1
|
Sharifi-Azad M, Kaveh Zenjanab M, Shahpouri M, Adili-Aghdam MA, Fathi M, Jahanban-Esfahlan R. Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomed Mater 2024; 19:055015. [PMID: 38953496 DOI: 10.1088/1748-605x/ad5d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Colon cancer (CC) is one of the most prevalent cancers in the world, and chemotherapy is widely applied to combat it. However, chemotherapy drugs have severe side effects and emergence of multi drug resistance (MDR) is common. This bottleneck can be overcome by niosome nanocarriers that minimize drug dose/toxicity meanwhile allow co-loading of incompatible drugs for combination therapy. In this research, silibinin (Sil) as a hydrophobic drug was loaded into the lipophilic part, and methotrexate (MTX) into the hydrophilic part of niosome by the thin film hydration (TFH) method to form Nio@MS NPs for CT26 colon cancer therapyin vitro. Our results indicated synthesis of ideal niosome nanoparticles (NPs) with spherical morphology, size of ∼100 nm, and a zeta potential of -10 mV. The IC50value for Nio@MS was determined ∼2.6 µg ml-1, which was significantly lower than MTX-Sil (∼6.86 µg ml-1), Sil (18.46 µg ml-1), and MTX (9.8 µg ml-1). Further, Nio@MS significantly reduced cell adhesion density, promoted apoptosis and increased gene expression level of caspase 3 and BAX while promoted significant downregulation of BCL2. In conclusion, the design and application of niosome to co-administer Sil and MTX can increase the drugs cytotoxicity, reduce their dose and improve anti-cancer potential by combating MDR.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Adili-Aghdam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Rahimi D, Sharifi R, Jaberie H, Naghibalhossaini F. Antiproliferative and Antitelomerase Effects of Silymarin on Human Colorectal and Hepatocellular Carcinoma Cells. PLANTA MEDICA 2024; 90:298-304. [PMID: 38219733 DOI: 10.1055/a-2244-8788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both in vitro and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC50 values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC50 concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.
Collapse
Affiliation(s)
- Daruosh Rahimi
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Roya Sharifi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | |
Collapse
|
4
|
Reyad-ul-Ferdous M, Song Y. Histone deacetylase (HDAC) inhibitor Curcumin upregulates mitochondrial uncoupling protein1 (UCP1) and mitochondrial function in brown adipocytes, in-Silico study and screening natural drug library. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Antiproliferative Effects of Ferulic, Coumaric, and Caffeic Acids in HepG2 Cells by hTERT Downregulation. Adv Pharmacol Pharm Sci 2022; 2022:1850732. [PMID: 36341080 PMCID: PMC9635977 DOI: 10.1155/2022/1850732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Phenolic acids are well-known phytochemicals that are detected in a wide variety of medicinal plants, and their antiproliferative effects on cancer cells are known, but their mechanisms are poorly revealed. In most of cancer cells, telomerase reverse transcriptase (hTERT) is a dominant factor of telomere length regulation. The hTERT expression promotes invasiveness in tumor cells and is a hallmark of cancer. Therefore, in this study, the probable inhibitory effects of caffeic (Caf), coumaric (Cum), and ferulic acids (Fer) are investigated on the hTERT expression pattern in HepG2 cells. Methods The MTT, apoptosis assays, and real-time PCR analysis were applied to evaluate viability, cytotoxicity, and hTERT gene expression level, respectively. Results All of the studied phenolic acids showed cytotoxic effects on HepG2 cells in a timely manner and presented a time-dependent inhibitory effect on the growth of HepG2 cells. They reduced percentage of viable cells and induced apoptosis. Also, these phenolic acids had significant inhibitory effects on hTERT gene expression. Conclusion These findings suggest that cell viability along with hTERT gene expression in HepG2 cells could be reduced by Cum, Caf, and Fer. As different cancer cells are resistant to conventional chemotherapeutics, this type of results proposes the telomerase as a proper target of cancer therapy development by natural products.
Collapse
|
6
|
Lowe L, LaValley JW, Felsher DW. Tackling heterogeneity in treatment-resistant breast cancer using a broad-spectrum therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:917-925. [PMID: 36627896 PMCID: PMC9771755 DOI: 10.20517/cdr.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
Tumor heterogeneity can contribute to the development of therapeutic resistance in cancer, including advanced breast cancers. The object of the Halifax project was to identify new treatments that would address mechanisms of therapeutic resistance through tumor heterogeneity by uncovering combinations of therapeutics that could target the hallmarks of cancer rather than focusing on individual gene products. A taskforce of 180 cancer researchers, used molecular profiling to highlight key targets responsible for each of the hallmarks of cancer and then find existing therapeutic agents that could be used to reach those targets with limited toxicity. In many cases, natural health products and re-purposed pharmaceuticals were identified as potential agents. Hence, by combining the molecular profiling of tumors with therapeutics that target the hallmark features of cancer, the heterogeneity of advanced-stage breast cancers can be addressed.
Collapse
Affiliation(s)
- Leroy Lowe
- Getting to Know Cancer (NGO), Truro, Nova Scotia B2N 1X5, Canada
| | | | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, CA CCSR 1105, USA
| |
Collapse
|
7
|
Fragkiadaki P, Renieri E, Kalliantasi K, Kouvidi E, Apalaki E, Vakonaki E, Mamoulakis C, Spandidos DA, Tsatsakis A. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep 2022; 25:158. [PMID: 35266017 PMCID: PMC8941523 DOI: 10.3892/mmr.2022.12674] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The main aim of the present systematic review was to summarize the most frequently used telomerase regulators with an impact on aging and cancer that are referred to in in vitro and in vivo studies. For this purpose, a systematic review of the available literature on telomerase regulators referred to in articles from PubMed and Scopus libraries published from 2002 to 2021 and in accordance with PRISMA 2020 criteria, was conducted. Articles were included if they met the following criteria: They referred to telomerase modulators in aging and in cancer and were in vitro and/or in vivo studies, while studies that did not provide sufficient data or studies not written in English were excluded. In the present systematic review, 54 publications were included, of which 29 were full‑text published studies, 11 were full‑text reviews, 10 structure‑based design studies and 4 abstracts are reported in this review. Telomerase regulators were then categorized as synthetic direct telomerase inhibitors, synthetic indirect telomerase inhibitors, synthetic telomerase activators, natural direct telomerase activators, natural telomerase inhibitors and natural indirect telomerase activators, according to their origin and their activity. On the whole, as demonstrated herein, telomerase regulators appear to be promising treatment agents in various age‑related diseases. However, further in vivo and in vitro studies need to be performed in order to clarify the potentiality of telomerase as a therapeutic target.
Collapse
Affiliation(s)
- Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens 15232, Greece
| | - Evita Apalaki
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, 75105 Uppsala, Sweden
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| |
Collapse
|
8
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rowaiye AB, Mendes YJT, Olofinsae SA, Oche JB, Oladipo OH, Okpalefe OA, Ogidigo JO. Camptothecin shows better promise than Curcumin in the inhibition of the Human Telomerase: A computational study. Heliyon 2021; 7:e07742. [PMID: 34485722 PMCID: PMC8405929 DOI: 10.1016/j.heliyon.2021.e07742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/17/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The Human Telomerase enzyme has become a drug target in the treatment of cancers and age-related disorders. This study aims to identify potential natural inhibitors of the Human Telomerase from compounds derived from edible African plants. MATERIALS AND METHODS A library of 1,126 natural compounds was molecularly docked against the Telomerase Reverse Transcriptase (PDB ID: 5ugw), the catalytic subunit of the target protein. Curcumin, a known Telomerase inhibitor was used as the standard. The front-runner compounds were screened for bioavailability, pharmacokinetic properties, and bioactivity using the SWISSADME, PKCSM, and Molinspiration webservers respectively. The molecular dynamic simulation and analyses of the apo and holo proteins were performed by the Galaxy supercomputing webserver. RESULTS The results of the molecular docking and virtual screening reveal Augustamine and Camptothecin as lead compounds. Augustamine has better drug-likeness and pharmacokinetic properties while Camptothecin showed better bioactivity and stronger binding affinity (-8.2 kcal/mol) with the target. The holo structure formed by Camptothecin showed greater inhibitory activity against the target with a total RMSF of 169.853, B-Factor of 20.164, and 108 anti-correlating residues. CONCLUSION Though they both act at the same binding site, Camptothecin induces greater Telomerase inhibition and better molecular stability than the standard, Curcumin. Further tests are required to investigate the inhibitory activities of the lead compounds.
Collapse
Affiliation(s)
| | | | - Samson Ayodeji Olofinsae
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Joyce Oloaigbe Ogidigo
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
10
|
Forouzanfar F, Majeed M, Jamialahmadi T, Sahebkar A. Telomerase: A Target for Therapeutic Effects of Curcumin in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:135-143. [PMID: 33725351 DOI: 10.1007/978-3-030-55035-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Telomerases are attractive targets for development of new anticancer agents. Most tumors express the enzyme telomerase that maintains telomere length and thus ensures indefinite cell proliferation, a hallmark of cancer. Curcumin has been shown to be effective against several types of malignancies and has also been shown to have inhibitory effects on telomerase activity. Hence, the aim of this chapter is to review the available investigations of curcumin on telomerase activity. Based on the findings obtained from the different studies here, we conclude that the telomerase inhibitory effects of curcumin are integral to its anticancer activity, and thus curcumin may be useful therapeutically in the cancer field.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Gogoi P, Dutta A, Ramteke A, Maji TK. Preparation, characterization and cytotoxic applications of curcumin‐(±)
α‐lipoic
acid coloaded phosphorylated chitosan nanoparticles in
MDA MB
231 breast cancer cell line. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Plabita Gogoi
- Department of Chemical Sciences Tezpur University Tezpur India
| | - Anindita Dutta
- Department of Molecular Biology and Biotechnology Tezpur University Tezpur India
| | - Anand Ramteke
- Department of Molecular Biology and Biotechnology Tezpur University Tezpur India
| | | |
Collapse
|
12
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
13
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
14
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
15
|
Tavakoli F, Jahanban-Esfahlan R, Seidi K, Jabbari M, Behzadi R, Pilehvar-Soltanahmadi Y, Zarghami N. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:75-86. [DOI: 10.1080/21691401.2018.1452021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Tavakoli
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Jabbari
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramezan Behzadi
- North Research Center, Pasture Institute of Iran, Amol, Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
17
|
Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M. Emerging Importance of Phytochemicals in Regulation of Stem Cells Fate via Signaling Pathways. Phytother Res 2017; 31:1651-1668. [DOI: 10.1002/ptr.5908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
18
|
Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem Biol Drug Des 2017; 90:1056-1066. [DOI: 10.1111/cbdd.13013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/27/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vahid Shafiei-Irannejad
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Roya Salehi
- Department of Medical Nanotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
19
|
Banik U, Parasuraman S, Adhikary AK, Othman NH. Curcumin: the spicy modulator of breast carcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:98. [PMID: 28724427 PMCID: PMC5517797 DOI: 10.1186/s13046-017-0566-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Abstract
Worldwide breast cancer is the most common cancer in women. For many years clinicians and the researchers are examining and exploring various therapeutic modalities for breast cancer. Yet the disease has remained unconquered and the quest for cure is still going on. Present-day strategy of breast cancer therapy and prevention is either combination of a number of drugs or a drug that modulates multiple targets. In this regard natural products are now becoming significant options. Curcumin exemplifies a promising natural anticancer agent for this purpose. This review primarily underscores the modulatory effect of curcumin on the cancer hallmarks. The focus is its anticancer effect in the complex pathways of breast carcinogenesis. Curcumin modulates breast carcinogenesis through its effect on cell cycle and proliferation, apoptosis, senescence, cancer spread and angiogenesis. Largely the NFkB, PI3K/Akt/mTOR, MAPK and JAK/STAT are the key signaling pathways involved. The review also highlights the curcumin mediated modulation of tumor microenvironment, cancer immunity, breast cancer stem cells and cancer related miRNAs. Using curcumin as a therapeutic and preventive agent in breast cancer is perplexed by its diverse biological activity, much of which remains inexplicable. The information reviewed here should point toward potential scope of future curcumin research in breast cancer.
Collapse
Affiliation(s)
- Urmila Banik
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Unit of Pathology, AIMST University, Faculty of Medicine, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Subramani Parasuraman
- Unit of Pharmacology, AIMST University, Faculty of Pharmacy, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Arun Kumar Adhikary
- Unit of Microbiology, AIMST University, Faculty of Medicine, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Nor Hayati Othman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
20
|
Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, Shafiei-Irannejad V, Zarghami N. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:917-925. [PMID: 28678551 DOI: 10.1080/21691401.2017.1347879] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study was aimed at investigating the synergistic inhibitory effect of unique combinational regimen of nanocapsulated Metformin (Met) and Curcumin (Cur) against T47D breast cancer cells. For this purpose, Met and Cur were co-encapsulated in PEGylated PLGA nanoparticles (NPs) and evaluated for their therapeutic efficacy. The morphology and dynamic light scattering (DLS) analyses were carried out to optimize the nanoformulations. Drug release study was performed using dialysis method and then the cytotoxic and inhibitory effect of individual and combined drugs on expression level of hTERT in T47D breast cell line were evaluated using MTT assay and qPCR, respectively. The results showed that free drugs and formulations exhibited a dose-dependent cytotoxicity against T47D cells and especially, Met-Cur-PLGA/PEG NPs had more synergistic antiproliferative effect and significantly arrested the growth of cancer cells than the other groups (p < .05). Real-time PCR results revealed that Cur, Met and combination of Met-Cur in free and encapsulated forms inhibited hTERT gene expression. It was found that Met-Cur-PLGA/PEG NPs in relative to free combination could further decline hTERT expression in all concentration (p < .05). Taken together, our study demonstrated that Met-Cur-PLGA/PEG NPs based combinational therapy holds promising potential towards the treatment of breast cancer.
Collapse
Affiliation(s)
- Raana Farajzadeh
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Younes Pilehvar-Soltanahmadi
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Dadashpour
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahrzad Javidfar
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javid Lotfi-Attari
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hadi Sadeghzadeh
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Shafiei-Irannejad
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
21
|
Bosch-Barrera J, Queralt B, Menendez JA. Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat Rev 2017; 58:61-69. [DOI: 10.1016/j.ctrv.2017.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
|
22
|
Role of HDM2 Gene in Radio-Sensitivity of Esophageal Cancer Cell Lines to Irradiation. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Javan Maasomi Z, Pilehvar Soltanahmadi Y, Dadashpour M, Alipour S, Abolhasani S, Zarghami N. Synergistic Anticancer Effects of Silibinin and Chrysin in T47D Breast Cancer Cells. Asian Pac J Cancer Prev 2017; 18:1283-1287. [PMID: 28610415 PMCID: PMC5555536 DOI: 10.22034/apjcp.2017.18.5.1283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Breast cancer is one of the most significant causes of female cancer death worldwide. Although several chemotherapeutics have been developed to treat this type of cancer, issues remain such as low survival rates and high reoccurrence after chemotherapy and radiotherapy. To explore a chemopreventive approach to enhancing breast cancer treatment efficacy, the antiproliferative effects of a combination of chrysin and silibinin, two herbal substances, in T47D breast cancer cells were assessed. Materials and Methods: Cytotoxicity of the agents singly and in combination was evaluated by MTT assay. Also, qRT-PCR was used to measure the expression levels of hTERT and cyclin D1 genes after 48 h treatment. Results: Cell viability assays revealed that chrysin or silibinin alone inhibited proliferation in a dose and time-dependent manner, and combining the drugs synergistically induced growth inhibition in the breast cancer cell line. The precise nature of this interaction was further analyzed by the median-effect method, where the combination indices (CI) were <1 for combination treatments, indicating synergism regarding T47D cell proliferation. qPCR results showed that the drug combination also synergistically down-regulated the mRNA levels of hTERT and cyclin D1 at all used concentrations compared with the drugs used alone after 48 h treatment (P ≤ 0.05). Conclusion: The data provide evidence that synergistic antiproliferative effects of Chrysin and Silibinin are linked to the down-regulation of cyclin D1 and hTERT genes, and suggest that their combination may have therapeutic value in treatment of breast cancer.
Collapse
Affiliation(s)
- Zahra Javan Maasomi
- Department of Genetics, Faculty of Sciences, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
24
|
Jahanban-Esfahlan R, Seidi K, Monfaredan A, Shafie-Irannejad V, Abbasi MM, Karimian A, Yousefi B. The herbal medicine Melissa officinalis extract effects on gene expression of p53, Bcl-2, Her2, VEGF-A and hTERT in human lung, breast and prostate cancer cell lines. Gene 2017; 613:14-19. [PMID: 28259690 DOI: 10.1016/j.gene.2017.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Earlier, we verified that Melissa officinalis extract (MOE) elicits potent antiproliferative effects on different human cancer cells. To gain insights into the molecular mechanisms accounting for the cytotoxic effects of MOE, we assessed the expression patterns of several prominent molecules with therapeutic potential in cancer by Quantitative PCR (Q-PCR). METHODS A549, MCF-7 and PC3 cancer cells were grown in complete RPMI 1640 and seeded in 24 well micro plates. After incubation for 72h, 100μg/ml of MOE was added and the cells were further incubated for 72h. Afterwards, the cells were subjected to RNA extraction for the means of Q-PCR. RESULTS Our results indicated that in PC3 cancer cells, MOE resulted in a significant downregulation of VEGF-A (0.0004 fold), Bcl-2 (0.001 fold), Her2 (0.02 fold), and hTERT (0.023 fold) compared to the untreated control. In addition, VEGF-A and hTERT mRNA were significantly downregulated in MCF-7 and A549 cancer cells, as well. Notably, high anti-angiogenic activity was closely associated with a high anti-telomerase activity of MOE in studying cancer cells. The decrease in VEGF-A expression was significantly superior than that of hTERT downregulation, as PC3 cancer cells with the highest hTERT down regulation (0.023) presented the highest anti VEGF activity (0.0004 fold), whereas MCF-7 cells with the lowest hTERT inhibition (0.213) showed the lowest VEGF inhibition(0.0435) among the three studied cancer cells. We noticed that the modulation of VEGF-A and hTERT gene expression can be considered as a common target, accounting for the therapeutic potential of MOE on human breast, lung and prostate cancer cells. CONCLUSION Altogether, it is suggested that the potent antiproliferative activity of the hydroalcoholic extract of Melissa officinalis is somehow explainable by its high potency to inhibit expression of the prominent oncogenes Bcl2, Her2, VEGF-A and hTERT in prostate cancer. In tumors with functional p53, including MCF-7 and A549 cancer cells, the role of p53, Bcl2 and Her2 is less significant. It appears that MOE exerts its antiproliferative effects in these cancer cells partly via concurrent downregulation of VEGF-A and hTERT. Additional studies are needed to clarify the role of other active molecules in cancer cells harboring functional p53.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Monfaredan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafie-Irannejad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Abbasi MM, Monfaredan A, Hamishehkar H, Seidi K, Jahanban- Esfahlan R. Novel DOX-MTX nanoparticles improve oral SCC clinical outcome by down regulation of lymph dissemination factor VEGF-C expression in vivo: oral and IV modalities. Asian Pac J Cancer Prev 2017; 15:6227-32. [PMID: 25124602 DOI: 10.7314/apjcp.2014.15.15.6227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. The aim of present study was to evaluate the efficacy of novel pH and temperature sensitive doxorubicin-methotrexate- loaded nanoparticles (DOX-MTX NP) in terms of their potential to change the VEGF-C expression profile in a rat OSCC model. MATERIALS AND METHODS 120 male rats were divided into 8 groups of 15 animals administrated with 4-nitroquinoline-1-oxide to induce OSCCs. Newly formulated doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) and free doxorubicin were IV and orally administered. RESULTS RESULTS indicated that both oral and IV forms of DOX-MTX- nanoparticle complexes caused significant decrease in the mRNA level of VEGF-C compared to untreated cancerous rats (p<0.05) . Surprisingly, the VEGF-C mRNA was not affected by free DOX in both IV and oral modalities (p>0.05). Furthermore, in DOX-MTX NP treated group, less tumors characterized with advanced stage and VEGF-C mRNA level paralleled with improved clinical outcome (p<0.05). In addition, compared to untreated healthy rats , the VEGF-C expression was not affected in healthy groups that were treated with IV and oral dosages of nanodrug (p>0.05). CONCLUSIONS VEGF-C is one of the main prognosticators for lymph node metastasis in OSCC. Down-regulation of this lymph-angiogenesis promoting factor is a new feature acquired in group treated with dual action DOX-MTX-NPs. Beside the synergic apoptotic properties of concomitant use of DOX and MTX on OSCC, DOX-MTX NPs possessed anti-angiogenesis properties which was related to the improved clinical outcome in treated rats. Taking together, we conclude that our multifunctional doxorubicin-methotrexate complex exerts specific potent apoptotic and anti-angiogenesis properties that could ameliorate the clinical outcome presumably via down-regulating dissemination factor-VEGF-C expression in a rat OSCC model.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | |
Collapse
|
26
|
Dadras P, Atyabi F, Irani S, Ma'mani L, Foroumadi A, Mirzaie ZH, Ebrahimi M, Dinarvand R. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97:47-54. [DOI: 10.1016/j.ejps.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/11/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
27
|
Polachi N, Bai G, Li T, Chu Y, Wang X, Li S, Gu N, Wu J, Li W, Zhang Y, Zhou S, Sun H, Liu C. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer – A comprehensive review. Eur J Med Chem 2016; 123:577-595. [DOI: 10.1016/j.ejmech.2016.07.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022]
|
28
|
Mahran RI, Hagras MM, Sun D, Brenner DE. Bringing Curcumin to the Clinic in Cancer Prevention: a Review of Strategies to Enhance Bioavailability and Efficacy. AAPS JOURNAL 2016; 19:54-81. [DOI: 10.1208/s12248-016-0003-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/04/2016] [Indexed: 01/28/2023]
|
29
|
Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, Zarghami F, Khodi S, Mohaghegh M, Sadeghzadeh H, Zarghami N. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm 2016; 509:244-254. [PMID: 27234697 DOI: 10.1016/j.ijpharm.2016.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022]
Abstract
The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment.
Collapse
Affiliation(s)
- Maryam Montazeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Yones Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faraz Zarghami
- Imam Reza Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Khodi
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mina Mohaghegh
- Department of Molecular Biology and Biotechnology, University of Aix-Marseille, Marseille, France
| | - Hadi Sadeghzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Lewis KA, Tollefsbol TO. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front Genet 2016; 7:83. [PMID: 27242892 PMCID: PMC4860561 DOI: 10.3389/fgene.2016.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Chromosome-shortening is characteristic of normal cells, and is known as the end replication problem. Telomerase is the enzyme responsible for extending the ends of the chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant cancers. There are three subunits of telomerase: human telomerase RNA (hTERC), human telomerase associated protein (hTEP1), or dyskerin, and human telomerase reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so the enzymatic activity of telomerase is dependent on the transcription of hTERT. DNA methylation, histone methylation, and histone acetylation are basic epigenetic regulations involved in the expression of hTERT. Non-coding RNA can also serve as a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT is important in providing a mechanism for reversibility of hTERT control in various biological states. These include embryonic down-regulation of hTERT contributing to aging and the upregulation of hTERT playing a critical role in over 90% of cancers. Normal human somatic cells have a non-methylated/hypomethylated CpG island within the hTERT promoter region, while telomerase-positive cells paradoxically have at least a partially methylated promoter region that is opposite to the normal roles of DNA methylation. Histone acetylation of H3K9 within the promoter region is associated with an open chromatin state such that transcription machinery has the space to form. Histone methylation of hTERT has varied control of the gene, however. Mono- and dimethylation of H3K9 within the promoter region indicate silent euchromatin, while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target epigenetic-modifying enzymes, as well as transcription factors involved in the control of hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent fascination that has received much attention. By combining portions of this diet with epigenome-altering treatments, it is possible to selectively regulate the epigenetic control of hTERT and its expression.
Collapse
Affiliation(s)
- Kayla A Lewis
- Department of Biology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, BirminghamAL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, BirminghamAL, USA
| |
Collapse
|
31
|
Sasidharan S, Jothy SL, Kavitha N, Chen Y, Kanwar JR. Deactivation of Telomerase Enzyme and Telomere Destabilization by Natural Products: a Potential Target for Cancer Green Therapy. Asian Pac J Cancer Prev 2016; 16:8671. [PMID: 26745135 DOI: 10.7314/apjcp.2015.16.18.8671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, Malaysia E-mail :
| | | | | | | | | |
Collapse
|
32
|
Li P, Wu M, Wang J, Sui Y, Liu S, Shi D. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells. Redox Biol 2015; 8:91-7. [PMID: 26771767 PMCID: PMC5022045 DOI: 10.1016/j.redox.2015.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 11/30/2015] [Accepted: 12/06/2015] [Indexed: 01/12/2023] Open
Abstract
Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS) and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment. This study explains why antioxidants selectively inhibit cancer telomerase activity. Cancer cells have higher redox homeostasis threshold than normal cells. ROS is involved in the regulation of cancer telomerase activity through Akt pathway.
Collapse
Affiliation(s)
- Pengying Li
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Meilin Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Yilun Sui
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Shanlin Liu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
33
|
Askari S, Salehi R, Zarghami N, Akbarzadeh A, Rahmati-Yamchi M. The anticancer effects of biodegradable nanomagnetic dual natural components on the leptin gene expression in lung cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1753-63. [PMID: 26593227 DOI: 10.3109/21691401.2015.1101000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lung cancer is an invasive and progressive, fatal disease with few treatment choices and poor overall survival rates in nonsurgical stages. Leptin (LEP), an adipocyte derivative cytokine, participates in carcinogenesis. Increased amounts of systemic and pulmonary LEP indicate lung cancer. Curcumin (CUR) and silibinin (SIL) are herbal compounds which have many anticancer properties, but they have hydrophobic structures and low solubility in water. In this study, evaluated CUR-SIL dual drug-loaded poly (ɛ-caprolactone) [PCL]-co-poly ethylene glycol (PEG) magnetic nanoparticles (MNPs) were used to determine the inhibitory effect on LEP gene expression. The physicochemical properties of free and CUR-SIL-loaded PCL-PEG were fully characterized. The cytotoxic effect of CUR-SIL-loaded PCL-PEG magnetic nanoparticles was determined by MTT assay. Afterward, the inhibition of LEP gene expression was specified through real-time PCR. Results indicated that CUR-SIL cytotoxicity is time- and dose-dependent. CUR-SIL loaded MNPs showed the IC50 limit in lower concentrations in comparison to net CUR-SIL. CUR-SIL loaded MNPs reduced LEP expression more than net CUR-SIL. These results revealed the possibilities of CUR-SIL-loaded MNPs as a natural and effective antitumor drug delivery system to fight lung tumors.
Collapse
Affiliation(s)
- Shivadokht Askari
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,c Aras International Branch of Tabriz University of Medical Sciences , Tabriz Iran
| | - Roya Salehi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratallah Zarghami
- b Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- d Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rahmati-Yamchi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,c Aras International Branch of Tabriz University of Medical Sciences , Tabriz Iran
| |
Collapse
|
34
|
Jahanban-Esfahlan R, Abasi M, Sani HM, Abbasi MM, Akbarzadeh A. Anti-Proliferative Effects of Hesa-A on Human Cancer Cells with Different Metastatic Potential. Asian Pac J Cancer Prev 2015; 16:6963-6. [PMID: 26514475 DOI: 10.7314/apjcp.2015.16.16.6963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past few years, Hesa-A, a herbal-marine mixture, has been used to treat cancer as an alternative medicine in Iran. Based on a series of studies, it is speculated that Hesa-A possesses special cytotoxic effects on invasive tumors. To test this hypothesis, we investigated the selective anticancer effects of Hesa-A on several cancer cell lines with different metastatic potential. MATERIALS AND METHODS Hesa-A was prepared in normal saline as a stock solution of 10 mg/ml and further diluted to final concentrations of 100 μg/ml, 200 μg/ ml, 300 μg/ml and 400 μg/ml. MTT-based cytotoxicity assays were performed with A549 (lung non small cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. RESULTS All treated cancer cells showed significant (P<0.01) or very significant (P<0.0001) differences in comparison to negative control at almost all of the tested doses (100-400 μg/ml). At the lower dose (100 μg/ml), Hesa-A reduced cell viability to 66%, 45.3%, 35.5%, 33.2% in SKOV3, A549, PC-3 and MCF-7 cells, respectively. Moreover, at the highest dose (400 μg/ml), Hesa-A resulted in 88.5%, 86.6% , 84.9% and 79.3% growth inhibition in A549, MCF-7, PC-3 and SKOV3 cells, respectively. CONCLUSIONS Hesa-A exert potent cytotoxic effects on different human cancer cells, especially those with a high metastatic potential.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | |
Collapse
|
35
|
Abbasi MM, Jahanban-Esfahlan R, Monfaredan A, Seidi K, Hamishehkar H, Khiavi MM. Oral and IV dosages of doxorubicin-methotrexate loaded- nanoparticles inhibit progression of oral cancer by down- regulation of matrix Methaloproteinase 2 expression in vivo. Asian Pac J Cancer Prev 2015; 15:10705-11. [PMID: 25605162 DOI: 10.7314/apjcp.2014.15.24.10705] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oral cancer is one of the most common and lethal cancers in the world. Combination chemotherapy coupled with nanoparticle drug delivery holds substantial promise in cancer therapy. This study aimed to evaluate the efficacy and safety of two dosages of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NPs) with attention to the MMP-2 mRNA profile in a 4-nitroquinoline-1-oxide induced oral squamous cell carcinoma (OSCC) model in the rat. Our results showed that both IV and oral dosages of DOX-MTX NP caused significant decrease in mRNA levels of MMP-2 compared to the untreated group (p<0.003). Surprisingly, MMP-2 mRNA was not affected in DOX treated compared to cancer group (p>0.05). Our results indicated that IV dosage of MTX-DOX is more effective than free DOX (12 fold) in inhibiting the activity of MMP-2 in OSCCs (P<0.001). Furthermore, MMP-2 mRNA expression in the DOX-MTX treated group showed a significant relation with histopathological changes (P=0.011). Compared to the untreated cancer group, we observed no pathological changes and neither a significant alteration in MMP-2 amount in either of healthy controls that were treated with oral and IV dosages of DOX-MTX NPs whilst cancer group showed a high level of MMP-2 expression compared to healthy controls (p<0.001).Taking together our results indicate that DOX- MTX NPs is a safe chemotherapeutic nanodrug that its oral and IV forms possess potent anti-cancer properties on aggressive tumors like OSCC, possibly by affecting the expression of genes that drive tumor invasion and metastasis.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
36
|
Mock CD, Jordan BC, Selvam C. Recent Advances of Curcumin and its Analogues in Breast Cancer Prevention and Treatment. RSC Adv 2015; 5:75575-75588. [PMID: 27103993 PMCID: PMC4836288 DOI: 10.1039/c5ra14925h] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
More than 230,000 diagnosed cases of invasive breast cancer in women was estimated in 2014 and an expected 40,000 deaths attributed to the aggressive carcinoma. An effective approach to diminish the morbidity and mortality of breast cancer is the development of chemopreventive and chemotherapeutic agents. Nutraceuticals have demonstrated their ability to proficiently halt carcinogenesis. The administration of natural compounds able to effectively serve as chemoprevention and chemotherapeutics without causing harm or adverse effects is imperative. Curcumin derived from the rhizome of Curcuma longa L., is a common spice of India, used for centuries because of its medicinal properties. The main component of curcumin possesses a wide range of biological activities; anti-proliferative, anti-inflammatory, and apoptotic characteristics modulated through the inactivation of pathways such as EGK and Akt/mTOR. In addition, curcumin alters the expression of cytokines, transcription factors, and enzymes involved in cell vitality. The in vivo application of curcumin in breast cancer is hindered by its limited bioavailabiity. The synthesis of curcumin analogues and delivery via nanoparticles has demonstrated enhanced bioavailability of curcumin in the malignancy. This review focuses on recent developments in the use of curcumin, curcumin analogues, and novel delivery systems as a preventive and therapeutic method for breast cancer.
Collapse
Affiliation(s)
- Charlotta D Mock
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Brian C Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| |
Collapse
|
37
|
Mohapatra P, Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling. Int J Biochem Cell Biol 2015; 66:75-84. [PMID: 26212257 DOI: 10.1016/j.biocel.2015.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023]
Abstract
Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3μM) and curcumin (3μM) in comparison to 30μM of resveratrol or curcumin alone. Resveratrol+curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21(Waf/Cip1) in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21(Waf/Cip1) knockout cells suggests this combination caused apoptosis through p21(Waf/Cip1). Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2(Waf/Cip1) mediated inhibition of Hedgehog-Gli cascade.
Collapse
Affiliation(s)
- Purusottam Mohapatra
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Shakti Ranjan Satapathy
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Sumit Siddharth
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Dipon Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Anmada Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India.
| |
Collapse
|
38
|
Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: Molecular modeling study. Eur J Med Chem 2015. [DOI: 10.1016/j.ejmech.2015.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Badrzadeh F, Akbarzadeh A, Zarghami N, Yamchi MR, Zeighamian V, Tabatabae FS, Taheri M, Kafil HS. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells. Asian Pac J Cancer Prev 2015; 15:8931-6. [PMID: 25374231 DOI: 10.7314/apjcp.2014.15.20.8931] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbal compounds such as curcumin which decrease telomerase and gene expression have been considered as beneficial tools for lung cancer treatment. In this article, we compared the effects of pure curcumin and curcumin-loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in a lung cancer cell line. MATERIALS AND METHODS A tetrazolium-based assay was used for determination of cytotoxic effects of curcumin on the Calu-6 lung cancer cell line and telomerase and pinX1 gene expression was measured with real-time PCR. RESULTS MTT assay showed that Curcumin-loaded NIPAAm-MAA inhibited the growth of the Calu-6 lung cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of curcumin-loaded NIPAAm-MAA increased while expression of the PinX1 gene became elevated. CONCLUSIONS The results showed that curcumin- loaded- NIPAAm-MAA exerted cytotoxic effects on the Calu-6 cell line through down-regulation of telomerase and stimulation of pinX1 gene expression. NIPPAm-MAA could be good carrier for such kinds of hydrophobic agent.
Collapse
Affiliation(s)
- Fariba Badrzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abbasi MM, Khiavi MM, Monfaredan A, Hamishehkar H, Seidi K, Jahanban-Esfahlan R. DOX-MTX-NPs augment p53 mRNA expression in OSCC model in rat: effects of IV and oral routes. Asian Pac J Cancer Prev 2015; 15:8377-82. [PMID: 25339032 DOI: 10.7314/apjcp.2014.15.19.8377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Cancer development and progression require inactivation of tumor suppressor genes and activation of proto-oncogenes. The well recognized mechanism of action demonstrated for chemotherapeutic agents is induction of apoptosis via reactivation of p53. In this context, we evaluate the efficacy of IV and oral routes of our novel PH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting p53 profile in an OSCC rat model. METHODS In this study, 120 male rats were divided into 8 groups of 15 animals each. The new formulated DOX-MTX NP and free doxorubicin were IV and orally given to rats with 4-nitroquinoline-1- oxide induced OSCC. RESULTS RESULTS showed that both DOX and DOX-MTX-NP caused significant increase in mRNA levels of P53 compared to the untreated group (p<0.000). With both DOX and DOX-MTX NP, the IV mode was more effective than the oral (gavage) route (p<0.000). Surprisingly, in oral mode, p53 mRNA was not affected in DOX treated groups (p>0.05), Nonetheless, both IV and oral administration of MTX-DOX NP showed superior activity (~3 fold) over free DOX in reactivation of p53 in OSCC (p<0.000). The effectiveness of oral route in group treated with nanodrug accounts for the enhanced bioavailability of nanoparticulated DOX- MTX compared to free DOX. Moreover, in treated groups, tumor stage was markedly related to the amount of p53 mRNA (p<0.05). CONCLUSION Both oral and IV application of our novel nanodrug possesses superior activity over free DOX-in up-regulation of p53 in a OSCC model and this increase in p53 level associated with less aggressive tumors in our study. Although, impressive results obtained with IV form of nanodrug (-21 fold increase in p53 mRNA level) but both forms of nanodrug are effective in OSCC, with less toxicity normal cells.
Collapse
|
41
|
Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
|
42
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
43
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Pirouzpanah MB, Sabzichi M, Pirouzpanah S, Chavoshi H, Samadi N. Silibilin-induces apoptosis in breast cancer cells by modulating p53, p21, Bak and Bcl-XL pathways. Asian Pac J Cancer Prev 2015; 16:2087-92. [PMID: 25773855 DOI: 10.7314/apjcp.2015.16.5.2087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nowadays herbal-derived medicines are attracting attention as new sources of drugs with few side effects. Silibinin is a flavonoid compound with chemotheraputic effects on different cancers such as examples in the prostate, lung, colon and breast. In the present study, the cytotoxic effects of silibinin on MCF7 breast cancer cells were investigated. Apoptosis was determined by flow cytometry and the impact of silibinin on the expression of pivotal genes including Bak, P53, P21, BRCA1, BCL-X1 and ATM was analyzed. Treatment for 24h had a significant dose-dependent inhibitory effect on cell growth (p<0.05) with dose- and time- dependent induction of apoptosis (p<0.05). In addition, there were significant increases in BRCA1, ATM, Bak and Bcl-XL gene expression at the mRNA level with different concentrations of silibinin for 24 or 48 h (p<0.05). Taken together, the results suggest that silibinin inhibits the proliferation and induces apoptosis of MCF-7 cells by down-regulating Bak, P53, P21, BRCA1, BCL-Xl and thus may be considered as an effective adjuvant drug to produce a better chemopreventive response for the cancer therapy.
Collapse
|
45
|
Nejati-Koshki K, Akbarzadeh A, Pourhassan-Moghaddam M. Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors. Cancer Cell Int 2014; 14:66. [PMID: 25866478 PMCID: PMC4392783 DOI: 10.1186/1475-2867-14-66] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023] Open
Abstract
Background Recent studies suggested that leptin as a mitogenic factor might play an important role in the process of initiation and progression of human cancer. Therefore, it could be considered as a target for breast cancer therapy. A previous study has showed that expression of leptin gene could be modulated by activation of estrogen receptors. Curcumin is a diferuloylmethane that has been shown to interfere with multiple cell signaling pathways and extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. Based on the fact that targeting of leptin could be considered as a novel strategy for breast cancer therapy, the aim of this study is the investigation of potentiality of curcumin for inhibition of leptin gene expression and secretion, and also, its link with expression of estrogen receptors. Methods Cytotoxic effect of curcumin on T47D breast cancer cells was investigated by MTT assay test after 24 and 48 treatments. Thereafter, the cells treated with different concentrations of curcumin. The levels of leptin, estrogen receptor α and estrogen receptor β genes expression was measured in the treated and control cells by Reverse-transcription real-time PCR. Amount of secreted leptin in the culture medium was also determined by ELISA in both treated and untreated cells. Finally data were statistically analyzed by one-way ANOVA test. Results Analysis of MTT assay data showed that curcumin inhibits growth of T47D cells with dose dependent manner. There were also significant difference between control and treated cells in the levels of leptin, estrogen receptor α expression levels and the quantity of secreted leptin that both were decreased in the treated cells compared with control cells. Conclusion Based on the results, curcumin inhibits the expression and secretion of leptin and it could probably be used as a drug candidate for the breast cancer therapy through the leptin targeting in the future.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Shen Y, Lu B, Zhang S, Ma ZJ. Diterpenoid C of Radix Curcumae: an inhibitor of proliferation and inducer of apoptosis in human colon adenocarcinoma cells acting via inhibiting MAPK signaling pathway. PHARMACEUTICAL BIOLOGY 2014; 52:1158-1165. [PMID: 24646305 DOI: 10.3109/13880209.2013.879907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Radix Curcumae is a traditional Chinese medicine that possesses antitumor properties, from which a new compound, diterpenoid C, was previously isolated and characterized. OBJECTIVE In this study, using human colon adenocarcinoma SW620 cells, we further investigated the antitumor effects of diterpenoid C and the underlying mechanisms. MATERIALS AND METHODS Cell proliferation was assessed with the MTT assay. Cell apoptosis and cell-cycle progression were analyzed with flow cytometry. The expression of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK), and their phosphorylated forms, as well as caspase-3 protein levels were examined with Western blots. RESULTS Diterpenoid C could inhibit the proliferation of SW620 cells in a dose- and time-dependent manner. The median inhibitory concentration (IC50) at 24, 48, and 72 h were 28.31, 15.58, and 6.14 μg/ml, respectively. The inhibition of proliferation was found to be statistically significant as compared with the well-established drugs 5-fluorouracil (5-Fu) and oxaliplatin (L-OHP) (p < 0.01). Diterpenoid C also induced apoptosis and arrested cell cycle. It showed the highest apoptosis rate (98.20 ± 0.91%) at 70 μg/ml, at 72 h. Meanwhile, diterpenoid C suppressed the phosphorylation of ERK, JNK, and p38 MAPK proteins, and markedly induced the cleavage of caspase 3. DISCUSSION AND CONCLUSION Diterpenoid C inhibits proliferation and induces apoptosis of cancer cells by suppressing the MAPK signaling pathway and inducing apoptotic factor caspase-3. Our results suggest that this novel compound might become a potent chemotherapeutic agent for the treatment of colon cancer and further studies are warranted.
Collapse
Affiliation(s)
- Yan Shen
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou, Zhejiang Province , China
| | | | | | | |
Collapse
|
47
|
Zohre S, Kazem NK, Abolfazl A, Mohammad RY, Aliakbar M, Effat A, Zahra D, Hassan D, Nosratollah Z. Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer. Asian Pac J Cancer Prev 2014; 15:6581-6. [DOI: 10.7314/apjcp.2014.15.16.6581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Wang YX, Cai H, Jiang G, Zhou TB, Wu H. Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition. Asian Pac J Cancer Prev 2014; 15:6791-8. [DOI: 10.7314/apjcp.2014.15.16.6791] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Ghasemali S, Nejati-Koshki K, Tafsiri E, Rahmati-Yamchi M, Akbarzadeh A, Alizadeh E, Abbasi M, Barkhordari A, Tozihi M, Kordi S, Zarghami N. Inhibitory effects of β-cyclodextrin-helenalin complexes on H-TERT gene expression in the T47D breast cancer cell line - results of real time quantitative PCR. Asian Pac J Cancer Prev 2014; 14:6949-53. [PMID: 24377631 DOI: 10.7314/apjcp.2013.14.11.6949] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nowadays, the encapsulation of cytotoxic chemotherapeutic agents is attracting interest as a method for drug delivery. We hypothesized that the efficiency of helenalin might be maximized by encapsulation in β-cyclodextrin nanoparticles. Helenalin, with a hydrophobic structure obtained from flowers of Arnica chamissonis and Arnica Montana, has anti-cancer and anti-inflammatory activity but low water solubility and bioavailability. β-Cyclodextrin (β-CD) is a cyclic oligosaccharide comprising seven D-glucopyranoside units, linked through 1,4-glycosidic bonds. MATERIALS AND METHODS To test our hypothesis, we prepared β-cyclodextrin- helenalin complexes to determine their inhibitory effects on telomerase gene expression by real-time polymerase chain reaction (q-PCR) and cytotoxic effects by colorimetric cell viability (MTT) assay. RESULTS MTT assay showed that not only β-cyclodextrin has no cytotoxic effect on its own but also it demonstrated that β-cyclodextrin- helenalin complexes inhibited the growth of the T47D breast cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of β-cyclodextrin-helenalin complexes increased. CONCLUSIONS β-Cyclodextrin-helenalin complexes exerted cytotoxic effects on T47D cells through down-regulation of telomerase expression and by enhancing Helenalin uptake by cells. Therefore, β-cyclodextrin could be superior carrier for this kind of hydrophobic agent.
Collapse
Affiliation(s)
- Samaneh Ghasemali
- Drug Applied Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran E-mail : , ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, Alibakhshi A. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev 2014; 14:6925-8. [PMID: 24377627 DOI: 10.7314/apjcp.2013.14.11.6925] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite numerous useful anticancer properties of curcumin, its utility is limited due to its hydrophobic structure. In this study, we investigated the comparative antiproliferative effect of PAMAM encapsulating curcumin with naked curcumin on the T47D breast cancer cell line. MATERIALS AND METHODS Cytotoxic effects of PAMAM dendrimers encapsulating curcumin and curcumin alone were investigated by MTT assay. After treating cells with different concentrations of both curcumin alone and curcumin encapsulated for 24h, telomerase activity was determined by TRAP assay. RESULTS While PAMAM dendrimers encapsulating curcumin had no cytotoxicity on cancer cells, they decreased the IC50 for proliferation and also increased the inhibitory effect on telomerase activity. CONCLUSIONS Considering the non-toxicity in addition to effectiveness for enhancing curcumin anticancer properties, dendrimers could be considered good therapeutic vehicles for this hydrophobic agent.
Collapse
Affiliation(s)
- Mahdie Mollazade
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | | | |
Collapse
|