1
|
Vanacore G, Christensen JB, Bayin NS. Age-dependent regenerative mechanisms in the brain. Biochem Soc Trans 2024; 52:2243-2252. [PMID: 39584473 DOI: 10.1042/bst20230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Repairing the adult mammalian brain represents one of the greatest clinical challenges in medicine. Injury to the adult brain often results in substantial loss of neural tissue and permanent functional impairment. In contrast with the adult, during development, the mammalian brain exhibits a remarkable capacity to replace lost cells. A plethora of cell-intrinsic and extrinsic factors regulate the age-dependent loss of regenerative potential in the brain. As the developmental window closes, neural stem cells undergo epigenetic changes, limiting their proliferation and differentiation capacities, whereas, changes in the brain microenvironment pose additional challenges opposing regeneration, including inflammation and gliosis. Therefore, studying the regenerative mechanisms during development and identifying what impairs them with age may provide key insights into how to stimulate regeneration in the brain. Here, we will discuss how the mammalian brain engages regenerative mechanisms upon injury or neuron loss. Moreover, we will describe the age-dependent changes that affect these processes. We will conclude by discussing potential therapeutic approaches to overcome the age-dependent regenerative decline and stimulate regeneration.
Collapse
Affiliation(s)
- Giada Vanacore
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jens Bager Christensen
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - N Sumru Bayin
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
2
|
Mansor NI, Balqis TN, Lani MN, Lye KL, Nor Muhammad NA, Ismail WIW, Abidin SZ. Nature's Secret Neuro-Regeneration Pathway in Axolotls, Polychaetes and Planarians for Human Therapeutic Target Pathways. Int J Mol Sci 2024; 25:11904. [PMID: 39595973 PMCID: PMC11593954 DOI: 10.3390/ijms252211904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Despite significant improvements in the comprehension of neuro-regeneration, restoring nerve injury in humans continues to pose a substantial therapeutic difficulty. In the peripheral nervous system (PNS), the nerve regeneration process after injury relies on Schwann cells. These cells play a crucial role in regulating and releasing different extracellular matrix proteins, including laminin and fibronectin, which are essential for facilitating nerve regeneration. However, during regeneration, the nerve is required to regenerate for a long distance and, subsequently, loses its capacity to facilitate regeneration during this progression. Meanwhile, it has been noted that nerve regeneration has limited capabilities in the central nervous system (CNS) compared to in the PNS. The CNS contains factors that impede the regeneration of axons following injury to the axons. The presence of glial scar formation results from this unfavourable condition, where glial cells accumulate at the injury site, generating a physical and chemical barrier that hinders the regeneration of neurons. In contrast to humans, several species, such as axolotls, polychaetes, and planarians, possess the ability to regenerate their neural systems following amputation. This ability is based on the vast amount of pluripotent stem cells that have the remarkable capacity to differentiate and develop into any cell within their body. Although humans also possess these cells, their numbers are extremely limited. Examining the molecular pathways exhibited by these organisms has the potential to offer a foundational understanding of the human regeneration process. This review provides a concise overview of the molecular pathways involved in axolotl, polychaete, and planarian neuro-regeneration. It has the potential to offer a new perspective on therapeutic approaches for neuro-regeneration in humans.
Collapse
Affiliation(s)
- Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Tengku Nabilatul Balqis
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Kwan Liang Lye
- ME Scientifique Sdn Bhd, Taman Universiti Indah, Seri Kembangan 43300, Selangor, Malaysia;
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Wan Iryani Wan Ismail
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
- Research Interest Group Biological Security and Sustainability (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
- Research Interest Group Biological Security and Sustainability (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
3
|
James LM, Strickland Z, Lopez N, Whited JL, Maden M, Lewis J. Identification and Analysis of Axolotl Homologs for Proteins Implicated in Human Neurodegenerative Proteinopathies. Genes (Basel) 2024; 15:310. [PMID: 38540368 PMCID: PMC10969905 DOI: 10.3390/genes15030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 06/14/2024] Open
Abstract
Neurodegenerative proteinopathies such as Alzheimer's Disease are characterized by abnormal protein aggregation and neurodegeneration. Neuroresilience or regenerative strategies to prevent neurodegeneration, preserve function, or restore lost neurons may have the potential to combat human proteinopathies; however, the adult human brain possesses a limited capacity to replace lost neurons. In contrast, axolotls (Ambystoma mexicanum) show robust brain regeneration. To determine whether axolotls may help identify potential neuroresilience or regenerative strategies in humans, we first interrogated whether axolotls express putative proteins homologous to human proteins associated with neurodegenerative diseases. We compared the homology between human and axolotl proteins implicated in human proteinopathies and found that axolotls encode proteins highly similar to human microtubule-binding protein tau (tau), amyloid precursor protein (APP), and β-secretase 1 (BACE1), which are critically involved in human proteinopathies like Alzheimer's Disease. We then tested monoclonal Tau and BACE1 antibodies previously used in human and rodent neurodegenerative disease studies using immunohistochemistry and western blotting to validate the homology for these proteins. These studies suggest that axolotls may prove useful in studying the role of these proteins in disease within the context of neuroresilience and repair.
Collapse
Affiliation(s)
- Lucas M. James
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; (L.M.J.); (Z.S.)
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Strickland
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; (L.M.J.); (Z.S.)
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Noah Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- The Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- The Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malcolm Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jada Lewis
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; (L.M.J.); (Z.S.)
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
González-Orozco JC, Escobedo-Avila I, Velasco I. Transcriptome Profiling after Early Spinal Cord Injury in the Axolotl and Its Comparison with Rodent Animal Models through RNA-Seq Data Analysis. Genes (Basel) 2023; 14:2189. [PMID: 38137011 PMCID: PMC10742908 DOI: 10.3390/genes14122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
6
|
Andersson SA, Dittrich A, Lauridsen H. Continuous anesthesia for 60 days in an isosmotic environment does not impair limb or cardiac regeneration in the axolotl. Sci Rep 2023; 13:14951. [PMID: 37697071 PMCID: PMC10495452 DOI: 10.1038/s41598-023-42339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Longitudinal animal experiments in the field of regenerative biology often require repeated use of short-term anesthesia (minutes to a few hours). Regain of consciousness limits the level of acceptable invasiveness of procedures, and it makes it difficult to untangle behavioral changes caused by injury to physiological processes involved in the regenerative response. Therefore, a method to keep a regenerative research animal in a comatose state under continuous anesthesia during regenerative experiments often spanning months, would be ethically and experimentally desirable. Here we report on a method using propofol based anesthesia in an isosmotic environment that allows for continuous anesthesia of regenerating axolotls for 60 days with a 75% survival rate, thus spanning the majority of a full regenerative cycle following limb amputation or cryoinjury to the heart. No differences were detected in the axolotl's ability to regenerate amputated limbs and cardiac cryo-injury while anesthetized, however some regenerative failures in the limb were observed in both anesthetized and unanesthetized control groups, most likely caused by prolonged fasting. Sixty days of anesthesia may be approaching a level were kidney function is affected, but the 75% surviving anesthetized animals recovered well after anesthesia and showed a full behavioral recovery within 17 days.
Collapse
Affiliation(s)
- Sofie Amalie Andersson
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark
| | - Anita Dittrich
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark.
| |
Collapse
|
7
|
Maden M. Salamanders as Key Models for Development and Regeneration Research. Methods Mol Biol 2023; 2562:1-23. [PMID: 36272065 DOI: 10.1007/978-1-0716-2659-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For 70 years from the very beginning of developmental biology, the salamander embryo was the pre-eminent model for these studies. Here I review the major discoveries that were made using salamander embryos including regionalization of the mesoderm; patterning of the neural plate; limb development, with the pinnacle being Spemann's Nobel Prize for the discovery of the organizer; and the phenomenon of induction. Salamanders have also been the major organism for elucidating discoveries in organ regeneration, and these are described here too beginning with Spallanzani's experiments in 1768. These include the neurotrophic hypothesis of regeneration, studies of aneurogenic limbs, the concept of dedifferentiation and transdifferentiation, and advances in understanding pattern formation via molecules located on the cell surface. Also described is the prodigious power of brain and spinal cord regeneration and discoveries from lens regeneration, all of which reveal how important salamanders have been as research models.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Fu S, Peng C, Zeng YY, Qiu Y, Liu Y, Fei JF. Establishing an Efficient Electroporation-Based Method to Manipulate Target Gene Expression in the Axolotl Brain. Cell Transplant 2023; 32:9636897231200059. [PMID: 37724837 PMCID: PMC10510365 DOI: 10.1177/09636897231200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.
Collapse
Affiliation(s)
- Sulei Fu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Yun Zeng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuanhui Qiu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yandulskaya AS, Monaghan JR. Establishing a New Research Axolotl Colony. Methods Mol Biol 2023; 2562:27-39. [PMID: 36272066 PMCID: PMC10948202 DOI: 10.1007/978-1-0716-2659-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The field of regenerative biology has taken a keen interest in the Mexican axolotl (Ambystoma mexicanum) over the past few decades, as this salamander successfully regenerates amputated limbs and injured body parts. Recent progress in research tool development has also made possible axolotl genetic manipulation and single-cell analysis, which will help understand the molecular mechanisms of complex tissue regeneration. To support the growing popularity of this model, we describe how to set up a new axolotl housing facility at a research laboratory. We also review husbandry practices for raising axolotls and using them in biological research, with a focus on diet, water quality, breeding, and anesthesia.
Collapse
Affiliation(s)
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
10
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
11
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
12
|
Lust K, Maynard A, Gomes T, Fleck JS, Camp JG, Tanaka EM, Treutlein B. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 2022; 377:eabp9262. [PMID: 36048956 DOI: 10.1126/science.abp9262] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Salamanders are tetrapod models to study brain organization and regeneration; however, the identity and evolutionary conservation of brain cell types are largely unknown. We delineated the cell populations in the axolotl telencephalon during homeostasis and regeneration using single-cell genomic profiling. We identified glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved γ-aminobutyric acid-releasing (GABAergic) neuron classes. We inferred transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific neurogenesis and unraveled conserved differentiation signatures. After brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield insights into the organization, evolution, and regeneration of a tetrapod nervous system.
Collapse
Affiliation(s)
- Katharina Lust
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Ashley Maynard
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - J Gray Camp
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Wei X, Fu S, Li H, Liu Y, Wang S, Feng W, Yang Y, Liu X, Zeng YY, Cheng M, Lai Y, Qiu X, Wu L, Zhang N, Jiang Y, Xu J, Su X, Peng C, Han L, Lou WPK, Liu C, Yuan Y, Ma K, Yang T, Pan X, Gao S, Chen A, Esteban MA, Yang H, Wang J, Fan G, Liu L, Chen L, Xu X, Fei JF, Gu Y. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 2022; 377:eabp9444. [PMID: 36048929 DOI: 10.1126/science.abp9444] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The molecular mechanism underlying brain regeneration in vertebrates remains elusive. We performed spatial enhanced resolution omics sequencing (Stereo-seq) to capture spatially resolved single-cell transcriptomes of axolotl telencephalon sections during development and regeneration. Annotated cell types exhibited distinct spatial distribution, molecular features, and functions. We identified an injury-induced ependymoglial cell cluster at the wound site as a progenitor cell population for the potential replenishment of lost neurons, through a cell state transition process resembling neurogenesis during development. Transcriptome comparisons indicated that these induced cells may originate from local resident ependymoglial cells. We further uncovered spatially defined neurons at the lesion site that may regress to an immature neuron-like state. Our work establishes spatial transcriptome profiles of an anamniote tetrapod brain and decodes potential neurogenesis from ependymoglial cells for development and regeneration, thus providing mechanistic insights into vertebrate brain regeneration.
Collapse
Affiliation(s)
- Xiaoyu Wei
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China
| | - Sulei Fu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hanbo Li
- BGI-Shenzhen, Shenzhen 518103, China.,BGI-Qingdao, Qingdao 266555, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen 518103, China
| | - Shuai Wang
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Feng
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhi Yang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | | | - Yan-Yun Zeng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yujia Jiang
- BGI-Shenzhen, Shenzhen 518103, China.,BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Cheng Peng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen 518103, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Wilson Pak-Kin Lou
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen 518103, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Tao Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | - Ao Chen
- BGI-Shenzhen, Shenzhen 518103, China.,Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518103, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518103, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | | | - Longqi Liu
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518103, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ying Gu
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
14
|
Adamson CJ, Morrison-Welch N, Rogers CD. The amazing and anomalous axolotls as scientific models. Dev Dyn 2022; 251:922-933. [PMID: 35322911 PMCID: PMC9536427 DOI: 10.1002/dvdy.470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
Ambystoma mexicanum (axolotl) embryos and juveniles have been used as model organisms for developmental and regenerative research for many years. This neotenic aquatic species maintains the unique capability to regenerate most, if not all, of its tissues well into adulthood. With large externally developing embryos, axolotls were one of the original model species for developmental biology. However, increased access to, and use of, organisms with sequenced and annotated genomes, such as Xenopus laevis and tropicalis and Danio rerio, reduced the prevalence of axolotls as models in embryogenesis studies. Recent sequencing of the large axolotl genome opens up new possibilities for defining the recipes that drive the formation and regeneration of tissues like the limbs and spinal cord. However, to decode the large Ambystoma mexicanum genome will take a herculean effort, community resources, and the development of novel techniques. Here, we provide an updated axolotl-staging chart ranging from 1-cell stage to immature adult paired with a perspective on both historical and current axolotl research that spans from their use in early studies of development to the recent cutting-edge research, employment of transgenesis, high resolution imaging, and study of mechanisms deployed in regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carly J Adamson
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
| | | | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
| |
Collapse
|
15
|
ÇAKAR B, TOMRUK C, ÇELİK S, UYANIKGİL Y. Rejeneratif tıpta model organizma; Aksolotl (Ambystoma Mexicanum). EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1086385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Stranahan AM. Visceral adiposity, inflammation, and hippocampal function in obesity. Neuropharmacology 2021; 205:108920. [PMID: 34902347 DOI: 10.1016/j.neuropharm.2021.108920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The 'apple-shaped' anatomical pattern that accompanies visceral adiposity increases risk for multiple chronic diseases, including conditions that impact the brain, such as diabetes and hypertension. However, distinguishing between the consequences of visceral obesity, as opposed to visceral adiposity-associated metabolic and cardiovascular pathologies, presents certain challenges. This review summarizes current literature on relationships between adipose tissue distribution and cognition in preclinical models and highlights unanswered questions surrounding the potential role of tissue- and cell type-specific insulin resistance in these effects. While gaps in knowledge persist related to insulin insensitivity and cognitive impairment in obesity, several recent studies suggest that cells of the neurovascular unit contribute to hippocampal synaptic dysfunction, and this review interprets those findings in the context of progressive metabolic dysfunction in the CNS. Signalling between cerebrovascular endothelial cells, astrocytes, microglia, and neurons has been linked with memory deficits in visceral obesity, and this article describes the cellular changes in each of these populations with respect to their role in amplification or diminution of peripheral signals. The picture emerging from these studies, while incomplete, implicates pro-inflammatory cytokines, insulin resistance, and hyperglycemia in various stages of obesity-induced hippocampal dysfunction. As in the parable of the five blind wanderers holding different parts of an elephant, considerable work remains in order to assemble a model for the underlying mechanisms linking visceral adiposity with age-related cognitive decline.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Tosches MA. From Cell Types to an Integrated Understanding of Brain Evolution: The Case of the Cerebral Cortex. Annu Rev Cell Dev Biol 2021; 37:495-517. [PMID: 34416113 DOI: 10.1146/annurev-cellbio-120319-112654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.
Collapse
|
18
|
Zebrafish Blunt-Force TBI Induces Heterogenous Injury Pathologies That Mimic Human TBI and Responds with Sonic Hedgehog-Dependent Cell Proliferation across the Neuroaxis. Biomedicines 2021; 9:biomedicines9080861. [PMID: 34440066 PMCID: PMC8389629 DOI: 10.3390/biomedicines9080861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Blunt-force traumatic brain injury (TBI) affects an increasing number of people worldwide as the range of injury severity and heterogeneity of injury pathologies have been recognized. Most current damage models utilize non-regenerative organisms, less common TBI mechanisms (penetrating, chemical, blast), and are limited in scalability of injury severity. We describe a scalable blunt-force TBI model that exhibits a wide range of human clinical pathologies and allows for the study of both injury pathology/progression and mechanisms of regenerative recovery. We modified the Marmarou weight drop model for adult zebrafish, which delivers a scalable injury spanning mild, moderate, and severe phenotypes. Following injury, zebrafish display a wide range of severity-dependent, injury-induced pathologies, including seizures, blood–brain barrier disruption, neuroinflammation, edema, vascular injury, decreased recovery rate, neuronal cell death, sensorimotor difficulties, and cognitive deficits. Injury-induced pathologies rapidly dissipate 4–7 days post-injury as robust cell proliferation is observed across the neuroaxis. In the cerebellum, proliferating nestin:GFP-positive cells originated from the cerebellar crest by 60 h post-injury, which then infiltrated into the granule cell layer and differentiated into neurons. Shh pathway genes increased in expression shortly following injury. Injection of the Shh agonist purmorphamine in undamaged fish induced a significant proliferative response, while the proliferative response was inhibited in injured fish treated with cyclopamine, a Shh antagonist. Collectively, these data demonstrate that a scalable blunt-force TBI to adult zebrafish results in many pathologies similar to human TBI, followed by recovery, and neuronal regeneration in a Shh-dependent manner.
Collapse
|
19
|
MRI- and histologically derived neuroanatomical atlas of the Ambystoma mexicanum (axolotl). Sci Rep 2021; 11:9850. [PMID: 33972650 PMCID: PMC8110773 DOI: 10.1038/s41598-021-89357-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Amphibians are an important vertebrate model system to understand anatomy, genetics and physiology. Importantly, the brain and spinal cord of adult urodels (salamanders) have an incredible regeneration capacity, contrary to anurans (frogs) and the rest of adult vertebrates. Among these amphibians, the axolotl (Ambystoma mexicanum) has gained most attention because of the surge in the understanding of central nervous system (CNS) regeneration and the recent sequencing of its whole genome. However, a complete comprehension of the brain anatomy is not available. In the present study we created a magnetic resonance imaging (MRI) atlas of the in vivo neuroanatomy of the juvenile axolotl brain. This is the first MRI atlas for this species and includes three levels: (1) 82 regions of interest (ROIs) and a version with 64 ROIs; (2) a division of the brain according to the embryological origin of the neural tube, and (3) left and right hemispheres. Additionally, we localized the myelin rich regions of the juvenile brain. The atlas, the template that the atlas was derived from, and a masking file, can be found on Zenodo at https://doi.org/10.5281/zenodo.4595016 . This MRI brain atlas aims to be an important tool for future research of the axolotl brain and that of other amphibians.
Collapse
|
20
|
Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021; 145:235-275. [PMID: 34074531 PMCID: PMC8186737 DOI: 10.1016/bs.ctdb.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salamanders are recognized for their ability to regenerate a broad range of tissues. They have also have been used for hundreds of years for classical developmental biology studies because of their large accessible embryos. The range of tissues these animals can regenerate is fascinating, from full limbs to parts of the brain or heart, a potential that is missing in humans. Many promising research efforts are working to decipher the molecular blueprints shared across the organisms that naturally have the capacity to regenerate different tissues and organs. Salamanders are an excellent example of a vertebrate that can functionally regenerate a wide range of tissue types. In this review, we outline some of the significant insights that have been made that are aiding in understanding the cellular and molecular mechanisms of tissue regeneration in salamanders and discuss why salamanders are a worthy model in which to study regenerative biology and how this may benefit research fields like regenerative medicine to develop therapies for humans in the future.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States.
| |
Collapse
|
21
|
Grigoryan EN. Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. J Dev Biol 2021; 9:2. [PMID: 33477527 PMCID: PMC7838874 DOI: 10.3390/jdb9010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
22
|
Maden M, Serrano N, Bermudez M, Sandoval AGW. A profusion of neural stem cells in the brain of the spiny mouse, Acomys cahirinus. J Anat 2020; 238:1191-1202. [PMID: 33277722 PMCID: PMC8053588 DOI: 10.1111/joa.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022] Open
Abstract
The vast majority of neural stem cell studies have been conducted on the brains of mice and rats, the classical model rodent. Non-model organisms may, however, give us some important insights into how to increase neural stem cell numbers for regenerative purposes and with this in mind we have characterized these cells in the brain of the spiny mouse, Acomys cahirinus. This unique mammal is highly regenerative and damaged tissue does not scar or fibrose. We find that there are more than three times as many stem cells in the SVZ and more than 3 times as many proliferating cells compared to the CD-1 outbred strain of lab mouse. These additional cells create thick stem cell regions in the wall of the SVZ and very obvious columns of cells moving into the rostral migratory stream. In the dentate gyrus, there are more than 10 times as many cells proliferating in the sub-granular layer and twice the number of doublecortin expressing neuroblasts. A preliminary analysis of some stem cell niche genes has identified Sox2, Notch1, Shh, and Noggin as up-regulated in the SVZ of Acomys and Bmp2 as being down-regulated. The highly increased neural stem cell numbers in Acomys may endow this animal with increased regenerative properties in the brain or improved physiological performance important for its survival.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Nicole Serrano
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Monica Bermudez
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aaron G W Sandoval
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Pinheiro T, Mayor I, Edwards S, Joven A, Kantzer CG, Kirkham M, Simon A. CUBIC-f: An optimized clearing method for cell tracing and evaluation of neurite density in the salamander brain. J Neurosci Methods 2020; 348:109002. [PMID: 33217411 DOI: 10.1016/j.jneumeth.2020.109002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although tissue clearing and subsequent whole-brain imaging is now possible, standard protocols need to be adjusted to the innate properties of each specific tissue for optimal results. This work modifies exiting protocols to clear fragile brain samples and documents a downstream pipeline for image processing and data analysis. NEW METHOD We developed a clearing protocol, CUBIC-f, which we optimized for fragile samples, such as the salamander brain. We modified hydrophilic and aqueous' tissue-clearing methods based on Advanced CUBIC by incorporating Omnipaque 350 for refractive index matching. RESULTS By combining CUBIC-f, light sheet microscopy and bioinformatic pipelines, we quantified neuronal cell density, traced genetically marked fluorescent cells over long distance, and performed high resolution characterization of neural progenitor cells in the salamander brain. We also found that CUBIC-f is suitable for conserving tissue integrity in embryonic mouse brains. COMPARISON WITH EXITING METHODS CUBIC-f shortens clearing and staining times, and requires less reagent use than Advanced CUBIC and Advanced CLARITY. CONCLUSION CUBIC-f is suitable for conserving tissue integrity in embryonic mouse brains, larval and adult salamander brains which display considerable deformation using traditional CUBIC and CLARITY protocols.
Collapse
Affiliation(s)
- Tiago Pinheiro
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ivy Mayor
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Steven Edwards
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina G Kantzer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Kirkham
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Storer MA, Miller FD. Cellular and molecular mechanisms that regulate mammalian digit tip regeneration. Open Biol 2020; 10:200194. [PMID: 32993414 PMCID: PMC7536070 DOI: 10.1098/rsob.200194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Digit tip regeneration is one of the few examples of true multi-tissue regeneration in an adult mammal. The key step in this process is the formation of the blastema, a transient proliferating cell mass that generates the different cell types of the digit to replicate the original structure. Failure to form the blastema results in a lack of regeneration and has been postulated to be the reason why mammalian limbs cannot regrow following amputation. Understanding how the blastema forms and functions will help us to determine what is required for mammalian regeneration to occur and will provide insights into potential therapies for mammalian tissue regeneration and repair. This review summarizes the cellular and molecular mechanisms that influence murine blastema formation and govern digit tip regeneration.
Collapse
Affiliation(s)
- Mekayla A Storer
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada M5G 1L7
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada M5G 1L7.,Department of Molecular Genetics, University of Toronto, Toronto, Canada M5G 1A8.,Department of Physiology, University of Toronto, Toronto, Canada M5G 1A8.,Institute of Medical Sciences, University of Toronto, Toronto, Canada M5G 1A8
| |
Collapse
|
25
|
Bolaños-Castro LA, Walters HE, García Vázquez RO, Yun MH. Immunity in salamander regeneration: Where are we standing and where are we headed? Dev Dyn 2020; 250:753-767. [PMID: 32924213 DOI: 10.1002/dvdy.251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Salamanders exhibit the most extensive regenerative repertoire among vertebrates, being able to accomplish scar-free healing and faithful regeneration of significant parts of the eye, heart, brain, spinal cord, jaws and gills, as well as entire appendages throughout life. The cellular and molecular mechanisms underlying salamander regeneration are currently under extensive examination, with the hope of identifying the key drivers in each context, understanding interspecies differences in regenerative capacity, and harnessing this knowledge in therapeutic settings. The immune system has recently emerged as a potentially critical player in regenerative responses. Components of both innate and adaptive immunity have been found at critical stages of regeneration in a range of salamander tissues. Moreover, functional studies have identified a requirement for macrophages during heart and limb regeneration. However, our knowledge of salamander immunity remains scarce, and a thorough definition of the precise roles played by its members is lacking. Here, we examine the evidence supporting roles for immunity in various salamander regeneration models. We pinpoint observations that need revisiting through modern genetic approaches, uncover knowledge gaps, and highlight insights from various model organisms that could guide future explorations toward an understanding of the functions of immunity in regeneration.
Collapse
Affiliation(s)
| | - Hannah Elisabeth Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Rubén Octavio García Vázquez
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maximina Hee Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
26
|
Nakajima C, Sawada M, Sawamoto K. Postnatal neuronal migration in health and disease. Curr Opin Neurobiol 2020; 66:1-9. [PMID: 32717548 DOI: 10.1016/j.conb.2020.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Postnatal neuronal migration modulates neuronal circuit formation and function throughout life and is conserved among species. Pathological conditions activate the generation of neuroblasts in the ventricular-subventricular zone (V-SVZ) and promote their migration towards a lesion. However, the neuroblasts generally terminate their migration before reaching the lesion site unless their intrinsic capacity is modified or the environment is improved. It is important to understand which factors impede neuronal migration for functional recovery of the brain. We highlight similarities and differences in the mechanisms of neuroblast migration under physiological and pathological conditions to provide novel insights into endogenous neuronal regeneration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
| |
Collapse
|
27
|
Scimone ML, Atabay KD, Fincher CT, Bonneau AR, Li DJ, Reddien PW. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science 2020; 368:368/6498/eaba3203. [PMID: 32586989 PMCID: PMC8128157 DOI: 10.1126/science.aba3203] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Neuronal circuits damaged or lost after injury can be regenerated in some adult organisms, but the mechanisms enabling this process are largely unknown. We used the planarian Schmidtea mediterranea to study visual system regeneration after injury. We identify a rare population of muscle cells tightly associated with photoreceptor axons at stereotyped positions in both uninjured and regenerating animals. Together with a neuronal population, these cells promote de novo assembly of the visual system in diverse injury and eye transplantation contexts. These muscle guidepost-like cells are specified independently of eyes, and their position is defined by an extrinsic array of positional information cues. These findings provide a mechanism, involving adult formation of guidepost-like cells typically observed in embryos, for axon pattern restoration in regeneration.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kutay D Atabay
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher T Fincher
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ashley R Bonneau
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dayan J Li
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Pende M, Vadiwala K, Schmidbaur H, Stockinger AW, Murawala P, Saghafi S, Dekens MPS, Becker K, Revilla-i-Domingo R, Papadopoulos SC, Zurl M, Pasierbek P, Simakov O, Tanaka EM, Raible F, Dodt HU. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. SCIENCE ADVANCES 2020; 6:eaba0365. [PMID: 32523996 PMCID: PMC7259959 DOI: 10.1126/sciadv.aba0365] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Tissue clearing combined with deep imaging has emerged as a powerful alternative to classical histological techniques. Whereas current techniques have been optimized for imaging selected nonpigmented organs such as the mammalian brain, natural pigmentation remains challenging for most other biological specimens of larger volume. We have developed a fast DEpigmEntation-Plus-Clearing method (DEEP-Clear) that is easily incorporated in existing workflows and combines whole system labeling with a spectrum of detection techniques, ranging from immunohistochemistry to RNA in situ hybridization, labeling of proliferative cells (EdU labeling) and visualization of transgenic markers. With light-sheet imaging of whole animals and detailed confocal studies on pigmented organs, we provide unprecedented insight into eyes, whole nervous systems, and subcellular structures in animal models ranging from worms and squids to axolotls and zebrafish. DEEP-Clear thus paves the way for the exploration of species-rich clades and developmental stages that are largely inaccessible by regular imaging approaches.
Collapse
Affiliation(s)
- Marko Pende
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Hannah Schmidbaur
- Department of Neuroscience and Development, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Alexander W. Stockinger
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Saiedeh Saghafi
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
| | - Marcus P. S. Dekens
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Klaus Becker
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Sofia-Christina Papadopoulos
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
| | - Martin Zurl
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Pawel Pasierbek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Oleg Simakov
- Department of Neuroscience and Development, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Florian Raible
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Hans-Ulrich Dodt
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
29
|
Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci 2020; 43:213-226. [PMID: 32209453 DOI: 10.1016/j.tins.2020.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes.
Collapse
|
30
|
Lange C, Rost F, Machate A, Reinhardt S, Lesche M, Weber A, Kuscha V, Dahl A, Rulands S, Brand M. Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain. Development 2020; 147:dev.185595. [PMID: 31908317 PMCID: PMC6983714 DOI: 10.1242/dev.185595] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023]
Abstract
Zebrafish display widespread and pronounced adult neurogenesis, which is fundamental for their regeneration capability after central nervous system injury. However, the cellular identity and the biological properties of adult newborn neurons are elusive for most brain areas. Here, we have used short-term lineage tracing of radial glia progeny to prospectively isolate newborn neurons from the her4.1+ radial glia lineage in the homeostatic adult forebrain. Transcriptome analysis of radial glia, newborn neurons and mature neurons using single cell sequencing identified distinct transcriptional profiles, including novel markers for each population. Specifically, we detected two separate newborn neuron types, which showed diversity of cell fate commitment and location. Further analyses showed that these cell types are homologous to neurogenic cells in the mammalian brain, identified neurogenic commitment in proliferating radial glia and indicated that glutamatergic projection neurons are generated in the adult zebrafish telencephalon. Thus, we prospectively isolated adult newborn neurons from the adult zebrafish forebrain, identified markers for newborn and mature neurons in the adult brain, and revealed intrinsic heterogeneity among adult newborn neurons and their homology with mammalian adult neurogenic cell types.
Collapse
Affiliation(s)
- Christian Lange
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Fabian Rost
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Susanne Reinhardt
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | - Matthias Lesche
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | - Anke Weber
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Veronika Kuscha
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
31
|
Sibai M, Parlayan C, Tuğlu P, Öztürk G, Demircan T. Integrative Analysis of Axolotl Gene Expression Data from Regenerative and Wound Healing Limb Tissues. Sci Rep 2019; 9:20280. [PMID: 31889169 PMCID: PMC6937273 DOI: 10.1038/s41598-019-56829-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
Axolotl (Ambystoma mexicanum) is a urodele amphibian endowed with remarkable regenerative capacities manifested in scarless wound healing and restoration of amputated limbs, which makes it a powerful experimental model for regenerative biology and medicine. Previous studies have utilized microarrays and RNA-Seq technologies for detecting differentially expressed (DE) genes in different phases of the axolotl limb regeneration. However, sufficient consistency may be lacking due to statistical limitations arising from intra-laboratory analyses. This study aims to bridge such gaps by performing an integrative analysis of publicly available microarray and RNA-Seq data from axolotl limb samples having comparable study designs using the "merging" method. A total of 351 genes were found DE in regenerative samples compared to the control in data of both technologies, showing an adjusted p-value < 0.01 and log fold change magnitudes >1. Downstream analyses illustrated consistent correlations of the directionality of DE genes within and between data of both technologies, as well as concordance with the literature on regeneration related biological processes. qRT-PCR analysis validated the observed expression level differences of five of the top DE genes. Future studies may benefit from the utilized concept and approach for enhanced statistical power and robust discovery of biomarkers of regeneration.
Collapse
Affiliation(s)
- Mustafa Sibai
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Cüneyd Parlayan
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.
- Department of Biomedical Engineering, Faculty of Engineering, İstanbul Medipol University, Istanbul, Turkey.
| | - Pelin Tuğlu
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, İstanbul Medipol University, Istanbul, Turkey
| | - Turan Demircan
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.
- Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
32
|
Abstract
Brain tissue lost after a stroke is not regenerated, although a repair response associated with neurogenesis does occur. A failure to regenerate functional brain tissue is not caused by the lack of available neural cells, but rather the absence of structural support to permit a repopulation of the lesion cavity. Inductive bioscaffolds can provide this support and promote the invasion of host cells into the tissue void. The putative mechanisms of bioscaffold degradation and its pivotal role to permit invasion of neural cells are reviewed and discussed in comparison to peripheral wound healing. Key differences between regenerating and non-regenerating tissues are contrasted in an evolutionary context, with a special focus on the neurogenic response as a conditio sine qua non for brain regeneration. The pivotal role of the immune system in biodegradation and the formation of a neovasculature are contextualized with regeneration of peripheral soft tissues. The application of rehabilitation to integrate newly forming brain tissue is suggested as necessary to develop functional tissue that can alleviate behavioral impairments. Pertinent aspects of brain tissue development are considered to provide guidance to produce a metabolically and functionally integrated de novo tissue. Although little is currently known about mechanisms involved in brain tissue regeneration, this review outlines the various components and their interplay to provide a framework for ongoing and future studies. It is envisaged that a better understanding of the mechanisms involved in brain tissue regeneration will improve the design of biomaterials and the methods used for implantation, as well as rehabilitation strategies that support the restoration of behavioral functions.
Collapse
Affiliation(s)
- Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Michel Modo,
| |
Collapse
|
33
|
Abstract
Specialized epidermal cells are essential for the complex tissue regeneration required to replace tails and limbs, but their exact identities and molecular roles remain murky. Recent work in Xenopus has identified an epidermal cell population critical for tail regeneration, providing intriguing new directions for the field.
Collapse
Affiliation(s)
- Garrett S Dunlap
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
34
|
Öktem EK, Yazar M, Gulfidan G, Arga KY. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl (Ambystoma mexicanum) During Wound Healing. ACTA ACUST UNITED AC 2019; 23:389-405. [DOI: 10.1089/omi.2019.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elif Kubat Öktem
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
35
|
Joven A, Elewa A, Simon A. Model systems for regeneration: salamanders. Development 2019; 146:146/14/dev167700. [PMID: 31332037 DOI: 10.1242/dev.167700] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023]
Abstract
Salamanders have been hailed as champions of regeneration, exhibiting a remarkable ability to regrow tissues, organs and even whole body parts, e.g. their limbs. As such, salamanders have provided key insights into the mechanisms by which cells, tissues and organs sense and regenerate missing or damaged parts. In this Primer, we cover the evolutionary context in which salamanders emerged. We outline the varieties of mechanisms deployed during salamander regeneration, and discuss how these mechanisms are currently being explored and how they have advanced our understanding of animal regeneration. We also present arguments about why it is important to study closely related species in regeneration research.
Collapse
Affiliation(s)
- Alberto Joven
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| | - Ahmed Elewa
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| | - András Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| |
Collapse
|
36
|
Convergence of human cellular models and genetics to study neural stem cell signaling to enhance central nervous system regeneration and repair. Semin Cell Dev Biol 2019; 95:84-92. [PMID: 31310810 DOI: 10.1016/j.semcdb.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Human central nervous system (CNS) regeneration is considered the holy grail of neuroscience research, and is one of the most pressing and difficult questions in biology and science. Despite more than 20 years of work in the field of neural stem cells (NSCs), the area remains in its infancy as our understanding of the fundamental mechanisms that can be leveraged to improve CNS regeneration in neurological diseases is still growing. Here, we focus on the recent lessons from lower organism CNS regeneration genetics and how such findings are starting to illuminate our understanding of NSC signaling pathways in humans. These findings will allow us to improve upon our knowledge of endogenous NSC function, the utility of exogenous NSCs, and the limitations of NSCs as therapeutic vehicles for providing relief from devastating human neurological diseases. We also discuss the limitations of activating NSC signaling for CNS repair in humans, especially the potential for tumor formation. Finally, we will review the recent advances in new culture techniques, including patient-derived cells and cerebral organoids to model the genetic regulation of signaling pathways controlling the function of NSCs during injury and disease states.
Collapse
|
37
|
Tosches MA, Laurent G. Evolution of neuronal identity in the cerebral cortex. Curr Opin Neurobiol 2019; 56:199-208. [PMID: 31103814 DOI: 10.1016/j.conb.2019.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
To understand neocortex evolution, we must define a theory for the elaboration of cell types, circuits, and architectonics from an ancestral structure that is consistent with developmental, molecular, and genetic data. To this end, cross-species comparison of cortical cell types emerges as a very informative approach. We review recent results that illustrate the contribution of molecular and transcriptomic data to the construction of plausible models of cortical cell-type evolution.
Collapse
Affiliation(s)
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Lust K, Tanaka EM. A Comparative Perspective on Brain Regeneration in Amphibians and Teleost Fish. Dev Neurobiol 2019; 79:424-436. [PMID: 30600647 PMCID: PMC6618004 DOI: 10.1002/dneu.22665] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023]
Abstract
Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.
Collapse
Affiliation(s)
- Katharina Lust
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| |
Collapse
|
39
|
George J, Hsu CC, Nguyen LTB, Ye H, Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv 2019; 42:107370. [PMID: 30902729 DOI: 10.1016/j.biotechadv.2019.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 01/27/2023]
Abstract
The development of techniques to create and use multiphase microstructured hydrogels (granular hydrogels or microgels) has enabled the generation of cultures with more biologically relevant architecture and use of structured hydrogels is especially pertinent to the development of new types of central nervous system (CNS) culture models and therapies. We review material choice and the customisation of hydrogel structure, as well as the use of hydrogels in developmental models. Combining the use of structured hydrogel techniques with developmentally relevant tissue culture approaches will enable the generation of more relevant models and treatments to repair damaged CNS tissue architecture.
Collapse
Affiliation(s)
- Julian George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Chia-Chen Hsu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Linh Thuy Ba Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
40
|
Urata Y, Yamashita W, Inoue T, Agata K. Spatio-temporal neural stem cell behavior leads to both perfect and imperfect structural brain regeneration in adult newts. Biol Open 2018; 7:bio033142. [PMID: 29903864 PMCID: PMC6031346 DOI: 10.1242/bio.033142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the re-establishment of certain brain parts, suggesting that a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon excision of a quarter of the adult newt (Pleurodeles waltl) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes, but takes more than 1 year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuko Urata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Wataru Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - Takeshi Inoue
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
- Department of Life Science, Gakushuin University, Tokyo, 171-8588, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
- Department of Life Science, Gakushuin University, Tokyo, 171-8588, Japan
| |
Collapse
|
41
|
Joven A, Simon A. Homeostatic and regenerative neurogenesis in salamanders. Prog Neurobiol 2018; 170:81-98. [PMID: 29654836 DOI: 10.1016/j.pneurobio.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 04/07/2018] [Indexed: 01/02/2023]
Abstract
Large-scale regeneration in the adult central nervous system is a unique capacity of salamanders among tetrapods. Salamanders can replace neuronal populations, repair damaged nerve fibers and restore tissue architecture in retina, brain and spinal cord, leading to functional recovery. The underlying mechanisms have long been difficult to study due to the paucity of available genomic tools. Recent technological progress, such as genome sequencing, transgenesis and genome editing provide new momentum for systematic interrogation of regenerative processes in the salamander central nervous system. Understanding central nervous system regeneration also entails designing the appropriate molecular, cellular, and behavioral assays. Here we outline the organization of salamander brain structures. With special focus on ependymoglial cells, we integrate cellular and molecular processes of neurogenesis during developmental and adult homeostasis as well as in various injury models. Wherever possible, we correlate developmental and regenerative neurogenesis to the acquisition and recovery of behaviors. Throughout the review we place the findings into an evolutionary context for inter-species comparisons.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, 17177, Stockholm, Sweden.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, 17177, Stockholm, Sweden.
| |
Collapse
|
42
|
Nomura T, Yamashita W, Gotoh H, Ono K. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development. Cell Rep 2018; 22:3142-3151. [DOI: 10.1016/j.celrep.2018.02.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022] Open
|
43
|
Chernoff EAG, Sato K, Salfity HVN, Sarria DA, Belecky-Adams T. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells. Front Cell Neurosci 2018. [PMID: 29535610 PMCID: PMC5835034 DOI: 10.3389/fncel.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth in vitro, the cells are proliferative and maintain msi-1 expression. Non-regeneration competent Xenopus ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression in vivo and in vitro is a strong indicator of regeneration competence in the amphibian spinal cord.
Collapse
Affiliation(s)
- Ellen A G Chernoff
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kazuna Sato
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Hai V N Salfity
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Deborah A Sarria
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Teri Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
44
|
Brunauer R, Muneoka K. The Impact of Aging on Mechanisms of Mammalian Epimorphic Regeneration. Gerontology 2018; 64:300-308. [DOI: 10.1159/000485320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is associated with a significant decline of tissue repair and regeneration, ultimately resulting in tissue dysfunction, multimorbidity, and death. Salamanders possess remarkable regenerative abilities and have been studied with the prospect of inducing regeneration in humans and counteracting regenerative decline with aging. However, epimorphic regeneration, the full replacement of amputated structures, also occurs in mammals. One of the best studied models is digit tip regeneration, which is described for mice, and occurs in humans in a comparable manner. To accomplish regeneration, the amputated digit tip has to undergo three interdependent, overlapping steps: (i) wound healing without formation of a scar; (ii) formation of a blastema, a highly proliferative cell mass; and (iii) spatiotemporally regulated differentiation to generate a pattern similar to the original structure. Aging likely interferes with each of these steps. In this article, we provide an overview of the critical signaling pathways for regeneration, as revealed by investigating mammalian digit regeneration, the possible impact of aging on these pathways, and approaches to induce regeneration in the elderly. We hypothesize that with aging, increased Wnt signaling, NF-κB and tumor suppressor activity, and loss of positional information hampers regeneration. Knowledge about the impact of aging on regenerative mechanisms will enable us to safely activate endogenous regeneration in the elderly, and to generate a regeneration-permissive environment for cell therapies.
Collapse
|
45
|
Hesse M, Welz A, Fleischmann BK. Heart regeneration and the cardiomyocyte cell cycle. Pflugers Arch 2017; 470:241-248. [PMID: 28849267 PMCID: PMC5780532 DOI: 10.1007/s00424-017-2061-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease and in particular, heart failure are still main causes of death; therefore, novel therapeutic approaches are urgently needed. Loss of contractile substrate in the heart and limited regenerative capacity of cardiomyocytes are mainly responsible for the poor cardiovascular outcome. This is related to the postmitotic state of differentiated cardiomyocytes, which is partly due to their polyploid nature caused by cell cycle variants. As such, the cardiomyocyte cell cycle is a key player, and its manipulation could be a promising strategy for enhancing the plasticity of the heart by inducing cardiomyocyte proliferation. This review focuses on the cardiac cell cycle and its variants during postnatal growth, the different regenerative responses of the heart in dependance of the developmental stage and on manipulations of the cell cycle. Because a therapeutic goal is to induce authentic cell division in cardiomyocytes, recent experimental approaches following this strategy are also discussed.
Collapse
Affiliation(s)
- Michael Hesse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany. .,Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | - Armin Welz
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany. .,Pharma Center Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| |
Collapse
|
46
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
47
|
LoCascio SA, Lapan SW, Reddien PW. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration. Dev Cell 2017; 40:381-391.e3. [PMID: 28245923 DOI: 10.1016/j.devcel.2017.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/28/2022]
Abstract
Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself.
Collapse
Affiliation(s)
- Samuel A LoCascio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Sylvain W Lapan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Joven A, Wang H, Pinheiro T, Hameed LS, Belnoue L, Simon A. Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development 2017; 145:dev.160051. [DOI: 10.1242/dev.160051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
The overall bauplan of the tetrapod brain is highly conserved, yet significant variations exist among species in terms of brain size, structural composition and cellular diversity. Understanding processes underlying neural and behavioral development in a wide range of species is important both from an evolutionary developmental perspective as well as for the identification of cell sources with post-developmental neurogenic potential. Here we characterize germinal processes in the brain of Notophthalmus viridescens and Pleurodeles waltl during both development and adulthood. Using a combination of cell tracking tools, including clonal analyses in new transgenic salamander lines we examine the origin of neural stem and progenitor cells found in the adult brain, determine regional variability in cell cycle length of progenitor cells, and show spatio-temporally orchestrated neurogenesis. We analyze how maturation of different brain regions and neuronal subpopulations are linked to the acquisition of complex behaviors, and how these behaviors are altered upon chemical ablation of dopamine neurons. Our data analyzed from an evolutionary perspective reveal both common and species-specific processes in tetrapod brain formation and function.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiago Pinheiro
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - L. Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Laure Belnoue
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
49
|
Demircan T, İlhan AE, Aytürk N, Yıldırım B, Öztürk G, Keskin İ. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl. Acta Histochem 2016; 118:746-759. [PMID: 27436816 DOI: 10.1016/j.acthis.2016.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson's trichrome, Alcian blue, Orcein and Weigart's staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues.
Collapse
|