1
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Souza GMPR, Abbott SBG. Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it? Respir Physiol Neurobiol 2024; 322:104217. [PMID: 38237884 PMCID: PMC10922619 DOI: 10.1016/j.resp.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.
Collapse
|
4
|
Vermeiren S, Cabochette P, Dannawi M, Desiderio S, San José AS, Achouri Y, Kricha S, Sitte M, Salinas-Riester G, Vanhollebeke B, Brunet JF, Bellefroid EJ. Prdm12 represses the expression of the visceral neuron determinants Phox2a/b in developing somatosensory ganglia. iScience 2023; 26:108364. [PMID: 38025786 PMCID: PMC10663820 DOI: 10.1016/j.isci.2023.108364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.
Collapse
Affiliation(s)
- Simon Vermeiren
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maya Dannawi
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Simon Desiderio
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Alba Sabaté San José
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, Institut de Duve, Brussels, Belgium
| | - Sadia Kricha
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maren Sitte
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Gabriela Salinas-Riester
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Benoit Vanhollebeke
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Jean-François Brunet
- Institut de Biologie de l’ENS (IBENS), Inserm, CNRS, École Normale Supérieure, PSL Research University, 75005 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| | - Eric J. Bellefroid
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
5
|
Grams KJ, Neumueller SE, Mouradian GC, Burgraff NJ, Hodges MR, Pan L, Forster HV. Mild and moderate chronic hypercapnia elicit distinct transcriptomic responses of immune function in cardiorespiratory nuclei. Physiol Genomics 2023; 55:487-503. [PMID: 37602394 PMCID: PMC11178267 DOI: 10.1152/physiolgenomics.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.
Collapse
Affiliation(s)
- Kirstyn J Grams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nicholas J Burgraff
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
7
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
8
|
Souza GMPR, Stornetta DS, Shi Y, Lim E, Berry FE, Bayliss DA, Abbott SBG. Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice. J Neurosci 2023; 43:5501-5520. [PMID: 37290937 PMCID: PMC10376939 DOI: 10.1523/jneurosci.0386-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Eunu Lim
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Faye E Berry
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
9
|
Brady CT, Marshall A, Zhang C, Parker MD. NBCe1-B/C-knockout mice exhibit an impaired respiratory response and an enhanced renal response to metabolic acidosis. Front Physiol 2023; 14:1201034. [PMID: 37405134 PMCID: PMC10315466 DOI: 10.3389/fphys.2023.1201034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
The sodium-bicarbonate cotransporter (NBCe1) has three primary variants: NBCe1-A, -B and -C. NBCe1-A is expressed in renal proximal tubules in the cortical labyrinth, where it is essential for reclaiming filtered bicarbonate, such that NBCe1-A knockout mice are congenitally acidemic. NBCe1-B and -C variants are expressed in chemosensitive regions of the brainstem, while NBCe1-B is also expressed in renal proximal tubules located in the outer medulla. Although mice lacking NBCe1-B/C (KOb/c) exhibit a normal plasma pH at baseline, the distribution of NBCe1-B/C indicates that these variants could play a role in both the rapid respiratory and slower renal responses to metabolic acidosis (MAc). Therefore, in this study we used an integrative physiologic approach to investigate the response of KOb/c mice to MAc. By means of unanesthetized whole-body plethysmography and blood-gas analysis, we demonstrate that the respiratory response to MAc (increase in minute volume, decrease in pCO2) is impaired in KOb/c mice leading to a greater severity of acidemia after 1 day of MAc. Despite this respiratory impairment, the recovery of plasma pH after 3-days of MAc remained intact in KOb/c mice. Using data gathered from mice housed in metabolic cages we demonstrate a greater elevation of renal ammonium excretion and greater downregulation of the ammonia recycling enzyme glutamine synthetase in KOb/c mice on day 2 of MAc, consistent with greater renal acid-excretion. We conclude that KOb/c mice are ultimately able to defend plasma pH during MAc, but that the integrated response is disturbed such that the burden of work shifts from the respiratory system to the kidneys, delaying the recovery of pH.
Collapse
Affiliation(s)
- Clayton T. Brady
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Aniko Marshall
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Chen Zhang
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Department of Biological Sciences, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Mark D. Parker
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, Department of Ophthalmology, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Slattery SM, Perez IA, Ceccherini I, Chen ML, Kurek KC, Yap KL, Keens TG, Khaytin I, Ballard HA, Sokol EA, Mittal A, Rand CM, Weese-Mayer DE. Transitional care and clinical management of adolescents, young adults, and suspected new adult patients with congenital central hypoventilation syndrome. Clin Auton Res 2023; 33:231-249. [PMID: 36403185 DOI: 10.1007/s10286-022-00908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE With contemporaneous advances in congenital central hypoventilation syndrome (CCHS), recognition, confirmatory diagnostics with PHOX2B genetic testing, and conservative management to reduce the risk of early morbidity and mortality, the prevalence of identified adolescents and young adults with CCHS and later-onset (LO-) CCHS has increased. Accordingly, there is heightened awareness and need for transitional care of these patients from pediatric medicine into a multidisciplinary adult medical team. Hence, this review summarizes key clinical and management considerations for patients with CCHS and LO-CCHS and emphasizes topics of particular importance for this demographic. METHODS We performed a systematic review of literature on diagnostics, pathophysiology, and clinical management in CCHS and LO-CCHS, and supplemented the review with anecdotal but extensive experiences from large academic pediatric centers with expertise in CCHS. RESULTS We summarized our findings topically for an overview of the medical care in CCHS and LO-CCHS specifically applicable to adolescents and adults. Care topics include genetic and embryologic basis of the disease, clinical presentation, management, variability in autonomic nervous system dysfunction, and clarity regarding transitional care with unique considerations such as living independently, family planning, exposure to anesthesia, and alcohol and drug use. CONCLUSIONS While a lack of experience and evidence exists in the care of adults with CCHS and LO-CCHS, a review of the relevant literature and expert consensus provides guidance for transitional care areas.
Collapse
Affiliation(s)
- Susan M Slattery
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maida L Chen
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyle C Kurek
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Lee Yap
- Molecular Diagnostics Laboratory, Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ilya Khaytin
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heather A Ballard
- Department of Pediatric Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth A Sokol
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Angeli Mittal
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Hérent C, Diem S, Usseglio G, Fortin G, Bouvier J. Upregulation of breathing rate during running exercise by central locomotor circuits in mice. Nat Commun 2023; 14:2939. [PMID: 37217517 DOI: 10.1038/s41467-023-38583-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
While respiratory adaptation to exercise is compulsory to cope with the increased metabolic demand, the neural signals at stake remain poorly identified. Using neural circuit tracing and activity interference strategies in mice, we uncover here two systems by which the central locomotor network can enable respiratory augmentation in relation to running activity. One originates in the mesencephalic locomotor region (MLR), a conserved locomotor controller. Through direct projections onto the neurons of the preBötzinger complex that generate the inspiratory rhythm, the MLR can trigger a moderate increase of respiratory frequency, prior to, or even in the absence of, locomotion. The other is the lumbar enlargement of the spinal cord containing the hindlimb motor circuits. When activated, and through projections onto the retrotrapezoid nucleus (RTN), it also potently upregulates breathing rate. On top of identifying critical underpinnings for respiratory hyperpnea, these data also expand the functional implication of cell types and pathways that are typically regarded as "locomotor" or "respiratory" related.
Collapse
Affiliation(s)
- Coralie Hérent
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
- Champalimaud Research, Champalimaud Foundation, 1400-038, Lisbon, Portugal
| | - Séverine Diem
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Giovanni Usseglio
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Gilles Fortin
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| |
Collapse
|
12
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
13
|
Cabirol MJ, Cardoit L, Courtand G, Mayeur ME, Simmers J, Pascual O, Thoby-Brisson M. Microglia shape the embryonic development of mammalian respiratory networks. eLife 2022; 11:80352. [PMID: 36321865 PMCID: PMC9629827 DOI: 10.7554/elife.80352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia, brain-resident macrophages, play key roles during prenatal development in defining neural circuitry function, including ensuring proper synaptic wiring and maintaining homeostasis. Mammalian breathing rhythmogenesis arises from interacting brainstem neural networks that are assembled during embryonic development, but the specific role of microglia in this process remains unknown. Here, we investigated the anatomical and functional consequences of respiratory circuit formation in the absence of microglia. We first established the normal distribution of microglia within the wild-type (WT, Spi1+/+ (Pu.1 WT)) mouse (Mus musculus) brainstem at embryonic ages when the respiratory networks are known to emerge (embryonic day (E) 14.5 for the parafacial respiratory group (epF) and E16.5 for the preBötzinger complex (preBötC)). In transgenic mice depleted of microglia (Spi1−/− (Pu.1 KO) mutant), we performed anatomical staining, calcium imaging, and electrophysiological recordings of neuronal activities in vitro to assess the status of these circuits at their respective times of functional emergence. Spontaneous respiratory-related activity recorded from reduced in vitro preparations showed an abnormally slow rhythm frequency expressed by the epF at E14.5, the preBötC at E16.5, and in the phrenic motor nerves from E16.5 onwards. These deficits were associated with a reduced number of active epF neurons, defects in commissural projections that couple the bilateral preBötC half-centers, and an accompanying decrease in their functional coordination. These abnormalities probably contribute to eventual neonatal death, since plethysmography revealed that E18.5 Spi1−/− embryos are unable to sustain breathing activity ex utero. Our results thus point to a crucial contribution of microglia in the proper establishment of the central respiratory command during embryonic development.
Collapse
Affiliation(s)
- Marie-Jeanne Cabirol
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Marie-Eve Mayeur
- MeLis INSERM U1314-CNRS UMR 5284, Faculté Rockefeller, Lyon, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Olivier Pascual
- MeLis INSERM U1314-CNRS UMR 5284, Faculté Rockefeller, Lyon, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Joyner AL, Bayin NS. Cerebellum lineage allocation, morphogenesis and repair: impact of interplay amongst cells. Development 2022; 149:dev185587. [PMID: 36172987 PMCID: PMC9641654 DOI: 10.1242/dev.185587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The cerebellum has a simple cytoarchitecture consisting of a folded cortex with three cell layers that surrounds a nuclear structure housing the output neurons. The excitatory neurons are generated from a unique progenitor zone, the rhombic lip, whereas the inhibitory neurons and astrocytes are generated from the ventricular zone. The growth phase of the cerebellum is driven by lineage-restricted progenitor populations derived from each zone. Research during the past decade has uncovered the importance of cell-to-cell communication between the lineages through largely unknown signaling mechanisms for regulating the scaling of cell numbers and cell plasticity during mouse development and following injury in the neonatal (P0-P14) cerebellum. This Review focuses on how the interplay between cell types is key to morphogenesis, production of robust neural circuits and replenishment of cells after injury, and ends with a discussion of the implications of the greater complexity of the human cerebellar progenitor zones for development and disease.
Collapse
Affiliation(s)
- Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - N. Sumru Bayin
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
15
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
16
|
Mafa-dependent GABAergic activity promotes mouse neonatal apneas. Nat Commun 2022; 13:3284. [PMID: 35672398 PMCID: PMC9174494 DOI: 10.1038/s41467-022-30825-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth. Apneas are associated with many pathological conditions. Here, the authors show in a mouse model that stabilization of the transcription factor Mafa in brainstem GABAergic neurons may contribute to apnea, by decreasing motor drive to muscles controlling the airways.
Collapse
|
17
|
Jeton F, Perrin-Terrin AS, Yegen CH, Marchant D, Richalet JP, Pichon A, Boncoeur E, Bodineau L, Voituron N. In Transgenic Erythropoietin Deficient Mice, an Increase in Respiratory Response to Hypercapnia Parallels Abnormal Distribution of CO 2/H +-Activated Cells in the Medulla Oblongata. Front Physiol 2022; 13:850418. [PMID: 35514353 PMCID: PMC9061944 DOI: 10.3389/fphys.2022.850418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (Epo) and its receptor are expressed in central respiratory areas. We hypothesized that chronic Epo deficiency alters functioning of central respiratory areas and thus the respiratory adaptation to hypercapnia. The hypercapnic ventilatory response (HcVR) was evaluated by whole body plethysmography in wild type (WT) and Epo deficient (Epo-TAgh) adult male mice under 4%CO2. Epo-TAgh mice showed a larger HcVR than WT mice because of an increase in both respiratory frequency and tidal volume, whereas WT mice only increased their tidal volume. A functional histological approach revealed changes in CO2/H+-activated cells between Epo-TAgh and WT mice. First, Epo-TAgh mice showed a smaller increase under hypercapnia in c-FOS-positive number of cells in the retrotrapezoid nucleus/parafacial respiratory group than WT, and this, independently of changes in the number of PHOX2B-expressing cells. Second, we did not observe in Epo-TAgh mice the hypercapnic increase in c-FOS-positive number of cells in the nucleus of the solitary tract present in WT mice. Finally, whereas hypercapnia did not induce an increase in the c-FOS-positive number of cells in medullary raphe nuclei in WT mice, chronic Epo deficiency leads to raphe pallidus and magnus nuclei activation by hyperacpnia, with a significant part of c-FOS positive cells displaying an immunoreactivity for serotonin in the raphe pallidus nucleus. All of these results suggest that chronic Epo-deficiency affects both the pattern of ventilatory response to hypercapnia and associated medullary respiratory network at adult stage with an increase in the sensitivity of 5-HT and non-5-HT neurons of the raphe medullary nuclei leading to stimulation of fR for moderate level of CO2.
Collapse
Affiliation(s)
- Florine Jeton
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Perrin-Terrin
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Celine-Hivda Yegen
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France
| | - Dominique Marchant
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France
| | - Jean-Paul Richalet
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| | - Aurélien Pichon
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| | - Emilie Boncoeur
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France
| | - Laurence Bodineau
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Nicolas Voituron
- Laboratoire "Hypoxie et Poumons", UMR INSERM U1272, Université Paris 13, UFR SMBH, Bobigny, France.,Laboratory of Excellence (Labex) GR-Ex, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
18
|
Lusk SJ, McKinney A, Hunt PJ, Fahey PG, Patel J, Chang A, Sun JJ, Martinez VK, Zhu PJ, Egbert JR, Allen G, Jiang X, Arenkiel BR, Tolias AS, Costa-Mattioli M, Ray RS. A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biol 2022; 20:28. [PMID: 35086530 PMCID: PMC8796356 DOI: 10.1186/s12915-022-01227-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.
Collapse
Affiliation(s)
- Savannah J Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew McKinney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jay Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Statistics, Rice University, Houston, TX, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut, Farmington, CT, USA
| | - Genevera Allen
- Department of Statistics, Computer Science, and Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Houston, TX, USA.
| |
Collapse
|
19
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
20
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
21
|
Neubauer J, Forst AL, Warth R, Both CP, Haas C, Thomas J. Genetic variants in eleven central and peripheral chemoreceptor genes in sudden infant death syndrome. Pediatr Res 2022; 92:1026-1033. [PMID: 35102300 PMCID: PMC9586864 DOI: 10.1038/s41390-021-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is still one of the leading causes of postnatal infant death in developed countries. The occurrence of SIDS is described by a multifactorial etiology that involves the respiratory control system including chemoreception. It is still unclear whether genetic variants in genes involved in respiratory chemoreception might play a role in SIDS. METHODS The exome data of 155 SIDS cases were screened for variants within 11 genes described in chemoreception. Pathogenicity of variants was assigned based on the assessment of variant types and in silico protein predictions according to the current recommendations of the American College of Medical Genetics and Genomics. RESULTS Potential pathogenic variants in genes encoding proteins involved in respiratory chemoreception could be identified in 5 (3%) SIDS cases. Two of the variants (R137S/A188S) were found in the KNCJ16 gene, which encodes for the potassium channel Kir5.1, presumably involved in central chemoreception. Electrophysiologic analysis of these KCNJ16 variants revealed a loss-of-function for the R137S variant but no obvious impairment for the A188S variant. CONCLUSIONS Genetic variants in genes involved in respiratory chemoreception may be a risk factor in a fraction of SIDS cases and may thereby contribute to the multifactorial etiology of SIDS. IMPACT What is the key message of your article? Gene variants encoding proteins involved in respiratory chemoreception may play a role in a minority of SIDS cases. What does it add to the existing literature? Although impaired respiratory chemoreception has been suggested as an important risk factor for SIDS, genetic variants in single genes seem to play a minor role. What is the impact? This study supports previous findings, which indicate that genetic variants in single genes involved in respiratory control do not have a dominant role in SIDS.
Collapse
Affiliation(s)
- Jacqueline Neubauer
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anna-Lena Forst
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christian Peter Both
- grid.412341.10000 0001 0726 4330Department of Anesthesiology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Cordula Haas
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jörg Thomas
- Department of Anesthesiology, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
23
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
24
|
Dempsey B, Sungeelee S, Bokiniec P, Chettouh Z, Diem S, Autran S, Harrell ER, Poulet JFA, Birchmeier C, Carey H, Genovesio A, McMullan S, Goridis C, Fortin G, Brunet JF. A medullary centre for lapping in mice. Nat Commun 2021; 12:6307. [PMID: 34728601 PMCID: PMC8563905 DOI: 10.1038/s41467-021-26275-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.
Collapse
Affiliation(s)
- Bowen Dempsey
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Selvee Sungeelee
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Phillip Bokiniec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Zoubida Chettouh
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Séverine Diem
- Université Paris-Saclay, CNRS, Institut des Neurosciences NeuroPSI, Gif-sur-Yvette, France
| | - Sandra Autran
- Université Paris-Saclay, CNRS, Institut des Neurosciences NeuroPSI, Gif-sur-Yvette, France
| | - Evan R Harrell
- Institut Pasteur, INSERM, Institut de l'Audition, Paris, France
| | - James F A Poulet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, and Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Harry Carey
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Auguste Genovesio
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Simon McMullan
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Christo Goridis
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Gilles Fortin
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France.
| |
Collapse
|
25
|
Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. Nat Commun 2021; 12:5962. [PMID: 34645823 PMCID: PMC8514575 DOI: 10.1038/s41467-021-26263-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a rare autism spectrum-like disorder characterized by intellectual disability, developmental delays, and breathing problems involving episodes of hyperventilation followed by apnea. PTHS is caused by functional haploinsufficiency of the gene encoding transcription factor 4 (Tcf4). Despite the severity of this disease, mechanisms contributing to PTHS behavioral abnormalities are not well understood. Here, we show that a Tcf4 truncation (Tcf4tr/+) mouse model of PTHS exhibits breathing problems similar to PTHS patients. This behavioral deficit is associated with selective loss of putative expiratory parafacial neurons and compromised function of neurons in the retrotrapezoid nucleus that regulate breathing in response to tissue CO2/H+. We also show that central Nav1.8 channels can be targeted pharmacologically to improve respiratory function at the cellular and behavioral levels in Tcf4tr/+ mice, thus establishing Nav1.8 as a high priority target with therapeutic potential in PTHS. Disordered breathing is a hallmark of Pitt-Hopkins syndrome (PTHS), yet little is known regarding how loss of Tcf4 (gene associated with PTHS) affects development and function of respiratory neurons. Here, the authors show that parafacial respiratory neurons are selectively disrupted in a mouse model of PTHS, and central Nav1.8 channels can be targeted to improve PTHS-associated behavior abnormalities.
Collapse
|
26
|
Takakura AC, Malheiros-Lima MR, Moreira TS. Excitatory and inhibitory modulation of parafacial respiratory neurons in the control of active expiration. Respir Physiol Neurobiol 2021; 289:103657. [PMID: 33781931 DOI: 10.1016/j.resp.2021.103657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 01/21/2023]
Abstract
In order to increase ventilation, the respiratory system engages active expiration through recruitment of abdominal muscles. Here, we reviewed the new advances in the modulation of parafacial respiratory (pF) region to trigger active expiration. In addition, we also made a comprehensive discussion of experiments indicating that the lateral aspect of the pF (pFL) is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the ventral aspect of the pF (pFV) also named the retrotrapezoid nucleus. Recent evidence suggest a complex network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFL is tonically inhibited by inhibitory inputs and also receives excitatory inputs from chemoreceptors (central x peripheral) as well as from catecholaminergic C1 neurons. Therefore, the modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation.
Collapse
Affiliation(s)
- Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO 2 -induced arousal from sleep. J Physiol 2021; 599:2559-2571. [PMID: 33759184 DOI: 10.1113/jp281305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Arousal from sleep in response to CO2 is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO2 -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO2 -arousal reflex. We also provide an overview of the supra-medullary structures that mediate CO2 -induced arousal. We propose a framework for the CO2 -arousal reflex in which the activity of the chemoreceptors converges in the parabrachial nucleus to trigger cortical arousal.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| |
Collapse
|
28
|
Lei F, Wang W, Fu Y, Wang J, Zheng Y. Oxidative stress in retrotrapezoid nucleus/parafacial respiratory group and impairment of central chemoreception in rat offspring exposed to maternal cigarette smoke. Reprod Toxicol 2021; 100:35-41. [PMID: 33383163 DOI: 10.1016/j.reprotox.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
We have reported that smoking during pregnancy is associated with deficit in neonatal central chemoreception. However, the underlying mechanism is not well clarified. In this study, we developed a rat model of maternal cigarette smoke (CS) exposure. Pregnant rats were exposed to CS during gestational day 1-20. Offspring were studied on postnatal day 2. Reactive oxygen species (ROS) content and expressions of antioxidant proteins in retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) were examined by fluorogenic dye MitoSOX™ Red and Western blotting, respectively. The response of hypoglossal rootlets discharge to acidification was also detected with micro-injection of H2O2 into RTN/pFRG of offspring brainstem slices in vitro. Results showed that maternal CS exposure led to an increase in ROS production, and brought about decreases in mitochondrial superoxide dismutase and Kelch-like ECH-associated protein-1, and an increase in NF-E2-related factor 2 in offspring RTN/pFRG. Catalase and glutathione reductase expressions were not significantly changed. Moreover, oxidative stress induced by micro-injection of H2O2 into RTN/pFRG in vitro inhibited the discharge response of hypoglossal rootlets to acidification. These findings suggest that maternal CS exposure results in oxidative stress in RTN/pFRG of rat offspring, which might play a role in the impairment of central chemoreception.
Collapse
Affiliation(s)
- Fang Lei
- West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yating Fu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ji Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
29
|
Zhang M, Du S, Ou H, Cui R, Jiang N, Lin Y, Ge R, Ma D, Zhang J. Ablation of Zfhx4 results in early postnatal lethality by disrupting the respiratory center in mice. J Mol Cell Biol 2021; 13:210-224. [PMID: 33475140 PMCID: PMC8260053 DOI: 10.1093/jmcb/mjaa081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Breathing is an integrated motor behavior that is driven and controlled by a network of brainstem neurons. Zfhx4 is a zinc finger transcription factor and our results showed that it was specifically expressed in several regions of the mouse brainstem. Mice lacking Zfhx4 died shortly after birth from an apparent inability to initiate respiration. We also found that the electrical rhythm of brainstem‒spinal cord preparations was significantly depressed in Zfhx4-null mice compared to wild-type mice. Immunofluorescence staining revealed that Zfhx4 was coexpressed with Phox2b and Math1 in the brainstem and that Zfhx4 ablation greatly decreased the expression of these proteins, especially in the retrotrapezoid nucleus. Combined ChIP‒seq and mRNA expression microarray analysis identified Phox2b as the direct downstream target gene of Zfhx4, and this finding was validated by ChIP‒qPCR. Previous studies have reported that both Phox2b and Math1 play key roles in the development of the respiratory center, and Phox2b and Math1 knockout mice are neonatal lethal due to severe central apnea. On top of this, our study revealed that Zfhx4 is a critical regulator of Phox2b expression and essential for perinatal breathing.
Collapse
Affiliation(s)
- Meiqin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sichen Du
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huayuan Ou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Renjie Cui
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yifeng Lin
- Children's Hospital, Fudan University, Shanghai 201102, China
| | - Runsheng Ge
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Children's Hospital, Fudan University, Shanghai 201102, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Shi Y, Stornetta DS, Reklow RJ, Sahu A, Wabara Y, Nguyen A, Li K, Zhang Y, Perez-Reyes E, Ross RA, Lowell BB, Stornetta RL, Funk GD, Guyenet PG, Bayliss DA. A brainstem peptide system activated at birth protects postnatal breathing. Nature 2021; 589:426-430. [PMID: 33268898 PMCID: PMC7855323 DOI: 10.1038/s41586-020-2991-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/29/2020] [Indexed: 01/29/2023]
Abstract
Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Robert J. Reklow
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alisha Sahu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Wabara
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ashley Nguyen
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yong Zhang
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Rachel A. Ross
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Bradford B. Lowell
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gregory D. Funk
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
32
|
Hérent C, Diem S, Fortin G, Bouvier J. Absent phasing of respiratory and locomotor rhythms in running mice. eLife 2020; 9:61919. [PMID: 33258770 PMCID: PMC7707822 DOI: 10.7554/elife.61919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Examining whether and how the rhythms of limb and breathing movements interact is highly informative about the mechanistic origin of hyperpnoea during running exercise. However, studies have failed to reveal regularities. In particular, whether breathing frequency is inherently proportional to limb velocity and imposed by a synchronization of breaths to strides is still unclear. Here, we examined respiratory changes during running in the resourceful mouse model. We show that, for a wide range of trotting speeds on a treadmill, respiratory rate increases to a fixed and stable value irrespective of trotting velocities. Respiratory rate was yet further increased during escape-like running and most particularly at gallop. However, we found no temporal coordination of breaths to strides at any speed, intensity, or gait. Our work thus highlights that exercise hyperpnoea can operate, at least in mice and in the presently examined running regimes, without phasic constraints from limb movements.
Collapse
Affiliation(s)
- Coralie Hérent
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Séverine Diem
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Fortin
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
33
|
Biancardi V, Saini J, Pageni A, Prashaad M. H, Funk GD, Pagliardini S. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. J Comp Neurol 2020; 529:853-884. [DOI: 10.1002/cne.24984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Vivian Biancardi
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Jashan Saini
- Department of Physiology University of Alberta Edmonton Canada
| | - Anileen Pageni
- Department of Physiology University of Alberta Edmonton Canada
| | | | - Gregory D. Funk
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| | - Silvia Pagliardini
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| |
Collapse
|
34
|
van der Heijden ME, Zoghbi HY. Development of the brainstem respiratory circuit. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e366. [PMID: 31816185 DOI: 10.1002/wdev.366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2023]
Abstract
The respiratory circuit is comprised of over a dozen functionally and anatomically segregated brainstem nuclei that work together to control respiratory rhythms. These respiratory rhythms emerge prenatally but only acquire vital importance at birth, which is the first time the respiratory circuit faces the sole responsibility for O2 /CO2 homeostasis. Hence, the respiratory circuit has little room for trial-and-error-dependent fine tuning and relies on a detailed genetic blueprint for development. This blueprint is provided by transcription factors that have specific spatiotemporal expression patterns along the rostral-caudal or dorsal-ventral axis of the developing brainstem, in proliferating precursor cells and postmitotic neurons. Studying these transcription factors in mice has provided key insights into the functional segregation of respiratory control and the vital importance of specific respiratory nuclei. Many studies converge on just two respiratory nuclei that each have rhythmogenic properties during the prenatal period: the preBötzinger complex (preBötC) and retrotrapezoid nucleus/parafacial nucleus (RTN/pF). Here, we discuss the transcriptional regulation that guides the development of these nuclei. We also summarize evidence showing that normal preBötC development is necessary for neonatal survival, and that neither the preBötC nor the RTN/pF alone is sufficient to sustain normal postnatal respiratory rhythms. Last, we highlight several studies that use intersectional genetics to assess the necessity of transcription factors only in subregions of their expression domain. These studies independently demonstrate that lack of RTN/pF neurons weakens the respiratory circuit, yet these neurons are not necessary for neonatal survival because developmentally related populations can compensate for abnormal RTN/pF function at birth. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
35
|
Souza GMPR, Kanbar R, Stornetta DS, Abbott SBG, Stornetta RL, Guyenet PG. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. J Physiol 2019; 596:2521-2545. [PMID: 29667182 DOI: 10.1113/jp275866] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO2 but its role during various states of vigilance needs clarification. Under normoxia, RTN lesions increased the arterial PCO2 set-point, lowered the PO2 set-point and reduced alveolar ventilation relative to CO2 production. Tidal volume was reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions did not produce apnoeas or disordered breathing during sleep. RTN lesions in rats virtually eliminated the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons was an inverse exponential. The CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies. ABSTRACT The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO2 homeostasis and breathing during sleep or wake. RTN Nmb-positive neurons were killed with targeted microinjections of substance P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4% cell loss) had normal blood pressure and arterial pH but were hypoxic (-8 mmHg PaO2 ) and hypercapnic (+10 mmHg ). In resting conditions, minute volume (VE ) was normal but breathing frequency (fR ) was elevated and tidal volume (VT ) reduced. Resting O2 consumption and CO2 production were normal. The hypercapnic ventilatory reflex in 65% FiO2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension was reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep, especially under hyperoxia, but apnoeas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but the HVR persists and sighing and the state dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in VE but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnoea during slow-wave sleep, even under hyperoxia.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
36
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci 2019; 42:807-824. [PMID: 31635852 DOI: 10.1016/j.tins.2019.09.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
The ventral surface of the rostral medulla oblongata has been suspected since the 1960s to harbor central respiratory chemoreceptors [i.e., acid-activated neurons that regulate breathing to maintain a constant arterial PCO2 (PaCO2)]. The key neurons, a.k.a. the retrotrapezoid nucleus (RTN), have now been identified. In this review we describe their transcriptome, developmental lineage, and anatomical projections. We also review their contribution to CO2 homeostasis and to the regulation of breathing automaticity during sleep and wake. Finally, we discuss several mechanisms that contribute to the activation of RTN neurons by CO2in vivo: cell-autonomous effects of protons; paracrine effects of pH mediated by surrounding astrocytes and blood vessels; and excitatory inputs from other CO2-responsive CNS neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
37
|
Chaimowicz C, Ruffault PL, Chéret C, Woehler A, Zampieri N, Fortin G, Garratt AN, Birchmeier C. Teashirt 1 (Tshz1) is essential for the development, survival and function of hypoglossal and phrenic motor neurons in mouse. Development 2019; 146:dev.174045. [PMID: 31427287 PMCID: PMC6765129 DOI: 10.1242/dev.174045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/09/2019] [Indexed: 11/20/2022]
Abstract
Feeding and breathing are essential motor functions and rely on the activity of hypoglossal and phrenic motor neurons that innervate the tongue and diaphragm, respectively. Little is known about the genetic programs that control the development of these neuronal subtypes. The transcription factor Tshz1 is strongly and persistently expressed in developing hypoglossal and phrenic motor neurons. We used conditional mutation of Tshz1 in the progenitor zone of motor neurons (Tshz1MN Δ) to show that Tshz1 is essential for survival and function of hypoglossal and phrenic motor neurons. Hypoglossal and phrenic motor neurons are born in correct numbers, but many die between embryonic day 13.5 and 14.5 in Tshz1MN Δ mutant mice. In addition, innervation and electrophysiological properties of phrenic and hypoglossal motor neurons are altered. Severe feeding and breathing problems accompany this developmental deficit. Although motor neuron survival can be rescued by elimination of the pro-apoptotic factor Bax, innervation, feeding and breathing defects persist in Bax-/-; Tshz1MN Δ mutants. We conclude that Tshz1 is an essential transcription factor for the development and physiological function of phrenic and hypoglossal motor neurons.
Collapse
Affiliation(s)
- Charlotte Chaimowicz
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Cyril Chéret
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Niccolò Zampieri
- Development and Function of Neural Circuits, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Gilles Fortin
- UMR9197, CNRS/Université Paris-Sud, Paris-Saclay Institute of Neuroscience, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| |
Collapse
|
38
|
Levy J, Facchinetti P, Jan C, Achour M, Bouvier C, Brunet JF, Delzescaux T, Giuliano F. Tridimensional mapping of Phox2b expressing neurons in the brainstem of adult Macaca fascicularis and identification of the retrotrapezoid nucleus. J Comp Neurol 2019; 527:2875-2884. [PMID: 31071232 DOI: 10.1002/cne.24713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/08/2022]
Abstract
Chemosensitivity is a key mechanism for the regulation of breathing in vertebrates. The retrotrapezoid nucleus is a crucial hub for respiratory chemoreception within the brainstem. It integrates chemosensory information that are both peripheral from the carotid bodies (via the nucleus of the solitary tract) and central through the direct sensing of extracellular protons. To date, the location of a genetically defined RTN has only been ascertained in rodents. We first demonstrated that Phox2b, a key determinant for the development of the visceral nervous system and branchiomotor nuclei in the brainstem including the RTN, had a similar distribution in the brainstem of adult macaques compared to adult rats. Second, based on previous description of a specific molecular signature for the RTN in rats, and on an innovative technique for duplex in situ hybridization, we identified parafacial neurons which coexpressed Phox2b and ppGal mRNAs. They were located ventrally to the nucleus of the facial nerve and extended from the caudal part of the nucleus of the superior olive to the rostral tip of the inferior olive. Using the previously described blockface technique, deformations were corrected to allow the proper alignment and stacking of digitized sections, hence providing for the first time a 3D reconstruction of the macaque brainstem, Phox2b distribution and the primate retrotrapezoid nucleus. This description should help bridging the gap between rodents and humans for the description of key respiratory structures in the brainstem.
Collapse
Affiliation(s)
- Jonathan Levy
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Service de Médecine Physique et de Réadaptation-APHP, Hôpital Raymond Poincaré, Garches, France.,Fondation Garches-APHP, Hôpital Raymond Poincaré, Garches, France
| | - Patricia Facchinetti
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Caroline Jan
- Molecular Imaging Research Center (MIRCen)-Commissariat à l'Énergie Atomique (CEA), Fontenay-aux-Roses, France.,CNRS-CEA UMR9199-Neurodegenerative Diseases Laboratory, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Mélyna Achour
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Clément Bouvier
- Molecular Imaging Research Center (MIRCen)-Commissariat à l'Énergie Atomique (CEA), Fontenay-aux-Roses, France.,NEOXIA, Paris, France
| | - Jean-François Brunet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, Paris, France
| | - Thierry Delzescaux
- Molecular Imaging Research Center (MIRCen)-Commissariat à l'Énergie Atomique (CEA), Fontenay-aux-Roses, France.,CNRS-CEA UMR9199-Neurodegenerative Diseases Laboratory, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - François Giuliano
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Service de Médecine Physique et de Réadaptation-APHP, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
39
|
Hou K, Jiang H, Karim MR, Zhong C, Xu Z, Liu L, Guan M, Shao J, Huang X. A Critical E-box in Barhl1 3' Enhancer Is Essential for Auditory Hair Cell Differentiation. Cells 2019; 8:cells8050458. [PMID: 31096644 PMCID: PMC6562609 DOI: 10.3390/cells8050458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023] Open
Abstract
Barhl1, a mouse homologous gene of Drosophila BarH class homeobox genes, is highly expressed within the inner ear and crucial for the long-term maintenance of auditory hair cells that mediate hearing and balance, yet little is known about the molecular events underlying Barhl1 regulation and function in hair cells. In this study, through data mining and in vitro report assay, we firstly identified Barhl1 as a direct target gene of Atoh1 and one E-box (E3) in Barhl1 3’ enhancer is crucial for Atoh1-mediated Barhl1 activation. Then we generated a mouse embryonic stem cell (mESC) line carrying disruptions on this E3 site E-box (CAGCTG) using CRISPR/Cas9 technology and this E3 mutated mESC line is further subjected to an efficient stepwise hair cell differentiation strategy in vitro. Disruptions on this E3 site caused dramatic loss of Barhl1 expression and significantly reduced the number of induced hair cell-like cells, while no affections on the differentiation toward early primitive ectoderm-like cells and otic progenitors. Finally, through RNA-seq profiling and gene ontology (GO) enrichment analysis, we found that this E3 box was indispensable for Barhl1 expression to maintain hair cell development and normal functions. We also compared the transcriptional profiles of induced cells from CDS mutated and E3 mutated mESCs, respectively, and got very consistent results except the Barhl1 transcript itself. These observations indicated that Atoh1-mediated Barhl1 expression could have important roles during auditory hair cell development. In brief, our findings delineate the detail molecular mechanism of Barhl1 expression regulation in auditory hair cell differentiation.
Collapse
Affiliation(s)
- Kun Hou
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hui Jiang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Md Rezaul Karim
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh.
| | - Chao Zhong
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhouwen Xu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lin Liu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Minxin Guan
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jianzhong Shao
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| | - Xiao Huang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
40
|
Wu Y, Proch KL, Teran FA, Lechtenberg RJ, Kothari H, Richerson GB. Chemosensitivity of Phox2b-expressing retrotrapezoid neurons is mediated in part by input from 5-HT neurons. J Physiol 2019; 597:2741-2766. [PMID: 30866045 PMCID: PMC6826216 DOI: 10.1113/jp277052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Neurons of the retrotrapezoid nucleus (RTN) and medullary serotonin (5-HT) neurons are both candidates for central CO2 /pH chemoreceptors, but it is not known how interactions between them influence their responses to pH. We found that RTN neurons in brain slices were stimulated by exogenous 5-HT and by heteroexchange release of endogenous 5-HT, and these responses were blocked by antagonists of 5-HT7 receptors. The pH response of RTN neurons in brain slices was markedly reduced by the same antagonists of 5-HT7 receptors. Similar results were obtained in dissociated, primary cell cultures prepared from the ventral medulla, where it was also found that the pH response of RTN neurons was blocked by preventing 5-HT synthesis and enhanced by blocking 5-HT reuptake. Exogenous 5-HT did not enable latent intrinsic RTN chemosensitivity. RTN neurons may play more of a role as relays from other central and peripheral chemoreceptors than as CO2 sensors. ABSTRACT Phox2b-expressing neurons in the retrotrapezoid nucleus (RTN) and serotonin (5-HT) neurons in the medullary raphe have both been proposed to be central respiratory chemoreceptors. How interactions between these two sets of neurons influence their responses to acidosis is not known. Here we recorded from mouse Phox2b+ RTN neurons in brain slices, and found that their response to moderate hypercapnic acidosis (pH 7.4 to ∼7.2) was markedly reduced by antagonists of 5-HT7 receptors. RTN neurons were stimulated in response to heteroexchange release of 5-HT, indicating that RTN neurons are sensitive to endogenous 5-HT. This electrophysiological behaviour was replicated in primary, dissociated cell cultures containing 5-HT and RTN neurons grown together. In addition, pharmacological inhibition of 5-HT synthesis in culture reduced RTN neuron chemosensitivity, and blocking 5-HT reuptake enhanced chemosensitivity. The effect of 5-HT on RTN neuron chemosensitivity was not explained by a mechanism whereby activation of 5-HT7 receptors enables or potentiates intrinsic chemosensitivity of RTN neurons, as exogenous 5-HT did not enhance the pH response. The ventilatory response to inhaled CO2 of mice was markedly decreased in vivo after systemic treatment with ketanserin, an antagonist of 5-HT2 and 5-HT7 receptors. These data indicate that 5-HT and RTN neurons may interact synergistically in a way that enhances the respiratory chemoreceptor response. The primary role of RTN neurons may be as relays and amplifiers of the pH response from 5-HT neurons and other chemoreceptors rather than as pH sensors themselves.
Collapse
Affiliation(s)
- Yuanming Wu
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
| | - Katherine L. Proch
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
| | - Frida A. Teran
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIA52242USA
| | | | - Harsh Kothari
- Department of PediatricsUniversity of IowaIowa CityIA52242USA
| | - George B. Richerson
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
- Department of Molecular Physiology & BiophysicsUniversity of IowaIowa CityIA52242USA
- Neurology ServiceVeterans Affairs Medical CenterIowa CityIA52242USA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
41
|
Czeisler CM, Silva TM, Fair SR, Liu J, Tupal S, Kaya B, Cowgill A, Mahajan S, Silva PE, Wang Y, Blissett AR, Göksel M, Borniger JC, Zhang N, Fernandes‐Junior SA, Catacutan F, Alves MJ, Nelson RJ, Sundaresean V, Rekling J, Takakura AC, Moreira TS, Otero JJ. The role of PHOX2B-derived astrocytes in chemosensory control of breathing and sleep homeostasis. J Physiol 2019; 597:2225-2251. [PMID: 30707772 PMCID: PMC6462490 DOI: 10.1113/jp277082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS The embryonic PHOX2B-progenitor domain generates neuronal and glial cells which together are involved in chemosensory control of breathing and sleep homeostasis. Ablating PHOX2B-derived astrocytes significantly contributes to secondary hypoxic respiratory depression as well as abnormalities in sleep homeostasis. PHOX2B-derived astrocyte ablation results in axonal pathologies in the retrotrapezoid nucleus. ABSTRACT We identify in mice a population of ∼800 retrotrapezoid nucleus (RTN) astrocytes derived from PHOX2B-positive, OLIG3-negative progenitor cells, that interact with PHOX2B-expressing RTN chemosensory neurons. PHOX2B-derived astrocyte ablation during early life results in adult-onset O2 chemoreflex deficiency. These animals also display changes in sleep homeostasis, including fragmented sleep and disturbances in delta power after sleep deprivation, all without observable changes in anxiety or social behaviours. Ultrastructural evaluation of the RTN demonstrates that PHOX2B-derived astrocyte ablation results in features characteristic of degenerative neuro-axonal dystrophy, including abnormally dilated axon terminals and increased amounts of synapses containing autophagic vacuoles/phagosomes. We conclude that PHOX2B-derived astrocytes are necessary for maintaining a functional O2 chemosensory reflex in the adult, modulate sleep homeostasis, and are key regulators of synaptic integrity in the RTN region, which is necessary for the chemosensory control of breathing. These data also highlight how defects in embryonic development may manifest as neurodegenerative pathology in an adult.
Collapse
Affiliation(s)
| | - Talita M. Silva
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - Summer R. Fair
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jillian Liu
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Srinivasan Tupal
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Behiye Kaya
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Aaron Cowgill
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Salil Mahajan
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Phelipe E. Silva
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - Yangyang Wang
- Department of NeuroscienceThe Ohio State University College of MedicineColumbusOHUSA
- The Ohio State University Mathematical Biosciences InstituteColumbusOHUSA
| | - Angela R. Blissett
- Department of Mechanical and Aerospace EngineeringThe Ohio State University College of EngineeringColumbusOHUSA
| | - Mustafa Göksel
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jeremy C. Borniger
- Department of NeuroscienceThe Ohio State University College of MedicineColumbusOHUSA
| | - Ning Zhang
- Department of NeuroscienceWest Virginia UniversityWVUSA
| | - Silvio A. Fernandes‐Junior
- The Ohio State University Campus Microscopy and Imaging FacilityColumbusOHUSA
- Department of PharmacologyInstitute of Biomedical ScienceUniversity of São PauloSao PauloBrazil
| | - Fay Catacutan
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Michele J. Alves
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | | | - Vishnu Sundaresean
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jens Rekling
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| | - Ana C. Takakura
- Department of PharmacologyInstitute of Biomedical ScienceUniversity of São PauloSao PauloBrazil
| | - Thiago S. Moreira
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - José J. Otero
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| |
Collapse
|
42
|
Oliveira LM, Oliveira MA, Moriya HT, Moreira TS, Takakura AC. Respiratory disturbances in a mouse model of Parkinson's disease. Exp Physiol 2019; 104:729-739. [PMID: 30758090 DOI: 10.1113/ep087507] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 μg μl-1 ; 0.5 μl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Lei F, Wang W, Fu Y, Wang J, Zheng Y. Oxidative stress and mitochondrial dysfunction in parafacial respiratory group induced by maternal cigarette smoke exposure in rat offspring. Free Radic Biol Med 2018; 129:169-176. [PMID: 30193892 DOI: 10.1016/j.freeradbiomed.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 01/06/2023]
Abstract
Cigarette smoke (CS) exposure negatively affects neurodevelopment. We established a CS exposure rat model to determine how maternal CS exposure induces oxidative stress and mitochondrial dysfunction in parafacial respiratory group (pFRG) essential to central chemoreceptive regulation of normal breathing. Pregnant rats were exposed to CS during gestational days 1-20, and the offspring were studied on postnatal day 2. Our data showed that maternal CS exposure resulted in elevated accumulation of ROS, which left a footprint on DNA and lipid with increases in 8-hydroxy-2'-deoxyguanosine and malondialdehyde contents. Furthermore, maternal CS exposure induced decreases in manganese superoxide dismutase, catalase and glutathione reductase activities as well as reduction in glutathione content in pFRG in the offspring. Moreover, maternal exposure to CS led to mitochondrial ultrastructure changes, mitochondrial swelling, reduction in ATP generation, loss of mitochondrial membrane potential and increase in mitochondrial DNA copy number. These findings suggest that maternal exposure to CS alters normal development of pFRG that is critical for normal respiratory control.
Collapse
Affiliation(s)
- Fang Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yating Fu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Ji Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
44
|
Mutation in LBX1/Lbx1 precludes transcription factor cooperativity and causes congenital hypoventilation in humans and mice. Proc Natl Acad Sci U S A 2018; 115:13021-13026. [PMID: 30487221 PMCID: PMC6304989 DOI: 10.1073/pnas.1813520115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Maintaining low CO2 levels in our bodies is critical for life and depends on neurons that generate the respiratory rhythm and monitor tissue gas levels. Inadequate response to increasing levels of CO2 is common in congenital hypoventilation diseases. Here, we identified a mutation in LBX1, a homeodomain transcription factor, that causes congenital hypoventilation in humans. The mutation alters the C terminus of the protein without disturbing its DNA-binding domain. Mouse models carrying an analogous mutation recapitulate the disease. The mutation spares most Lbx1 functions, but selectively affects development of a small group of neurons central in respiration. Our work reveals a very unusual pathomechanism, a mutation that hampers a small subset of functions carried out by a transcription factor. The respiratory rhythm is generated by the preBötzinger complex in the medulla oblongata, and is modulated by neurons in the retrotrapezoid nucleus (RTN), which are essential for accelerating respiration in response to high CO2. Here we identify a LBX1 frameshift (LBX1FS) mutation in patients with congenital central hypoventilation. The mutation alters the C-terminal but not the DNA-binding domain of LBX1. Mice with the analogous mutation recapitulate the breathing deficits found in humans. Furthermore, the mutation only interferes with a small subset of Lbx1 functions, and in particular with development of RTN neurons that coexpress Lbx1 and Phox2b. Genome-wide analyses in a cell culture model show that Lbx1FS and wild-type Lbx1 proteins are mostly bound to similar sites, but that Lbx1FS is unable to cooperate with Phox2b. Thus, our analyses on Lbx1FS (dys)function reveals an unusual pathomechanism; that is, a mutation that selectively interferes with the ability of Lbx1 to cooperate with Phox2b, and thus impairs the development of a small subpopulation of neurons essential for respiratory control.
Collapse
|
45
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
46
|
van der Heijden ME, Zoghbi HY. Loss of Atoh1 from neurons regulating hypoxic and hypercapnic chemoresponses causes neonatal respiratory failure in mice. eLife 2018; 7:e38455. [PMID: 29972353 PMCID: PMC6067883 DOI: 10.7554/elife.38455] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022] Open
Abstract
Atoh1-null mice die at birth from respiratory failure, but the precise cause has remained elusive. Loss of Atoh1 from various components of the respiratory circuitry (e.g. the retrotrapezoid nucleus (RTN)) has so far produced at most 50% neonatal lethality. To identify other Atoh1-lineage neurons that contribute to postnatal survival, we examined parabrachial complex neurons derived from the rostral rhombic lip (rRL) and found that they are activated during respiratory chemochallenges. Atoh1-deletion from the rRL does not affect survival, but causes apneas and respiratory depression during hypoxia, likely due to loss of projections to the preBötzinger Complex and RTN. Atoh1 thus promotes the development of the neural circuits governing hypoxic (rRL) and hypercapnic (RTN) chemoresponses, and combined loss of Atoh1 from these regions causes fully penetrant neonatal lethality. This work underscores the importance of modulating respiratory rhythms in response to chemosensory information during early postnatal life.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonUnited States
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Department of PediatricsBaylor College of MedicineHoustonUnited States
- Howard Hughes Medical InstituteBaylor College of MedicineHoustonUnited States
| |
Collapse
|
47
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
Affiliation(s)
- Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women's and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Hayes JA, Papagiakoumou E, Ruffault PL, Emiliani V, Fortin G. Computer-aided neurophysiology and imaging with open-source PhysImage. J Neurophysiol 2018; 120:23-36. [PMID: 29488837 DOI: 10.1152/jn.00048.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Improved integration between imaging and electrophysiological data has become increasingly critical for rapid interpretation and intervention as approaches have advanced in recent years. Here, we present PhysImage, a fork of the popular public-domain ImageJ that provides a platform for working with these disparate sources of data, and we illustrate its utility using in vitro preparations from murine embryonic and neonatal tissue. PhysImage expands ImageJ's core features beyond an imaging program by facilitating integration, analyses, and display of 2D waveform data, among other new features. Together, with the Micro-Manager plugin for image acquisition, PhysImage substantially improves on closed-source or blended approaches to analyses and interpretation, and it furthermore aids post hoc automated analysis of physiological data when needed as we demonstrate here. Developing a high-throughput approach to neurophysiological analyses has been a major challenge for neurophysiology as a whole despite data analytics methods advancing rapidly in other areas of neuroscience, biology, and especially genomics. NEW & NOTEWORTHY High-throughput analyses of both concurrent electrophysiological and imaging recordings has been a major challenge in neurophysiology. We submit an open-source solution that may be able to alleviate, or at least reduce, many of these concerns by providing an institutionally proven mechanism (i.e., ImageJ) with the added benefits of open-source Python scripting of PhysImage data that eases the workmanship of 2D trace data, which includes electrophysiological data. Together, with the ability to autogenerate prototypical figures shows this technology is a noteworthy advance.
Collapse
Affiliation(s)
- John A Hayes
- UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay , Gif-sur Yvette , France
| | - Eirini Papagiakoumou
- UMR8250, Neurophotonics Laboratory, CNRS, Paris Descartes University , Paris , France.,Institut National de la Santé et la Recherche Médicale-Inserm
| | - Pierre-Louis Ruffault
- UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay , Gif-sur Yvette , France
| | - Valentina Emiliani
- UMR8250, Neurophotonics Laboratory, CNRS, Paris Descartes University , Paris , France
| | - Gilles Fortin
- UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay , Gif-sur Yvette , France
| |
Collapse
|
49
|
Guyenet PG, Bayliss DA, Stornetta RL, Kanbar R, Shi Y, Holloway BB, Souza GMPR, Basting TM, Abbott SBG, Wenker IC. Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus. J Physiol 2017; 596:3029-3042. [PMID: 29168167 DOI: 10.1113/jp274357] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) regulates breathing in a CO2 - and state-dependent manner. RTN neurons are glutamatergic and innervate principally the respiratory pattern generator; they regulate multiple aspects of breathing, including active expiration, and maintain breathing automaticity during non-REM sleep. RTN neurons encode arterial PCO2 /pH via cell-autonomous and paracrine mechanisms, and via input from other CO2 -responsive neurons. In short, RTN neurons are a pivotal structure for breathing automaticity and arterial PCO2 homeostasis. The carotid bodies stimulate the respiratory pattern generator directly and indirectly by activating RTN via a neuronal projection originating within the solitary tract nucleus. The indirect pathway operates under normo- or hypercapnic conditions; under respiratory alkalosis (e.g. hypoxia) RTN neurons are silent and the excitatory input from the carotid bodies is suppressed. Also, silencing RTN neurons optogenetically quickly triggers a compensatory increase in carotid body activity. Thus, in conscious mammals, breathing is subject to a dual and interdependent feedback regulation by chemoreceptors. Depending on the circumstance, the activity of the carotid bodies and that of RTN vary in the same or the opposite directions, producing additive or countervailing effects on breathing. These interactions are mediated either via changes in blood gases or by brainstem neuronal connections, but their ultimate effect is invariably to minimize arterial PCO2 fluctuations. We discuss the potential relevance of this dual chemoreceptor feedback to cardiorespiratory abnormalities present in diseases in which the carotid bodies are hyperactive at rest, e.g. essential hypertension, obstructive sleep apnoea and heart failure.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Benjamin B Holloway
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler M Basting
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University, New Orleans, Louisiana 70112, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ian C Wenker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
50
|
Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proc Natl Acad Sci U S A 2017; 114:12815-12820. [PMID: 29133427 DOI: 10.1073/pnas.1711536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO2-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.
Collapse
|