intricate interplay of mast cells and eosinophils. Recent studies demonstrating that depletion of eosinophils is insufficient to improve symptoms of EGIDs have raised the question of whether other cells may play a role in symptomatology and pathogenesis of EGIDs.
Collapse
Affiliation(s)
- Paneez Khoury
- Human Eosinophil Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 12C103, Bethesda, MD 20892, USA.
| | - Joshua B Wechsler
- Simpson-Querrey 10-518, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 65, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Valent P, Akin C, Arock M. Reversible Elevation of Tryptase Over the Individual's Baseline: Why is It the Best Biomarker for Severe Systemic Mast Cell Activation and MCAS? Curr Allergy Asthma Rep 2024; 24:133-141. [PMID: 38308674 PMCID: PMC10960756 DOI: 10.1007/s11882-024-01124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE OF REVIEW Mast cell (MC) activation syndromes (MCAS) are conditions defined by recurrent episodes of severe systemic anaphylaxis or similar systemic events triggered by MC-derived mediators that can be measured in biological fluids. Since some symptoms of MC activation may occur due to other, non-MC etiologies and lead to confusion over diagnosis, it is of crucial importance to document the involvement of MC and their products in the patients´ symptomatology. RECENT FINDINGS The most specific and generally accepted marker of severe systemic MC activation is an event-related, transient increase in the serum tryptase level over the individual baseline of the affected individual. However, baseline concentrations of serum tryptase vary among donors, depending on the genetic background, age, kidney function, and underlying disease. As a result, it is of critical importance to provide a flexible equation that defines the diagnostic increase in tryptase qualifying as MCAS criterion in all patients, all situations, and all ranges of baseline serum tryptase. In 2012, the consensus group proposed the 120% + 2 ng/ml formula, which covers the great majority of groups, including cases with low, normal, or elevated basal serum tryptase level. This formula has been validated in subsequent studies and has proven to be a robust and consistent diagnostic criterion of MCAS. The present article is discussing the impact of this formula and possible limitations as well as alternative markers and mediators that may be indicative of MCAS.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Michel Arock
- Platform of Molecular Analysis for Mastocytosis and MCAD (CEREMAST), Department of Biological Hematology, Pitié-Salpêtrière Hospital, AP-HP, Paris Sorbonne University, Paris, France
| |
Collapse
|
16
|
Sabaté San José A, Petersen PH. Absence of meningeal mast cells in the Mitf mutant mouse. Front Cell Neurosci 2024; 18:1337621. [PMID: 38405598 PMCID: PMC10884230 DOI: 10.3389/fncel.2024.1337621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Mast cells (MCs) are located in the meninges of the central nervous system (CNS), where they play key roles in the immune response. MC-deficient mice are advantageous in delineating the role of MCs in the immune response in vivo. In this study, we illustrate that a mutation in microphthalmia-associated transcription factor (Mitf) affects meningeal MC number in a dosage-dependent manner. C57BL/6J Mitf null mice lack meningeal MCs completely, whereas heterozygous mice have on average 25% fewer MCs. Mitf heterozygous mice might be a valuable tool to study the role of MCs in the meninges.
Collapse
Affiliation(s)
- Alba Sabaté San José
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petur Henry Petersen
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
17
|
Sabato V, Beyens M, Toscano A, Van Gasse A, Ebo DG. Mast Cell-Targeting Therapies in Mast Cell Activation Syndromes. Curr Allergy Asthma Rep 2024; 24:63-71. [PMID: 38217824 DOI: 10.1007/s11882-023-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Provide an overview of the expanding landscape of mast cell (MC)-targeting treatments in mast cell activation syndromes (MCAS). RECENT FINDINGS Tyrosine-kinase inhibitors (TKIs) targeting wild-type and mutated KIT can efficiently induce MC depletion. Avapritinib and midostaurin can also temper IgE-mediated degranulation. Avapritinib has been recently approved by the FDA for the treatment of indolent systemic mastocytosis (ISM). Targeting activation pathways and inhibitory receptors is a promising therapeutic frontier. Recently, the anti Siglec-8 antibody lirentelimab showed promising results in ISM. MCAS is a heterogeneous disorder demanding a personalized therapeutic approach and, especially when presenting as anaphylaxis, has not been formally captured as outcome in prospective clinical trials with TKI. Long-term safety of TKI needs to be addressed. New drugs under investigation in diseases in which non-neoplastic MCs play a pivotal role can provide important inputs to identify new efficient and safe treatments for MCAS.
Collapse
Affiliation(s)
- Vito Sabato
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Michiel Beyens
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Alessandro Toscano
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Athina Van Gasse
- Department of Paediatrics, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium.
- Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
18
|
Gulen T. Using the Right Criteria for MCAS. Curr Allergy Asthma Rep 2024; 24:39-51. [PMID: 38243020 PMCID: PMC10866766 DOI: 10.1007/s11882-024-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
PURPOSE OF REVIEW The current article aims to provide a comprehensive update on diagnostic criteria for mast cell activation syndrome (MCAS), addressing challenges in diagnosing and classifying MCAS and its variants. RECENT FINDINGS In recent years, there has been a significant increase in our knowledge regarding the underlying mechanisms responsible for the activation of mast cells (MCs) in various pathological conditions. Furthermore, a set of criteria and a classification for MCASs have been established. MCAS is characterized by the presence of typical clinical symptoms, a substantial elevation in serum tryptase levels during an attack compared to the patient's baseline tryptase levels, and a response to MC mediator-targeting therapy. In this report, a thorough examination was conducted on the contemporary literature relating to MCAS, with a focus on comparing the specificity, sensitivity, and robustness of MCAS-related parameters within proposals for diagnosing and classifying MCAS and its variants. Moreover, the significance of employing specific consensus criteria in the assessment and categorization of MCAS in individual patients was underscored, due to the escalating occurrence of patients receiving a misdiagnosis of MCAS based on nonspecific criteria.
Collapse
Affiliation(s)
- Theo Gulen
- Department of Respiratory Medicine and Allergy, K85, Karolinska University Hospital Huddinge, Stockholm, SE-14186, Sweden.
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
- Clinical Lung and Allergy Research Unit, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Mastocytosis Centre Karolinska, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
19
|
Huang L, Yang S, Yu X, Fang F, Zhu L, Wang L, Zhang X, Yang C, Qian Q, Zhu T. Association of different cell types and inflammation in early acne vulgaris. Front Immunol 2024; 15:1275269. [PMID: 38357543 PMCID: PMC10864487 DOI: 10.3389/fimmu.2024.1275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis. Inflammation plays a central role in the pathogenesis of acne vulgaris. During the inflammatory process, the innate and adaptive immune systems are coordinately activated to induce immune responses. Understanding the infiltration and cytokine secretion of differential cells in acne lesions, especially in the early stages of inflammation, will provide an insight into the pathogenesis of acne. The purpose of this review is to synthesize the association of different cell types with inflammation in early acne vulgaris and provide a comprehensive understanding of skin inflammation and immune responses.
Collapse
Affiliation(s)
- Lei Huang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, Yunnan, China
| | - Xiuqin Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fumin Fang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Wang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Zhang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changzhi Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Rydz A, Lange M, Ługowska-Umer H, Sikorska M, Nowicki RJ, Morales-Cabeza C, Alvarez-Twose I. Diffuse Cutaneous Mastocytosis: A Current Understanding of a Rare Disease. Int J Mol Sci 2024; 25:1401. [PMID: 38338679 PMCID: PMC11154339 DOI: 10.3390/ijms25031401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Mastocytosis is a heterogeneous disease characterized by the expansion and accumulation of neoplastic mast cells in various tissues. Diffuse cutaneous mastocytosis (DCM) is a rare and most severe form of cutaneous mastocytosis, which typically occurs in childhood. There have been reports of a familial DCM with specific gene mutations, indicating both sporadic and hereditary factors involved in its pathogenesis. DCM is associated with severe MC mediator-related symptoms and an increased risk of anaphylaxis. The diagnosis is based on the appearance of skin lesions, which typically show generalized thickening, erythroderma, blistering dermographism, and a positive Darier's sign. Recognition, particularly in infants, is challenging due to DCMs resemblance to other bullous skin disorders. Therefore, in unclear cases, a skin biopsy is crucial. Treatment focuses on symptom management, mainly including antihistamines and mast cell stabilizers. In extremely severe cases, systemic steroids, tyrosine kinase inhibitors, phototherapy, or omalizumab may be considered. Patients should be equipped with an adrenaline autoinjector. Herein, we conducted a comprehensive review of literature data on DCM since 1962, which could help to better understand both the management and prognosis of DCM, which depends on the severity of skin lesions, intensity of mediator-related symptoms, presence of anaphylaxis, and treatment response.
Collapse
Affiliation(s)
- Agnieszka Rydz
- Student’s Scientific Circle Practical and Experimental Dermatology, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (H.Ł.-U.); (M.S.); (R.J.N.)
| | - Hanna Ługowska-Umer
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (H.Ł.-U.); (M.S.); (R.J.N.)
| | - Monika Sikorska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (H.Ł.-U.); (M.S.); (R.J.N.)
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (H.Ł.-U.); (M.S.); (R.J.N.)
| | - Cristina Morales-Cabeza
- Instituto de Estudios de Mastocitosis de Castilla-La Mancha (CLMast)—Spanish Reference Center for Mastocytosis, Hospital Virgen del Valle—Complejo Hospitalario Universitario de Toledo, 45071 Toledo, Spain; (C.M.-C.); (I.A.-T.)
| | - Iván Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla-La Mancha (CLMast)—Spanish Reference Center for Mastocytosis, Hospital Virgen del Valle—Complejo Hospitalario Universitario de Toledo, 45071 Toledo, Spain; (C.M.-C.); (I.A.-T.)
| |
Collapse
|
21
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
22
|
Degenfeld-Schonburg L, Sadovnik I, Smiljkovic D, Peter B, Stefanzl G, Gstoettner C, Jaksch P, Hoetzenecker K, Aigner C, Radtke C, Arock M, Sperr WR, Valent P. Coronavirus Receptor Expression Profiles in Human Mast Cells, Basophils, and Eosinophils. Cells 2024; 13:173. [PMID: 38247864 PMCID: PMC10814915 DOI: 10.3390/cells13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
A major problem in SARS-CoV-2-infected patients is the massive tissue inflammation in certain target organs, including the lungs. Mast cells (MC), basophils (BA), and eosinophils (EO) are key effector cells in inflammatory processes. These cells have recently been implicated in the pathogenesis of SARS-CoV-2 infections. We explored coronavirus receptor (CoV-R) expression profiles in primary human MC, BA, and EO, and in related cell lines (HMC-1, ROSA, MCPV-1, KU812, and EOL-1). As determined using flow cytometry, primary MC, BA, and EO, and their corresponding cell lines, displayed the CoV-R CD13 and CD147. Primary skin MC and BA, as well as EOL-1 cells, also displayed CD26, whereas primary EO and the MC and BA cell lines failed to express CD26. As assessed using qPCR, most cell lines expressed transcripts for CD13, CD147, and ABL2, whereas ACE2 mRNA was not detectable, and CD26 mRNA was only identified in EOL-1 cells. We also screened for drug effects on CoV-R expression. However, dexamethasone, vitamin D, and hydroxychloroquine did not exert substantial effects on the expression of CD13, CD26, or CD147 in the cells. Together, MC, BA, and EO express distinct CoV-R profiles. Whether these receptors mediate virus-cell interactions and thereby virus-induced inflammation remains unknown at present.
Collapse
Affiliation(s)
- Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Peter
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clemens Gstoettner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria (C.A.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria (C.A.)
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria (C.A.)
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, 75651 Paris, France;
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Lei Y, Guo X, Luo Y, Niu X, Xi Y, Xiao L, He D, Bian Y, Zhang Y, Wang L, Peng X, Wang Z, Chen G. Synovial microenvironment-influenced mast cells promote the progression of rheumatoid arthritis. Nat Commun 2024; 15:113. [PMID: 38168103 PMCID: PMC10761862 DOI: 10.1038/s41467-023-44304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mast cells are phenotypically and functionally heterogeneous, and their state is possibly controlled by local microenvironment. Therefore, specific analyses are needed to understand whether mast cells function as powerful participants or dispensable bystanders in specific diseases. Here, we show that degranulation of mast cells in inflammatory synovial tissues of patients with rheumatoid arthritis (RA) is induced via MAS-related G protein-coupled receptor X2 (MRGPRX2), and the expression of MHC class II and costimulatory molecules on mast cells are upregulated. Collagen-induced arthritis mice treated with a combination of anti-IL-17A and cromolyn sodium, a mast cell membrane stabilizer, show significantly reduced clinical severity and decreased bone erosion. The findings of the present study suggest that synovial microenvironment-influenced mast cells contribute to disease progression and may provide a further mast cell-targeting therapy for RA.
Collapse
Affiliation(s)
- Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Lianbo Xiao
- Department of Joint Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Li Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| |
Collapse
|
24
|
Kaag S, Lorentz A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023; 12:2602. [PMID: 37998337 PMCID: PMC10670325 DOI: 10.3390/cells12222602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Allergic diseases affect an estimated 30 percent of the world's population. Mast cells (MC) are the key effector cells of allergic reactions by releasing pro-inflammatory mediators such as histamine, lipid mediators, and cytokines/chemokines. Components of the daily diet, including certain fatty acids, amino acids, and vitamins, as well as secondary plant components, may have effects on MC and thus may be of interest as nutraceuticals for the prevention and treatment of allergies. This review summarizes the anti-inflammatory effects of dietary components on MC, including the signaling pathways involved, in in vitro and in vivo models. Butyrate, calcitriol, kaempferol, quercetin, luteolin, resveratrol, curcumin, and cinnamon extract were the most effective in suppressing the release of preformed and de novo synthesized mediators from MC or in animal models. In randomized controlled trials (RCT), vitamin D, quercetin, O-methylated epigallocatechin gallate (EGCG), resveratrol, curcumin, and cinnamon extract improved symptoms of allergic rhinitis (AR) and reduced the number of inflammatory cells in patients. However, strategies to overcome the poor bioavailability of these nutrients are an important part of current research.
Collapse
Affiliation(s)
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
25
|
Valent P, Sotlar K, Horny HP, Arock M, Akin C. World Health Organization Classification and Diagnosis of Mastocytosis: Update 2023 and Future Perspectives. Immunol Allergy Clin North Am 2023; 43:627-649. [PMID: 37758403 DOI: 10.1016/j.iac.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Experts of the European Competence Network on Mastocytosis (ECNM) and the American Initiative on Mast Cell Disorders have discussed and updated diagnostic criteria and the classification of mastocytosis, based on new insights in the field and data collected in recent years, mostly within ECNM registry projects in which studies on several thousand cases have been performed. Based on this proposal, the World Health Organization has updated its classification of mastocytosis. This article discusses the revised classification of mastocytosis in light of a rapidly moving field and the advent of new diagnostic parameters, new prognostication tools, and new therapies.
Collapse
Affiliation(s)
- Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Wäheringer Gürtel 18-20, A-1090 Vienna, Austria.
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria; Institute of Pathology, Ludwig Maximilians University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Platform of Molecular Analysis for Mastocytosis and Mast Cell Activation Syndromes (MCAS), Saint-Antoine Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Abstract
Mastocytosis is characterized by expansion and activation of clonally aberrant mast cells (MCs) in one or more organ systems. Inappropriate MC activation is a key finding in both allergy and mastocytosis; therefore, symptoms in both conditions show some degree of overlap. When mediator release is excessive and involves multiple systems, anaphylaxis may occur. In mastocytosis, the prevalence of atopy is similar to those of the general population, whereas the incidence of anaphylaxis is significantly higher. The purpose of this review is to discuss features of allergy and anaphylaxis as well as the principles of managing MC mediator release symptoms in mastocytosis.
Collapse
Affiliation(s)
- Theo Gulen
- Department of Respiratory Medicine and Allergy, K85, Karolinska University Hospital Huddinge, Stockholm, SE-14186, Sweden; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Mastocytosis Centre Karolinska, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
27
|
Gülen T. A Puzzling Mast Cell Trilogy: Anaphylaxis, MCAS, and Mastocytosis. Diagnostics (Basel) 2023; 13:3307. [PMID: 37958203 PMCID: PMC10647312 DOI: 10.3390/diagnostics13213307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Our knowledge of biology and mast cell (MC) function, as well as disorders associated with the pathologic activation of MCs, has evolved over the last few decades. Anaphylaxis, mast cell activation syndrome (MCAS), and mastocytosis are interrelated yet distinct conditions within the spectrum of mast cell activation disorders. Nevertheless, all three conditions can co-exist in one and the same patient, as pathologic MC activation is the key finding in all three. When mediator release is excessive and involves multiple systems, anaphylaxis and MCAS may occur. Furthermore, mastocytosis is a clonal disorder of MCs and often presents with anaphylaxis and MCAS. Nevertheless, in some cases, even the proliferative and accumulative features of MCs in mastocytosis can account for symptoms and disease progression. In each case, diagnosis can be only made when the diagnostic consensus criteria are fulfilled. The current article aims to provide a concise clinical update and pinpoint the main difficulties in diagnosing these puzzling disorders of MCs in medical practice.
Collapse
Affiliation(s)
- Theo Gülen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden;
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
- Mastocytosis Centre Karolinska, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
28
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
29
|
Schulman ES, Nishi H, Pelleg A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023; 14:1216580. [PMID: 37868982 PMCID: PMC10585249 DOI: 10.3389/fimmu.2023.1216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.
Collapse
Affiliation(s)
- Edward S. Schulman
- Division of Pulmonary, Critical Care and Allergy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| |
Collapse
|
30
|
Sbeih N, Bourguiba R, Hoyeau-Idrissi N, Launay JM, Callebert J, Canioni D, Sokol H, Hentgen V, Grateau G, Hermine O, Georgin-Lavialle S. Histamine elevation in familial Mediterranean fever: A study from the Juvenile Inflammatory Rheumatism cohort. Eur J Intern Med 2023; 116:89-95. [PMID: 37349205 DOI: 10.1016/j.ejim.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Familial Mediterranean Fever (FMF) is the most frequent monogenic autoinflammatory disease (AID). Some patients have persistent symptoms despite colchicine intake. Mast cells (MC) are innate immune cells involved in inflammatory conditions including AID. Their activation is responsible for various symptoms such as abdominal pain, bloating and pruritus. OBJECTIVE Our objective was to evaluate features of a systemic MC activation in FMF adult patients. METHODS FMF adult patients prospectively filled a MC activation survey and usual MC mediators (tryptase and histamine in whole blood, plasma and urine) were measured. They were compared with a healthy control group (HC) and a systemic mastocytosis (SM) group. When digestive biopsies were realized during follow-up, MC infiltration in digestive mucosa was analyzed in FMF, in comparison with SM, Crohn disease (CD) and normal biopsies. RESULTS Forty-four FMF patients, 44 HC and 44 SM patients were included. Thirty-one (70%) FMF patients had symptoms of mast cell activation, versus 14 (32%) in the HC group (p = 0.0006). Thirty (68%) FMF patients had at least one elevated MC mediator: mainly whole blood histamine, in 19 (43%) and urinary histamine, in 14 (32%), which were significantly higher than in HC subjects. MC infiltration was comparable in FMF digestive biopsies, biopsies of CD and normal biopsies but was lower than in SM biopsies. CONCLUSION FMF patients show frequent symptoms of MC activation and an increase of blood or urinary histamine never described before in this disease. This suggests an implication of MC and possibly basophils in FMF pathophysiology.
Collapse
Affiliation(s)
- Nabiha Sbeih
- Department of Internal Medicine, National Reference Centre for Auto-inflammatory Diseases and inflammatory Amyloidosis (CEREMAIA), Tenon Hospital, AP-HP, Paris, France; Sorbonne Université, Inserm U938, Paris, France; Laboratory of Molecular mechanisms of Hematological disorders and therapeutic implications, INSERM U1163 and CNRS ERL 8254, Fondation Imagine, Paris, France
| | - Rim Bourguiba
- Department of Internal Medicine, National Reference Centre for Auto-inflammatory Diseases and inflammatory Amyloidosis (CEREMAIA), Tenon Hospital, AP-HP, Paris, France; Sorbonne Université, Inserm U938, Paris, France
| | | | - Jean-Marie Launay
- Service de Biochimie et Biologie Moléculaire, INSERM U942, Hôpital Lariboisière et Université Paris Cité, AP-HP, Paris, France
| | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, INSERM U942, Hôpital Lariboisière et Université Paris Cité, AP-HP, Paris, France
| | - Danielle Canioni
- Laboratoire d'Anatomie-Pathologie, Hôpital Necker-Enfants Malades, AP-HP et Université Paris Cité, Paris, France
| | - Harry Sokol
- Service de Gastroentérologie et Nutrition, Hôpital Saint-Antoine, AP-HP, Paris, France et Sorbonne Université, Equipe AVENIR, Laboratoire INSERM U938, Paris, France; Equipe Interactions des bactéries commensales et probiotiques avec l'hôte, MICALIS, INRA, Jouy en Josas, France
| | - Véronique Hentgen
- Department of General Pediatrics, André Mignot Hospital, National Reference Centre for Auto-inflammatory Diseases and inflammatory Amyloidosis (CEREMAIA), Versailles, France
| | - Gilles Grateau
- Department of Internal Medicine, National Reference Centre for Auto-inflammatory Diseases and inflammatory Amyloidosis (CEREMAIA), Tenon Hospital, AP-HP, Paris, France
| | - Olivier Hermine
- Centre de Référence des Mastocytoses, Service d'Hématologie adulte, Université Paris Cité, Hôpital Necker-Enfants malades, AP-HP, Paris, France; Laboratory of Molecular mechanisms of Hematological disorders and therapeutic implications, INSERM U1163 and CNRS ERL 8254, Fondation Imagine, Paris, France
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, National Reference Centre for Auto-inflammatory Diseases and inflammatory Amyloidosis (CEREMAIA), Tenon Hospital, AP-HP, Paris, France; Sorbonne Université, Inserm U938, Paris, France.
| |
Collapse
|
31
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
32
|
Valent P, Hoermann G, Bonadonna P, Hartmann K, Sperr WR, Broesby-Olsen S, Brockow K, Niedoszytko M, Hermine O, Chantran Y, Butterfield JH, Greiner G, Carter MC, Sabato V, Radia DH, Siebenhaar F, Triggiani M, Gülen T, Alvarez-Twose I, Staudinger T, Traby L, Sotlar K, Reiter A, Horny HP, Orfao A, Galli SJ, Schwartz LB, Lyons JJ, Gotlib J, Metcalfe DD, Arock M, Akin C. The Normal Range of Baseline Tryptase Should Be 1 to 15 ng/mL and Covers Healthy Individuals With HαT. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3010-3020. [PMID: 37572755 DOI: 10.1016/j.jaip.2023.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Physiological levels of basal serum tryptase vary among healthy individuals, depending on the numbers of mast cells, basal secretion rate, copy numbers of the TPSAB1 gene encoding alpha tryptase, and renal function. Recently, there has been a growing debate about the normal range of tryptase because individuals with the hereditary alpha tryptasemia (HαT) trait may or may not be symptomatic, and if symptomatic, uncertainty exists as to whether this trait directly causes clinical phenotypes or aggravates certain conditions. In fact, most HαT-positive cases are regarded as asymptomatic concerning mast cell activation. To address this point, experts of the European Competence Network on Mastocytosis (ECNM) and the American Initiative in Mast Cell Diseases met at the 2022 Annual ECNM meeting and discussed the physiological tryptase range. Based on this discussion, our faculty concluded that the normal serum tryptase range should be defined in asymptomatic controls, inclusive of individuals with HαT, and based on 2 SDs covering the 95% confidence interval. By applying this definition in a literature screen, the normal basal tryptase in asymptomatic controls (HαT-positive persons included) ranges between 1 and 15 ng/mL. This definition should avoid overinterpretation, unnecessary referrals, and unnecessary anxiety or anticipatory fear of illness in healthy individuals.
Collapse
Affiliation(s)
- Peter Valent
- Division of Haematology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Wolfgang R Sperr
- Division of Haematology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Olivier Hermine
- Service d'hématologie, Imagine Institute Université de Paris, Centre national de référence des mastocytoses, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Yannick Chantran
- Department of Biological Immunology, Saint-Antoine Hospital, Paris Sorbonne University, Paris, France
| | | | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology-Allergology-Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Deepti H Radia
- Guy's & St. Thomas' National Health Service (NHS) Foundation Trust, Guy's Hospital, London, UK
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology (IA), Berlin, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Theo Gülen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| | - Thomas Staudinger
- Department of Internal Medicine I, Intensive Care Unit, Medical University of Vienna, Vienna, Austria
| | - Ludwig Traby
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL), CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Md
| | - Jason Gotlib
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, Calif
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Paris Sorbonne University, Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
33
|
Shekhawat RS, Meshram VP, Rao M, Shedge R, Panwar R, Rathore M, Kanchan T. Further explorations into the role of mast cells in deaths associated with fatal asphyxia: an immunohistochemical study utilizing CD 117 marker. Forensic Sci Int 2023; 350:111689. [PMID: 37478731 DOI: 10.1016/j.forsciint.2023.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 07/23/2023]
Abstract
Asphyxia-related deaths have always been a challenging task in the speciality of forensic pathology. Apart from helpful macroscopical signs (e.g., strangulation mark, cyanosis, petechial haemorrhage, and lung oedema), recent literature indicates that prolonged asphyxia is sufficient to induce an increase in mast cells (MC). Inflammatory cells migrate from the bone marrow to the lungs, aiding in the diagnosis of fatal asphyxial deaths. HIF1-α, a key regulator protein, is released from lung tissue capillaries during catastrophic hypoxia circumstances, as previously demonstrated in immunohistochemistry (IHC) research. The present study analyzed lung samples from 164 medico-legal autopsy cases, including 57 asphyxia/hypoxia deaths and 107 controls (non-asphyxial deaths). Peribronchial, perivascular and perialveolar MCs were detected using CD117 antibody, and the average of MCs in each of these locations was noted in each case. The results indicated a statistically significant increase in peribronchial and perialveolar mast cells (MC) in fatal asphyxial deaths, including those caused by hanging, drowning, or postural asphyxia. Peri-bronchial MC in lung sections of asphyxial deaths were in the range of 0.2-5.4 and in non-asphyxial samples were in the range of 0.0-2.2. Peri-alveolar MCs in lung sections of asphyxial deaths were in the range of 0.0-0.6 and in non-asphyxial samples were in the range of 0.0-0.2. Our data suggest that mast cells (MC) play an important role in fatal hypoxia-related mortality and CD 117 may be a reliable marker for detection of mast cells in asphyxial deaths. It could be very beneficial to forensic pathologists tasked with differentiating fatal asphyxia fatalities from other causes of death.
Collapse
Affiliation(s)
- Raghvendra Singh Shekhawat
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur 342005, India.
| | - Vikas P Meshram
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India
| | - Meenakshi Rao
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Rutwik Shedge
- Department of Forensic Science, National Forensic Sciences University, Tripura, India
| | - Rahul Panwar
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mohini Rathore
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Tanuj Kanchan
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
34
|
Nakamura H, Matsuzaki T, Ito KR, Nakagawa R, Asano LM, Nishikido H, Haga H, Kataoka TR. Possible roles of human mast cells in the formation of xanthelasma palpebrarum. Pathol Int 2023; 73:406-412. [PMID: 37341622 DOI: 10.1111/pin.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Cutaneous xanthoma consist of foam cells that originate from monocytes or macrophages and accumulate in perivascular areas of the skin. The main component of these cells is oxidized low-density lipoprotein (oxLDL). In this study, we show that mast cells surround the accumulated foam cells, suggesting their involvement in xanthoma formation. Coculture of THP-1 or U937 monocytes with the human mast cell line LUVA upregulated their uptake of oxLDL. Positive staining for intracellular cell adhesion molecule-1 (ICAM-1) at the borders between mast cells and foam cells was seen in pathological specimens of the most common cutaneous xanthoma, xanthelasma palpebrarum, and in cocultures. In the latter, ICAM1 messenger RNA levels were upregulated. The administration of anti-ICAM-1 blocking antibody inhibited the increase in oxLDL uptake by THP-1 or U937 monocytes cocultured with LUVA. Taken together, these results suggest a role for mast cells in the formation of xanthelasma palpebrarum and the involvement of ICAM-1 in this process.
Collapse
Affiliation(s)
- Hiroya Nakamura
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Takashi Matsuzaki
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Ken R Ito
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Ryota Nakagawa
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Lurica M Asano
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Hinako Nishikido
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| |
Collapse
|
35
|
O'Sullivan JA, Youngblood BA, Schleimer RP, Bochner BS. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin Immunol 2023; 69:101799. [PMID: 37413923 PMCID: PMC10528103 DOI: 10.1016/j.smim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
36
|
|
37
|
Wu T, Yan S, Yeh YW, Fang Y, Xiang Z. FcγR-dependent apoptosis regulates tissue persistence of mucosal and connective tissue mast cells. Eur J Immunol 2023; 53:e2250221. [PMID: 37137469 DOI: 10.1002/eji.202250221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Rodent mast cells can be divided into two major subtypes: the mucosal mast cell (MMC) and the connective tissue mast cell (CTMC). A decade-old observation revealed a longer lifespan for CTMC compared with MMC. The precise mechanisms underlying such differential tissue persistence of mast cell subsets have not been described. In this study, we have discovered that mast cells expressing only one receptor, either FcγRIIB or FcγRIIIA, underwent caspase-independent apoptosis in response to IgG immune complex treatment. Lower frequencies of CTMC in mice that lacked either FcγRIIB or FcγRIIIA compared with WT mice were recorded, especially in aged mice. We proposed that this paradigm of FcγR-mediated mast cell apoptosis could account for the more robust persistence of CTMC, which express both FcγRIIB and FcγRIIIA, than MMC, which express only FcγRIIB. Importantly, we reproduced these results using a mast cell engraftment model, which ruled out possible confounding effects of mast cell recruitment or FcγR expression by other cells on mast cell number regulation. In conclusion, our work has uncovered an FcγR-dependent mast cell number regulation paradigm that might provide a mechanistic explanation for the long-observed differential mast cell subset persistence in tissues.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Shirong Yan
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yu Fang
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Panwar R, Shekhawat RS, Shukla KK, Rao M, Rathore M, Kanchan T. Quantitative estimation of TNF-α and IL-3 by using ELISA from human lung tissue in fatal asphyxial deaths. J Forensic Leg Med 2023; 98:102559. [PMID: 37453342 DOI: 10.1016/j.jflm.2023.102559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Asphyxia-related deaths have always been a challenging task in the specialty of forensic pathology. Apart from helpful macroscopical signs (e.g., strangulation marks, cyanosis, petechial haemorrhage, and lung edema), recent literature indicates that prolonged asphyxia is sufficient to induce an increase in mast cells (MC). Inflammatory cells migrate from the bone marrow to the lungs, aiding in the diagnosis of fatal asphyxial death. The present study analyzed human lung tissue samples from 90 medico-legal autopsy cases, including 45 asphyxial deaths and 45 controls (non-asphyxial deaths). The cases ranged from 2 to 68 years, with a mean age of 33.23 years. In 90 cases, 74 cases were of males, and 16 were of females. Human lung tissue samples were analyzed by using the sandwich ELISA method. The results indicated a statistically significant increase in TNF-α and IL-3 concentration in fatal asphyxial deaths, including those caused by hanging, drowning, and smothering. Mean ± SD in asphyxial and non-asphyxial cases for the TNF-α and IL-3 concentration statistically analysed. In asphyxial cases, the average IL-3 concentration (Conc.) was 1558.50 ± 350.53 pg/ml, and the average TNF-α concentration (Conc.) was 499.75 ± 479.41 pg/ml. In contrast, in non-asphyxial cases, the average IL-3 concentration (Conc.) was found to be 849.73 ± 484.99 pg/ml, and the average TNF-α concentration (Conc.) was 208.08 ± 81.23 pg/ml. The mean change in IL-3 and TNF-α (Conc.) values are found to significant (<0.01) in asphyxial cases as compared to non-asphyxial cases. The ROC (Receiver operating characteristic curve) analysis revealed that TNF-α (AUC = 0.89) and IL-3 (AUC = 0.87) concentration (conc.) were stronger predictors of asphyxial deaths with an optimal cut-off value of 455.20 pg/ml for TNF-alpha and 1700.62 pg/ml for IL-3 respectively. Our findings imply that mast cells (MC) are critical in fatal hypoxia-related mortality and that TNF-α and IL-3 can be reliable markers for detecting mast cells in asphyxial deaths. It could be very beneficial to forensic pathologists tasked with differentiating fatal asphyxial fatalities from other causes of death.
Collapse
Affiliation(s)
- Rahul Panwar
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
| | - Raghvendra Singh Shekhawat
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
| | - Kamla Kant Shukla
- Department of Trauma and Emergency Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| | - Meenakshi Rao
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Jodhpur, India.
| | - Mohini Rathore
- Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| | - Tanuj Kanchan
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
| |
Collapse
|
39
|
Lyons JJ, Farkas H, Germenis AE, Rijavec M, Smith TD, Valent P. Genetic Variants Leading to Urticaria and Angioedema and Associated Biomarkers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2286-2301. [PMID: 37263349 DOI: 10.1016/j.jaip.2023.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Advances in next generation sequencing technologies, as well as their expanded accessibility and clinical use over the past 2 decades, have led to an exponential increase in the number of identified single gene disorders. Among these are primary atopic disorders-inborn errors of immunity resulting in severe allergic phenotypes as a primary presenting feature. Two cardinal aspects of type I immediate hypersensitivity allergic reactions are hives and angioedema. Mast cells (MCs) are frequent primary drivers of these symptoms, but other cells have also been implicated. Even where MC degranulation is believed to be the cause, mediator-induced symptoms may greatly vary among individuals. Angioedema-particularly in the absence of hives-may also be caused by hereditary angioedema conditions resulting from aberrant regulation of contact system activation and excessive bradykinin generation or impairment of vascular integrity. In these patients, swelling can affect unpredictable locations and fail to respond to MC-directed therapies. Genetic variants have helped delineate key pathways in the etiology of urticaria and nonatopic angioedema and led to the development of targeted therapies. Herein, we describe the currently known inherited and acquired genetic causes for these conditions, highlight specific features in their clinical presentations, and discuss the benefits and limitations of biomarkers that can help distinguish them.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, School of Medicine, University of Thessaly, Larissa, Greece
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tukisa D Smith
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
41
|
Riquelme-Neira R, Walker-Vergara R, Fernández-Blanco JA, Vergara P. IL-10 Modulates the Expression and Activation of Pattern Recognition Receptors in Mast Cells. Int J Mol Sci 2023; 24:9875. [PMID: 37373041 DOI: 10.3390/ijms24129875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Mast cells (MCs) are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, and cancer, among others. MCs identify microorganisms by pattern recognition receptors (PRRs), activating a secretory response. Interleukin (IL)-10 has been described as an important modulator of MC responses; however, its role in PRR-mediated activation of MC is not fully understood. We analyzed the activation of TLR2, TLR4, TLR7 and Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mucosal-like MCs (MLMCs) and peritoneum-derived cultured MCs (PCMCs) from IL-10-/- and wild-type (WT) mice. IL-10-/- mice showed a reduced expression of TLR4 and NOD2 at week 6 and TLR7 at week 20 in MLMC. In MLMC and PCMC, TLR2 activation induced a reduced secretion of IL-6 and TNFα in IL-10-/- MCs. TLR4- and TLR7-mediated secretion of IL-6 and TNFα was not detected in PCMCs. Finally, no cytokine release was induced by NOD2 ligand, and responses to TLR2 and TLR4 were lower in MCs at 20 weeks. These findings indicate that PRR activation in MCs depends on the phenotype, ligand, age, and IL-10.
Collapse
Affiliation(s)
- Roberto Riquelme-Neira
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Romina Walker-Vergara
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
| | - Joan Antoni Fernández-Blanco
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Patrocinio Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
42
|
Kaszuba A, Sławińska M, Żółkiewicz J, Sobjanek M, Nowicki RJ, Lange M. Mastocytosis and Skin Cancer: The Current State of Knowledge. Int J Mol Sci 2023; 24:9840. [PMID: 37372988 DOI: 10.3390/ijms24129840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Mastocytosis is a heterogeneous group of diseases associated with excessive proliferation and accumulation of mast cells in different organs. Recent studies have demonstrated that patients suffering from mastocytosis face an increased risk of melanoma and non-melanoma skin cancer. The cause of this has not yet been clearly identified. In the literature, the potential influence of several factors has been suggested, including genetic background, the role of cytokines produced by mast cells, iatrogenic and hormonal factors. The article summarizes the current state of knowledge regarding the epidemiology, pathogenesis, diagnosis, and management of skin neoplasia in mastocytosis patients.
Collapse
Affiliation(s)
- Agnieszka Kaszuba
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Martyna Sławińska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Jakub Żółkiewicz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| |
Collapse
|
43
|
Atiakshin D, Kostin A, Volodkin A, Nazarova A, Shishkina V, Esaulenko D, Buchwalow I, Tiemann M, Noda M. Mast Cells as a Potential Target of Molecular Hydrogen in Regulating the Local Tissue Microenvironment. Pharmaceuticals (Basel) 2023; 16:817. [PMID: 37375765 DOI: 10.3390/ph16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Anna Nazarova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Dmitry Esaulenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 816-0811, Japan
| |
Collapse
|
44
|
Tyczewska M, Sujka-Kordowska P, Szyszka M, Jopek K, Blatkiewicz M, Malendowicz LK, Rucinski M. Transcriptome Profile of the Rat Adrenal Gland: Parenchymal and Interstitial Cells. Int J Mol Sci 2023; 24:ijms24119159. [PMID: 37298112 DOI: 10.3390/ijms24119159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The homeostasis of the adrenal gland plays a decisive role in its proper functioning, both in non-stressful conditions and under the influence of various types of stress. This consists of interactions between all types of cells that make up the organ, including parenchymal and interstitial cells. The amount of available information on this subject in the rat adrenal glands under non-stressful conditions is insufficient; the aim of the research was to determine the expression of marker genes for rat adrenal cells depending on their location. The material for the study consisted of adrenal glands taken from intact adult male rats that were separated into appropriate zones. Transcriptome analysis by means of Affymetrix® Rat Gene 2.1 ST Array was used in the study, followed by real-time PCR validation. Expression analysis of interstitial cell marker genes revealed both the amount of expression of these genes and the zone in which they were expressed. The expression of marker genes for fibroblasts was particularly high in the cells of the ZG zone, while the highest expression of specific macrophage genes was observed in the adrenal medulla. The results of this study, especially with regard to interstitial cells, provide a so far undescribed model of marker gene expression of various cells, both in the cortex and medulla of the sexually mature rat adrenal gland. The interdependence between parenchymal and interstitial cells creates a specific microenvironment that is highly heterogeneous within the gland with respect to some of the interstitial cells. This phenomenon most likely depends on the interaction with the differentiated parenchymal cells of the cortex, as well as the medulla of the gland.
Collapse
Affiliation(s)
- Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| |
Collapse
|
45
|
Parente R, Giudice V, Cardamone C, Serio B, Selleri C, Triggiani M. Secretory and Membrane-Associated Biomarkers of Mast Cell Activation and Proliferation. Int J Mol Sci 2023; 24:ijms24087071. [PMID: 37108232 PMCID: PMC10139107 DOI: 10.3390/ijms24087071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Mast cells (MCs) are immune cells distributed in many organs and tissues and involved in the pathogenesis of allergic and inflammatory diseases as a major source of pro-inflammatory and vasoactive mediators. MC-related disorders are heterogeneous conditions characterized by the proliferation of MC within tissues and/or MC hyper-reactivity that leads to the uncontrolled release of mediators. MC disorders include mastocytosis, a clonal disease characterized by tissue MC proliferation, and MC activation syndromes that can be primary (clonal), secondary (related to allergic disorders), or idiopathic. Diagnosis of MC disorders is difficult because symptoms are transient, unpredictable, and unspecific, and because these conditions mimic many other diseases. Validation of markers of MC activation in vivo will be useful to allow faster diagnosis and better management of MC disorders. Tryptase, being the most specific MC product, is a widely used biomarker of proliferation and activation. Other mediators, such as histamine, cysteinyl leukotrienes, and prostaglandin D2, are unstable molecules and have limitations in their assays. Surface MC markers, detected by flow cytometry, are useful for the identification of neoplastic MC in mastocytosis but, so far, none of them has been validated as a biomarker of MC activation. Further studies are needed to identify useful biomarkers of MC activation in vivo.
Collapse
Affiliation(s)
- Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Valentina Giudice
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Chiara Cardamone
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Bianca Serio
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Selleri
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
46
|
Woźniak E, Owczarczyk-Saczonek A, Lange M, Czarny J, Wygonowska E, Placek W, Nedoszytko B. The Role of Mast Cells in the Induction and Maintenance of Inflammation in Selected Skin Diseases. Int J Mol Sci 2023; 24:ijms24087021. [PMID: 37108184 PMCID: PMC10139379 DOI: 10.3390/ijms24087021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Under physiological conditions, skin mast cells play an important role as guardians that quickly react to stimuli that disturb homeostasis. These cells efficiently support, fight infection, and heal the injured tissue. The substances secreted by mast cells allow for communication inside the body, including the immune, nervous, and blood systems. Pathologically non-cancerous mast cells participate in allergic processes but also may promote the development of autoinflammatory or neoplastic disease. In this article, we review the current literature regarding the role of mast cells in autoinflammatory, allergic, neoplastic skin disease, as well as the importance of these cells in systemic diseases with a pronounced course with skin symptoms.
Collapse
Affiliation(s)
- Ewelina Woźniak
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Justyna Czarny
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Ewa Wygonowska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
- Invicta Fertility and Reproductive Centre, Molecular Laboratory, 81-740 Sopot, Poland
| |
Collapse
|
47
|
Häder T, Molderings GJ, Klawonn F, Conrad R, Mücke M, Sellin J. Cluster-Analytic Identification of Clinically Meaningful Subtypes in MCAS: The Relevance of Heat and Cold. Dig Dis Sci 2023:10.1007/s10620-023-07921-5. [PMID: 37029308 PMCID: PMC10352424 DOI: 10.1007/s10620-023-07921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Mast cell activation syndrome (MCAS) is a clinically heterogeneous disease with allergy-like symptoms and abdominal complaints. Its etiology is only partially understood and it is often overlooked. AIMS The aim of this study was to identify subgroups of MCAS patients to facilitate diagnosis and allow a personalized therapy. METHODS Based on data from 250 MCAS patients, hierarchical and two-step cluster analyses as well as association analyses were performed. The data used included data from a MCAS checklist asking about symptoms and triggers and a set of diagnostically relevant laboratory parameters. RESULTS Using a two-step cluster analysis, MCAS patients could be divided into three clusters. Physical trigger factors were particularly decisive for the classification as they showed remarkable differences between the three clusters. Cluster 1, labeled high responders, showed high values for the triggers heat and cold, whereas cluster 2, labeled intermediate responders, presented with high values for the trigger heat and low values for cold. The third cluster, labeled low responders, did not react to thermal triggers. The first two clusters showed more divers clinical symptoms especially with regard to dermatological and cardiological complaints. Subsequent association analyses revealed relationships between triggers and clinical complaints: Abdominal discomfort is mainly triggered by histamine consumption, dermatological discomfort by exercise, and neurological symptoms are related to physical exertion and periods of starvation. The reasons for the occurrence of cardiological complaints are manifold and triggers for respiratory complaints still need better identification. CONCLUSION Our study identified three distinct clusters on the basis of physical triggers, which also differ significantly in their clinical symptoms. A trigger-related classification can be helpful in clinical practice for diagnosis and therapy. Longitudinal studies should be conducted to further understand the relationship between triggers and symptoms.
Collapse
Affiliation(s)
- Tinus Häder
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | | | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbuettel, Germany
| | - Rupert Conrad
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Martin Mücke
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Sellin
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany.
- Center for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
48
|
Atiakshin D, Patsap O, Kostin A, Mikhalyova L, Buchwalow I, Tiemann M. Mast Cell Tryptase and Carboxypeptidase A3 in the Formation of Ovarian Endometrioid Cysts. Int J Mol Sci 2023; 24:ijms24076498. [PMID: 37047472 PMCID: PMC10095096 DOI: 10.3390/ijms24076498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Olga Patsap
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | | | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | |
Collapse
|
49
|
Martínez-Aguilar LM, Ibarra-Sánchez A, Guerrero-Morán DJ, Macías-Silva M, Muñoz-Bello JO, Padilla A, Lizano M, González-Espinosa C. Lysophosphatidylinositol Promotes Chemotaxis and Cytokine Synthesis in Mast Cells with Differential Participation of GPR55 and CB2 Receptors. Int J Mol Sci 2023; 24:ijms24076316. [PMID: 37047288 PMCID: PMC10094727 DOI: 10.3390/ijms24076316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1β mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Lizbeth Magnolia Martínez-Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Daniel José Guerrero-Morán
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jesús Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
| | - Alejandro Padilla
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universtiaria, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
- Centro de Investigación sobre Envejecimiento (CIE), Cinvestav, Unidad Sede Sur. Calzada de los Tenorios No. 235 Col. Granjas Coapa, Tlalpan, Mexico City 14400, Mexico
- Correspondence: ; Tel.: +52-5554-832800
| |
Collapse
|
50
|
Hauser KA, Garvey CN, Popovic M, Grayfer L. Biology of amphibian granulocytes - From evolutionary pressures to functional consequences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104623. [PMID: 36563918 DOI: 10.1016/j.dci.2022.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Granulocyte-lineage cells are important innate immune effectors across all vertebrates. Named for conspicuous secretory granules, granulocytes have historically been studied for their antimicrobial roles. Although versions of these cells are found in all vertebrate species examined to date, disparate environmental and physiological pressures acting on distinct vertebrate classes have shaped many of the facets dictating granulocyte biology. Immune pressures further determine granulopoietic constraints, ultimately governing granulocyte functions. For amphibians that inhabit pathogen-rich aquatic environments for some or all their lives, their unique granulocyte biologies satisfy many of their antimicrobial needs. Amphibians also occupy an intermediate position in the evolution of vertebrate immune systems, using combinations of primitive (e.g., subcapsular liver) and more recently evolved (e.g., bone marrow) tissue sites for hematopoiesis and specifically, granulopoiesis. The last decade of research has revealed vertebrate granulocytes in general, and amphibian granulocytes in particular, are more complex than originally assumed. With dynamic leukocyte phenotypes, granulocyte-lineage cells are being acknowledged for their multifaceted roles beyond immunity in other physiological processes. Here we provide an overview of granulopoiesis in amphibians, highlight key differences in these processes compared to higher vertebrates, and identify open questions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Christina N Garvey
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States.
| |
Collapse
|