1
|
Li L, Lin Y, Liu K, Huang R, Wen W, Huang Y, Liu M, Zhou C, Ding S, Luo B. Multiple-Effect Combined Hydrogels: "Temporal Regulation" Treatment of Osteosarcoma-Associated Bone Defects with Switchable Hyperthermia and Bioactive Agents. Adv Healthc Mater 2024; 13:e2402505. [PMID: 39233538 DOI: 10.1002/adhm.202402505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Achieving the clinically staged treatment of osteosarcoma-associated bone defects encounters the multiple challenges of promptly removing postoperative residual tumor cells and bacterial infection, followed by bone reconstruction. Herein, a core/shell hydrogel with multiple-effect combination is designed to first exert antitumor and antibacterial activities and then promote osteogenesis. Specifically, doxorubicin (DOX) is loaded by magnesium-iron-based layered double hydroxide (LDH) to prepare LDOX, which is introduced into a thermo-sensitive hydrogel to serve as an outer shell of the core/shell hydrogel, meanwhile, LDH-contained liquid crystal hydrogel, abbreviated as LCgel-L, is served as an inner core. At the early stage of treatment, the dissociation of the outer shell triggered by moderate hyperthermia led to the thermo-sensitive release of LDOX, which can be targeted for the release of DOX within tumor cells, thereby promptly removing postoperative residual tumor cells based on the synergistic effect of photothermal therapy (PTT) and DOX, and postoperative bacterial infection can also be effectively prevented by PTT simultaneously. More importantly, the dissociation of the outer shell prompted the full exposure of the inner core, which will exert osteogenic activity based on the synergy of liquid crystal hydrogel as well as LDH-induced mild hyperthermia and ion effects, thereby enabling "temporal regulation" treatment of osteosarcoma-associated bone defects. This study provides a valuable insight for the development of osteosarcoma-associated bone repair materials.
Collapse
Affiliation(s)
- Lin Li
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Yating Lin
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Kun Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Runshan Huang
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangzhou, 510632, P. R. China
| | - Mingxian Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Changren Zhou
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Shan Ding
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Binghong Luo
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| |
Collapse
|
2
|
Chen S, Lai J, Chen J, Zheng L, Wang M. 3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration. Int J Biol Macromol 2024; 283:137193. [PMID: 39500434 DOI: 10.1016/j.ijbiomac.2024.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Surgical resection is an efficient treatment for cancerous tissues and uterine fibroids in the women uterus. However, the insufficiency of clinical interventions could result in tumor recurrence, and the defective tissues remained would cause intrauterine adhesions (IUAs) and further affect reproduction capacity. In this study, 3D printed hydrogel/poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short) core/shell scaffolds with NIR-tuned doxorubicin hydrochloride (DOX) and estradiol (E2) dual release were designed and fabricated for cancer therapy and uterine regeneration. Gelatin (Gel) and DOX were homogeneously mixed and then 3D printed to form Gel-DOX scaffolds. Gel-DOX scaffolds were then immersed in PTMC-PDA@E2 solution to fabricate Gel-DOX/PTMC-PDA@E2 core/shell scaffolds. Consequently, Gel-DOX/PTMC-PDA@E2 scaffolds could release DOX and E2 in a chronological manner, firstly delivering DOX assisted by phototherapy (PTT) to effectively kill Hela cells and then sustainably releasing E2 to promote uterine tissue regeneration. In vitro experiments showed that core/shell scaffolds exhibited excellent anticancer efficiency through the synergy of DOX release and hyperthermia ablation. Moreover, E2 could be sustainably released for over 28 days in vitro to promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). The novel Gel-DOX/PTMC-PDA@E2 core/shell scaffolds have therefore exhibited potential promise for the treatment of cancer therapy and uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jiahui Lai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jizhuo Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Liwu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong Special Administrative Region of China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Salajegheh A, Yahyaabadi FY, Yazdi F. Low level laser therapy and rheumatoid arthritis: a systematic review and meta-analysis study. Eur J Transl Myol 2024; 34. [PMID: 39574241 DOI: 10.4081/ejtm.2024.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 12/19/2024] Open
Abstract
This systematic review and meta-analysis aimed to evaluate the efficacy of Low-Level Laser Therapy (LLLT) in the treatment of Rheumatoid Arthritis (RA), focusing on its effects on pain relief, grip strength, and morning stiffness. A comprehensive search was conducted across PubMed, Scopus, and Web of Science, yielding 3,111 articles. After eliminating duplicates and screening titles and abstracts, 94 full-text articles were assessed, and 23 studies met the eligibility criteria for inclusion in the systematic review. Of these, 22 studies were included in the meta-analysis. Data were extracted and analyzed using a random-effects model, with pooled Mean Differences (MD) calculated for the primary outcomes. The meta-analysis revealed that LLLT did not significantly reduce pain compared to placebo (MD = 0.00, 95% CI [-0.09, 0.09], p = 0.97). However, LLLT significantly improved grip strength (MD = -12.38, 95% CI [-17.42, -7.34], p < 0.01) and reduced morning stiffness (MD = -0.84, 95% CI [-1.33, -0.36], p < 0.01), despite substantial heterogeneity in these outcomes. LLLT shows promise in improving grip strength and reducing morning stiffness in RA patients, though it does not significantly impact pain relief. These findings highlight the potential role of LLLT as an adjunctive treatment for RA, with further research needed to optimize treatment protocols and clarify underlying mechanisms.
Collapse
Affiliation(s)
- Amirali Salajegheh
- Department of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran.
| | | | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman.
| |
Collapse
|
4
|
Mohammadzadeh E, Amiri AH, Fekrazad R, Leitgeb RA, Mayr W, Ezzati K. The Effect of Photobiomodulation on Bone Mineral Density, Serum Vitamin D, and Bone Formation Markers in Individuals with Complete Spinal Cord Injuries with Osteoporosis. Photobiomodul Photomed Laser Surg 2024; 42:693-700. [PMID: 39358889 DOI: 10.1089/photob.2023.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Study design: A quasi-experimental study utilized a matched-pair design, administering photobiomodulation at four-sites on one side of the body and assigning control to the other side at corresponding sites. Objectives: This study aimed to assess photobiomodulation treatment effects on bone mineral density (BMD) measurement using dual-energy X-ray-absorptiometry in individuals with complete spinal cord injury (C.SCI) and osteoporosis. Methods: Eight patients received treatment at four-sites: forearm-mid-distal (MID), proximal-femur, distal-femur, and proximal-tibia, totaling 32 sites. Using an 830 nm gallium-aluminum-arsenide semiconductor laser irradiation was administered three times weekly for 8 weeks. Different doses (energy density) were determined depending on bone depth from skin surface, as assessed by sonography and adjusted through irradiation time to be 8, 10, and 12 J/cm2 for depths <1 cm, between 1 and 1.5 cm, and >1.5 cm, respectively, using 200 mW power to deliver the optimal isodose of laser at each depth of bone within each therapeutic site. BMD was measured at baseline, week 8 of treatment, and week 15 of follow-up. Serum 25-(OH)-vitamin D and bone formation markers including osteocalcin and bone-alkaline-phosphatase (B-ALP) were also assessed at baseline and week 8 of treatment. Results: Significant increases in BMD were noted in proximal-femur and forearm-MID at both week 8 and week 15. Serum 25-(OH)-vitamin D levels significantly increased after treatment. However, no notable changes were observed in distal-femur and proximal-tibia BMD or in osteocalcin and B-ALP levels. Conclusions: Photobiomodulation (830 nm) laser demonstrated efficacy in improving BMD at proximal-femur and forearm-MID in individuals with C.SCI. Moreover, the observed positive influence on vitamin D levels suggests a potential photobiomodulation role, warranting further investigation.
Collapse
Affiliation(s)
- Esmaeil Mohammadzadeh
- Center for Medical Physics and Biomedical Engineering of Medical, University of Vienna, Vienna, Austria
| | - Aref Hosseinian Amiri
- Faculty of Medicine, Department of Rheumatology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Fekrazad
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education, and Research Network (USERN), Tehran, Iran
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering of Medical, University of Vienna, Vienna, Austria
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering of Medical, University of Vienna, Vienna, Austria
| | - Kamran Ezzati
- Poorsina Hospital, Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Al-Timimi Z. Comparative Effectiveness of Diode Laser Therapy and Topical Turmeric Extract Ointment in Promoting Healing of Wounds in a Murine Model. INT J LOW EXTR WOUND 2024:15347346241292127. [PMID: 39469933 DOI: 10.1177/15347346241292127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The intricate biological process of wound healing is influenced by a wide range of therapeutic techniques. In this work, the effects of topical turmeric extract ointment and diode laser therapy on wound healing in a mouse model were investigated. Out of the sixty mice, three groups of twenty male mice each were created. Three groups received treatment: the first was a control group that got no treatment; the second group received topical application of 5% curcumin twice a day; and the third group received diode laser therapy, which involved direct laser beam therapy for five minutes a day at an output power of 100 mW at an 810 nm wavelength. Over the course of two weeks, the study examined histological changes and wound closure rates. On days 0 through 14, the wound area was measured with digital calipers to provide quantifiable statistics about the process of healing. In histological analyses, epithelializations, and collagen deposition, in addition to inflammatory cells, were investigated using hematoxylin and eosin staining. It was demonstrated by comparing the outcomes to those of a control group that diode laser therapy and turmeric extract ointment are both successful therapeutic options. The results demonstrate that different therapies, while with differing degrees of effectiveness, greatly quicken the healing process of wounds. According to these results, topical turmeric extract ointment could be used as an additional or supporting therapy to aid in the healing of wounds during medical treatments.
Collapse
Affiliation(s)
- Zahra Al-Timimi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq
| |
Collapse
|
6
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Pasternak-Mnich K, Kujawa J, Agier J, Kozłowska E. Impact of photobiomodulation therapy on pro-inflammation functionality of human peripheral blood mononuclear cells - a preliminary study. Sci Rep 2024; 14:23111. [PMID: 39367102 PMCID: PMC11452683 DOI: 10.1038/s41598-024-74533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Research into the efficacy of photobiomodulation therapy (PBMT) in reducing inflammation has been ongoing for years, but standards for irradiation methodology still need to be developed. This study aimed to test whether PBMT stimulates in vitro human peripheral blood mononuclear cells (PBMCs) to synthesize pro-inflammatory cytokines, including chemokines. PBMCs were irradiated with laser radiation at two wavelengths simultaneously (λ = 808 nm in continuous emission and λ = 905 nm in pulsed emission). The laser radiation energy was dosed in one dose as a whole (5 J, 15 J, 20 J) or in a fractionated way (5 J + 15 J and 15 J + 5 J) with a frequency of 500, 1,500 and 2,000 Hz. The surface power densities were 177, 214 and 230 mW/cm2, respectively. A pro-inflammatory effect was observed at both the transcript and protein levels for IL-1β after PBMT at the energy doses 5 J and 20 J (ƒ=500 Hz) and only at the transcript level after application of PBMT at energy doses of 20 J (ƒ= 1,500; ƒ=2,000 Hz) and 5 + 15 J (ƒ=500 Hz). An increase in CCL2 and CCL3 mRNA expression was observed after PBMT at 5 + 15 J (ƒ=1,500 Hz) and 15 + 5 J (ƒ=2,000 Hz) and CCL3 concentration after application of an energy dose of 15 J (frequency of 500 Hz). Even though PBMT can induce mRNA synthesis and stimulate PBMCs to produce selected pro-inflammatory cytokines and chemokines, it is necessary to elucidate the impact of the simultaneous emission of two wavelengths on the inflammatory response mechanisms.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland.
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
8
|
Li M, Fan Y, Ran M, Chen H, Han J, Zhai J, Wang Z, Ning C, Shi Z, Yu P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv Healthc Mater 2024; 13:e2401296. [PMID: 38794971 DOI: 10.1002/adhm.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.
Collapse
Affiliation(s)
- Mengqing Li
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Youzhun Fan
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Maofei Ran
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Haoyan Chen
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jien Han
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhifeng Shi
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| |
Collapse
|
9
|
Chen X, Sun Z, Peng X, Meng N, Ma L, Fu J, Chen J, Liu Y, Yang Y, Zhou C. Graphene Oxide/Black Phosphorus Functionalized Collagen Scaffolds with Enhanced Near-Infrared Controlled In Situ Biomineralization for Promoting Infectious Bone Defect Repair through PI3K/Akt Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50369-50388. [PMID: 39264653 PMCID: PMC11441399 DOI: 10.1021/acsami.4c10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infectious bone defects resulting from surgery, infection, or trauma are a prevalent clinical issue. Current treatments commonly used include systemic antibiotics and autografts or allografts. Nevertheless, therapies come with various disadvantages, including multidrug-resistant bacteria, complications arising from the donor site, and immune rejection, which makes artificial implants desirable. However, artificial implants can fail due to bacterial infections and inadequate bone fusion after implantation. Thus, the development of multifunctional bone substitutes that are biocompatible, antibacterial, osteoconductive, and osteoinductive would be of great clinical importance. This study designs and prepares 2D graphene oxide (GO) and black phosphorus (BP) reinforced porous collagen (Col) scaffolds as a viable strategy for treating infectious bone defects. The fabricated Col-GO@BP scaffold exhibited an efficient photothermal antibacterial effect under near-infrared (NIR) irradiation. A further benefit of the NIR-controlled degradation of BP was to promote biomineralization by phosphorus-driven and calcium-extracted phosphorus in situ. The abundant functional groups in GO could synergistically capture the ions and enhance the in situ biomineralization. The Col-GO@BP scaffold facilitated osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSC) by leveraging its mild photothermal effect and biomineralization process, which upregulated heat shock proteins (HSPs) and activated PI3K/Akt pathways. Additionally, systematic in vivo experiments demonstrated that the Col-GO@BP scaffold obviously promotes infectious bone repair through admirable photothermal antibacterial performance and enhanced vascularization. As a result of this study, we provide new insights into the photothermal activity of GO@BP nanosheets, their degradation, and a new biological application for them.
Collapse
Affiliation(s)
- Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Jie Fu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Junwei Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| |
Collapse
|
10
|
Luo B, Xiong Y, Cai J, Jiang R, Li Y, Xu C, Wang X. Chitin-Assisted Synthesis of CuS Composite Sponge for Bacterial Capture and Near-Infrared-Promoted Healing of Infected Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50160-50174. [PMID: 39265036 DOI: 10.1021/acsami.4c07586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Diabetic wounds are prone to recurrent infections, often leading to delayed healing. To address this challenge, we developed a chitin-copper sulfide (CuS@CH) composite sponge, which combines bacterial trapping with near-infrared (NIR) activated phototherapy for treating infected diabetic wounds. CuS nanoparticles were synthesized and incorporated in situ within the sponge using a chitin assisted biomineralization strategy. The positively charged chitin surface effectively adhered bacteria, while NIR irradiation of CuS generated reactive oxygen species (ROS) heat and Cu2+ to rapidly damage the trapped bacteria. This synergistic effect resulted in an exceptional antibacterial performance against E. coli (∼99.9%) and S. aureus (∼99.3%). The bactericidal mechanism involved NIR-induced glutathione oxidation, membrane lipid peroxidation, and increased membrane permeability. In diabetic mouse models, the CuS@CH sponge accelerated the wound healing of S. aureus infected wounds by facilitating collagen deposition and reducing inflammation. Furthermore, the sponge demonstrated good biocompatibility. This dual-functional platform integrating bacterial capture and NIR-triggered phototherapy shows promise as an antibacterial wound dressing to promote healing of infected diabetic wound.
Collapse
Affiliation(s)
- Bichong Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yutong Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Ruiyang Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266003, China
- Shandong Luhai Lansheng Biotechnology Co. LTD,19 North Second Road, Kenli District, Dongying 257508, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
11
|
Pistonesi DB, Belén F, Ruso JM, Centurión ME, Sica MG, Pistonesi MF, Messina PV. NIR-responsive nano-holed titanium alloy surfaces: a photothermally activated antimicrobial biointerface. J Mater Chem B 2024; 12:8993-9004. [PMID: 39145426 DOI: 10.1039/d4tb01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Among external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated in situ prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO2 coating on a Ti6Al4V alloy (a-Ti6Al4V). Insertion of p-AgNPs does not disturb the periodically arranged sub-wavelength-sized unit cell on the a-Ti6Al4V dielectric structure, while they exacerbate its peculiar optical response, which results in a higher NIR reflectivity and high efficiency of NIR photothermal energy conversion suitable to bacterial annihilation. Together, these results open a promising path toward strategic bone therapeutic procedures, providing novel insights into precision medicine.
Collapse
Affiliation(s)
- Denise B Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Federico Belén
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and iMATUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenia Centurión
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - M Gabriela Sica
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
- Department of Health Sciences, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
| | - Marcelo F Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Paula V Messina
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| |
Collapse
|
12
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Kong X, Zheng T, Wang Z, Zhou T, Shi J, Wang Y, Zhang B. Remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues for bone repair. Theranostics 2024; 14:4438-4461. [PMID: 39113795 PMCID: PMC11303086 DOI: 10.7150/thno.97610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
The high incidence of bone defect-related diseases caused by trauma, infection, and tumor resection has greatly stimulated research in the field of bone regeneration. Generally, bone healing is a long and complicated process wherein manipulating the biological activity of interventional scaffolds to support long-term bone regeneration is significant for treating bone-related diseases. It has been reported that some physical cues can act as growth factor substitutes to promote osteogenesis through continuous activation of endogenous signaling pathways. This review focuses on the latest progress in bone repair by remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues (heat, electricity, and magnetism). As an alternative method to treat bone defects, physical cues show many advantages, including effectiveness, noninvasiveness, and remote manipulation. First, we introduce the impact of different physical cues on bone repair and potential internal regulatory mechanisms. Subsequently, biomaterials that mediate various physical cues in bone repair and their respective characteristics are summarized. Additionally, challenges are discussed, aiming to provide new insights and suggestions for developing intelligent biomaterials to treat bone defects and promote clinical translation.
Collapse
Affiliation(s)
- Xueping Kong
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| | | | | | | | | | - Ying Wang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| | - Ben Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| |
Collapse
|
15
|
Hou W, Liu J, Wei W, Zhao Y, Wu X, Dai H. All-in-one strategy to develop a near-infrared triggered multifunctional bioactive magnesium phosphate bone cement for bone repair. Acta Biomater 2024; 182:111-125. [PMID: 38763407 DOI: 10.1016/j.actbio.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Bone cement is widely used in clinical with optimistic filling and mechanical properties. However, the setting time of bone cement is difficult to accurately control, and the existing bone cements exhibit limited therapeutic functionalities. In response to these challenges, we designed and synthesized Nd-doped whitlockite (Nd-WH), endowing bone cement with photothermal-responsive and fluorescence imaging capabilities. The doping amount and photothermal properties of Nd-doped whitlockite were studied, and the composite bone cement was prepared. The results showed that the setting time of bone cement could be regulated by near infrared irradiation, and the multiple functions of promoting osteogenic differentiation, antibacterial and anti-tumor could be realized by adjusting the power and irradiation time of near infrared. By incorporating Nd-doped whitlockite and bone cement, we developed an all-in-one strategy to achieve setting time control, enhanced osteogenic ability, tumor cell clearance, bacterial clearance, and bone tissue regeneration. The optimized physical and mechanical properties of composite bone cement ensure adaptability and plasticity. In vitro and in vivo experiments validated the effectiveness of this bone cement platform for bone repair, tumor cell clearance and bacterial clearance. The universal methods to regulate the setting time and function of bone cement by photothermal effect has potential in orthopedic surgery and is expected to be a breakthrough in the field of bone defect repair. Further research and clinical validation are needed to ensure its safety, efficacy and sustainability. STATEMENT OF SIGNIFICANCE: Bone cement is a valuable clinical material. However, the setting time of bone cement is difficult to control, and the therapeutic function of existing bone cement is limited. Various studies have shown that the bone repair capacity of bone cements can be enhanced by synergistic stimulatory effects in vivo and ex vivo. Unfortunately, most of the existing photothermal conversion materials are non-degradable and poorly biocompatible. This study provides a bone-like photothermal conversion material with photothermal response and fluorescence imaging properties, and constructed a platform for integrated regulation of the setting time of bone cement and diversification of its functions. Therefore, it helps to design multi-functional bone repair materials that are more convenient and effective in clinical operation.
Collapse
Affiliation(s)
- Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
| |
Collapse
|
16
|
Nag S, Mohanto S, Ahmed MG, Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. MATERIALS TODAY CHEMISTRY 2024; 39:102178. [DOI: 10.1016/j.mtchem.2024.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
17
|
Scanavachi G, Yoneda JS, Sebinelli HG, Barbosa LRS, Ciancaglini P, Itri R. Photobiomodulation of Na,K-ATPase in native membrane fraction and reconstituted in DPPC:DPPE-liposome. Photochem Photobiol 2024. [PMID: 38922888 DOI: 10.1111/php.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Studies focusing on how photobiomodulation (PBM) can affect the structure and function of proteins are scarce in the literature. Few previous studies have shown that the enzymatic activity of Na,K-ATPAse (NKA) can be photo-modulated. However, the variability of sample preparation and light irradiation wavelengths have not allowed for an unequivocal conclusion about the PBM of NKA. Here, we investigate minimal membrane models containing NKA, namely, native membrane fraction and DPPC:DPPE proteoliposome upon laser irradiation at wavelengths 532, 650, and 780 nm. Interestingly, we show that the PBM on the NKA enzymatic activity has a bell-shaped profile with a stimulation peak (~15% increase) at around 20 J.cm-2 and 6 J.cm-2 for the membrane-bound and the proteoliposome samples, respectively, and are practically wavelength independent. Further, by normalizing the enzymatic activity by the NKA enzyme concentration, we show that the PBM response is related to the protein amount with small influence due to protein's environment. The stimulation decays over time reaching the basal level around 6 h after the irradiation for the three lasers and both NKA samples. Our results demonstrate the potential of using low-level laser therapy to modulate NKA activity, which may have therapeutic implications and benefits.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Juliana S Yoneda
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy & Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Heitor G Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, Sao Paulo, Brazil
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy & Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, Sao Paulo, Brazil
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
| |
Collapse
|
18
|
Chen J, Hao Z, Li H, Wang J, Chen T, Wang Y, Shi G, Wang J, Wang Z, Zhang Z, Li J. Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies. Theranostics 2024; 14:3859-3899. [PMID: 38994021 PMCID: PMC11234277 DOI: 10.7150/thno.96516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zepu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zheyuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
19
|
Qinyuan D, Zhuqing W, Qing L, Yunsong L, Ping Z, Xiao Z, Yuting N, Hao L, Yongsheng Z, Longwei L. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration. BIOMATERIALS ADVANCES 2024; 159:213804. [PMID: 38412627 DOI: 10.1016/j.bioadv.2024.213804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Although several bioactive 3D-printed bone scaffolds loaded with multiple kinds of biomolecules for enhanced bone regeneration have been recently developed, the manipulation of on-demand release profiles of different biomolecules during bone regeneration remains challenging. Herein, a 3D-printed dual-drug-loaded biomimetic scaffold to regulate the host stem cell recruitment and osteogenic differentiation in a two-stage process for bone regeneration was successfully fabricated. First, a chemotactic small-molecule drug, namely, simvastatin (SIM) was directly incorporated into the hydroxyapatite/collagen bioink for printing and could be rapidly released during the early stage of bone regeneration. Further, near-infrared (NIR)-light-responsive polydopamine-coated hydroxyapatite nanoparticles were designed to deliver the osteogenic drug, i.e., pargyline (PGL) in a controllable manner. Together, our scaffold displayed an on-demand sequential release of those two drugs and could optimize their therapeutic effects to align with the stem cell recruitment and osteoblastic differentiation, thereby promoting bone regeneration. The results confirmed the suitable mechanical strength, high photothermal conversion efficiency, good biocompatibility of our scaffold. The scaffold loaded with SIM could efficiently accelerate the migration of stem cells. In addition, the scaffold with on-demand sequential release promoted alkaline phosphatase (ALP) activity, significantly upregulated gene expression levels of osteogenesis-related markers, and enhanced new-bone-formation capabilities in rabbit cranial defect models. Altogether, this scaffold not only offers a promising strategy to control the behavior of stem cells during bone regeneration but also provides an efficient strategy for controllable sequential release of different biomolecule in bone tissue engineering.
Collapse
Affiliation(s)
- Dong Qinyuan
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Wan Zhuqing
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Li Qing
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liu Yunsong
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhang Ping
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhang Xiao
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Niu Yuting
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liu Hao
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhou Yongsheng
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Lv Longwei
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| |
Collapse
|
20
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
21
|
Kumar S, Acharya TK, Kumar S, Rokade TP, Das NK, Chawla S, Goswami L, Goswami C. TRPV4 Activator-Containing CMT-Hy Hydrogel Enhances Bone Tissue Regeneration In Vivo by Enhancing Mitochondrial Health. ACS Biomater Sci Eng 2024; 10:2367-2384. [PMID: 38470969 DOI: 10.1021/acsbiomaterials.3c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Treating different types of bone defects is difficult, complicated, time-consuming, and expensive. Here, we demonstrate that transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechanosensitive, thermogated, and nonselective cation channel, is endogenously present in the mesenchymal stem cells (MSCs). TRPV4 regulates both cytosolic Ca2+ levels and mitochondrial health. Accordingly, the hydrogel made from a natural modified biopolymer carboxymethyl tamarind CMT-Hy and encapsulated with TRPV4-modulatory agents affects different parameters of MSCs, such as cell morphology, focal adhesion points, intracellular Ca2+, and reactive oxygen species- and NO-levels. TRPV4 also regulates cell differentiation and biomineralization in vitro. We demonstrate that 4α-10-CMT-Hy and 4α-50-CMT-Hy (the hydrogel encapsulated with 4αPDD, 10 and 50 nM, TRPV4 activator) surfaces upregulate mitochondrial health, i.e., an increase in ATP- and cardiolipin-levels, and improve the mitochondrial membrane potential. The same scaffold turned out to be nontoxic in vivo. 4α-50-CMT-Hy enhances the repair of the bone-drill hole in rat femur, both qualitatively and quantitatively in vivo. We conclude that 4α-50-CMT-Hy as a scaffold is suitable for treating large-scale bone defects at low cost and can be tested for clinical trials.
Collapse
Affiliation(s)
- Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tusar K Acharya
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tejas P Rokade
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Nilesh K Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
- School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| |
Collapse
|
22
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
23
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
24
|
Karkehabadi H, Rahmati A, Abbaspourrokni H, Farmany A, Najafi R, Behroozi R, Rezaei-Soufi L, Abbasi R. Effect of magnesium oxide nanoparticles and LED irradiation on the viability and differentiation of human stem cells of the apical papilla. Biotechnol Lett 2024; 46:263-278. [PMID: 38326543 DOI: 10.1007/s10529-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Currently, regenerative endodontic treatments are gaining more and more attention, and stem cells play a significant role in these treatments. In order to enhance stem cell proliferation and differentiation, a variety of methods and materials have been used. The purpose of this study was to determine the effects of magnesium oxide nanoparticles and LED irradiation on the survival and differentiation of human stem cells from apical papilla. METHODS The MTT test was used to measure the cell survival of SCAPs that had been exposed to different concentrations of magnesium oxide nanoparticles after 24 and 48 h, and the concentration with the highest cell survival rate was picked for further studies. The cells were classified into four distinct groups based on their treatment: (1) control, which received no exposure, (2) exposure to magnesium oxide nanoparticles, (3) exposure to light emitting diode (LED) irradiation (635 nm, 200 mW/cm2) for 30 s, (4) exposure simultaneously with magnesium oxide nanoparticles and LED irradiation. A green approach was employed to synthesize magnesium oxide nanoparticles. Quantitative real time PCR was used to measure the gene expression of osteo/odontogenic markers such as BSP, DSPP, ALP and DMP1 in all four groups after treatment, and Alizarin red S staining (ARS) was used to determine the osteogenic differentiation of SCAPs by demonstrating the Matrix mineralization. RESULTS The highest viability of SCAPs was observed after 24 h in concentration 1 and 10 µg/mL and after 48 h in concentration 1 µg/mL, which were not significantly different from the control group. In both times, the survival of SCAPs decreased with increasing concentration of magnesium oxide nanoparticles (MgONPs). According to the results of Real-time PCR, after 24 and 48 h, the highest differentiation of BSP, DMP1, ALP and DSPP genes was observed in the LED + MgONPs group, followed by MgONPs and then LED, and in all 3 experimental groups, it was significantly higher than control group (P < 0.05). Also, after 24 and 48 h, the density of ARS increased in all groups compared to the control group, and the highest density was observed in the MgONPs + LED and MgONPs groups. CONCLUSION This research concluded that exposure to SCAPs, MgONPs, and LED irradiation has a significant effect on enhancing gene expression of odontogenic/osteogenic markers and increasing matrix mineralization.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Rahmati
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadiseh Abbaspourrokni
- Department of Endodontics, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Loghman Rezaei-Soufi
- Department of Operative Dentistry, Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
25
|
Li L, Xiang F, Wang F, Chen A, Liu Y. Preparation and sustained-release mechanism of hydroxybutyl chitosan/graphene oxide temperature-sensitive hypoglycaemic subcutaneous implants. Colloids Surf B Biointerfaces 2024; 236:113801. [PMID: 38401183 DOI: 10.1016/j.colsurfb.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
The current situation of diabetes prevention and control is extremely severe. For instance, glimepiride (GLM), a third-generation sulfonylurea, demonstrates suboptimal clinical efficacy in oral dosage forms, which underscores the pressing need for the development of a new dosage form. Recently, in situ gel subcutaneous implants have garnered considerable attention. Hydroxybutyl chitosan (HBC) can spontaneously crosslink to form a thermosensitive hydrogel and has good biocompatibility. However, its application is hindered by its limited mechanical properties. Graphene oxide (GO), known for its stable dispersion in water, can load GLM through π-π stacking interactions. When combined with HBC, GO enhances the mechanical properties and stability of the hydrogel. Therefore, an HBC-GO@GLM hydrogel was prepared. Rheological analysis revealed that the incorporation of GO increased the critical gelation temperature of the 5 wt% HBC hydrogel from 19.1°C to 27.2°C, considerably enhancing the mechanical properties of the hydrogel. Using encapsulation efficiency as an evaluation index, the optimal encapsulation efficiency of GO@GLM was determined to be 73.53% ± 0.45% with a drug loading capacity of 27.39 ± 0.17% using the Box-Behnken design model. Computer simulation technology validated the interaction between the materials and the drug release mechanism. Pharmacokinetic results showed that compared to the HBC@GLM group, the half-life (t1/2), mean residence time and the area under the curve for the HBC-GO@GLM group were approximately 3 times those of the HBC@GLM group. Subcutaneous implantation of the HBC-GO@GLM hydrogel for drug delivery considerably extended the drug's action time in the body, thereby maintaining blood sugar levels within a normal and stable range for an extended period.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Fengting Xiang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Fan Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; LiaoNing University Judicial Authentication Centre, Shenyang 110036, China.
| |
Collapse
|
26
|
Yang Z, Jaiswal A, Yin Q, Lin X, Liu L, Li J, Liu X, Xu Z, Li JJ, Yong KT. Chiral nanomaterials in tissue engineering. NANOSCALE 2024; 16:5014-5041. [PMID: 38323627 DOI: 10.1039/d3nr05003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Addressing significant medical challenges arising from tissue damage and organ failure, the field of tissue engineering has evolved to provide revolutionary approaches for regenerating functional tissues and organs. This involves employing various techniques, including the development and application of novel nanomaterials. Among them, chiral nanomaterials comprising non-superimposable nanostructures with their mirror images have recently emerged as innovative biomaterial candidates to guide tissue regeneration due to their unique characteristics. Chiral nanomaterials including chiral fibre supramolecular hydrogels, polymer-based chiral materials, self-assembling peptides, chiral-patterned surfaces, and the recently developed intrinsically chiroptical nanoparticles have demonstrated remarkable ability to regulate biological processes through routes such as enantioselective catalysis and enhanced antibacterial activity. Despite several recent reviews on chiral nanomaterials, limited attention has been given to the specific potential of these materials in facilitating tissue regeneration processes. Thus, this timely review aims to fill this gap by exploring the fundamental characteristics of chiral nanomaterials, including their chiroptical activities and analytical techniques. Also, the recent advancements in incorporating these materials in tissue engineering applications are highlighted. The review concludes by critically discussing the outlook of utilizing chiral nanomaterials in guiding future strategies for tissue engineering design.
Collapse
Affiliation(s)
- Zhenxu Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arun Jaiswal
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiankun Yin
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhejun Xu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Cabral CSD, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. Reduced graphene oxide-reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration. Int J Biol Macromol 2024; 259:129210. [PMID: 38184039 DOI: 10.1016/j.ijbiomac.2024.129210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Bone is a mineralized tissue with the intrinsic capacity for constant remodeling. Rapid prototyping techniques, using biomaterials that mimic the bone native matrix, have been used to develop osteoinductive and osteogenic personalized 3D structures, which can be further combined with drug delivery and phototherapy. Herein, a Fab@Home 3D Plotter printer was used to promote the layer-by-layer deposition of a composite mixture of gelatin, chitosan, tricalcium phosphate, and reduced graphene oxide (rGO). The phototherapeutic potential of the new NIR-responsive 3D_rGO scaffolds was assessed by comparing scaffolds with different rGO concentrations (1, 2, and 4 mg/mL). The data obtained show that the rGO incorporation confers to the scaffolds the capacity to interact with NIR light and induce a hyperthermy effect, with a maximum temperature increase of 16.7 °C after under NIR irradiation (10 min). Also, the increase in the rGO content improved the hydrophilicity and mechanical resistance of the scaffolds, particularly in the 3D_rGO4. Furthermore, the rGO could confer an NIR-triggered antibacterial effect to the 3D scaffolds, without compromising the osteoblasts' proliferation and viability. In general, the obtained data support the development of 3D_rGO for being applied as temporary scaffolds supporting the new bone tissue formation and avoiding the establishment of bacterial infections.
Collapse
Affiliation(s)
- Cátia S D Cabral
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Paula Ferreira
- Instituto Politécnico de Coimbra, Instituto de Investigação Aplicada, Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CIEPQPF - Departamento Engenharia Química, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
28
|
Meng Q, Xie E, Sun H, Wang H, Li J, Liu Z, Li K, Hu J, Chen Q, Liu C, Li B, Han F. High-Strength Smart Microneedles with "Offensive and Defensive" Effects for Intervertebral Disc Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305468. [PMID: 37681640 DOI: 10.1002/adma.202305468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a global public health issue. The injury of annulus fibrosus (AF) caused by acupuncture or discectomy can trigger IVDD again. However, there is currently no suitable method for treating AF injury. In this study, the high-strength smart microneedles (MNs) which can penetrate the AF tissue through a local and minimally invasive method, and achieve remote control of speeded-up release of the drug and hyperthermia by the Near Infrared is developed. The PDA/GelMA composite MNs loaded with diclofenac sodium are designed to extracellularly "offend" the inflammatory microenvironment and mitigate damage to cells, and intracellularly increase the level of cytoprotective heat shock proteins to enhance the defense against the hostile microenvironment, achieving "offensive and defensive" effects. In vitro experiments demonstrate that the synergistic treatment of photothermal therapy and anti-inflammation effectively reduces inflammation, inhibits cell apoptosis, and promotes the synthesis of the extracellular matrix (ECM). In vivo experiments show that the MNs mitigate the inflammatory response, promote ECM deposition, reduce the level of apoptosis, and restore the biomechanical properties of the intervertebral disc (IVD) in rats. Overall, this high-strength smart MNs display promising "offensive and defensive" effects that can provide a new strategy for IVD repair.
Collapse
Affiliation(s)
- Qingchen Meng
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - En Xie
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Heng Sun
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhao Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Kexin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jie Hu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Qianglong Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
29
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
30
|
Du G, Liu M, Qi Y, Lin M, Wu J, Xie W, Ren D, Du S, Jia T, Zhang F, Song W, Liu H. BMP4 up-regulated by 630 nm LED irradiation is associated with the amelioration of rheumatoid arthritis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112828. [PMID: 38101122 DOI: 10.1016/j.jphotobiol.2023.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.
Collapse
Affiliation(s)
- Guoming Du
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Mengyue Liu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yue Qi
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Jiaxin Wu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenting Xie
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Dandan Ren
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Siqi Du
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tong Jia
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| | - Hailiang Liu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
31
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
32
|
Zhang Z, Wang R, Xue H, Knoedler S, Geng Y, Liao Y, Alfertshofer M, Panayi AC, Ming J, Mi B, Liu G. Phototherapy techniques for the management of musculoskeletal disorders: strategies and recent advances. Biomater Res 2023; 27:123. [PMID: 38017585 PMCID: PMC10685661 DOI: 10.1186/s40824-023-00458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
Musculoskeletal disorders (MSDs), which include a range of pathologies affecting bones, cartilage, muscles, tendons, and ligaments, account for a significant portion of the global burden of disease. While pharmaceutical and surgical interventions represent conventional approaches for treating MSDs, their efficacy is constrained and frequently accompanied by adverse reactions. Considering the rising incidence of MSDs, there is an urgent demand for effective treatment modalities to alter the current landscape. Phototherapy, as a controllable and non-invasive technique, has been shown to directly regulate bone, cartilage, and muscle regeneration by modulating cellular behavior. Moreover, phototherapy presents controlled ablation of tumor cells, bacteria, and aberrantly activated inflammatory cells, demonstrating therapeutic potential in conditions such as bone tumors, bone infection, and arthritis. By constructing light-responsive nanosystems, controlled drug delivery can be achieved to enable precise treatment of MSDs. Notably, various phototherapy nanoplatforms with integrated imaging capabilities have been utilized for early diagnosis, guided therapy, and prognostic assessment of MSDs, further improving the management of these disorders. This review provides a comprehensive overview of the strategies and recent advances in the application of phototherapy for the treatment of MSDs, discusses the challenges and prospects of phototherapy, and aims to promote further research and application of phototherapy techniques.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Rhine, Germany
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
33
|
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Wang N, Ma S, Liu W, Ding C. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules 2023; 28:7039. [PMID: 37894518 PMCID: PMC10609504 DOI: 10.3390/molecules28207039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China;
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| |
Collapse
|
34
|
Aminfar P, Yousefalizadeh G, Steele E, Chen J, Zheng G, Stamplecoskie KG. Photochemical synthesis of fluorescent Au 16(RGDC) 14 and excited state reactivity with molecular oxygen. NANOSCALE 2023; 15:13561-13566. [PMID: 37551778 DOI: 10.1039/d3nr02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Aqueous metal nanoclusters have emerged as effective materials for biomedical imaging and therapy. Among them, gold nanoclusters (AuNCs) have been widely studied due to their unique electronic structures. These nanoclusters are often optically impure, comprising a mixture of fluorescent clusters with different metal/ligand compositions. The polydispersity of nanoclusters makes it challenging to isolate the most stable structure, and poses further risks for eventual clinical applications. Herein, Au16L14 clusters are reported which are optically pure as assessed by fluorescence excitation-emission matrix (EEM) spectroscopy and parallel factor (PARAFAC) analysis. The reactivity of their excited state with molecular oxygen was also probed, demonstrating that the Au16L14 clusters generate type I reactive oxygen species (ROS), which can make them effective sensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Parimah Aminfar
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | - Emily Steele
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | | |
Collapse
|
35
|
Lewis THJ, Zhuo J, McClellan JX, Getsy PM, Ryan RM, Jenkins MJ, Lewis SJ. Infrared light elicits endothelium-dependent vasodilation in isolated occipital arteries of the rat via soluble guanylyl cyclase-dependent mechanisms. Front Physiol 2023; 14:1219998. [PMID: 37664436 PMCID: PMC10471192 DOI: 10.3389/fphys.2023.1219998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
The left and right occipital arteries provide blood supply to afferent cell bodies in the ipsilateral nodose and petrosal ganglia. This supply is free of an effective blood-ganglion barrier, so changes in occipital artery blood flow directly affect the access of circulating factors to the afferent cell bodies. The application of infrared (IR) light to modulate neural and other cell processes has yielded information about basic biological processes within tissues and is gaining traction as a potential therapy for a variety of disease processes. To address whether IR can directly modulate vascular function, we performed wire myography studies to determine the actions of IR on occipital arteries isolated from male Sprague-Dawley rats. Based on our previous research that functionally-important differences exist between occipital artery segments close to their origin at the external carotid artery (ECA) and those closer to the nodose ganglion, the occipital arteries were dissected into two segments, one closer to the ECA and the other closer to the nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level equal to 50% of the maximal response generated by the application of a high (80 mM) concentration of K+ ions. The direct application of pulsed IR (1,460 nm) for 5 s produced a rapid vasodilation in occipital arteries that was significantly more pronounced in segments closest to the ECA, although the ECA itself was minimally responsive. The vasodilation remained for a substantial time (at least 120 s) after cessation of IR application. The vasodilation during and following cessation of the IR application was markedly diminished in occipital arteries denuded of the endothelium. In addition, the vasodilation elicited by IR in endothelium-intact occipital arteries was substantially reduced in the presence of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat. The ability of IR to generate rapid and sustained vasodilation may provide new therapeutic approaches for restoring or improving blood flow to targeted tissues.
Collapse
Affiliation(s)
- Tristan H. J. Lewis
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob X. McClellan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Rita M. Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Michael. J. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
36
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
37
|
Wang X, Liu Q, Peng J, Song W, Zhao J, Chen L. The Effects and Mechanisms of PBM Therapy in Accelerating Orthodontic Tooth Movement. Biomolecules 2023; 13:1140. [PMID: 37509176 PMCID: PMC10377711 DOI: 10.3390/biom13071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Malocclusion is one of the three major diseases, the incidence of which could reach 56% of the imperiled oral and systemic health in the world today. Orthodontics is still the primary method to solve the problem. However, it is clear that many orthodontic complications are associated with courses of long-term therapy. Photobiomodulation (PBM) therapy could be used as a popular way to shorten the course of orthodontic treatment by nearly 26% to 40%. In this review, the efficacy in cells and animals, mechanisms, relevant cytokines and signaling, clinical trials and applications, and the future developments of PBM therapy in orthodontics were evaluated to demonstrate its validity. Simultaneously, based on orthodontic mechanisms and present findings, the mechanisms of acceleration of orthodontic tooth movement (OTM) caused by PBM therapy were explored in relation to four aspects, including blood vessels, inflammatory response, collagen and fibers, and mineralized tissues. Also, the cooperative effects and clinical translation of PBM therapy in orthodontics have been explored in a growing numbers of studies. Up to now, PBM therapy has been gaining popularity for its non-invasive nature, easy operation, and painless procedures. However, the validity and exact mechanism of PBM therapy as an adjuvant treatment in orthodontics have not been fully elucidated. Therefore, this review summarizes the efficacy of PBM therapy on the acceleration of OTM comprehensively from various aspects and was designed to provide an evidence-based platform for the research and development of light-related orthodontic tooth movement acceleration devices.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
38
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
39
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
40
|
Park L, Kim HS, Jang W, Ji MK, Ryu JH, Cho H, Lim HP. Antibacterial Evaluation of Zirconia Coated with Plasma-Based Graphene Oxide with Photothermal Properties. Int J Mol Sci 2023; 24:ijms24108888. [PMID: 37240234 DOI: 10.3390/ijms24108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The alternative antibacterial treatment photothermal therapy (PTT) significantly affects oral microbiota inactivation. In this work, graphene with photothermal properties was coated on a zirconia surface using atmospheric pressure plasma, and then the antibacterial properties against oral bacteria were evaluated. For the graphene oxide coating on the zirconia specimens, an atmospheric pressure plasma generator (PGS-300, Expantech, Suwon, Republic of Korea) was used, and an Ar/CH4 gas mixture was coated on a zirconia specimen at a power of 240 W and a rate of 10 L/min. In the physiological property test, the surface properties were evaluated by measuring the surface shape of the zirconia specimen coated with graphene oxide, as well as the chemical composition and contact angle of the surface. In the biological experiment, the degree of adhesion of Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) was determined by crystal violet assay and live/dead staining. All statistical analyzes were performed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA). The group in which the zirconia specimen coated with graphene oxide was irradiated with near-infrared rays demonstrated a significant reduction in the adhesion of S. mutans and P. gingivalis compared with the group not irradiated. The oral microbiota inactivation was reduced by the photothermal effect on the zirconia coated with graphene oxide, exhibiting photothermal properties.
Collapse
Affiliation(s)
- Lydia Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hee-Seon Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Woohyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Min-Kyung Ji
- Dental 4D Research Center, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hoonsung Cho
- School of Materials Science & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
41
|
Swann R, Slikboer S, Genady A, Silva LR, Janzen N, Faraday A, Valliant JF, Sadeghi S. Tetrazine-Derived Near-Infrared Dye for Targeted Photoacoustic Imaging of Bone. J Med Chem 2023; 66:6025-6036. [PMID: 37129217 DOI: 10.1021/acs.jmedchem.2c01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A near-infrared photoacoustic probe was used to image bone in vivo through active and bioorthogonal pretargeting strategies that utilized coupling between a tetrazine-derived cyanine dye and a trans-cyclooctene-modified bisphosphonate. In vitro hydroxyapatite binding of the probe via active and pretargeting strategies showed comparable increases in percent binding vs a nontargeted control. Intrafemoral injection of the bisphosphonate-dye conjugate showed retention out to 24 h post-injection, with a 14-fold increase in signal over background, while the nontargeted dye exhibited negligible binding to bone and signal washout by 4 h post-injection. Intravenous injection, using both active and pretargeting strategies, demonstrated bone accumulation as earlier as 4 h post-injection, where the signal was found to be 3.6- and 1.5-fold higher, respectively, than the signal from the nontargeted dye. The described bone-targeted dye enabled in vivo photoacoustic imaging, while the synthetic strategy provides a convenient building block for developing new targeted photoacoustic probes.
Collapse
Affiliation(s)
- Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Afaf Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Luis Rafael Silva
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
42
|
Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0089. [PMID: 36996343 PMCID: PMC10042443 DOI: 10.34133/research.0089] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Rapid and effective repair of injured or diseased bone defects remains a major challenge due to shortages of implants. Smart hydrogels that respond to internal and external stimuli to achieve therapeutic actions in a spatially and temporally controlled manner have recently attracted much attention for bone therapy and regeneration. These hydrogels can be modified by introducing responsive moieties or embedding nanoparticles to increase their capacity for bone repair. Under specific stimuli, smart hydrogels can achieve variable, programmable, and controllable changes on demand to modulate the microenvironment for promoting bone healing. In this review, we highlight the advantages of smart hydrogels and summarize their materials, gelation methods, and properties. Then, we overview the recent advances in developing hydrogels that respond to biochemical signals, electromagnetic energy, and physical stimuli, including single, dual, and multiple types of stimuli, to enable physiological and pathological bone repair by modulating the microenvironment. Then, we discuss the current challenges and future perspectives regarding the clinical translation of smart hydrogels.
Collapse
Affiliation(s)
- Weikai Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Qirong Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- Department of Orthopedics Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P. R. China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an 710000, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| |
Collapse
|
43
|
Polo TOB, Fonseca-Santos JM, Momesso GAC, da Silva WPP, Barbosa S, Santos AMDS, Silva MC, Garcia VG, Theodoro LH, Faverani LP. Single intraoperative infrared laser optimized bone repair in rat femoral osteotomies with experimentally induced osteoporosis. Lasers Med Sci 2023; 38:87. [PMID: 36935455 DOI: 10.1007/s10103-023-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
This study aimed to evaluate the effect of infrared laser (IRL) on bone repair in ovariectomized rats subjected to femoral osteotomies. Of 32 rats, half underwent bilateral ovariectomy (OVX) and the other half underwent sham ovariectomy (SHAM). A period of 3 months was defined to observe the presence of osteoporosis. The rats were subjected to osteotomies in the femurs and then fixed with a miniplate and 1.5-mm system screws. Thereafter, half of the rats from both SHAM and OVX groups were not irradiated, and the other half were irradiated by IRL using the following parameters: wavelength, 808 nm; power, 100 mW; 60 s for each point; 6 J/point; and a total of 5 points of bone gap. All animals were euthanized 60 days after surgery. The femur gap was scanned using micro-computed tomography (micro-CT). The samples were then examined under a confocal laser microscope to determine the amounts of calcein and alizarin red. The slides were stained with alizarin red and Stevenel's blue for histometric analysis. In the micro-CT analysis, the OVX groups had the lowest bone volume (P < 0.05). When the laser was applied to the OVX groups, bone turnover increased (P < 0.05). New bone formation (NBF) was comparable between SHAM and OVX/IR (P > 0.05) groups; however, it was less in the OVX groups (P < 0.05). In conclusion, the results encourage the use of IRL intraoperatively as it optimizes bone repair, mainly in animals with low bone mineral density.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Gustavo Antonio Correa Momesso
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Implantology, University of Santo Amaro, Unisa, São Paulo, SP, Brazil
| | | | - Stefany Barbosa
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Mirela Caroline Silva
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Valdir Gouveia Garcia
- Diagnosis and Surgery Department, School of Dentistry, São Paulo State University (UNESP), 1193 José Bonifácio Street, Araçatuba, São Paulo, 16015-050, Brazil
| | - Letícia Helena Theodoro
- Diagnosis and Surgery Department, School of Dentistry, São Paulo State University (UNESP), 1193 José Bonifácio Street, Araçatuba, São Paulo, 16015-050, Brazil
| | - Leonardo P Faverani
- Diagnosis and Surgery Department, School of Dentistry, São Paulo State University (UNESP), 1193 José Bonifácio Street, Araçatuba, São Paulo, 16015-050, Brazil.
| |
Collapse
|
44
|
Intravaia JT, Graham T, Kim HS, Nanda HS, Kumbar SG, Nukavarapu SP. Smart Orthopedic Biomaterials and Implants. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100439. [PMID: 36642994 PMCID: PMC9835562 DOI: 10.1016/j.cobme.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Musculoskeletal injuries including bone defects continue to present a significant challenge in orthopedic surgery due to suboptimal healing. Bone reconstruction strategies focused on the use of biological grafts and bone graft substitutes in the form of biomaterials-based 3D structures in fracture repair. Recent advances in biomaterials science and engineering have resulted in the creation of intricate 3D bone-mimicking structures that are mechanically stable, biodegradable, and bioactive to support bone regeneration. Current efforts are focused on improving the biomaterial and implant physicochemical properties to promote interactions with the host tissue and osteogenesis. The "smart" biomaterials and their 3D structures are designed to actively interact with stem/progenitor cells and the extracellular matrix (ECM) to influence the local environment towards osteogenesis and de novo tissue formation. This article will summarize such smart biomaterials and the methodologies to apply either internal or external stimuli to control the tissue healing microenvironment. A particular emphasis is also made on the use of smart biomaterials and strategies to create functional bioactive implants for bone defect repair and regeneration.
Collapse
Affiliation(s)
| | - Trevon Graham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Hyun S. Kim
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Himansu S. Nanda
- Terasaki Institute, University of California, Los Angeles, CA, USA
- Mechanical Engineering, IIITDM, Jabalpur, MP, India
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
45
|
Nie F, Hao S, Ji Y, Zhang Y, Sun H, Will M, Han W, Ding Y. Biphasic dose response in the anti-inflammation experiment of PBM. Lasers Med Sci 2023; 38:66. [PMID: 36749428 DOI: 10.1007/s10103-022-03664-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/22/2022] [Indexed: 02/08/2023]
Abstract
Non-invasive laser irradiation can induce photobiomodulation (PBM) effects in cells and tissues, which can help reduce inflammation and pain in several clinical scenarios. The purpose of this study is to review the current literature to verify whether PBM can produce dose effects in anti-inflammatory experiments by summarizing the clinical and experimental effects of different laser parameters of several diseases. The so-called Arndt-Schulz curve is often used to describe two-phase dose reactions, assuming small doses of therapeutic stimulation, medium doses of inhibition, and large doses of killing. In the past decade, more and more attention has been paid to the clinical application of PBM, especially in the field of anti-inflammation, because it represents a non-invasive strategy with few contraindications. Although there are different types of lasers available, their use is adjusted by different parameters. In general, the parameters involved are wavelength, energy density, power output, and radiation time. However, due to the biphasic effect, the scientific and medical communities remain puzzled by the ways in which the application of PBM must be modified depending on its clinical application. This article will discuss these parameter adjustments and will then also briefly introduce two controversial theories of the molecular and cellular mechanisms of PBM. A better understanding of the extent of dualistic dose response in low-intensity laser therapy is necessary to optimize clinical treatment. It also allows us to explore the most dependable mechanism for PBM use and, ultimately, standardize treatment for patients with various diseases.
Collapse
Affiliation(s)
- Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shaolong Hao
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hao Sun
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Will
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Han
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - YuChuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
46
|
Jing X, Xu C, Su W, Ding Q, Ye B, Su Y, Yu K, Zeng L, Yang X, Qu Y, Chen K, Sun T, Luo Z, Guo X. Photosensitive and Conductive Hydrogel Induced Innerved Bone Regeneration for Infected Bone Defect Repair. Adv Healthc Mater 2023; 12:e2201349. [PMID: 36325633 DOI: 10.1002/adhm.202201349] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Repairing infected bone defects is a challenge in the field of orthopedics because of the limited self-healing capacity of bone tissue and the susceptibility of refractory materials to bacterial activity. Innervation is the initiating factor for bone regeneration and plays a key regulatory role in subsequent vascularization, ossification, and mineralization processes. Infection leads to necrosis of local nerve fibers, impeding the repair of infected bone defects. Herein, a biomaterial that can induce skeletal-associated neural network reconstruction and bone regeneration with high antibacterial activity is proposed for the treatment of infected bone defects. A photosensitive conductive hydrogel is prepared by incorporating magnesium-modified black phosphorus (BP@Mg) into gelatin methacrylate (GelMA). The near-infrared irradiation-based photothermal and photodynamic treatment of black phosphorus endows it with strong antibacterial activity, improving the inflammatory microenvironment and reducing bacteria-induced bone tissue damage. The conductive nanosheets and bioactive ions released from BP@Mg synergistically improve the migration and secretion of Schwann cells, promote neurite outgrowth, and facilitate innerved bone regeneration. In an infected skull defect model, the GelMA-BP@Mg hydrogel shows efficient antibacterial activity and promotes bone and CGRP+ nerve fiber regeneration. The phototherapy conductive hydrogel provides a novel strategy based on skeletal-associated innervation for infected bone defect repair.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Keda Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xu Yang
- Department of Orthopaedics, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, 441300, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
47
|
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Nanozymes for Regenerative Medicine. SMALL METHODS 2022; 6:e2200997. [PMID: 36202750 DOI: 10.1002/smtd.202200997] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes refer to nanomaterials that catalyze enzyme substrates into products under relevant physiological conditions following enzyme kinetics. Compared to natural enzymes, nanozymes possess the characteristics of higher stability, easier preparation, and lower cost. Importantly, nanozymes possess the magnetic, fluorescent, and electrical properties of nanomaterials, making them promising replacements for natural enzymes in industrial, biological, and medical fields. On account of the rapid development of nanozymes recently, their application potentials in regeneration medicine are gradually being explored. To highlight the achievements in the regeneration medicine field, this review summarizes the catalytic mechanism of four types of representative nanozymes. Then, the strategies to improve the biocompatibility of nanozymes are discussed. Importantly, this review covers the recent advances in nanozymes in tissue regeneration medicine including wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment. In addition, challenges and prospects of nanozyme researches in regeneration medicine are summarized.
Collapse
Affiliation(s)
- Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yunhang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Xiaoyi Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
48
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
49
|
Kanaoujiya R, Porwal D, Srivastava S. Applications of nanomaterials for gastrointestinal tumors: A review. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:997123. [PMID: 36119898 PMCID: PMC9475177 DOI: 10.3389/fmedt.2022.997123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology is the emerging and advance field of research for the diagnosis and treatment of various diseases. With the development of nanotechnology, different nanoparticles are used in the treatment of cancer due to their unique optical properties, excellent biocompatibility, surface effects, and small size effects. Nanoparticles are the particles which have the particular size from 1 to 100 nm. These nanoparticles are zero dimension, one dimension, two dimension and three dimension etc. In present scenario a variety of research is focused on the tailored synthesis of nanoparticles for medicinal applications that can be used for cancer treatment based on the morphology, composition, interaction with target cell. The gastrointestinal (GI) tumors are found one of the deadest cancer types with highest reoccurrence rates. The diagnosis and treatment of gastrointestinal cancer is very challenging due to its deep location and complicated surgery. Nanotechnology provides fast diagnosis and immediate treatment for the gastrointestinal disease. A variety of nanomaterials are used for the diagnosis and treatment of GI disease. Nanoparticles target directly to the tumor cell as diagnostic and therapeutic tools facilitating the identification and removal of tumor cells. A number of nanoparticles are developed for the uses are quantum dots (QDs), carbon nanotubes (CNTs), metallic nanoparticles (MNPs), Dendrimers etc. This review article gives an overview of the most promising nanomaterials used for the diagnosis and treatment of GI diseases. This review attempts to incorporate numerous uses for the most current nanomaterials, which have great potential for treating gastrointestinal diseases.
Collapse
|
50
|
A dual-responsive polydopamine modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration. Carbohydr Polym 2022; 297:120027. [DOI: 10.1016/j.carbpol.2022.120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
|