1
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
2
|
Tatarsky RL, Akbari N, Wang K, Xu C, Bass AH. Label-free multiphoton imaging reveals volumetric shifts across development in sensory-related brain regions of a miniature transparent vertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604134. [PMID: 39091824 PMCID: PMC11291088 DOI: 10.1101/2024.07.18.604134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Animals integrate information from different sensory modalities as they mature and perform increasingly complex behaviors. This may parallel differential investment in specific brain regions depending on the demands of changing sensory inputs. To investigate developmental changes in the volume of canonical sensory integration brain regions, we used third harmonic generation imaging for morphometric analysis of forebrain and midbrain regions from 5 to 90 days post fertilization (dpf) in Danionella dracula , a transparent, miniature teleost fish whose brain is optically accessible throughout its lifespan. Relative to whole brain volume, increased volume or investment in telencephalon, a higher order sensory integration center, and torus longitudinalis (TL), a midbrain visuomotor integration center, is relatively consistent from 5 to 30 dpf, until it increases at 60 dpf, followed by another increase at 90 dpf, as animals reach adulthood. In contrast, investment in midbrain optic tectum (TeO), a retinal-recipient target, progressively decreases from 30-90 dpf, whereas investment is relatively consistent across all stages for the midbrain torus semicircularis (TS), a secondary auditory and mechanosensory lateral line center, and the olfactory bulb (OB), a direct target of the olfactory epithelium. In sum, increased investment in higher order integration centers (telencephalon, TL) occurs as juveniles reach adulthood and exhibit more complex cognitive tasks, whereas investment in modality-dominant regions occurs in earlier stages (TeO) or is relatively consistent across development (TS, OB). Complete optical access throughout Danionella 's lifespan provides a unique opportunity to investigate how changing brain structure over development correlates with changes in connectivity, microcircuitry, or behavior.
Collapse
|
3
|
Ohno N, Karube F, Fujiyama F. Volume electron microscopy for genetically and molecularly defined neural circuits. Neurosci Res 2024:S0168-0102(24)00074-9. [PMID: 38914208 DOI: 10.1016/j.neures.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The brain networks responsible for adaptive behavioral changes are based on the physical connections between neurons. Light and electron microscopy have long been used to study neural projections and the physical connections between neurons. Volume electron microscopy has recently expanded its scale of analysis due to methodological advances, resulting in complete wiring maps of neurites in a large volume of brain tissues and even entire nervous systems in a growing number of species. However, structural approaches frequently suffer from inherent limitations in which elements in images are identified solely by morphological criteria. Recently, an increasing number of tools and technologies have been developed to characterize cells and cellular components in the context of molecules and gene expression. These advancements include newly developed probes for visualization in electron microscopic images as well as correlative integration methods for the same elements across multiple microscopic modalities. Such approaches advance our understanding of interactions between specific neurons and circuits and may help to elucidate novel aspects of the basal ganglia network involving dopamine neurons. These advancements are expected to reveal mechanisms for processing adaptive changes in specific neural circuits that modulate brain functions.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Japan.
| | - Fuyuki Karube
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Fumino Fujiyama
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
4
|
Grimes WN, Berson DM, Sabnis A, Hoon M, Sinha R, Tian H, Diamond JS. The retina's neurovascular unit: Müller glial sheaths and neuronal contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591885. [PMID: 38903067 PMCID: PMC11188116 DOI: 10.1101/2024.04.30.591885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The neurovascular unit (NVU), comprising vascular, glial and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer - the superficial vascular plexus (SVP) - is ensheathed by astrocytes, like brain capillaries, whereas glial ensheathment in other layers derives from radial Müller glia. Using serial electron microscopy reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the tiled astrocytic endfeet wrapping brain capillaries. However, gaps in the Müller sheath, found mainly in the intermediate vascular plexus (IVP), permit different neuron types to contact pericytes and the endothelial cells directly. Pericyte somata are a favored target, often at spine-like structures with a reduced or absent vascular basement lamina. Focal application of adenosine triphosphate (ATP) to the vitreal surface evoked Ca2+ signals in Müller sheaths in all three vascular layers. Pharmacological experiments confirmed that Müller sheaths express purinergic receptors that, when activated, trigger intracellular Ca2+ signals that are amplified by IP3-controlled intracellular Ca2+ stores. When rod photoreceptors die in a mouse model of retinitis pigmentosa (rd10), Müller sheaths dissociate from the deep vascular plexus (DVP) but are largely unchanged within the IVP or SVP. Thus, Müller glia interact with retinal vessels in a laminar, compartmentalized manner: glial sheathes are virtually complete in the SVP but fenestrated in the IVP, permitting direct neural-to-vascular contacts. In the DVP, the glial sheath is only modestly fenestrated and is vulnerable to photoreceptor degeneration.
Collapse
Affiliation(s)
- William N. Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI
| | - Adit Sabnis
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Springer CS, Pike MM, Barbara TM. A Futile Cycle?: Tissue Homeostatic Trans-Membrane Water Co-Transport: Kinetics, Thermodynamics, Metabolic Consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589812. [PMID: 38659823 PMCID: PMC11042311 DOI: 10.1101/2024.04.17.589812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The phenomenon of active trans-membrane water cycling (AWC) has emerged in little over a decade. Here, we consider H2O transport across cell membranes from the origins of its study. Historically, trans-membrane water transport processes were classified into: A) compensating bidirectional fluxes ("exchange"), and B) unidirectional flux ("net flow") categories. Recent literature molecular structure determinations and molecular dynamic (MD) simulations indicate probably all the many different hydrophilic substrate membrane co-transporters have membrane-spanning hydrophilic pathways and co-transport water along with their substrates, and that they individually catalyze category A and/or B water flux processes, although usually not simultaneously. The AWC name signifies that, integrated over the all the cell's co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water exchange (category A) is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme. A literature survey indicates the stoichiometric (category B) water/substrate ratios of individual co-transporters are often very large. The MD simulations also suggest how different co-transporter reactions can be kinetically coupled molecularly. Is this (Na+,K+-ATPase rate-synchronized) cycling futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy analyses of the many transport reactions with known water stoichiometries. Free energy calculations, using literature intracellular pressure (Pi) values reveals there is an outward trans-membrane H2O barochemical gradient of magnitude comparable to that of the well-known inward Na+ electrochemical gradient. For most co-influxers, these gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. The thermodynamic analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous concentration levels. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate the trans-membrane pressure gradient. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as an integral AWC aspect. These results also require a re-consideration of the underlying nature of Pi. Active trans-membrane water cycling is not futile, but is inherent to the cell's "NKA system" - a new, fundamental aspect of biology.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center
- Department of Chemical Physiology and Biochemistry
- Department of Biomedical Engineering
- Brenden-Colson Center for Pancreatic Care
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | - Martin M Pike
- Advanced Imaging Research Center
- Department of Biomedical Engineering
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | | |
Collapse
|
6
|
Paukner D, Wildenberg GA, Badalamente GS, Littlewood PB, Kronforst MR, Palmer SE, Kasthuri N. Synchrotron-source micro-x-ray computed tomography for examining butterfly eyes. Ecol Evol 2024; 14:e11137. [PMID: 38571794 PMCID: PMC10985371 DOI: 10.1002/ece3.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 04/05/2024] Open
Abstract
Comparative anatomy is an important tool for investigating evolutionary relationships among species, but the lack of scalable imaging tools and stains for rapidly mapping the microscale anatomies of related species poses a major impediment to using comparative anatomy approaches for identifying evolutionary adaptations. We describe a method using synchrotron source micro-x-ray computed tomography (syn-μXCT) combined with machine learning algorithms for high-throughput imaging of Lepidoptera (i.e., butterfly and moth) eyes. Our pipeline allows for imaging at rates of ~15 min/mm3 at 600 nm3 resolution. Image contrast is generated using standard electron microscopy labeling approaches (e.g., osmium tetroxide) that unbiasedly labels all cellular membranes in a species-independent manner thus removing any barrier to imaging any species of interest. To demonstrate the power of the method, we analyzed the 3D morphologies of butterfly crystalline cones, a part of the visual system associated with acuity and sensitivity and found significant variation within six butterfly individuals. Despite this variation, a classic measure of optimization, the ratio of interommatidial angle to resolving power of ommatidia, largely agrees with early work on eye geometry across species. We show that this method can successfully be used to determine compound eye organization and crystalline cone morphology. Our novel pipeline provides for fast, scalable visualization and analysis of eye anatomies that can be applied to any arthropod species, enabling new questions about evolutionary adaptations of compound eyes and beyond.
Collapse
Affiliation(s)
- Dawn Paukner
- Department of NeurobiologyUniversity of ChicagoChicagoIllinoisUSA
- Argonne National LaboratoryLemontIllinoisUSA
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | - Gregg A. Wildenberg
- Department of NeurobiologyUniversity of ChicagoChicagoIllinoisUSA
- Argonne National LaboratoryLemontIllinoisUSA
| | - Griffin S. Badalamente
- Department of NeurobiologyUniversity of ChicagoChicagoIllinoisUSA
- Department of ZoologyThe Old Schools, University of CambridgeCambridgeUK
| | | | | | - Stephanie E. Palmer
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
- Department of PhysicsUniversity of ChicagoChicagoIllinoisUSA
| | - Narayanan Kasthuri
- Department of NeurobiologyUniversity of ChicagoChicagoIllinoisUSA
- Argonne National LaboratoryLemontIllinoisUSA
| |
Collapse
|
7
|
Fulton KA, Watkins PV, Briggman KL. GAUSS-EM, guided accumulation of ultrathin serial sections with a static magnetic field for volume electron microscopy. CELL REPORTS METHODS 2024; 4:100720. [PMID: 38452770 PMCID: PMC10985227 DOI: 10.1016/j.crmeth.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Serial sectioning electron microscopy (EM) of millimeter-scale three-dimensional (3D) anatomical volumes requires the collection of thousands of ultrathin sections. Here, we report a high-throughput automated approach, GAUSS-EM (guided accumulation of ultrathin serial sections-EM), utilizing a static magnetic field to collect and densely pack thousands of sections onto individual silicon wafers. The method is capable of sectioning hundreds of microns of tissue per day at section thicknesses down to 35 nm. Relative to other automated volume EM approaches, GAUSS-EM democratizes the ability to collect large 3D EM volumes because it is simple and inexpensive to implement. We present two exemplar EM volumes of a zebrafish eye and mouse olfactory bulb collected with the method.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, NRW, Germany
| | - Paul V Watkins
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, NRW, Germany
| | - Kevin L Briggman
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, NRW, Germany.
| |
Collapse
|
8
|
Vinh To X, Kurniawan ND, Cumming P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res 2023; 1820:148562. [PMID: 37673379 DOI: 10.1016/j.brainres.2023.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We present a cross-sectional, case-matched, and pair-wise comparison of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) measures in vivo and ex vivo in a mouse model of concussion, thus aiming to establish the concordance of structural and diffusion imaging findings in living brain and after fixation. METHODS We allocated 28 male mice aged 3-4 months to sham injury and concussion (CON) groups. CON mice had received a single concussive impact on day 0 and underwent MRI at day 2 (n = 9) or 7 (n = 10) post-impact, and sham control mice likewise underwent imaging at day 2 (n = 5) or 7 (n = 4). Immediately after the final scanning, we collected the perfusion-fixed brains, which were stored for imaging ex vivo 6-12 months later. We then compared the structural imaging, DTI, and NODDI results between different methods. RESULTS In vivo to ex vivo structural and DTI/NODDI findings were in notably poor agreement regarding the effects of concussion on structural integrity of the brain. COMPARISON WITH EXISTING METHODS ex vivo imaging was frequently done to study the effects of diseases and treatments, but our results showed that ex vivo and in vivo imaging can detect completely opposite and contradictory results. This is also the first study that compares in vivo and ex vivo NODDI. CONCLUSION Our findings call for caution in extrapolating translational capabilities obtained ex vivo to physiological measurements in vivo. The divergent findings may reflect fixation artefacts and the contribution of the glymphatic system changes.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | | | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
9
|
Lu X, Wu Y, Schalek RL, Meirovitch Y, Berger DR, Lichtman JW. A Scalable Staining Strategy for Whole-Brain Connectomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558265. [PMID: 37808722 PMCID: PMC10557665 DOI: 10.1101/2023.09.26.558265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mapping the complete synaptic connectivity of a mammalian brain would be transformative, revealing the pathways underlying perception, behavior, and memory. Serial section electron microscopy, via membrane staining using osmium tetroxide, is ideal for visualizing cells and synaptic connections but, in whole brain samples, faces significant challenges related to chemical treatment and volume changes. These issues can adversely affect both the ultrastructural quality and macroscopic tissue integrity. By leveraging time-lapse X-ray imaging and brain proxies, we have developed a 12-step protocol, ODeCO, that effectively infiltrates osmium throughout an entire mouse brain while preserving ultrastructure without any cracks or fragmentation, a necessary prerequisite for constructing the first comprehensive mouse brain connectome.
Collapse
Affiliation(s)
- Xiaotang Lu
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Daniel R. Berger
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
10
|
Bosch C. Looking at the Human Brain in Detail. Biol Psychiatry 2023; 94:285-287. [PMID: 37495332 DOI: 10.1016/j.biopsych.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
11
|
Karlupia N, Schalek RL, Wu Y, Meirovitch Y, Wei D, Charney AW, Kopell BH, Lichtman JW. Immersion Fixation and Staining of Multicubic Millimeter Volumes for Electron Microscopy-Based Connectomics of Human Brain Biopsies. Biol Psychiatry 2023; 94:352-360. [PMID: 36740206 PMCID: PMC10397365 DOI: 10.1016/j.biopsych.2023.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Connectomics allows mapping of cells and their circuits at the nanometer scale in volumes of approximately 1 mm3. Given that the human cerebral cortex can be 3 mm in thickness, larger volumes are required. Larger-volume circuit reconstructions of human brain are limited by 1) the availability of fresh biopsies; 2) the need for excellent preservation of ultrastructure, including extracellular space; and 3) the requirement of uniform staining throughout the sample, among other technical challenges. Cerebral cortical samples from neurosurgical patients are available owing to lead placement for deep brain stimulation. Described here is an immersion fixation, heavy metal staining, and tissue processing method that consistently provides excellent ultrastructure throughout human and rodent surgical brain samples of volumes 2 × 2 × 2 mm3 and up to 37 mm3 with one dimension ≤2 mm. This method should allow synapse-level circuit analysis in samples from patients with psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Neha Karlupia
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts.
| | - Richard L Schalek
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Donglai Wei
- Department of Computer Science, Boston College, Boston, Massachusetts
| | | | - Brian H Kopell
- Center for Neuromodulation, Department of Neurosurgery, The Icahn School of Medicine, Mount Sinai, New York, New York
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
12
|
Shi R, Bi K, Du K, Ma L, Fang F, Duan L, Jiang T, Huang T. PS-Net: human perception-guided segmentation network for EM cell membrane. Bioinformatics 2023; 39:btad464. [PMID: 37505461 PMCID: PMC10423022 DOI: 10.1093/bioinformatics/btad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023] Open
Abstract
MOTIVATION Cell membrane segmentation in electron microscopy (EM) images is a crucial step in EM image processing. However, while popular approaches have achieved performance comparable to that of humans on low-resolution EM datasets, they have shown limited success when applied to high-resolution EM datasets. The human visual system, on the other hand, displays consistently excellent performance on both low and high resolutions. To better understand this limitation, we conducted eye movement and perceptual consistency experiments. Our data showed that human observers are more sensitive to the structure of the membrane while tolerating misalignment, contrary to commonly used evaluation criteria. Additionally, our results indicated that the human visual system processes images in both global-local and coarse-to-fine manners. RESULTS Based on these observations, we propose a computational framework for membrane segmentation that incorporates these characteristics of human perception. This framework includes a novel evaluation metric, the perceptual Hausdorff distance (PHD), and an end-to-end network called the PHD-guided segmentation network (PS-Net) that is trained using adaptively tuned PHD loss functions and a multiscale architecture. Our subjective experiments showed that the PHD metric is more consistent with human perception than other criteria, and our proposed PS-Net outperformed state-of-the-art methods on both low- and high-resolution EM image datasets as well as other natural image datasets. AVAILABILITY AND IMPLEMENTATION The code and dataset can be found at https://github.com/EmmaSRH/PS-Net.
Collapse
Affiliation(s)
- Ruohua Shi
- Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang 310000, China
- National Engineering Research Center of Visual Technology, National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing 100871, China
- Beijing Academy of Artificial Intelligence, Beijing 100084, China
| | - Keyan Bi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Kai Du
- Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| | - Lei Ma
- National Engineering Research Center of Visual Technology, National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing 100871, China
- Beijing Academy of Artificial Intelligence, Beijing 100084, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Lingyu Duan
- National Engineering Research Center of Visual Technology, National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing 100871, China
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Tingting Jiang
- Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang 310000, China
- National Engineering Research Center of Visual Technology, National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing 100871, China
| | - Tiejun Huang
- National Engineering Research Center of Visual Technology, National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing 100871, China
- Beijing Academy of Artificial Intelligence, Beijing 100084, China
| |
Collapse
|
13
|
Lu X, Han X, Meirovitch Y, Sjöstedt E, Schalek RL, Lichtman JW. Preserving extracellular space for high-quality optical and ultrastructural studies of whole mammalian brains. CELL REPORTS METHODS 2023; 3:100520. [PMID: 37533653 PMCID: PMC10391564 DOI: 10.1016/j.crmeth.2023.100520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/08/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
Analysis of brain structure, connectivity, and molecular diversity relies on effective tissue fixation. Conventional tissue fixation causes extracellular space (ECS) loss, complicating the segmentation of cellular objects from electron microscopy datasets. Previous techniques for preserving ECS in mammalian brains utilizing high-pressure perfusion can give inconsistent results owing to variations in the hydrostatic pressure within the vasculature. A more reliable fixation protocol that uniformly preserves the ECS throughout whole brains would greatly benefit a wide range of neuroscience studies. Here, we report a straightforward transcardial perfusion strategy that preserves ECS throughout the whole rodent brain. No special setup is needed besides sequential solution changes, and the protocol offers excellent reproducibility. In addition to better capturing tissue ultrastructure, preservation of ECS has many downstream advantages such as accelerating heavy-metal staining for electron microscopy, improving detergent-free immunohistochemistry for correlated light and electron microscopy, and facilitating lipid removal for tissue clearing.
Collapse
Affiliation(s)
- Xiaotang Lu
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Xiaomeng Han
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Evelina Sjöstedt
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Sargent SM, Bonney SK, Li Y, Stamenkovic S, Takeno M, Coelho-Santos V, Shih AY. Endothelial structure contributes to heterogeneity in brain capillary diameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538503. [PMID: 37163126 PMCID: PMC10168366 DOI: 10.1101/2023.04.26.538503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The high metabolic demand of brain tissue is supported by a constant supply of blood through dense microvascular networks. Capillaries are the smallest class of vessels and vary in diameter between ∼2 to 5 μm in the brain. This diameter range plays a significant role in the optimization of blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if endothelial wall architecture also contributes to capillary diameter heterogeneity. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical MM^3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of 2 to 5 interlocked endothelial cells, while the numerous capillary segments intervening these zones are composed of either 1 or 2 endothelial cells, with roughly equal proportions. The luminal area and diameter is on average slightly larger with capillary segments composed of 2 interlocked endothelial cells versus 1 endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, such as pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.
Collapse
|
15
|
Bosch C, Lindenau J, Pacureanu A, Peddie CJ, Majkut M, Douglas AC, Carzaniga R, Rack A, Collinson L, Schaefer AT, Stegmann H. Femtosecond laser preparation of resin embedded samples for correlative microscopy workflows in life sciences. APPLIED PHYSICS LETTERS 2023; 122:143701. [PMID: 37151852 PMCID: PMC10162021 DOI: 10.1063/5.0142405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
Correlative multimodal imaging is a useful approach to investigate complex structural relations in life sciences across multiple scales. For these experiments, sample preparation workflows that are compatible with multiple imaging techniques must be established. In one such implementation, a fluorescently labeled region of interest in a biological soft tissue sample can be imaged with light microscopy before staining the specimen with heavy metals, enabling follow-up higher resolution structural imaging at the targeted location, bringing context where it is required. Alternatively, or in addition to fluorescence imaging, other microscopy methods, such as synchrotron x-ray computed tomography with propagation-based phase contrast or serial blockface scanning electron microscopy, might also be applied. When combining imaging techniques across scales, it is common that a volumetric region of interest (ROI) needs to be carved from the total sample volume before high resolution imaging with a subsequent technique can be performed. In these situations, the overall success of the correlative workflow depends on the precise targeting of the ROI and the trimming of the sample down to a suitable dimension and geometry for downstream imaging. Here, we showcase the utility of a femtosecond laser (fs laser) device to prepare microscopic samples (1) of an optimized geometry for synchrotron x-ray tomography as well as (2) for volume electron microscopy applications and compatible with correlative multimodal imaging workflows that link both imaging modalities.
Collapse
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | | | | | - Marta Majkut
- ESRF, The European Synchrotron, Grenoble, France
| | | | - Raffaella Carzaniga
- Electron Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | | | - Lucy Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
16
|
Tønnesen J, Hrabĕtová S, Soria FN. Local diffusion in the extracellular space of the brain. Neurobiol Dis 2023; 177:105981. [PMID: 36581229 DOI: 10.1016/j.nbd.2022.105981] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022] Open
Abstract
The brain extracellular space (ECS) is a vast interstitial reticulum of extreme morphological complexity, composed of narrow gaps separated by local expansions, enabling interconnected highways between neural cells. Constituting on average 20% of brain volume, the ECS is key for intercellular communication, and understanding its diffusional properties is of paramount importance for understanding the brain. Within the ECS, neuroactive substances travel predominantly by diffusion, spreading through the interstitial fluid and the extracellular matrix scaffold after being focally released. The nanoscale dimensions of the ECS render it unresolvable by conventional live tissue compatible imaging methods, and historically diffusion of tracers has been used to indirectly infer its structure. Novel nanoscopic imaging techniques now show that the ECS is a highly dynamic compartment, and that diffusivity in the ECS is more heterogeneous than anticipated, with great variability across brain regions and physiological states. Diffusion is defined primarily by the local ECS geometry, and secondarily by the viscosity of the interstitial fluid, including the obstructive and binding properties of the extracellular matrix. ECS volume fraction and tortuosity both strongly determine diffusivity, and each can be independently regulated e.g. through alterations in glial morphology and the extracellular matrix composition. Here we aim to provide an overview of our current understanding of the ECS and its diffusional properties. We highlight emerging technological advances to respectively interrogate and model diffusion through the ECS, and point out how these may contribute in resolving the remaining enigmas of the ECS.
Collapse
Affiliation(s)
- Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sabina Hrabĕtová
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
17
|
Springer CS, Baker EM, Li X, Moloney B, Pike MM, Wilson GJ, Anderson VC, Sammi MK, Garzotto MG, Kopp RP, Coakley FV, Rooney WD, Maki JH. Metabolic activity diffusion imaging (MADI): II. Noninvasive, high-resolution human brain mapping of sodium pump flux and cell metrics. NMR IN BIOMEDICINE 2023; 36:e4782. [PMID: 35654761 DOI: 10.1002/nbm.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
We introduce a new 1 H2 O magnetic resonance approach: metabolic activity diffusion imaging (MADI). Numerical diffusion-weighted imaging decay simulations characterized by the mean cellular water efflux (unidirectional) rate constant (kio ), mean cell volume (V), and cell number density (ρ) are produced from Monte Carlo random walks in virtual stochastically sized/shaped cell ensembles. Because of active steady-state trans-membrane water cycling (AWC), kio reflects the cytolemmal Na+ , K+ ATPase (NKA) homeostatic cellular metabolic rate (c MRNKA ). A digital 3D "library" contains thousands of simulated single diffusion-encoded (SDE) decays. Library entries match well with disparate, animal, and human experimental SDE decays. The V and ρ values are consistent with estimates from pertinent in vitro cytometric and ex vivo histopathological literature: in vivo V and ρ values were previously unavailable. The library allows noniterative pixel-by-pixel experimental SDE decay library matchings that can be used to advantage. They yield proof-of-concept MADI parametric mappings of the awake, resting human brain. These reflect the tissue morphology seen in conventional MRI. While V is larger in gray matter (GM) than in white matter (WM), the reverse is true for ρ. Many brain structures have kio values too large for current, invasive methods. For example, the median WM kio is 22s-1 ; likely reflecting mostly exchange within myelin. The kio •V product map displays brain tissue c MRNKA variation. The GM activity correlates, quantitatively and qualitatively, with the analogous resting-state brain 18 FDG-PET tissue glucose consumption rate (t MRglucose ) map; but noninvasively, with higher spatial resolution, and no pharmacokinetic requirement. The cortex, thalamus, putamen, and caudate exhibit elevated metabolic activity. MADI accuracy and precision are assessed. The results are contextualized with literature overall homeostatic brain glucose consumption and ATP production/consumption measures. The MADI/PET results suggest different GM and WM metabolic pathways. Preliminary human prostate results are also presented.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric M Baker
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark G Garzotto
- Department of Urology, Portland VA Center, Portland, Oregon, USA
- Department of Urology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ryan P Kopp
- Department of Urology, Portland VA Center, Portland, Oregon, USA
- Department of Urology, Oregon Health & Science University, Portland, Oregon, USA
| | - Fergus V Coakley
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey H Maki
- Department of Radiology, Anschutz Medical Center, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
18
|
Sargent SM, Bonney SK, Li Y, Stamenkovic S, Takeno MM, Coelho-Santos V, Shih AY. Endothelial structure contributes to heterogeneity in brain capillary diameter. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e230010. [PMID: 37582180 PMCID: PMC10503221 DOI: 10.1530/vb-23-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The high metabolic demand of brain tissue is supported by a constant supply of blood flow through dense microvascular networks. Capillaries are the smallest class of vessels in the brain and their lumens vary in diameter between ~2 and 5 μm. This diameter range plays a significant role in optimizing blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if the architecture of the endothelial wall also contributes to capillary diameter. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical mm3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of two to six interlocked endothelial cells, while the capillaries intervening these zones are composed of either one or two endothelial cells, with roughly equal proportions. The luminal area and diameter are on average slightly larger with capillary segments composed of two interlocked endothelial cells vs one endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, including pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.
Collapse
Affiliation(s)
- Sheridan M Sargent
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, USA
| | - Stephanie K Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Yuandong Li
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan Stamenkovic
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Marc M Takeno
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - Vanessa Coelho-Santos
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health, University of Coimbra, Portugal
| | - Andy Y Shih
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Zhang Y, Ackels T, Pacureanu A, Zdora MC, Bonnin A, Schaefer AT, Bosch C. Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy. Front Cell Dev Biol 2022; 10:880696. [PMID: 35756997 PMCID: PMC9213878 DOI: 10.3389/fcell.2022.880696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.
Collapse
Affiliation(s)
- Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- ESRF, The European Synchrotron, Grenoble, France
| | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Paul Scherrer Institut, Villigen, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Carles Bosch
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
20
|
Bosch C, Ackels T, Pacureanu A, Zhang Y, Peddie CJ, Berning M, Rzepka N, Zdora MC, Whiteley I, Storm M, Bonnin A, Rau C, Margrie T, Collinson L, Schaefer AT. Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nat Commun 2022; 13:2923. [PMID: 35614048 PMCID: PMC9132960 DOI: 10.1038/s41467-022-30199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.
Collapse
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
- ESRF, The European Synchrotron, Grenoble, France
| | - Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | | | - Manuel Berning
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Scalable minds GmbH, Potsdam, Germany
| | | | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, UK
| | - Isabell Whiteley
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Malte Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Troy Margrie
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lucy Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK.
| |
Collapse
|
21
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
22
|
Bonney SK, Coelho-Santos V, Huang SF, Takeno M, Kornfeld J, Keller A, Shih AY. Public Volume Electron Microscopy Data: An Essential Resource to Study the Brain Microvasculature. Front Cell Dev Biol 2022; 10:849469. [PMID: 35450291 PMCID: PMC9016339 DOI: 10.3389/fcell.2022.849469] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Electron microscopy is the primary approach to study ultrastructural features of the cerebrovasculature. However, 2D snapshots of a vascular bed capture only a small fraction of its complexity. Recent efforts to synaptically map neuronal circuitry using volume electron microscopy have also sampled the brain microvasculature in 3D. Here, we perform a meta-analysis of 7 data sets spanning different species and brain regions, including two data sets from the MICrONS consortium that have made efforts to segment vasculature in addition to all parenchymal cell types in mouse visual cortex. Exploration of these data have revealed rich information for detailed investigation of the cerebrovasculature. Neurovascular unit cell types (including, but not limited to, endothelial cells, mural cells, perivascular fibroblasts, microglia, and astrocytes) could be discerned across broad microvascular zones. Image contrast was sufficient to identify subcellular details, including endothelial junctions, caveolae, peg-and-socket interactions, mitochondria, Golgi cisternae, microvilli and other cellular protrusions of potential significance to vascular signaling. Additionally, non-cellular structures including the basement membrane and perivascular spaces were visible and could be traced between arterio-venous zones along the vascular wall. These explorations revealed structural features that may be important for vascular functions, such as blood-brain barrier integrity, blood flow control, brain clearance, and bioenergetics. They also identified limitations where accuracy and consistency of segmentation could be further honed by future efforts. The purpose of this article is to introduce these valuable community resources within the framework of cerebrovascular research. We do so by providing an assessment of their vascular contents, identifying features of significance for further study, and discussing next step ideas for refining vascular segmentation and analysis.
Collapse
Affiliation(s)
- Stephanie K Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA, United States
| | | | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Schifferer M, Snaidero N, Djannatian M, Kerschensteiner M, Misgeld T. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Front Neuroanat 2021; 15:732506. [PMID: 34720890 PMCID: PMC8548362 DOI: 10.3389/fnana.2021.732506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.
Collapse
Affiliation(s)
- Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Minou Djannatian
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Misgeld
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Ozsvár A, Komlósi G, Oláh G, Baka J, Molnár G, Tamás G. Predominantly linear summation of metabotropic postsynaptic potentials follows coactivation of neurogliaform interneurons. eLife 2021; 10:65634. [PMID: 34308838 PMCID: PMC8360660 DOI: 10.7554/elife.65634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of metabotropic GABAB responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABAB receptors are simultaneously active.
Collapse
Affiliation(s)
- Attila Ozsvár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gergely Komlósi
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gáspár Oláh
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Judith Baka
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Grimes WN, Aytürk DG, Hoon M, Yoshimatsu T, Gamlin C, Carrera D, Nath A, Nadal-Nicolás FM, Ahlquist RM, Sabnis A, Berson DM, Diamond JS, Wong RO, Cepko C, Rieke F. A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. J Neurosci 2021; 41:6018-6037. [PMID: 34083252 PMCID: PMC8276741 DOI: 10.1523/jneurosci.0199-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features, such as edges or directed motion, by mediating excitatory and inhibitory interactions between input (i.e., bipolar) and output (i.e., ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation, and neurovascular control. Here, we report that, in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labeling of nearby Müller glia, leading us to suggest the name "Müller glia-coupled amacrine cell," or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus showed selective connections between MACs and a subpopulation of retinal ganglion cell types. Visually evoked responses revealed a strong preference for light increments; these "ON" responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.SIGNIFICANCE STATEMENT Gap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system and play multiple roles, including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells have rarely been reported and are poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia. Moreover, viral tracing, optogenetics, and serial electron microscopy provide new information about the neuron's synaptic partners and physiological responses.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Didem Göz Aytürk
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Daniel Carrera
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Amurta Nath
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Adit Sabnis
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jeffrey S Diamond
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Connie Cepko
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
26
|
Fulton KA, Briggman KL. Permeabilization-free en bloc immunohistochemistry for correlative microscopy. eLife 2021; 10:63392. [PMID: 33983117 PMCID: PMC8118656 DOI: 10.7554/elife.63392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
A dense reconstruction of neuronal synaptic connectivity typically requires high-resolution 3D electron microscopy (EM) data, but EM data alone lacks functional information about neurons and synapses. One approach to augment structural EM datasets is with the fluorescent immunohistochemical (IHC) localization of functionally relevant proteins. We describe a protocol that obviates the requirement of tissue permeabilization in thick tissue sections, a major impediment for correlative pre-embedding IHC and EM. We demonstrate the permeabilization-free labeling of neuronal cell types, intracellular enzymes, and synaptic proteins in tissue sections hundreds of microns thick in multiple brain regions from mice while simultaneously retaining the ultrastructural integrity of the tissue. Finally, we explore the utility of this protocol by performing proof-of-principle correlative experiments combining two-photon imaging of protein distributions and 3D EM.
Collapse
Affiliation(s)
- Kara A Fulton
- Brown University, Providence, United States.,National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Kevin L Briggman
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Center of Advanced European Studies and Research (caesar), Bonn, Germany
| |
Collapse
|
27
|
Héja L, Szabó Z, Péter M, Kardos J. Spontaneous Ca 2+ Fluctuations Arise in Thin Astrocytic Processes With Real 3D Geometry. Front Cell Neurosci 2021; 15:617989. [PMID: 33732110 PMCID: PMC7957061 DOI: 10.3389/fncel.2021.617989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Fluctuations of cytosolic Ca2+ concentration in astrocytes are regarded as a critical non-neuronal signal to regulate neuronal functions. Although such fluctuations can be evoked by neuronal activity, rhythmic astrocytic Ca2+ oscillations may also spontaneously arise. Experimental studies hint that these spontaneous astrocytic Ca2+ oscillations may lie behind different kinds of emerging neuronal synchronized activities, like epileptogenic bursts or slow-wave rhythms. Despite the potential importance of spontaneous Ca2+ oscillations in astrocytes, the mechanism by which they develop is poorly understood. Using simple 3D synapse models and kinetic data of astrocytic Glu transporters (EAATs) and the Na+/Ca2+ exchanger (NCX), we have previously shown that NCX activity alone can generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet microdomain. Here, we extend that model by incorporating experimentally determined real 3D geometries of 208 excitatory synapses reconstructed from publicly available ultra-resolution electron microscopy datasets. Our simulations predict that the surface/volume ratio (SVR) of peri-synaptic astrocytic processes prominently dictates whether NCX-mediated spontaneous Ca2+ oscillations emerge. We also show that increased levels of intracellular astrocytic Na+ concentration facilitate the appearance of Ca2+ fluctuations. These results further support the principal role of the dynamical reshaping of astrocyte processes in the generation of intrinsic Ca2+ oscillations and their spreading over larger astrocytic compartments.
Collapse
Affiliation(s)
- László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | - Márton Péter
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.,Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| |
Collapse
|
28
|
Tamada H, Blanc J, Korogod N, Petersen CC, Knott GW. Ultrastructural comparison of dendritic spine morphology preserved with cryo and chemical fixation. eLife 2020; 9:56384. [PMID: 33274717 PMCID: PMC7748412 DOI: 10.7554/elife.56384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Previously, we showed that cryo fixation of adult mouse brain tissue gave a truer representation of brain ultrastructure in comparison with a standard chemical fixation method (Korogod et al., 2015). Extracellular space matched physiological measurements, there were larger numbers of docked vesicles and less glial coverage of synapses and blood capillaries. Here, using the same preservation approaches, we compared the morphology of dendritic spines. We show that the length of the spine and the volume of its head is unchanged; however, the spine neck width is thinner by more than 30% after cryo fixation. In addition, the weak correlation between spine neck width and head volume seen after chemical fixation was not present in cryo-fixed spines. Our data suggest that spine neck geometry is independent of the spine head volume, with cryo fixation showing enhanced spine head compartmentalization and a higher predicted electrical resistance between spine head and parent dendrite.
Collapse
Affiliation(s)
- Hiromi Tamada
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Japan Society of the Promotion of Sciences (JSPS), Tokyo, Japan
| | - Jerome Blanc
- Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Natalya Korogod
- Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Carl Ch Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Graham W Knott
- Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
29
|
Bryman GS, Liu A, Do MTH. Optimized Signal Flow through Photoreceptors Supports the High-Acuity Vision of Primates. Neuron 2020; 108:335-348.e7. [PMID: 32846139 DOI: 10.1016/j.neuron.2020.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
The fovea is a neural specialization that endows humans and other primates with the sharpest vision among mammals. This performance originates in the foveal cones, which are extremely narrow and long to form a high-resolution pixel array. Puzzlingly, this form is predicted to impede electrical conduction to an extent that appears incompatible with vision. We observe the opposite: signal flow through even the longest cones (0.4-mm axons) is essentially lossless. Unlike in most neurons, amplification and impulse generation by voltage-gated channels are dispensable. Rather, sparse channel activity preserves intracellular current, which flows as if unobstructed by organelles. Despite these optimizations, signaling would degrade if cones were lengthier. Because cellular packing requires that cone elongation accompanies foveal expansion, this degradation helps explain why the fovea is a constant, miniscule size despite multiplicative changes in eye size through evolution. These observations reveal how biophysical mechanisms tailor form-function relationships for primate behavioral performance.
Collapse
Affiliation(s)
- Gregory S Bryman
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| | - Andreas Liu
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Soria FN, Paviolo C, Doudnikoff E, Arotcarena ML, Lee A, Danné N, Mandal AK, Gosset P, Dehay B, Groc L, Cognet L, Bezard E. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nat Commun 2020; 11:3440. [PMID: 32651387 PMCID: PMC7351768 DOI: 10.1038/s41467-020-17328-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
In recent years, exploration of the brain extracellular space (ECS) has made remarkable progress, including nanoscopic characterizations. However, whether ECS precise conformation is altered during brain pathology remains unknown. Here we study the nanoscale organization of pathological ECS in adult mice under degenerative conditions. Using electron microscopy in cryofixed tissue and single nanotube tracking in live brain slices combined with super-resolution imaging analysis, we find enlarged ECS dimensions and increased nanoscale diffusion after α-synuclein-induced neurodegeneration. These animals display a degraded hyaluronan matrix in areas close to reactive microglia. Furthermore, experimental hyaluronan depletion in vivo reduces dopaminergic cell loss and α-synuclein load, induces microgliosis and increases ECS diffusivity, highlighting hyaluronan as diffusional barrier and local tissue organizer. These findings demonstrate the interplay of ECS, extracellular matrix and glia in pathology, unraveling ECS features relevant for the α-synuclein propagation hypothesis and suggesting matrix manipulation as a disease-modifying strategy. The nanoscale organisation of the brain extracellular space can be studied in vivo. Here, the authors investigate how it changes in response to α-synuclein pathology, and identify interactions between microglia and the extracellular matrix.
Collapse
Affiliation(s)
- Federico N Soria
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.,Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), 48940, Leioa, Spain
| | - Chiara Paviolo
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Evelyne Doudnikoff
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Marie-Laure Arotcarena
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Antony Lee
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Noémie Danné
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Amit Kumar Mandal
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Philippe Gosset
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IINS, UMR 5297, 33076, Bordeaux, France
| | - Laurent Cognet
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France. .,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France.
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France. .,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.
| |
Collapse
|
31
|
To XV, Benetatos J, Soni N, Liu D, Mehari Abraha H, Yan W, Panagiotopoulou O, Nasrallah FA. Ultra-High-Field Diffusion Tensor Imaging Identifies Discrete Patterns of Concussive Injury in the Rodent Brain. J Neurotrauma 2020; 38:967-982. [PMID: 32394788 DOI: 10.1089/neu.2019.6944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although concussions can result in persistent neurological post-concussion symptoms, they are typically invisible on routine magnetic resonance imaging (MRI) scans. Our study aimed to investigate the use of ultra-high-field diffusion tensor imaging (UHF-DTI) in discerning severity-dependent microstructural changes in the mouse brain following a concussion. Twenty-three C57BL/6 mice were randomly allocated into three groups: the low concussive (LC, n = 9) injury group, the high concussive (HC, n = 6) injury group, and the sham control (SC, n = 7) group. Mice were perfused on day 2 post-injury, and the brains were scanned on a 16.4T MRI scanner with UHF-DTI and neurite orientation dispersion imaging (NODDI). Finite element analysis (FEA) was performed to determine the pattern and extent of the physical impact on the brain tissue. MRI findings were correlated with histopathological analysis in a subset of mice. In the LC group, increased fractional anisotropy (FA) and decreased orientation dispersion index (ODI) but limited neurite density index (NDI) changes were found in the gray matter, and minimal changes to white matter (WM) were observed. The HC group presented increased mean diffusivity (MD), decreased NDI, and decreased ODI in the WM and gray matter (GM); decreased FA was also found in a small area of the WM. WM changes were associated with WM degeneration and neuroinflammation. FEA showed varying region-dependent degrees of stress, in line with the different imaging findings. This study provides evidence that UHF-DTI combined with NODDI can detect concussions of variable intensities. This has significant implications for the diagnosis of concussion in humans.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joseph Benetatos
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dedao Liu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hyab Mehari Abraha
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Wenyi Yan
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The Center for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
33
|
Paviolo C, Soria FN, Ferreira JS, Lee A, Groc L, Bezard E, Cognet L. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 2020; 174:91-99. [DOI: 10.1016/j.ymeth.2019.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
|
34
|
Wang A, Wang R, Cui D, Huang X, Yuan L, Liu H, Fu Y, Liang L, Wang W, He Q, Shi C, Guan X, Teng Z, Zhao G, Li Y, Gao Y, Han H. The Drainage of Interstitial Fluid in the Deep Brain is Controlled by the Integrity of Myelination. Aging Dis 2019; 10:937-948. [PMID: 31595193 PMCID: PMC6764732 DOI: 10.14336/ad.2018.1206] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
In searching for the drainage route of the interstitial fluid (ISF) in the deep brain, we discovered a regionalized ISF drainage system as well as a new function of myelin in regulating the drainage. The traced ISF from the caudate nucleus drained to the ipsilateral cortex along myelin fiber tracts, while in the opposite direction, its movement to the adjacent thalamus was completely impeded by a barrier structure, which was identified as the converged, compact myelin fascicle. The regulating and the barrier effects of myelin were unchanged in AQP4-knockout rats but were impaired as the integrity of boundary structure of drainage system was destroyed in a demyelinated rat model. We thus proposed that the brain homeostasis was maintained within each ISF drainage division locally, rather than across the brain as a whole. A new brain division system and a new pathogenic mechanism of demyelination are therefore proposed.
Collapse
Affiliation(s)
- Aibo Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Dehua Cui
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xinrui Huang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Huipo Liu
- Institute of Applied Physics and Computational Mathematics, Beijing, China.
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China.
| | - Lei Liang
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Wei Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Chunyan Shi
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xiangping Guan
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Yajuan Gao
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| |
Collapse
|
35
|
Sigmund F, Pettinger S, Kube M, Schneider F, Schifferer M, Schneider S, Efremova MV, Pujol-Martí J, Aichler M, Walch A, Misgeld T, Dietz H, Westmeyer GG. Iron-Sequestering Nanocompartments as Multiplexed Electron Microscopy Gene Reporters. ACS NANO 2019; 13:8114-8123. [PMID: 31194509 DOI: 10.1021/acsnano.9b03140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multicolored gene reporters for light microscopy are indispensable for biomedical research, but equivalent genetic tools for electron microscopy (EM) are still rare despite the increasing importance of nanometer resolution for reverse engineering of molecular machinery and reliable mapping of cellular circuits. We here introduce the fully genetic encapsulin/cargo system of Quasibacillus thermotolerans (Qt), which in combination with the recently characterized encapsulin system from Myxococcus xanthus (Mx) enables multiplexed gene reporter imaging via conventional transmission electron microscopy (TEM) in mammalian cells. Cryo-electron reconstructions revealed that the Qt encapsulin shell self-assembles to nanospheres with T = 4 icosahedral symmetry and a diameter of ∼43 nm harboring two putative pore regions at the 5-fold and 3-fold axes. We also found that upon heterologous expression in mammalian cells, the native cargo is autotargeted to the inner surface of the shell and exhibits ferroxidase activity leading to efficient intraluminal iron biomineralization, which enhances cellular TEM contrast. We furthermore demonstrate that the two differently sized encapsulins of Qt and Mx do not intermix and can be robustly differentiated by conventional TEM via a deep learning classifier to enable automated multiplexed EM gene reporter imaging.
Collapse
Affiliation(s)
- Felix Sigmund
- Department of Nuclear Medicine, TUM School of Medicine , Technical University of Munich , 81675 Munich , Germany
- Institute of Biological and Medical Imaging , Helmholtz Zentrum München , 85764 Neuherberg , Germany
- Institute of Developmental Genetics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Susanne Pettinger
- Department of Nuclear Medicine, TUM School of Medicine , Technical University of Munich , 81675 Munich , Germany
- Institute of Biological and Medical Imaging , Helmholtz Zentrum München , 85764 Neuherberg , Germany
- Institute of Developmental Genetics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Massimo Kube
- Laboratory for Biomolecular Design, Department of Physics , Technical University of Munich , 85748 Garching , Germany
| | - Fabian Schneider
- Laboratory for Biomolecular Design, Department of Physics , Technical University of Munich , 85748 Garching , Germany
| | - Martina Schifferer
- Institute of Neuronal Cell Biology, TUM School of Medicine , Technical University of Munich , 80802 Munich , Germany
- German Center for Neurodegenerative Diseases (DZNE) , 81377 Munich , Germany
| | - Steffen Schneider
- Computational Neuroengineering, Department of Electrical and Computer Engineering , Technical University of Munich , 80333 Munich , Germany
- Tübingen AI Center , University of Tübingen , 72076 Tübingen , Germany
| | - Maria V Efremova
- Department of Nuclear Medicine, TUM School of Medicine , Technical University of Munich , 81675 Munich , Germany
- Institute of Biological and Medical Imaging , Helmholtz Zentrum München , 85764 Neuherberg , Germany
- Institute of Developmental Genetics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
- Laboratory of Chemical Design of Bionanomaterials for Medical Applications, Department of Chemistry , Lomonosov Moscow State University , 119991 Moscow , Russian Federation
| | - Jesús Pujol-Martí
- Department "Circuits - Computation - Models" , Max Planck Institute of Neurobiology , 82152 Martinsried , Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Axel Walch
- Research Unit Analytical Pathology , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, TUM School of Medicine , Technical University of Munich , 80802 Munich , Germany
- German Center for Neurodegenerative Diseases (DZNE) , 81377 Munich , Germany
| | - Hendrik Dietz
- Laboratory for Biomolecular Design, Department of Physics , Technical University of Munich , 85748 Garching , Germany
| | - Gil G Westmeyer
- Department of Nuclear Medicine, TUM School of Medicine , Technical University of Munich , 81675 Munich , Germany
- Institute of Biological and Medical Imaging , Helmholtz Zentrum München , 85764 Neuherberg , Germany
- Institute of Developmental Genetics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| |
Collapse
|
36
|
Schubert PJ, Dorkenwald S, Januszewski M, Jain V, Kornfeld J. Learning cellular morphology with neural networks. Nat Commun 2019; 10:2736. [PMID: 31227718 PMCID: PMC6588634 DOI: 10.1038/s41467-019-10836-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/30/2019] [Indexed: 01/10/2023] Open
Abstract
Reconstruction and annotation of volume electron microscopy data sets of brain tissue is challenging but can reveal invaluable information about neuronal circuits. Significant progress has recently been made in automated neuron reconstruction as well as automated detection of synapses. However, methods for automating the morphological analysis of nanometer-resolution reconstructions are less established, despite the diversity of possible applications. Here, we introduce cellular morphology neural networks (CMNs), based on multi-view projections sampled from automatically reconstructed cellular fragments of arbitrary size and shape. Using unsupervised training, we infer morphology embeddings (Neuron2vec) of neuron reconstructions and train CMNs to identify glia cells in a supervised classification paradigm, which are then used to resolve neuron reconstruction errors. Finally, we demonstrate that CMNs can be used to identify subcellular compartments and the cell types of neuron reconstructions.
Collapse
Affiliation(s)
- Philipp J Schubert
- Max Planck Institute of Neurobiology, Electrons - Photons - Neurons, 82152, Planegg-Martinsried, Germany.
| | - Sven Dorkenwald
- Max Planck Institute of Neurobiology, Electrons - Photons - Neurons, 82152, Planegg-Martinsried, Germany
| | | | - Viren Jain
- Google AI, Mountain View, 94043, CA, USA
| | - Joergen Kornfeld
- Max Planck Institute of Neurobiology, Electrons - Photons - Neurons, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
37
|
Nagy JI, Pereda AE, Rash JE. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett 2019; 695:53-64. [PMID: 28911821 PMCID: PMC5845811 DOI: 10.1016/j.neulet.2017.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 09/10/2017] [Indexed: 12/31/2022]
Abstract
Electrical synapses with diverse configurations and functions occur at a variety of interneuronal appositions, thereby significantly expanding the physiological complexity of neuronal circuitry over that provided solely by chemical synapses. Gap junctions between apposed dendritic and somatic plasma membranes form "purely electrical" synapses that allow for electrical communication between coupled neurons. In addition, gap junctions at axon terminals synapsing on dendrites and somata allow for "mixed" (dual chemical+electrical) synaptic transmission. "Dual transmission" was first documented in the autonomic nervous system of birds, followed by its detection in the central nervous systems of fish, amphibia, and reptiles. Subsequently, mixed synapses have been detected in several locations in the mammalian CNS, where their properties and functional roles remain undetermined. Here, we review available evidence for the presence, complex structural composition, and emerging functional properties of mixed synapses in the mammalian CNS.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, 745 Bannatyne Ave, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
38
|
Pipkin JE, Bushong EA, Ellisman MH, Kristan Jr. WB. Verifying, Challenging, and Discovering New Synapses Among Fully EM-Reconstructed Neurons in the Leech Ganglion. Front Neuroanat 2018; 12:95. [PMID: 30487738 PMCID: PMC6246621 DOI: 10.3389/fnana.2018.00095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Neural circuits underpin the production of animal behavior, largely based upon the precise pattern of synaptic connectivity among the neurons involved. For large numbers of neurons, determining such "connectomes" by direct physiological means is difficult, as physiological accessibility is ultimately required to verify and characterize the function of synapses. We collected a volume of images spanning an entire ganglion of the juvenile leech nervous system via serial blockface electron microscopy (SBEM). We validated this approach by reconstructing a well-characterized circuit of motor neurons involved in the swimming behavior of the leech by locating the synapses among them. We confirm that there are multiple synaptic contacts between connected pairs of neurons in the leech, and that these synapses are widely distributed across the region of neuropil in which the neurons' arbors overlap. We verified the anatomical existence of connections that had been described physiologically among longitudinal muscle motor neurons. We also found that some physiological connections were not present anatomically. We then drew upon the SBEM dataset to design additional physiological experiments. We reconstructed an uncharacterized neuron and one of its presynaptic partners identified from the SBEM dataset. We subsequently interrogated this cell pair via intracellular electrophysiology in an adult ganglion and found that the anatomically-discovered synapse was also functional physiologically. Our findings demonstrate the value of combining a connectomics approach with electrophysiology in the leech nervous system.
Collapse
Affiliation(s)
- Jason E. Pipkin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Eric Allen Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, United States
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, United States
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, United States
| | - William B. Kristan Jr.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
39
|
Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat Methods 2018; 15:1029-1032. [PMID: 30397326 PMCID: PMC6405223 DOI: 10.1038/s41592-018-0177-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Abstract
Morphological and molecular characteristics determine the function of biological tissues. Attempts to combine immunofluorescence and electron microscopy invariably compromise the quality of the ultrastructure of tissue sections. We developed NATIVE, a correlated light and electron microscopy approach that preserves ultrastructure while showing the locations of multiple molecular moieties even deep within tissues. This technique allowed the large-scale 3D reconstruction of a volume of mouse hippocampal CA3 tissue at nanometer resolution.
Collapse
|
40
|
Genoud C, Titze B, Graff-Meyer A, Friedrich RW. Fast Homogeneous En Bloc Staining of Large Tissue Samples for Volume Electron Microscopy. Front Neuroanat 2018; 12:76. [PMID: 30323746 PMCID: PMC6172304 DOI: 10.3389/fnana.2018.00076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022] Open
Abstract
Fixation and staining of large tissue samples are critical for the acquisition of volumetric electron microscopic image datasets and the subsequent reconstruction of neuronal circuits. Efficient protocols exist for the staining of small samples, but uniform contrast is often difficult to achieve when the sample diameter exceeds a few hundred micrometers. Recently, a protocol (BROPA, brain-wide reduced-osmium staining with pyrogallol-mediated amplification) was developed that achieves homogeneous staining of the entire mouse brain but requires very long sample preparation times. By exploring modifications of this protocol we developed a substantially faster procedure, fBROPA, that allows for reliable high-quality staining of tissue blocks on the millimeter scale. Modifications of the original BROPA protocol include drastically reduced incubation times and a lead aspartate incubation to increase sample conductivity. Using this procedure, whole brains from adult zebrafish were stained within 4 days. Homogenous high-contrast staining was achieved throughout the brain. High-quality image stacks with voxel sizes of 10 × 10 × 25 nm3 were obtained by serial block-face imaging using an electron dose of ~15 e−/nm2. No obvious reduction in staining quality was observed in comparison to smaller samples stained by other state-of-the-art procedures. Furthermore, high-quality images with minimal charging artifacts were obtained from non-neural tissues with low membrane density. fBROPA is therefore likely to be a versatile and efficient sample preparation protocol for a wide range of applications in volume electron microscopy.
Collapse
Affiliation(s)
- Christel Genoud
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Benjamin Titze
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
41
|
Drawitsch F, Karimi A, Boergens KM, Helmstaedter M. FluoEM, virtual labeling of axons in three-dimensional electron microscopy data for long-range connectomics. eLife 2018; 7:38976. [PMID: 30106377 PMCID: PMC6158011 DOI: 10.7554/elife.38976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/10/2018] [Indexed: 01/29/2023] Open
Abstract
The labeling and identification of long-range axonal inputs from multiple sources within densely reconstructed electron microscopy (EM) datasets from mammalian brains has been notoriously difficult because of the limited color label space of EM. Here, we report FluoEM for the identification of multi-color fluorescently labeled axons in dense EM data without the need for artificial fiducial marks or chemical label conversion. The approach is based on correlated tissue imaging and computational matching of neurite reconstructions, amounting to a virtual color labeling of axons in dense EM circuit data. We show that the identification of fluorescent light- microscopically (LM) imaged axons in 3D EM data from mouse cortex is faithfully possible as soon as the EM dataset is about 40-50 µm in extent, relying on the unique trajectories of axons in dense mammalian neuropil. The method is exemplified for the identification of long-distance axonal input into layer 1 of the mouse cerebral cortex.
Collapse
Affiliation(s)
- Florian Drawitsch
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.,Donders Institute, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Ali Karimi
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kevin M Boergens
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.,Donders Institute, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
42
|
Januszewski M, Kornfeld J, Li PH, Pope A, Blakely T, Lindsey L, Maitin-Shepard J, Tyka M, Denk W, Jain V. High-precision automated reconstruction of neurons with flood-filling networks. Nat Methods 2018; 15:605-610. [PMID: 30013046 DOI: 10.1038/s41592-018-0049-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022]
Abstract
Reconstruction of neural circuits from volume electron microscopy data requires the tracing of cells in their entirety, including all their neurites. Automated approaches have been developed for tracing, but their error rates are too high to generate reliable circuit diagrams without extensive human proofreading. We present flood-filling networks, a method for automated segmentation that, similar to most previous efforts, uses convolutional neural networks, but contains in addition a recurrent pathway that allows the iterative optimization and extension of individual neuronal processes. We used flood-filling networks to trace neurons in a dataset obtained by serial block-face electron microscopy of a zebra finch brain. Using our method, we achieved a mean error-free neurite path length of 1.1 mm, and we observed only four mergers in a test set with a path length of 97 mm. The performance of flood-filling networks was an order of magnitude better than that of previous approaches applied to this dataset, although with substantially increased computational costs.
Collapse
Affiliation(s)
| | - Jörgen Kornfeld
- Max Planck Institute of Neurobiology, Planegg, Martinsried, Germany
| | | | - Art Pope
- Google AI, Mountain View, CA, USA
| | | | | | | | | | - Winfried Denk
- Max Planck Institute of Neurobiology, Planegg, Martinsried, Germany
| | | |
Collapse
|
43
|
Springer CS. Using 1H 2O MR to measure and map sodium pump activity in vivo. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:110-126. [PMID: 29705043 DOI: 10.1016/j.jmr.2018.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 05/26/2023]
Abstract
The cell plasma membrane Na+,K+-ATPase [NKA] is one of biology's most [if not the most] significant enzymes. By actively transporting Na+ out [and K+ in], it maintains the vital trans-membrane ion concentration gradients and the membrane potential. The forward NKA reaction is shown in the Graphical Abstract [which is elaborated in the text]. Crucially, NKA does not operate in isolation. There are other transporters that conduct K+ back out of [II, Graphical Abstract] and Na+ back into [III, Graphical Abstract] the cell. Thus, NKA must function continually. Principal routes for ATP replenishment include mitochondrial oxidative phosphorylation, glycolysis, and creatine kinase [CrK] activity. However, it has never been possible to measure, let alone map, this integrated, cellular homeostatic NKA activity in vivo. Active trans-membrane water cycling [AWC] promises a way to do this with 1H2O MR. Inthe Graphical Abstract, the AWC system is characterized by active contributions totheunidirectional rate constants for steady-state water efflux and influx, respectively, kio(a) and koi(a). The discovery, validation, and initial exploration of active water cycling are reviewed here. Promising applications in cancer, cardiological, and neurological MRI are covered. This initial work employed paramagnetic Gd(III)chelate contrast agents [CAs]. However, the significant problems associated with in vivo CA use are also reviewed. A new analysis of water diffusion-weighted MRI [DWI] is presented. Preliminary results suggest a non-invasive way to measure the cell number density [ρ (cells/μL)], the mean cell volume [V (pL)], and the cellular NKA metabolic rate [cMRNKA(fmol(ATP)/s/cell)] with high spatial resolution. These crucial cell biology properties have not before been accessible invivo. Furthermore, initial findings indicate their absolute values can be determined.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
44
|
Savage JC, Picard K, González-Ibáñez F, Tremblay MÈ. A Brief History of Microglial Ultrastructure: Distinctive Features, Phenotypes, and Functions Discovered Over the Past 60 Years by Electron Microscopy. Front Immunol 2018; 9:803. [PMID: 29922276 PMCID: PMC5996933 DOI: 10.3389/fimmu.2018.00803] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
The first electron microscope was constructed in 1931. Several decades later, techniques were developed to allow the first ultrastructural analysis of microglia by transmission electron microscopy (EM). In the 50 years that followed, important roles of microglia have been identified, specifically due to the ultrastructural resolution currently available only with EM. In particular, the addition of electron-dense staining using immunohistochemical EM methods has allowed the identification of microglial cell bodies, as well as processes, which are difficult to recognize in EM, and to uncover their complex interactions with neurons and synapses. The ability to recognize neuronal, astrocytic, and oligodendrocytic compartments in the neuropil without any staining is another invaluable advantage of EM over light microscopy for studying intimate cell-cell contacts. The technique has been essential in defining microglial interactions with neurons and synapses, thus providing, among other discoveries, important insights into their roles in synaptic stripping and pruning via phagocytosis of extraneous synapses. Recent technological advances in EM including serial block-face imaging and focused-ion beam scanning EM have also facilitated automated acquisition of large tissue volumes required to reconstruct neuronal circuits in 3D at nanometer-resolution. These cutting-edge techniques which are now becoming increasingly available will further revolutionize the study of microglia across stages of the lifespan, brain regions, and contexts of health and disease. In this mini-review, we will focus on defining the distinctive ultrastructural features of microglia and the unique insights into their function that were provided by EM.
Collapse
Affiliation(s)
- Julie C. Savage
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Katherine Picard
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Fernando González-Ibáñez
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| |
Collapse
|
45
|
Large Scale Imaging by Fine Spatial Alignment of Multi-Scanning Data with Gel Cube Device. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Schwarz D, Kollo M, Bosch C, Feinauer C, Whiteley I, Margrie TW, Cutforth T, Schaefer AT. Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes. Nat Commun 2018; 9:183. [PMID: 29330458 PMCID: PMC5766516 DOI: 10.1038/s41467-017-02560-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022] Open
Abstract
Dense microcircuit reconstruction techniques have begun to provide ultrafine insight into the architecture of small-scale networks. However, identifying the totality of cells belonging to such neuronal modules, the "inputs" and "outputs," remains a major challenge. Here, we present the development of nanoengineered electroporation microelectrodes (NEMs) for comprehensive manipulation of a substantial volume of neuronal tissue. Combining finite element modeling and focused ion beam milling, NEMs permit substantially higher stimulation intensities compared to conventional glass capillaries, allowing for larger volumes configurable to the geometry of the target circuit. We apply NEMs to achieve near-complete labeling of the neuronal network associated with a genetically identified olfactory glomerulus. This allows us to detect sparse higher-order features of the wiring architecture that are inaccessible to statistical labeling approaches. Thus, NEM labeling provides crucial complementary information to dense circuit reconstruction techniques. Relying solely on targeting an electrode to the region of interest and passive biophysical properties largely common across cell types, this can easily be employed anywhere in the CNS.
Collapse
Affiliation(s)
- D Schwarz
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
| | - M Kollo
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - C Bosch
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - C Feinauer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany
| | - I Whiteley
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - T W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - T Cutforth
- Department of Neurology, Columbia University Medical Center, 650 West 168th Street, New York, 10032, NY, USA
| | - A T Schaefer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
47
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
48
|
Shigemoto R, Joesch M. The genetic encoded toolbox for electron microscopy and connectomics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022]
|
49
|
Nicholson C, Hrabětová S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys J 2017; 113:2133-2142. [PMID: 28755756 DOI: 10.1016/j.bpj.2017.06.052] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 01/15/2023] Open
Abstract
Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies.
Collapse
Affiliation(s)
- Charles Nicholson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York.
| | - Sabina Hrabětová
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
50
|
Staffler B, Berning M, Boergens KM, Gour A, van der Smagt P, Helmstaedter M. SynEM, automated synapse detection for connectomics. eLife 2017; 6:e26414. [PMID: 28708060 PMCID: PMC5658066 DOI: 10.7554/elife.26414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense connectomic mapping requires the identification of millions to billions of synapses. While the focus of connectomic data analysis has been on neurite reconstruction, synapse detection becomes limiting when datasets grow in size and dense mapping is required. Here, we report SynEM, a method for automated detection of synapses from conventionally en-bloc stained 3D electron microscopy image stacks. The approach is based on a segmentation of the image data and focuses on classifying borders between neuronal processes as synaptic or non-synaptic. SynEM yields 97% precision and recall in binary cortical connectomes with no user interaction. It scales to large volumes of cortical neuropil, plausibly even whole-brain datasets. SynEM removes the burden of manual synapse annotation for large densely mapped connectomes.
Collapse
Affiliation(s)
- Benedikt Staffler
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Manuel Berning
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kevin M Boergens
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Anjali Gour
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | | | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|