1
|
Sivaramakrishnan M, Veeraganti Naveen Prakash C, Chandrasekar B. Multifaceted roles of plant glycosyl hydrolases during pathogen infections: more to discover. PLANTA 2024; 259:113. [PMID: 38581452 DOI: 10.1007/s00425-024-04391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
MAIN CONCLUSION Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.
Collapse
Affiliation(s)
| | | | - Balakumaran Chandrasekar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, 333031, India.
| |
Collapse
|
2
|
Chen C, van der Hoorn RAL, Buscaill P. Releasing hidden MAMPs from precursor proteins in plants. TRENDS IN PLANT SCIENCE 2024; 29:428-436. [PMID: 37945394 DOI: 10.1016/j.tplants.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The recognition of pathogens by plants at the cell surface is crucial for activating plant immunity. Plants employ pattern recognition receptors (PRRs) to detect microbe-associated molecular patterns (MAMPs). However, our knowledge of the release of peptide MAMPs from their precursor proteins is very limited. Here, we explore seven protein precursors of well-known MAMP peptides and discuss the likelihood of processing being required for their recognition based on structural models and public knowledge. This analysis indicates the existence of multiple extracellular events that are likely pivotal for pathogen perception but remain to be uncovered.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Apodiakou A, Alseekh S, Hoefgen R, Whitcomb SJ. Overexpression of SLIM1 transcription factor accelerates vegetative development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1327152. [PMID: 38571711 PMCID: PMC10988502 DOI: 10.3389/fpls.2024.1327152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The transcription factor Sulfur Limitation 1 (SLIM1) belongs to the plant-specific Ethylene Insenstive3-Like transcription factor family and is known to coordinate gene expression in response to sulfur deficiency. However, the roles of SLIM1 in nutrient-sufficient conditions have not been characterized. Employing constitutive SLIM1 overexpression (35S::SLIM1) and CRISPR/Cas9 mutant plants (slim1-cr), we identified several distinct phenotypes in nutrient-sufficient conditions in Arabidopsis thaliana. Overexpression of SLIM1 results in plants with approximately twofold greater rosette area throughout vegetative development. 35S::SLIM1 plants also bolt earlier and exhibit earlier downregulation of photosynthesis-associated genes and earlier upregulation of senescence-associated genes than Col-0 and slim1-cr plants. This suggests that overexpression of SLIM1 accelerates development in A. thaliana. Genome-wide differential gene expression analysis relative to Col-0 at three time points with slim1-cr and two 35S::SLIM1 lines allowed us to identify 1,731 genes regulated directly or indirectly by SLIM1 in vivo.
Collapse
Affiliation(s)
- Anastasia Apodiakou
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sarah J. Whitcomb
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Cereal Crops Research Unit, United States Department of Agriculture - Agricultural Research Service, Madison, WI, United States
| |
Collapse
|
4
|
Xuan C, Feng M, Li X, Hou Y, Wei C, Zhang X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int J Mol Sci 2024; 25:638. [PMID: 38203810 PMCID: PMC10779513 DOI: 10.3390/ijms25010638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Mengjiao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Yinjie Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
5
|
Sueldo DJ, Godson A, Kaschani F, Krahn D, Kessenbrock T, Buscaill P, Schofield CJ, Kaiser M, van der Hoorn RAL. Activity-based proteomics uncovers suppressed hydrolases and a neo-functionalised antibacterial enzyme at the plant-pathogen interface. THE NEW PHYTOLOGIST 2024; 241:394-408. [PMID: 36866975 PMCID: PMC10952330 DOI: 10.1111/nph.18857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active β-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.
Collapse
Affiliation(s)
- Daniela J. Sueldo
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Alice Godson
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Daniel Krahn
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Till Kessenbrock
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Christopher J. Schofield
- Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchOxfordOX1 3TAUK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | | |
Collapse
|
6
|
Liu X, Ma Z, Tran TM, Rautengarten C, Cheng Y, Yang L, Ebert B, Persson S, Miao Y. Balanced callose and cellulose biosynthesis in Arabidopsis quorum-sensing signaling and pattern-triggered immunity. PLANT PHYSIOLOGY 2023; 194:137-152. [PMID: 37647538 PMCID: PMC10756761 DOI: 10.1093/plphys/kiad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a β-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Carsten Rautengarten
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen 518055, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Staffan Persson
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
7
|
Homma F, Huang J, van der Hoorn RAL. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Nat Commun 2023; 14:6040. [PMID: 37758696 PMCID: PMC10533508 DOI: 10.1038/s41467-023-41721-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Adapted plant pathogens from various microbial kingdoms produce hundreds of unrelated small secreted proteins (SSPs) with elusive roles. Here, we used AlphaFold-Multimer (AFM) to screen 1879 SSPs of seven tomato pathogens for interacting with six defence-related hydrolases of tomato. This screen of 11,274 protein pairs identified 15 non-annotated SSPs that are predicted to obstruct the active site of chitinases and proteases with an intrinsic fold. Four SSPs were experimentally verified to be inhibitors of pathogenesis-related subtilase P69B, including extracellular protein-36 (Ecp36) and secreted-into-xylem-15 (Six15) of the fungal pathogens Cladosporium fulvum and Fusarium oxysporum, respectively. Together with a P69B inhibitor from the bacterial pathogen Xanthomonas perforans and Kazal-like inhibitors of the oomycete pathogen Phytophthora infestans, P69B emerges as an effector hub targeted by different microbial kingdoms, consistent with a diversification of P69B orthologs and paralogs. This study demonstrates the power of artificial intelligence to predict cross-kingdom interactions at the plant-pathogen interface.
Collapse
Affiliation(s)
- Felix Homma
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Jie Huang
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK.
| |
Collapse
|
8
|
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. THE NEW PHYTOLOGIST 2023; 238:2113-2129. [PMID: 36945893 DOI: 10.1111/nph.18896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Legumes establish symbioses with rhizobia by forming nitrogen-fixing nodules. Nitrate is a major environmental factor that affects symbiotic functioning. However, the molecular mechanism of nitrate-induced nodule senescence is poorly understood. Comparative transcriptomic analysis reveals an NAC-type transcription factor in Lotus japonicus, LjNAC094, that acts as a positive regulator in nitrate-induced nodule senescence. Stable overexpression and mutant lines of NAC094 were constructed and used for phenotypic characterization. DNA-affinity purification sequencing was performed to identify NAC094 targeting genes and results were confirmed by electrophoretic mobility shift and transactivation assays. Overexpression of NAC094 induces premature nodule senescence. Knocking out NAC094 partially relieves nitrate-induced degradation of leghemoglobins and abolishes nodule expression of senescence-associated genes (SAGs) that contain a conserved binding motif for NAC094. Nitrate-triggered metabolic changes in wild-type nodules are largely affected in nac094 mutant nodules. Induction of NAC094 and its targeting SAGs was almost blocked in the nitrate-insensitive nlp1, nlp4, and nlp1 nlp4 mutants. We conclude that NAC094 functions downstream of NLP1 and NLP4 by regulating nitrate-induced expression of SAGs. Our study fills in a key gap between nitrate and the execution of nodule senescence, and provides a potential strategy to improve nitrogen fixation and stress tolerance of legumes.
Collapse
Affiliation(s)
- Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xian Xin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumiao Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059, Zaragoza, Spain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Deletion of pbpC Enhances Bacterial Pathogenicity on Tomato by Affecting Biofilm Formation, Exopolysaccharides Production, and Exoenzyme Activities in Clavibacter michiganensis. Int J Mol Sci 2023; 24:ijms24065324. [PMID: 36982399 PMCID: PMC10049144 DOI: 10.3390/ijms24065324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are considered essential for bacterial peptidoglycan biosynthesis and cell wall assembly. Clavibacter michiganensis is a representative Gram-positive bacterial species that causes bacterial canker in tomato. pbpC plays a significant role in maintaining cell morphological characteristics and stress responses in C. michiganensis. The current study demonstrated that the deletion of pbpC commonly enhances bacterial pathogenicity in C. michiganensis and revealed the mechanisms through which this occurs. The expression of interrelated virulence genes, including celA, xysA, xysB, and pelA, were significantly upregulated in △pbpC mutants. Compared with those in wild-type strains, exoenzyme activities, the formation of biofilm, and the production of exopolysaccharides (EPS) were significantly increased in △pbpC mutants. It is noteworthy that EPS were responsible for the enhancement in bacterial pathogenicity, with the degree of necrotic tomato stem cankers intensifying with the injection of a gradient of EPS from C. michiganensis. These findings highlight new insights into the role of pbpC affecting bacterial pathogenicity, with an emphasis on EPS, advancing the current understanding of phytopathogenic infection strategies for Gram-positive bacteria.
Collapse
|
10
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Garcia AGK, Steinbrenner AD. Bringing Plant Immunity to Light: A Genetically Encoded, Bioluminescent Reporter of Pattern-Triggered Immunity in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:139-149. [PMID: 36583694 DOI: 10.1094/mpmi-07-22-0160-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plants rely on innate immune systems to defend against a wide variety of biotic attackers. Key components of innate immunity include cell-surface pattern-recognition receptors (PRRs), which recognize pest- and pathogen-associated molecular patterns (PAMPs). Unlike other classes of receptors that often have visible cell-death immune outputs upon activation, PRRs generally lack rapid methods for assessing function. Here, we describe a genetically encoded bioluminescent reporter of immune activation by heterologously expressed PRRs in the model organism Nicotiana benthamiana. We characterized N. benthamiana transcriptome changes in response to Agrobacterium tumefaciens and subsequent PAMP treatment to identify pattern-triggered immunity (PTI)-associated marker genes, which were then used to generate promoter-luciferase fusion fungal bioluminescence pathway (FBP) constructs. A reporter construct termed pFBP_2xNbLYS1::LUZ allows for robust detection of PTI activation by heterologously expressed PRRs. Consistent with known PTI signaling pathways, reporter activation by receptor-like protein (RLP) PRRs is dependent on the known adaptor of RLP PRRs, i.e., SOBIR1. The FBP reporter minimizes the amount of labor, reagents, and time needed to assay function of PRRs and displays robust sensitivity at biologically relevant PAMP concentrations, making it ideal for high throughput screens. The tools described in this paper will be powerful for investigations of PRR function and characterization of the structure-function of plant cell-surface receptors. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Anthony G K Garcia
- Department of Biology, University of Washington, Seattle, WA 98195, U.S.A
| | | |
Collapse
|
12
|
Zheng X, Chang S, Liu Y, Dai X, You C. Human Mitochondrial Protein HSPD1 Binds to and Regulates the Repair of Deoxyinosine in DNA. J Proteome Res 2023; 22:1339-1346. [PMID: 36852893 DOI: 10.1021/acs.jproteome.2c00854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The generation of deoxyinosine (dI) in DNA is one of the most important sources of genetic mutations, which may lead to cancer and other human diseases. A further understanding of the biological consequences of dI necessitates the identification and functional characterizations of dI-binding proteins. Herein, we employed a mass spectrometry-based proteomics approach to detect the cellular proteins that may sense the presence of dI in DNA. Our results demonstrated that human mitochondrial heat shock protein 60 (HSPD1) can interact with dI-bearing DNA. We further demonstrated the involvement of HSPD1 in the sodium nitrite-induced DNA damage response and in the modulation of dI levels in vitro and in human cells. Together, these findings revealed HSPD1 as a novel dI-binding protein that may play an important role in the mitochondrial DNA damage control in human cells.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Sijia Chang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
13
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
14
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
16
|
Agake SI, Plucani do Amaral F, Yamada T, Sekimoto H, Stacey G, Yokoyama T, Ohkama-Ohtsu N. Plant Growth-promoting Effects of Viable and Dead Spores of Bacillus pumilus TUAT1 on Setaria viridis. Microbes Environ 2022; 37. [PMID: 35082177 PMCID: PMC8958298 DOI: 10.1264/jsme2.me21060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spores are a stress-resistant form of Bacillus spp., which include species that are plant growth-promoting rhizobacteria (PGPR). Previous studies showed that the inoculation of plants with vegetative cells or spores exerted different plant growth-promoting effects. To elucidate the spore-specific mechanism, we compared the effects of viable vegetative cells, autoclaved dead spores, and viable spores of Bacillus pumilus TUAT1 inoculated at 107 CFU plant–1 on the growth of the C4 model plant, Setaria viridis A10.1. B. pumilus TUAT1 spores exerted stronger growth-promoting effects on Setaria than on control plants 14 days after the inoculation. Viable spores increased shoot weight, root weight, shoot length, root length, and nitrogen uptake efficiency 21 days after the inoculation. These increases involved primary and crown root formation. Additionally, autoclaved dead spores inoculated at 108 or 109 CFU plant–1 had a positive impact on crown root differentiation, which increased total lateral root length, resulting in a greater biomass and more efficient nitrogen uptake. The present results indicate that an inoculation with viable spores of B. pumilus TUAT1 is more effective at enhancing the growth of Setaria than that with vegetative cells. The plant response to dead spores suggests that the spore-specific plant growth-promoting mechanism is at least partly independent of symbiotic colonization.
Collapse
Affiliation(s)
- Shin-Ichiro Agake
- United Graduated School of Agriculture, Tokyo University of Agriculture and Technology
| | | | - Tetsuya Yamada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology.,Institute of Agriculture, Tokyo University of Agriculture and Technology
| | | | - Gary Stacey
- Divisions of Plant Science and Technology and Biochemistry, University of Missouri
| | | | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology.,Institute of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
17
|
Wang J, Haapalainen M, Nissinen AI, Pirhonen M. Dual Transcriptional Profiling of Carrot and ' Candidatus Liberibacter solanacearum' at Different Stages of Infection Suggests Complex Host-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1281-1297. [PMID: 34319773 DOI: 10.1094/mpmi-10-20-0274-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reduced mobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylase were expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jinhui Wang
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Minna Haapalainen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Anne I Nissinen
- Natural Resources Institute Finland (Luke), Natural Resources, Tietotie 2C, FI-31600 Jokioinen, Finland
| | - Minna Pirhonen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
18
|
Lee DH, Lee HS, Belkhadir Y. Coding of plant immune signals by surface receptors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102044. [PMID: 33979769 DOI: 10.1016/j.pbi.2021.102044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
19
|
Zhang B, Chen G, Zhang H, Lan J, Yang C. Effects of rhamnolipids on growth performance and intestinal health parameters in Linnan yellow broilers. Poult Sci 2021; 100:810-819. [PMID: 33518135 PMCID: PMC7858087 DOI: 10.1016/j.psj.2020.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
This study determined the effects of dietary supplementation of rhamnolipids (RLS) on the growth performance, gut morphology, immune function, intestinal volatile fatty acid, and microflora community in Linnan yellow broilers. A total of 480 1-day-old broiler chicks were randomly assigned to groups for supplementation with one of the following for 56 d: no supplement (control), 30 mg/kg bacitracin (ANT), 500 mg/kg RLS, or 1,000 mg/kg RLS (RLS2). The RLS2 diet was found to improve the final BW and ADG on day 56. The RLS diet reduced jejunal crypt depth, increased jejunal villus length, and increased serum IgA, IgM, IgY, IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels. The RLS broilers had higher cecum concentrations of acetic acid, propionic acid, butyrate, isobutyric acid, valerate, and isovalerate. High-throughput sequencing indicated that RLS affected microbial quantity and diversity in the cecum. Bacterial richness was higher in the RLS broilers than the ANT broilers. The RLS broilers had higher relative abundances of Megasphaera hypermegale and Lachnospiraceae bacterium 19gly4 on day 28 and Clostridium spiroforme and Alistipes obesi on day 56. These results suggest that RLS supplementation improves growth performance, benefits the intestinal villus morphology, regulates host immune function, and raises intestinal volatile fatty acid content and the relative abundance of the gut microbiota in broiler chickens.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
20
|
Wanke A, Malisic M, Wawra S, Zuccaro A. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:15-35. [PMID: 32929496 PMCID: PMC7816849 DOI: 10.1093/jxb/eraa414] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 05/14/2023]
Abstract
To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant-microbe interactions.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Milena Malisic
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Stephan Wawra
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| |
Collapse
|
21
|
Darshan K, Aggarwal R, Bashyal BM, Singh J, Shanmugam V, Gurjar MS, Solanke AU. Transcriptome Profiling Provides Insights Into Potential Antagonistic Mechanisms Involved in Chaetomium globosum Against Bipolaris sorokiniana. Front Microbiol 2020; 11:578115. [PMID: 33365017 PMCID: PMC7750538 DOI: 10.3389/fmicb.2020.578115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Chaetomium globosum Kunze is recognized as a potential biocontrol fungus against spot blotch of wheat caused by Bipolaris sorokiniana. Its molecular mechanism of biocontrol activity and the biosynthetic pathways involved have not been yet elucidated. Here, global transcriptome profiling of C. globosum strain Cg2 during interaction with B. sorokiniana isolate BS112 using RNA-seq was performed in order to gain insights into the potential mechanisms of antagonism. The Illumina HiSeq platform (2 × 150 bp) yielded an average of 20-22 million reads with 50-58% GC. De novo assembly generated 45,582 transcripts with 27,957 unigenes. Transcriptome analysis displayed distinct expression profiles in the interaction (Cg2-BS112), out of which 6,109 unique differentially expressed genes were present. The predominant transcripts classified as genes involved in "catalytic activity" constituted 45.06%, of which 10.02% were associated with "hydrolytic activity" (GO:0008152), and similarly, in the biological process, 29.18% of transcripts were involved in "metabolic activity" (GO:0004096 and GO:0006979). Heat map and cluster categorization suggested an increase in the expression levels of genes encoding secondary metabolites like polyketide synthase (GO:0009058), S-hydroxymethyl glutathione dehydrogenase (GO:0006069), terpene cyclase (EC 4.2.3.-), aminotran_1_2 domain-containing protein (GO:0009058), and other hydrolytic CAZYmes such as the glycosyl hydrolase (GH) family (GH 13, GH 2, GH 31, and GH 81; GO:0005975), cellulase domain-containing protein, chitinases, β-1, 3-glucanases (GO:0004565), glucan endo-1,3-beta-glucanase (GO:0052861), and proteases (GO:0004177). The obtained RNA-seq data were validated by RT-qPCR using 20 randomly chosen genes, showing consistency with the RNA-seq results. The present work is worldwide the first effort to unravel the biocontrol mechanism of C. globosum against B. sorokiniana. It generated a novel dataset for further studies and facilitated improvement of the gene annotation models in the C. globosum draft genome.
Collapse
Affiliation(s)
- K. Darshan
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Jagmohan Singh
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - V. Shanmugam
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Malkhan S. Gurjar
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
22
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
23
|
Yakura H. Cognitive and Memory Functions in Plant Immunity. Vaccines (Basel) 2020; 8:vaccines8030541. [PMID: 32957664 PMCID: PMC7563390 DOI: 10.3390/vaccines8030541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
From the time of Thucydides in the 5th century BC, it has been known that specific recognition of pathogens and memory formation are critical components of immune functions. In contrast to the immune system of jawed vertebrates, such as humans and mice, plants lack a circulatory system with mobile immune cells and a repertoire of clonally distributed antigen receptors with almost unlimited specificities. However, without these systems and mechanisms, plants can live and survive in the same hostile environment faced by other organisms. In fact, they achieve specific pathogen recognition and elimination, with limited self-reactivity, and generate immunological memory, sometimes with transgenerational characteristics. Thus, the plant immune system satisfies minimal conditions for constituting an immune system, namely, the recognition of signals in the milieu, integration of that information, subsequent efficient reaction based on the integrated information, and memorization of the experience. In the previous report, this set of elements was proposed as an example of minimal cognitive functions. In this essay, I will first review current understanding of plant immunity and then discuss the unique features of cognitive activities, including recognition of signals from external as well as internal environments, autoimmunity, and memory formation. In doing so, I hope to reach a deeper understanding of the significance of immunity omnipresent in the realm of living organisms.
Collapse
Affiliation(s)
- Hidetaka Yakura
- Institute for Science and Human Existence, Tokyo 163-8001, Japan
| |
Collapse
|
24
|
Plant Immunity: Danger Perception and Signaling. Cell 2020; 181:978-989. [DOI: 10.1016/j.cell.2020.04.028] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
|
25
|
Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. Surface Sensor Systems in Plant Immunity. PLANT PHYSIOLOGY 2020; 182:1582-1596. [PMID: 31822506 PMCID: PMC7140916 DOI: 10.1104/pp.19.01299] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Protein complexes at the cell surface facilitate the detection of danger signals from diverse pathogens and initiate a series of complex intracellular signaling events that result in various immune responses.
Collapse
Affiliation(s)
- Isabell Albert
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
26
|
Wang W, Feng B, Zhou JM, Tang D. Plant immune signaling: Advancing on two frontiers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:2-24. [PMID: 31846204 DOI: 10.1111/jipb.12898] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved multiple defense strategies to cope with pathogens, among which plant immune signaling that relies on cell-surface localized and intracellular receptors takes fundamental roles. Exciting breakthroughs were made recently on the signaling mechanisms of pattern recognition receptors (PRRs) and intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs). This review summarizes the current view of PRRs activation, emphasizing the most recent discoveries about PRRs' dynamic regulation and signaling mechanisms directly leading to downstream molecular events including mitogen-activated protein kinase (MAPK) activation and calcium (Ca2+ ) burst. Plants also have evolved intracellular NLRs to perceive the presence of specific pathogen effectors and trigger more robust immune responses. We also discuss the current understanding of the mechanisms of NLR activation, which has been greatly advanced by recent breakthroughs including structures of the first full-length plant NLR complex, findings of NLR sensor-helper pairs and novel biochemical activity of Toll/interleukin-1 receptor (TIR) domain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baomin Feng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
27
|
Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier S, Crouzet J, Dorey S. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. MOLECULAR PLANT PATHOLOGY 2019; 20:1602-1616. [PMID: 31353775 PMCID: PMC6804340 DOI: 10.1111/mpp.12857] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants are able to effectively cope with invading pathogens by activating an immune response based on the detection of invasion patterns (IPs) originating from the pathogen or released by the plant after infection. At a first level, this perception takes place at the plasma membrane through cell surface immune receptors and although the involvement of proteinaceous pattern recognition receptors (PRRs) is well established, increasing data are also pointing out the role of membrane lipids in the sensing of IPs. In this review, we discuss the evolution of various conceptual models describing plant immunity and present an overview of well-characterized IPs from different natures and origins. We summarize the current knowledge on how they are perceived by plants at the plasma membrane, highlighting the increasingly apparent diversity of sentinel-related systems in plants.
Collapse
Affiliation(s)
- Romain Schellenberger
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Matthieu Touchard
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Christophe Clément
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Fabienne Baillieul
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Sylvain Cordelier
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Jérôme Crouzet
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Stéphan Dorey
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| |
Collapse
|
28
|
Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 2019; 35:154. [PMID: 31576429 PMCID: PMC6773674 DOI: 10.1007/s11274-019-2728-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., competition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist.
Collapse
Affiliation(s)
- Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.
| | - Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Bruno Tilocca
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi and NRD - Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
29
|
Wan WL, Fröhlich K, Pruitt RN, Nürnberger T, Zhang L. Plant cell surface immune receptor complex signaling. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:18-28. [PMID: 30878771 DOI: 10.1016/j.pbi.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
Plant plasma membrane pattern recognition receptors are key to microbe sensing and activation of immunity to microbial invasion. Plants employ several types of such receptors that differ mainly in the structure of their ectodomains and the presence or absence of a cytoplasmic protein kinase domain. Plant immune receptors do not function as single entities, but form larger complexes which undergo compositional changes in a ligand-dependent manner. Here, we highlight current knowledge of molecular mechanisms underlying receptor complex dynamics and regulation, and cover early signaling networks implicated in the activation of generic plant immune responses. We further discuss how an increasingly comprehensive set of immune receptors may be employed to engineer crop plants with enhanced, durable resistance to microbial infection.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Katja Fröhlich
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany.
| |
Collapse
|
30
|
Roberts R, Mainiero S, Powell AF, Liu AE, Shi K, Hind SR, Strickler SR, Collmer A, Martin GB. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. THE NEW PHYTOLOGIST 2019; 223:447-461. [PMID: 30861136 DOI: 10.1111/nph.15788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 05/20/2023]
Abstract
The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Adrian F Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Alexander E Liu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Kai Shi
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
31
|
Cao S, Wang Y, Li Z, Shi W, Gao F, Zhou Y, Zhang G, Feng J. Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic stress in Ammopiptanthus nanus. Genes (Basel) 2019; 10:genes10060472. [PMID: 31234426 PMCID: PMC6627877 DOI: 10.3390/genes10060472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
Chitinase is a kind of hydrolase with chitin as a substrate and is proposed to play an essential role in plant defense system by functioning against fungal pathogens through degrading chitin. Recent studies indicated chitinase is also involved in abiotic stress response in plants, helping plants to survive in stressful environments. A. nanus, a rare evergreen broad-leaved shrub distrusted in deserts in Central Asia, exhibits a high level of tolerance to drought and low temperature stresses. To identify the chitinase gene involved in drought and low temperature responses in A. nanus, we performed genome-wide identification, classification, sequence alignment, and spatio-temporal gene expression analysis of the chitinases in A. nanus under osmotic and low temperature stress. A total of 32 chitinase genes belonging to glycosyl hydrolase 18 (GH18) and GH19 families were identified from A. nanus. Class III chitinases appear to be amplified quantitatively in A. nanus, and their genes carry less introns, indicating their involvement in stress response in A. nanus. The expression level of the majority of chitinases varied in leaves, stems, and roots, and regulated under environmental stress. Some chitinases, such as EVM0022783, EVM0020238, and EVM0003645, are strongly induced by low temperature and osmotic stress, and the MYC/ICE1 (inducer of CBF expression 1) binding sites in promoter regions may mediate the induction of these chitinases under stress. These chitinases might play key roles in the tolerance to these abiotic stress in A. nanus and have potential for biotechnological applications. This study provided important data for understanding the biological functions of chitinases in A. nanus.
Collapse
Affiliation(s)
- Shilin Cao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhiqiang Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Wei Shi
- Key Laboratory of Biogeography and Bioresource in Arid Land, Institute of Ecology and Geography in Xinjiang, The Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Genfa Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
32
|
Schlöffel MA, Käsbauer C, Gust AA. Interplay of plant glycan hydrolases and LysM proteins in plant-Bacteria interactions. Int J Med Microbiol 2019; 309:252-257. [PMID: 31079999 DOI: 10.1016/j.ijmm.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Plants are always found together with bacteria and other microbes. Although plants can be attacked by phytopathogenic bacteria, they are more often engaged in neutral or mutualistic bacterial interactions. In the soil, plants associate with rhizobia or other plant growth promoting rhizosphere bacteria; above ground, bacteria colonise plants as epi- and endophytes. For mounting appropriate responses, such as permitting colonisation by beneficial symbionts while at the same time fending off pathogenic invaders, plants need to distinguish between the "good" and the "bad". Plants make use of proteins containing the lysin motif (LysM) for perception of N-acetylglucosamine containing carbohydrate structures, such as chitooligosaccharides functioning as symbiotic nodulation factors or bacterial peptidoglycan. Moreover, plant hydrolytic enzymes of the chitinase family, which are able to cleave bacterial peptidoglycan or chitooligosaccharides, are essential for cellular signalling induced by rhizobial nodulation factors during symbiosis as well as bacterial peptidoglycan during pathogenesis. Hence, LysM receptors seem to work in concert with hydrolytic enzymes that fine-tune ligand availability to either allow symbiotic interactions or trigger plant immunity.
Collapse
Affiliation(s)
- Maria A Schlöffel
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Käsbauer
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Andrea A Gust
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Han LB, Li YB, Wang FX, Wang WY, Liu J, Wu JH, Zhong NQ, Wu SJ, Jiao GL, Wang HY, Xia GX. The Cotton Apoplastic Protein CRR1 Stabilizes Chitinase 28 to Facilitate Defense against the Fungal Pathogen Verticillium dahliae. THE PLANT CELL 2019; 31:520-536. [PMID: 30651348 PMCID: PMC6447012 DOI: 10.1105/tpc.18.00390] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
The apoplast serves as the first battlefield between the plant hosts and invading microbes; therefore, work on plant-pathogen interactions has increasingly focused on apoplastic immunity. In this study, we identified three proteins in the apoplast of cotton (Gossypium sp) root cells during interaction of the plant with the fungal pathogen Verticillium dahliae Among these proteins, cotton host cells secrete chitinase 28 (Chi28) and the Cys-rich repeat protein 1 (CRR1), while the pathogen releases the protease VdSSEP1. Biochemical analysis demonstrated that VdSSEP1 hydrolyzed Chi28, but CRR1 protected Chi28 from cleavage by Verticillium dahliae secretory Ser protease 1 (VdSSEP1). In accordance with the in vitro results, CRR1 interacted with Chi28 in yeast and plant cells and attenuated the observed decrease in Chi28 level that occurred in the apoplast of plant cells upon pathogen attack. Knockdown of CRR1 or Chi28 in cotton plants resulted in higher susceptibility to V. dahliae infection, and overexpression of CRR1 increased plant resistance to V dahliae, the fungus Botrytis cinerea, and the oomycete Phytophthora parasitica var nicotianae By contrast, knockout of VdSSEP1 in V. dahliae destroyed the pathogenicity of this fungus. Together, our results provide compelling evidence for a multilayered interplay of factors in cotton apoplastic immunity.
Collapse
Affiliation(s)
- Li-Bo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan-Bao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fu-Xin Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-He Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nai-Qin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shen-Jie Wu
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi 044000, China
| | - Gai-Li Jiao
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi 044000, China
| | - Hai-Yun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Wei H, Collmer A. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. MOLECULAR PLANT PATHOLOGY 2018; 19:1779-1794. [PMID: 29277959 PMCID: PMC6638048 DOI: 10.1111/mpp.12655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 05/22/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.
Collapse
Affiliation(s)
- Hai‐Lei Wei
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of AgricultureInstitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Alan Collmer
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
| |
Collapse
|
35
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
36
|
Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity. J Proteomics 2017; 169:202-214. [DOI: 10.1016/j.jprot.2017.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
|
37
|
Gust AA, Pruitt R, Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. TRENDS IN PLANT SCIENCE 2017; 22:779-791. [PMID: 28779900 DOI: 10.1016/j.tplants.2017.07.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell damage ('classical' damage-associated molecular patterns, DAMPs), and peptides which are processed and/or secreted upon infection to modulate the immune response (phytocytokines). We highlight the ongoing challenge to understand how plants sense various danger signals and integrate this information to produce an appropriate immune response to diverse challenges.
Collapse
Affiliation(s)
- Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| | - Rory Pruitt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
38
|
Yu X, Feng B, He P, Shan L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:109-137. [PMID: 28525309 PMCID: PMC6240913 DOI: 10.1146/annurev-phyto-080516-035649] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) are detected as nonself by host pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). Microbial invasions often trigger the production of host-derived endogenous signals referred to as danger- or damage-associated molecular patterns (DAMPs), which are also perceived by PRRs to modulate PTI responses. Collectively, PTI contributes to host defense against infections by a broad range of pathogens. Remarkable progress has been made toward demonstrating the cellular and physiological responses upon pattern recognition, elucidating the molecular, biochemical, and genetic mechanisms of PRR activation, and dissecting the complex signaling networks that orchestrate PTI responses. In this review, we present an update on the current understanding of how plants recognize and respond to nonself patterns, a process from which the seemingly chaotic responses form into a harmonic defense.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| | - Baomin Feng
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
39
|
Ranf S. Sensing of molecular patterns through cell surface immune receptors. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:68-77. [PMID: 28501024 DOI: 10.1016/j.pbi.2017.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/14/2023]
Abstract
In plants, sensing of Pathogen/Microbe-Associated Molecular Patterns (PAMPs/MAMPs) and host-derived Damage-Associated Molecular Patterns (DAMPs) by host cell surface Pattern Recognition Receptors (PRRs) activates Pattern-Triggered Immunity (PTI). The identification of an increasing number of immunogenic patterns and PRRs illustrates that PTI is a universal defence mechanism against pathogens, pests, and parasitic plants, and that evolutionary selective pressure drives diversification of molecular patterns and diversity of PRRs. Further advances unravelled how some prototypical PRRs get activated to initiate metabolic adaptation and defence responses that stop invaders. Deeper insights into the repertoire of PRRs will reveal how plants manage to mount appropriate defence against diverse kinds of invaders and how we can biotechnologically exploit nature's design for sustainable agriculture.
Collapse
Affiliation(s)
- Stefanie Ranf
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising-Weihenstephan, Germany.
| |
Collapse
|
40
|
Cheng XX, Zhao LH, Klosterman SJ, Feng HJ, Feng ZL, Wei F, Shi YQ, Li ZF, Zhu HQ. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:12-23. [PMID: 28483050 DOI: 10.1016/j.plantsci.2017.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 05/06/2023]
Abstract
Chitinases function in the digestion of chitin molecules, which are present principally in insects and fungi. In plants, chitinase genes play important roles in defense, and their expression can be triggered in response to both biotic and abiotic stresses. In this study, we cloned and characterized an endochitinase (VDECH) from Verticillium dahliae, strain Vd080. The VDECH coding region consists of 1845bp with two exons and one 54bp intron, encoding a 615 amino acid protein with the predicted molecular weight (MW) of 63.9kDa. The VDECH cDNA without signal peptide-encoding region was introduced into pCold-TF vector and the recombinant protein HIS-VDECH with a predicted MW of ∼114kDa was expressed. HIS-VDECH showed high tolerance to extreme temperature, exhibiting efficient chitinolytic activity at 50°C. In addition, VDECH triggered typical plant defense responses, including a hypersensitive response, oxidative burst, and elicited increased expression of defense-related genes in both Arabidopsis and cotton. VDECH-treatment of the conidial spores of V. dahliae and Fusarium oxysporum resulted in marked reductions in the germination of these spores in both fungi. After 36h of incubation with VDECH, the inhibition rate of germination was recorded at 99.57% for V. dahliae, and 96.89% for F. oxysporum. These results provide evidence that VDECH is recognized by the plant to elicit defense responses, and also that VDECH is an effective inhibitor of conidia germination, both of which may be exploited for disease control.
Collapse
Affiliation(s)
- Xiao-Xiao Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Li-Hong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | | | - Hong-Jie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zi-Li Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yong-Qiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhi-Fang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
41
|
Wang L, Albert M, Einig E, Fürst U, Krust D, Felix G. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. NATURE PLANTS 2016; 2:16185. [PMID: 27892924 DOI: 10.1038/nplants.2016.185] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 05/05/2023]
Abstract
Plants and animals recognize microbial invaders by detecting microbe-associated molecular patterns (MAMPs) by cell surface receptors. Many plant species of the Solanaceae family detect the highly conserved nucleic acid binding motif RNP-1 of bacterial cold-shock proteins (CSPs), represented by the peptide csp22, as a MAMP. Here, we exploited the natural variation in csp22 perception observed between cultivated tomato (Solanum lycopersicum) and Solanum pennellii to map and identify the leucine-rich repeat (LRR) receptor kinase CORE (cold shock protein receptor) of tomato as the specific, high-affinity receptor site for csp22. Corroborating its function as a genuine receptor, heterologous expression of CORE in Arabidopsis thaliana conferred full sensitivity to csp22 and, importantly, it also rendered these plants more resistant to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our study also confirms the biotechnological potential of enhancing plant immunity by interspecies transfer of highly effective pattern-recognition receptors such as CORE to different plant families.
Collapse
Affiliation(s)
- Lei Wang
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Markus Albert
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Elias Einig
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Ursula Fürst
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Damaris Krust
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Georg Felix
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
42
|
Hopke A, Nicke N, Hidu EE, Degani G, Popolo L, Wheeler RT. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition. PLoS Pathog 2016; 12:e1005644. [PMID: 27223610 PMCID: PMC4880299 DOI: 10.1371/journal.ppat.1005644] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog. Opportunistic fungal infections, including those caused by C. albicans, have emerged as a significant global health burden and the disseminated form of these infections still have unacceptably high mortality rates despite modern antifungal treatments. The fungal cell wall controls its interaction with the host environment and immune recognition, although cell wall dynamics during infection are poorly understood. C. albicans organizes its cell wall to mask the inflammatory β-glucan as a form of immune evasion and it is known that during infection this β-glucan becomes exposed. Here, we investigated how β-glucan becomes exposed and discovered a dynamic interaction where host NETs provoke an active fungal response that disrupts cell wall architecture and unmasks β-glucan. We revealed an unexpected level of local fungal cell wall dynamics in response to immune mediated stress, suggesting this may represent a model that can be leveraged to identify novel drug targets. Our results highlight the understudied concept that the cell wall is a dynamic landscape during infection and can be influenced by the host.
Collapse
Affiliation(s)
- Alex Hopke
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Nadine Nicke
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Erica E. Hidu
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Robert T. Wheeler
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, Yan GJ, Ma ZY. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. PLANTA 2016; 243:1023-39. [PMID: 26757733 DOI: 10.1007/s00425-015-2463-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 05/06/2023]
Abstract
Cotton S-adenosylmethionine decarboxylase-, rather than spermine synthase-, mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Spermine (Spm) signaling is correlated with plant resistance to the fungal pathogen Verticillium dahliae. We identified genes for key rate-limiting enzymes in the biosynthesis of Spm, namely S-adenosylmethionine decarboxylase (GhSAMDC) and Spm synthase (GhSPMS). These were found by screening suppression subtractive hybridization and cDNA libraries of cotton (Gossypium) species tolerant to Verticillium wilt. Both were induced early and strongly by inoculation with V. dahliae and application of plant hormones. Silencing of GhSPMS or GhSAMDC in cotton leaves led to a significant accumulation of upstream substrates and, ultimately, enhanced plant susceptibility to Verticillium infection. Exogenous supplementation of Spm to the silenced cotton plants improved resistance. When compared with the wild type (WT), constitutive expression of GhSAMDC in Arabidopsis thaliana was associated with greater Verticillium wilt resistance and higher accumulations of Spm, salicylic acid, and leucine during the infection period. By contrast, transgenic Arabidopsis plants that over-expressed GhSPMS were unexpectedly more susceptible than the WT to V. dahliae and they also had impaired levels of putrescine (Put) and salicylic acid (SA). The susceptibility exhibited in GhSPMS-overexpressing Arabidopsis plants was partially reversed by the exogenous supply of Put or SA. In addition, the responsiveness of those two transgenic Arabidopsis lines to V. dahliae was associated with an alteration in transcripts of genes involved in plant resistance to epidermal penetrations and amino acid signaling. Together, these results suggest that GhSAMDC-, rather than GhSPMS-, mediated spermine biosynthesis contributes to plant resistance against V. dahliae through SA- and leucine-correlated signaling.
Collapse
Affiliation(s)
- Hui-Juan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan-Xiang Sun
- Institute of Genetics and Breeding, Langfang Teachers University, Langfang, 065000, China
| | - Xiao-Li Zhu
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xing-Fen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Gui-Jun Yan
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Zhi-Ying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
44
|
Du Y, Stegmann M, Misas Villamil JC. The apoplast as battleground for plant-microbe interactions. THE NEW PHYTOLOGIST 2016; 209:34-8. [PMID: 26625346 DOI: 10.1111/nph.13777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Martin Stegmann
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Johana C Misas Villamil
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
45
|
|
46
|
Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 2015; 62:243-54. [PMID: 26527115 DOI: 10.1007/s00294-015-0530-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
In the past decades our knowledge about fungal cell wall architecture increased tremendously and led to the identification of many enzymes involved in polysaccharide synthesis and remodeling, which are also of biotechnological interest. Fungal cell walls play an important role in conferring mechanic stability during cell division and polar growth. Additionally, in phytopathogenic fungi the cell wall is the first structure that gets into intimate contact with the host plant. A major constituent of fungal cell walls is chitin, a homopolymer of N-acetylglucosamine units. To ensure plasticity, polymeric chitin needs continuous remodeling which is maintained by chitinolytic enzymes, including lytic polysaccharide monooxygenases N-acetylglucosaminidases, and chitinases. Depending on the species and lifestyle of fungi, there is great variation in the number of encoded chitinases and their function. Chitinases can have housekeeping function in plasticizing the cell wall or can act more specifically during cell separation, nutritional chitin acquisition, or competitive interaction with other fungi. Although chitinase research made huge progress in the last decades, our knowledge about their role in phytopathogenic fungi is still scarce. Recent findings in the dimorphic basidiomycete Ustilago maydis show that chitinases play different physiological functions throughout the life cycle and raise questions about their role during plant-fungus interactions. In this work we summarize these functions, mechanisms of chitinase regulation and their putative role during pathogen/host interactions.
Collapse
Affiliation(s)
- Thorsten Langner
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
47
|
|
48
|
Sánchez-Vallet A, Mesters JR, Thomma BP. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev 2015; 39:171-83. [DOI: 10.1093/femsre/fuu003] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
49
|
Bashandy H, Jalkanen S, Teeri TH. Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. PLANT METHODS 2015; 11:47. [PMID: 26472987 PMCID: PMC4607171 DOI: 10.1186/s13007-015-0091-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/07/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Transient gene expression utilizing syringe agroinfiltration offers a simple and efficient technique for different transgenic applications. Leaves of Nicotiana benthamiana show reliable and high transformation efficiency, but in quantitative assays also a certain degree of variation. We used a nested design in our agroinfiltration experiments to dissect the sources of this variation. RESULTS An intron containing firefly luciferase gene was used as a reporter for agroinfiltration. A number of 6 week old tobacco plants were infiltrated for their top leaves, several samples were punched from the leaves after 2 days of transient expression, and protein extracts from the samples were repeatedly measured for luciferase activity. Interestingly, most of the variation was due to differences between the sampling spots in the leaves, the next important source being the different leaves on each plant. Variation between similar experiments, between plants and between repetitive measurements of the extracts could be easily minimized. CONCLUSIONS Efforts and expenditure of agroinfiltration experiments can be optimized when sources of variation are known. In summary, infiltrate more plants but less leaves, sample more positions on the leaf but run only few technical replicates.
Collapse
Affiliation(s)
- Hany Bashandy
- />Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- />Department of Genetics, Cairo University, 13 Gamaa St., Giza, 12619 Egypt
| | - Salla Jalkanen
- />Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - Teemu H. Teeri
- />Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| |
Collapse
|
50
|
Gupta R, Lee SE, Agrawal GK, Rakwal R, Park S, Wang Y, Kim ST. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. FRONTIERS IN PLANT SCIENCE 2015; 6:352. [PMID: 26082784 PMCID: PMC4451336 DOI: 10.3389/fpls.2015.00352] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/03/2015] [Indexed: 05/14/2023]
Abstract
The extracellular space between cell wall and plasma membrane acts as the first battle field between plants and pathogens. Bacteria, fungi, and oomycetes that colonize the living plant tissues are encased in this narrow region in the initial step of infection. Therefore, the apoplastic region is believed to be an interface which mediates the first crosstalk between host and pathogen. The secreted proteins and other metabolites, derived from both host and pathogen, interact in this apoplastic region and govern the final relationship between them. Hence, investigation of protein secretion and apoplastic interaction could provide a better understanding of plant-microbe interaction. Here, we are briefly discussing the methods available for the isolation and normalization of the apoplastic proteins, as well as the current state of secretome studies focused on the in-planta interaction between the host and the pathogen.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - So Eui Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education (GRADE), Academy Private LimitedBirgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education (GRADE), Academy Private LimitedBirgunj, Nepal
- Organization for Educational Initiatives, University of TsukubaTsukuba, Japan
- Faculty of Health and Sport Sciences, Tsukuba International Academy for Sport Studies, University of TsukubaTsukuba, Japan
| | - Sangryeol Park
- Bio-crop Development Division, National Academy of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Sun Tae Kim, Department of Plant Bioscience, Pusan National University, Miryang 627-706, South Korea
| | - Sun T. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
- Yiming Wang, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne weg 10, Cologne 50829, Germany
| |
Collapse
|