1
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
2
|
Cardona A. Wiring up for controlled flight. eLife 2024; 13:e95989. [PMID: 38436656 PMCID: PMC10911749 DOI: 10.7554/elife.95989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
A map showing how neurons that process motion are wired together in the visual system of fruit flies provides new insights into how animals navigate and remain stable when flying.
Collapse
Affiliation(s)
- Albert Cardona
- MRC Laboratory of Molecular Biology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Schoepe T, Janotte E, Milde MB, Bertrand OJN, Egelhaaf M, Chicca E. Finding the gap: neuromorphic motion-vision in dense environments. Nat Commun 2024; 15:817. [PMID: 38280859 PMCID: PMC10821932 DOI: 10.1038/s41467-024-45063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Animals have evolved mechanisms to travel safely and efficiently within different habitats. On a journey in dense terrains animals avoid collisions and cross narrow passages while controlling an overall course. Multiple hypotheses target how animals solve challenges faced during such travel. Here we show that a single mechanism enables safe and efficient travel. We developed a robot inspired by insects. It has remarkable capabilities to travel in dense terrain, avoiding collisions, crossing gaps and selecting safe passages. These capabilities are accomplished by a neuromorphic network steering the robot toward regions of low apparent motion. Our system leverages knowledge about vision processing and obstacle avoidance in insects. Our results demonstrate how insects might safely travel through diverse habitats. We anticipate our system to be a working hypothesis to study insects' travels in dense terrains. Furthermore, it illustrates that we can design novel hardware systems by understanding the underlying mechanisms driving behaviour.
Collapse
Affiliation(s)
- Thorben Schoepe
- Peter Grünberg Institut 15, Forschungszentrum Jülich, Aachen, Germany.
- Faculty of Technology and Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany.
- Bio-Inspired Circuits and Systems (BICS) Lab. Zernike Institute for Advanced Materials (Zernike Inst Adv Mat), University of Groningen, Groningen, Netherlands.
- CogniGron (Groningen Cognitive Systems and Materials Center), University of Groningen, Groningen, Netherlands.
| | - Ella Janotte
- Event Driven Perception for Robotics, Italian Institute of Technology, iCub facility, Genoa, Italy
| | - Moritz B Milde
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Penrith, Australia
| | | | - Martin Egelhaaf
- Neurobiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Elisabetta Chicca
- Faculty of Technology and Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
- Bio-Inspired Circuits and Systems (BICS) Lab. Zernike Institute for Advanced Materials (Zernike Inst Adv Mat), University of Groningen, Groningen, Netherlands
- CogniGron (Groningen Cognitive Systems and Materials Center), University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Ammer G, Serbe-Kamp E, Mauss AS, Richter FG, Fendl S, Borst A. Multilevel visual motion opponency in Drosophila. Nat Neurosci 2023; 26:1894-1905. [PMID: 37783895 PMCID: PMC10620086 DOI: 10.1038/s41593-023-01443-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Inhibitory interactions between opponent neuronal pathways constitute a common circuit motif across brain areas and species. However, in most cases, synaptic wiring and biophysical, cellular and network mechanisms generating opponency are unknown. Here, we combine optogenetics, voltage and calcium imaging, connectomics, electrophysiology and modeling to reveal multilevel opponent inhibition in the fly visual system. We uncover a circuit architecture in which a single cell type implements direction-selective, motion-opponent inhibition at all three network levels. This inhibition, mediated by GluClα receptors, is balanced with excitation in strength, despite tenfold fewer synapses. The different opponent network levels constitute a nested, hierarchical structure operating at increasing spatiotemporal scales. Electrophysiology and modeling suggest that distributing this computation over consecutive network levels counteracts a reduction in gain, which would result from integrating large opposing conductances at a single instance. We propose that this neural architecture provides resilience to noise while enabling high selectivity for relevant sensory information.
Collapse
Affiliation(s)
- Georg Ammer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| | - Etienne Serbe-Kamp
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Alex S Mauss
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Florian G Richter
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Sandra Fendl
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
5
|
Chen J, Gish CM, Fransen JW, Salazar-Gatzimas E, Clark DA, Borghuis BG. Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. iScience 2023; 26:107928. [PMID: 37810236 PMCID: PMC10550730 DOI: 10.1016/j.isci.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Evolution has equipped vertebrates and invertebrates with neural circuits that selectively encode visual motion. While similarities in the computations performed by these circuits in mouse and fruit fly have been noted, direct experimental comparisons have been lacking. Because molecular mechanisms and neuronal morphology in the two species are distinct, we directly compared motion encoding in these two species at the algorithmic level, using matched stimuli and focusing on a pair of analogous neurons, the mouse ON starburst amacrine cell (ON SAC) and Drosophila T4 neurons. We find that the cells share similar spatiotemporal receptive field structures, sensitivity to spatiotemporal correlations, and tuning to sinusoidal drifting gratings, but differ in their responses to apparent motion stimuli. Both neuron types showed a response to summed sinusoids that deviates from models for motion processing in these cells, underscoring the similarities in their processing and identifying response features that remain to be explained.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
| | - Caitlin M Gish
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Damon A Clark
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Chiappe ME. Circuits for self-motion estimation and walking control in Drosophila. Curr Opin Neurobiol 2023; 81:102748. [PMID: 37453230 DOI: 10.1016/j.conb.2023.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
The brain's evolution and operation are inextricably linked to animal movement, and critical functions, such as motor control, spatial perception, and navigation, rely on precise knowledge of body movement. Such internal estimates of self-motion emerge from the integration of mechanosensory and visual feedback with motor-related signals. Thus, this internal representation likely depends on the activity of circuits distributed across the central nervous system. However, the circuits responsible for self-motion estimation, and the exact mechanisms by which motor-sensory coordination occurs within these circuits remain poorly understood. Recent technological advances have positioned Drosophila melanogaster as an advantageous model for investigating the emergence, maintenance, and utilization of self-motion representations during naturalistic walking behaviors. In this review, I will illustrate how the adult fly is providing insights into the fundamental problems of self-motion computations and walking control, which have relevance for all animals.
Collapse
Affiliation(s)
- M Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
7
|
Fu Q. Motion perception based on ON/OFF channels: A survey. Neural Netw 2023; 165:1-18. [PMID: 37263088 DOI: 10.1016/j.neunet.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Motion perception is an essential ability for animals and artificially intelligent systems interacting effectively, safely with surrounding objects and environments. Biological visual systems, that have naturally evolved over hundreds-million years, are quite efficient and robust for motion perception, whereas artificial vision systems are far from such capability. This paper argues that the gap can be significantly reduced by formulation of ON/OFF channels in motion perception models encoding luminance increment (ON) and decrement (OFF) responses within receptive field, separately. Such signal-bifurcating structure has been found in neural systems of many animal species articulating early motion is split and processed in segregated pathways. However, the corresponding biological substrates, and the necessity for artificial vision systems have never been elucidated together, leaving concerns on uniqueness and advantages of ON/OFF channels upon building dynamic vision systems to address real world challenges. This paper highlights the importance of ON/OFF channels in motion perception through surveying current progress covering both neuroscience and computationally modelling works with applications. Compared to related literature, this paper for the first time provides insights into implementation of different selectivity to directional motion of looming, translating, and small-sized target movement based on ON/OFF channels in keeping with soundness and robustness of biological principles. Existing challenges and future trends of such bio-plausible computational structure for visual perception in connection with hotspots of machine learning, advanced vision sensors like event-driven camera finally are discussed.
Collapse
Affiliation(s)
- Qinbing Fu
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Abstract
How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps-yet the whole process is of moderate complexity. The genetic methods available in the fruit fly Drosophila and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons' membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.
Collapse
Affiliation(s)
- Alexander Borst
- Max Planck Institute for Biological Intelligence, Martinsried, Germany; ,
| | - Lukas N Groschner
- Max Planck Institute for Biological Intelligence, Martinsried, Germany; ,
| |
Collapse
|
9
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Braun A, Borst A, Meier M. Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila. Curr Biol 2023:S0960-9822(23)00601-2. [PMID: 37236181 DOI: 10.1016/j.cub.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary motion detector based on both supralinear enhancement for preferred direction and sublinear suppression for null-direction motion. In T5 cells, however, all columnar input neurons (Tm1, Tm2, Tm4, and Tm9) are excitatory. So, how is null-direction suppression realized there? Using two-photon calcium imaging in combination with thermogenetics, optogenetics, apoptotics, and pharmacology, we discovered that it is via CT1, the GABAergic large-field amacrine cell, where the different processes have previously been shown to act in an electrically isolated way. Within each column, CT1 receives excitatory input from Tm9 and Tm1 and provides the sign-inverted, now inhibitory input signal onto T5. Ablating CT1 or knocking down GABA-receptor subunit Rdl significantly broadened the directional tuning of T5 cells. It thus appears that the signal of Tm1 and Tm9 is used both as an excitatory input for preferred direction enhancement and, through a sign inversion within the Tm1/Tm9-CT1 microcircuit, as an inhibitory input for null-direction suppression.
Collapse
Affiliation(s)
- Amalia Braun
- Max Planck Institute for Biological Intelligence, Department of Circuits - Computation - Models, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, Department of Circuits - Computation - Models, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Meier
- Max Planck Institute for Biological Intelligence, Department of Circuits - Computation - Models, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
11
|
Wu Z, Guo A. Bioinspired figure-ground discrimination via visual motion smoothing. PLoS Comput Biol 2023; 19:e1011077. [PMID: 37083880 PMCID: PMC10155969 DOI: 10.1371/journal.pcbi.1011077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Flies detect and track moving targets among visual clutter, and this process mainly relies on visual motion. Visual motion is analyzed or computed with the pathway from the retina to T4/T5 cells. The computation of local directional motion was formulated as an elementary movement detector (EMD) model more than half a century ago. Solving target detection or figure-ground discrimination problems can be equivalent to extracting boundaries between a target and the background based on the motion discontinuities in the output of a retinotopic array of EMDs. Individual EMDs cannot measure true velocities, however, due to their sensitivity to pattern properties such as luminance contrast and spatial frequency content. It remains unclear how local directional motion signals are further integrated to enable figure-ground discrimination. Here, we present a computational model inspired by fly motion vision. Simulations suggest that the heavily fluctuating output of an EMD array is naturally surmounted by a lobula network, which is hypothesized to be downstream of the local motion detectors and have parallel pathways with distinct directional selectivity. The lobula network carries out a spatiotemporal smoothing operation for visual motion, especially across time, enabling the segmentation of moving figures from the background. The model qualitatively reproduces experimental observations in the visually evoked response characteristics of one type of lobula columnar (LC) cell. The model is further shown to be robust to natural scene variability. Our results suggest that the lobula is involved in local motion-based target detection.
Collapse
Affiliation(s)
- Zhihua Wu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aike Guo
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Mishra A, Serbe-Kamp E, Borst A, Haag J. Voltage to Calcium Transformation Enhances Direction Selectivity in Drosophila T4 Neurons. J Neurosci 2023; 43:2497-2514. [PMID: 36849417 PMCID: PMC10082464 DOI: 10.1523/jneurosci.2297-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and calcium indicators, ArcLight and GCaMP6f, respectively, to measure responses in direction-selective T4 neurons of female Drosophila Comparison between ArcLight and GCaMP6f signals reveals calcium signals to have a significantly higher direction selectivity compared with voltage signals. Using these recordings, we build a model which transforms T4 voltage responses into calcium responses. Using a cascade of thresholding, temporal filtering and a stationary nonlinearity, the model reproduces experimentally measured calcium responses across different visual stimuli. These findings provide a mechanistic underpinning of the voltage to calcium transformation and show how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. Measuring the directional tuning of postsynaptic vertical system (VS)-cells with inputs from other cells blocked, we found that, indeed, it matches the one of the calcium signal in presynaptic T4 cells.SIGNIFICANCE STATEMENT The transformation of voltage to calcium influx is an important step in the signaling cascade within a nerve cell. While this process has been intensely studied in the context of transmitter release mechanism, its consequences for information transmission and neural computation are unclear. Here, we measured both membrane voltage and cytosolic calcium levels in direction-selective cells of Drosophila in response to a large set of visual stimuli. We found direction selectivity in the calcium signal to be significantly enhanced compared with membrane voltage through a nonlinear transformation of voltage to calcium. Our findings highlight the importance of an additional step in the signaling cascade for information processing within single nerve cells.
Collapse
Affiliation(s)
- Abhishek Mishra
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Etienne Serbe-Kamp
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
13
|
Gonzalez-Suarez AD, Zavatone-Veth JA, Chen J, Matulis CA, Badwan BA, Clark DA. Excitatory and inhibitory neural dynamics jointly tune motion detection. Curr Biol 2022; 32:3659-3675.e8. [PMID: 35868321 PMCID: PMC9474608 DOI: 10.1016/j.cub.2022.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/03/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Neurons integrate excitatory and inhibitory signals to produce their outputs, but the role of input timing in this integration remains poorly understood. Motion detection is a paradigmatic example of this integration, since theories of motion detection rely on different delays in visual signals. These delays allow circuits to compare scenes at different times to calculate the direction and speed of motion. Different motion detection circuits have different velocity sensitivity, but it remains untested how the response dynamics of individual cell types drive this tuning. Here, we sped up or slowed down specific neuron types in Drosophila's motion detection circuit by manipulating ion channel expression. Altering the dynamics of individual neuron types upstream of motion detectors increased their sensitivity to fast or slow visual motion, exposing distinct roles for excitatory and inhibitory dynamics in tuning directional signals, including a role for the amacrine cell CT1. A circuit model constrained by functional data and anatomy qualitatively reproduced the observed tuning changes. Overall, these results reveal how excitatory and inhibitory dynamics together tune a canonical circuit computation.
Collapse
Affiliation(s)
| | - Jacob A Zavatone-Veth
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Juyue Chen
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | | | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
14
|
Motion vision: Drosophila neural pathways that go with the visual flow. Curr Biol 2022; 32:R881-R883. [PMID: 35998597 DOI: 10.1016/j.cub.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Processing visual motion cues to interpret self-motion, the movement of others, and the environment's structure is vital to all animals, whether prey or predator. A new study in Drosophila identifies multiple pathways likely contributing to visual motion-dependent computations and behaviors.
Collapse
|
15
|
Hayashi M, Kazawa T, Tsunoda H, Kanzaki R. The Understanding of ON-Edge Motion Detection Through the Simulation Based on the Connectome of Drosophila’s Optic Lobe. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The optic lobe of the fly is one of the prominent model systems for the neural mechanism of the motion detection. How a fly who lives under various visual situations of the nature processes the information from at most a few thousands of ommatidia in their neural circuit for the detection of moving objects is not exactly clear though many computational models of the fly optic lobe as a moving objects detector were suggested. Here we attempted to elucidate the mechanisms of ON-edge motion detection by a simulation approach based on the TEM connectome of Drosophila. Our simulation model of the optic lobe with the NEURON simulator that covers the full scale of ommatidia, reproduced the characteristics of the receptor neurons, lamina monopolar neurons, and T4 cells in the lobula. The contribution of each neuron can be estimated by changing synaptic connection strengths in the simulation and measuring the response to the motion stimulus. Those show the paradelle pathway provide motion detection in the fly optic lobe has more robustness and is more sophisticated than a simple combination of HR and BL systems.
Collapse
|
16
|
Moro F, Hardy E, Fain B, Dalgaty T, Clémençon P, De Prà A, Esmanhotto E, Castellani N, Blard F, Gardien F, Mesquida T, Rummens F, Esseni D, Casas J, Indiveri G, Payvand M, Vianello E. Neuromorphic object localization using resistive memories and ultrasonic transducers. Nat Commun 2022; 13:3506. [PMID: 35717413 PMCID: PMC9206646 DOI: 10.1038/s41467-022-31157-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl's neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task.
Collapse
Affiliation(s)
- Filippo Moro
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France.
| | - Emmanuel Hardy
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Bruno Fain
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Thomas Dalgaty
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
- CEA, LIST, Université Grenoble Alpes, 38054, Grenoble, France
| | - Paul Clémençon
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
- Insect Biology Research Institute, Université de Tours, 37020, Tours, France
| | - Alessio De Prà
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
- DPIA, Università degli Studi di Udine, 33100, Udine, Italy
| | | | | | - François Blard
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | | | - Thomas Mesquida
- CEA, LIST, Université Grenoble Alpes, 38054, Grenoble, France
| | | | - David Esseni
- DPIA, Università degli Studi di Udine, 33100, Udine, Italy
| | - Jérôme Casas
- Insect Biology Research Institute, Université de Tours, 37020, Tours, France
| | - Giacomo Indiveri
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, 8057, Zürich, Switzerland
| | - Melika Payvand
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, 8057, Zürich, Switzerland
| | - Elisa Vianello
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France.
| |
Collapse
|
17
|
Groschner LN, Malis JG, Zuidinga B, Borst A. A biophysical account of multiplication by a single neuron. Nature 2022; 603:119-123. [PMID: 35197635 PMCID: PMC8891015 DOI: 10.1038/s41586-022-04428-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Nonlinear, multiplication-like operations carried out by individual nerve cells greatly enhance the computational power of a neural system1-3, but our understanding of their biophysical implementation is scant. Here we pursue this problem in the Drosophila melanogaster ON motion vision circuit4,5, in which we record the membrane potentials of direction-selective T4 neurons and of their columnar input elements6,7 in response to visual and pharmacological stimuli in vivo. Our electrophysiological measurements and conductance-based simulations provide evidence for a passive supralinear interaction between two distinct types of synapse on T4 dendrites. We show that this multiplication-like nonlinearity arises from the coincidence of cholinergic excitation and release from glutamatergic inhibition. The latter depends on the expression of the glutamate-gated chloride channel GluClα8,9 in T4 neurons, which sharpens the directional tuning of the cells and shapes the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and excitatory synapses have long been postulated as an analogue approximation of a multiplication, which is integral to theories of motion detection10,11, sound localization12 and sensorimotor control13.
Collapse
Affiliation(s)
| | | | - Birte Zuidinga
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | | |
Collapse
|
18
|
Sears JC, Broadie K. Temporally and Spatially Localized PKA Activity within Learning and Memory Circuitry Regulated by Network Feedback. eNeuro 2022; 9:ENEURO.0450-21.2022. [PMID: 35301221 PMCID: PMC8982635 DOI: 10.1523/eneuro.0450-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/β' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.
Collapse
Affiliation(s)
- James C Sears
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235
| |
Collapse
|
19
|
Henning M, Ramos-Traslosheros G, Gür B, Silies M. Populations of local direction-selective cells encode global motion patterns generated by self-motion. SCIENCE ADVANCES 2022; 8:eabi7112. [PMID: 35044821 PMCID: PMC8769539 DOI: 10.1126/sciadv.abi7112] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Self-motion generates visual patterns on the eye that are important for navigation. These optic flow patterns are encoded by the population of local direction–selective cells in the mouse retina, whereas in flies, local direction–selective T4/T5 cells are thought to be uniformly tuned. How complex global motion patterns can be computed downstream is unclear. We show that the population of T4/T5 cells in Drosophila encodes global motion patterns. Whereas the mouse retina encodes four types of optic flow, the fly visual system encodes six. This matches the larger number of degrees of freedom and the increased complexity of translational and rotational motion patterns during flight. The four uniformly tuned T4/T5 subtypes described previously represent a local subset of the population. Thus, a population code for global motion patterns appears to be a general coding principle of visual systems that matches local motion responses to modes of the animal’s movement.
Collapse
Affiliation(s)
- Miriam Henning
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz 55128, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) and International Max Planck Research School (IMPRS) for Neurosciences at the University of Göttingen, Göttingen 37077, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz 55128, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) and International Max Planck Research School (IMPRS) for Neurosciences at the University of Göttingen, Göttingen 37077, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz 55128, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) and International Max Planck Research School (IMPRS) for Neurosciences at the University of Göttingen, Göttingen 37077, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz 55128, Germany
- Corresponding author.
| |
Collapse
|
20
|
Srivastava P, de Rosenroll G, Matsumoto A, Michaels T, Turple Z, Jain V, Sethuramanujam S, Murphy-Baum BL, Yonehara K, Awatramani GB. Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. eLife 2022; 11:81533. [PMID: 36346388 PMCID: PMC9674338 DOI: 10.7554/elife.81533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Taken together, these results provide direct support for the 'space-time wiring' model for direction selectivity.
Collapse
Affiliation(s)
| | | | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Tracy Michaels
- Department of Biology, University of VictoriaVictoriaCanada
| | - Zachary Turple
- Department of Biology, University of VictoriaVictoriaCanada
| | - Varsha Jain
- Department of Biology, University of VictoriaVictoriaCanada
| | | | | | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
21
|
Mano O, Creamer MS, Badwan BA, Clark DA. Predicting individual neuron responses with anatomically constrained task optimization. Curr Biol 2021; 31:4062-4075.e4. [PMID: 34324832 DOI: 10.1016/j.cub.2021.06.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023]
Abstract
Artificial neural networks trained to solve sensory tasks can develop statistical representations that match those in biological circuits. However, it remains unclear whether they can reproduce properties of individual neurons. Here, we investigated how artificial networks predict individual neuron properties in the visual motion circuits of the fruit fly Drosophila. We trained anatomically constrained networks to predict movement in natural scenes, solving the same inference problem as fly motion detectors. Units in the artificial networks adopted many properties of analogous individual neurons, even though they were not explicitly trained to match these properties. Among these properties was the split into ON and OFF motion detectors, which is not predicted by classical motion detection models. The match between model and neurons was closest when models were trained to be robust to noise. These results demonstrate how anatomical, task, and noise constraints can explain properties of individual neurons in a small neural network.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
22
|
Ramos-Traslosheros G, Silies M. The physiological basis for contrast opponency in motion computation in Drosophila. Nat Commun 2021; 12:4987. [PMID: 34404776 PMCID: PMC8371135 DOI: 10.1038/s41467-021-24986-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
In Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subfields. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation if all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties transfers to T5, and calcium decrements in Tm9 in response to ON stimuli persist across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.
Collapse
Affiliation(s)
- Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
- International Max Planck Research School Neuroscienes and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Göttingen, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
23
|
Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells. ELECTRONICS 2021. [DOI: 10.3390/electronics10141663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have reported that directionally selective ganglion cells respond strongly in their preferred direction, but are only weakly excited by stimuli moving in the opposite null direction. Various studies have attempted to elucidate the mechanisms underlying direction selectivity with cellular basis. However, these studies have not elucidated the mechanism underlying motion direction detection. In this study, we propose the mechanism based on Barlow’s inhibitory scheme for motion direction detection. We described the local motion-sensing direction-selective neurons. Next, this model was used to construct the two-dimensional multi-directional detection neurons which detect the local motion directions. The information of local motion directions was finally used to infer the global motion direction. To verify the validity of the proposed mechanism, we conducted a series of experiments involving a dataset with a number of images. The proposed mechanism exhibited good performance in all experiments with high detection accuracy. Furthermore, we compare the performance of our proposed system and traditional Convolution Neural Network (CNN) on motion direction prediction. It is found that the performance of our system is much better than that of CNN in terms of accuracy, calculation speed and cost.
Collapse
|
24
|
Fendl S, Vieira RM, Borst A. Conditional protein tagging methods reveal highly specific subcellular distribution of ion channels in motion-sensing neurons. eLife 2020; 9:62953. [PMID: 33079061 PMCID: PMC7655108 DOI: 10.7554/elife.62953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and ‘FlpTag’, a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.
Collapse
Affiliation(s)
- Sandra Fendl
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| | | | - Alexander Borst
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| |
Collapse
|
25
|
Fu Q, Yue S. Modelling Drosophila motion vision pathways for decoding the direction of translating objects against cluttered moving backgrounds. BIOLOGICAL CYBERNETICS 2020; 114:443-460. [PMID: 32623517 PMCID: PMC7554016 DOI: 10.1007/s00422-020-00841-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/19/2020] [Indexed: 06/03/2023]
Abstract
Decoding the direction of translating objects in front of cluttered moving backgrounds, accurately and efficiently, is still a challenging problem. In nature, lightweight and low-powered flying insects apply motion vision to detect a moving target in highly variable environments during flight, which are excellent paradigms to learn motion perception strategies. This paper investigates the fruit fly Drosophila motion vision pathways and presents computational modelling based on cutting-edge physiological researches. The proposed visual system model features bio-plausible ON and OFF pathways, wide-field horizontal-sensitive (HS) and vertical-sensitive (VS) systems. The main contributions of this research are on two aspects: (1) the proposed model articulates the forming of both direction-selective and direction-opponent responses, revealed as principal features of motion perception neural circuits, in a feed-forward manner; (2) it also shows robust direction selectivity to translating objects in front of cluttered moving backgrounds, via the modelling of spatiotemporal dynamics including combination of motion pre-filtering mechanisms and ensembles of local correlators inside both the ON and OFF pathways, which works effectively to suppress irrelevant background motion or distractors, and to improve the dynamic response. Accordingly, the direction of translating objects is decoded as global responses of both the HS and VS systems with positive or negative output indicating preferred-direction or null-direction translation. The experiments have verified the effectiveness of the proposed neural system model, and demonstrated its responsive preference to faster-moving, higher-contrast and larger-size targets embedded in cluttered moving backgrounds.
Collapse
Affiliation(s)
- Qinbing Fu
- Machine Life and Intelligence Research Centre, Guangzhou University, Guangzhou, China.
- Computational Intelligence Lab/Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK.
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, Guangzhou University, Guangzhou, China.
- Computational Intelligence Lab/Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK.
| |
Collapse
|
26
|
Agrochao M, Tanaka R, Salazar-Gatzimas E, Clark DA. Mechanism for analogous illusory motion perception in flies and humans. Proc Natl Acad Sci U S A 2020; 117:23044-23053. [PMID: 32839324 PMCID: PMC7502748 DOI: 10.1073/pnas.2002937117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons' responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly's illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly's may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.
Collapse
Affiliation(s)
- Margarida Agrochao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | | | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511;
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Neuroscience, Yale University, New Haven, CT 06511
| |
Collapse
|
27
|
Zavatone-Veth JA, Badwan BA, Clark DA. A minimal synaptic model for direction selective neurons in Drosophila. J Vis 2020; 20:2. [PMID: 32040161 PMCID: PMC7343402 DOI: 10.1167/jov.20.2.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Visual motion estimation is a canonical neural computation. In Drosophila, recent advances have identified anatomic and functional circuitry underlying direction-selective computations. Models with varying levels of abstraction have been proposed to explain specific experimental results but have rarely been compared across experiments. Here we use the wealth of available anatomical and physiological data to construct a minimal, biophysically inspired synaptic model for Drosophila’s first-order direction-selective T4 cells. We show how this model relates mathematically to classical models of motion detection, including the Hassenstein-Reichardt correlator model. We used numerical simulation to test how well this synaptic model could reproduce measurements of T4 cells across many datasets and stimulus modalities. These comparisons include responses to sinusoid gratings, to apparent motion stimuli, to stochastic stimuli, and to natural scenes. Without fine-tuning this model, it sufficed to reproduce many, but not all, response properties of T4 cells. Since this model is flexible and based on straightforward biophysical properties, it provides an extensible framework for developing a mechanistic understanding of T4 neural response properties. Moreover, it can be used to assess the sufficiency of simple biophysical mechanisms to describe features of the direction-selective computation and identify where our understanding must be improved.
Collapse
|
28
|
|
29
|
Tanaka R, Clark DA. Object-Displacement-Sensitive Visual Neurons Drive Freezing in Drosophila. Curr Biol 2020; 30:2532-2550.e8. [PMID: 32442466 PMCID: PMC8716191 DOI: 10.1016/j.cub.2020.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/26/2022]
Abstract
Visual systems are often equipped with neurons that detect small moving objects, which may represent prey, predators, or conspecifics. Although the processing properties of those neurons have been studied in diverse organisms, links between the proposed algorithms and animal behaviors or circuit mechanisms remain elusive. Here, we have investigated behavioral function, computational algorithm, and neurochemical mechanisms of an object-selective neuron, LC11, in Drosophila. With genetic silencing and optogenetic activation, we show that LC11 is necessary for a visual object-induced stopping behavior in walking flies, a form of short-term freezing, and its activity can promote stopping. We propose a new quantitative model for small object selectivity based on the physiology and anatomy of LC11 and its inputs. The model accurately reproduces LC11 responses by pooling fast-adapting, tightly size-tuned inputs. Direct visualization of neurotransmitter inputs to LC11 confirmed the model conjectures about upstream processing. Our results demonstrate how adaptation can enhance selectivity for behaviorally relevant, dynamic visual features.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
30
|
Hörmann N, Schilling T, Ali AH, Serbe E, Mayer C, Borst A, Pujol-Martí J. A combinatorial code of transcription factors specifies subtypes of visual motion-sensing neurons in Drosophila. Development 2020; 147:223179. [PMID: 32238425 PMCID: PMC7240302 DOI: 10.1242/dev.186296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Direction-selective T4/T5 neurons exist in four subtypes, each tuned to visual motion along one of the four cardinal directions. Along with their directional tuning, neurons of each T4/T5 subtype orient their dendrites and project their axons in a subtype-specific manner. Directional tuning, thus, appears strictly linked to morphology in T4/T5 neurons. How the four T4/T5 subtypes acquire their distinct morphologies during development remains largely unknown. Here, we investigated when and how the dendrites of the four T4/T5 subtypes acquire their specific orientations, and profiled the transcriptomes of all T4/T5 neurons during this process. This revealed a simple and stable combinatorial code of transcription factors defining the four T4/T5 subtypes during their development. Changing the combination of transcription factors of specific T4/T5 subtypes resulted in predictable and complete conversions of subtype-specific properties, i.e. dendrite orientation and matching axon projection pattern. Therefore, a combinatorial code of transcription factors coordinates the development of dendrite and axon morphologies to generate anatomical specializations that differentiate subtypes of T4/T5 motion-sensing neurons. Summary: Morphological and transcriptomic analyses allowed the identification of a combinatorial code of transcription factors that controls the development of subtype-specific morphologies in motion-detecting neurons of the Drosophila visual system.
Collapse
Affiliation(s)
- Nikolai Hörmann
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Tabea Schilling
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aicha Haji Ali
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Etienne Serbe
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Jesús Pujol-Martí
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
31
|
Dynamic Signal Compression for Robust Motion Vision in Flies. Curr Biol 2020; 30:209-221.e8. [PMID: 31928873 DOI: 10.1016/j.cub.2019.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Sensory systems need to reliably extract information from highly variable natural signals. Flies, for instance, use optic flow to guide their course and are remarkably adept at estimating image velocity regardless of image statistics. Current circuit models, however, cannot account for this robustness. Here, we demonstrate that the Drosophila visual system reduces input variability by rapidly adjusting its sensitivity to local contrast conditions. We exhaustively map functional properties of neurons in the motion detection circuit and find that local responses are compressed by surround contrast. The compressive signal is fast, integrates spatially, and derives from neural feedback. Training convolutional neural networks on estimating the velocity of natural stimuli shows that this dynamic signal compression can close the performance gap between model and organism. Overall, our work represents a comprehensive mechanistic account of how neural systems attain the robustness to carry out survival-critical tasks in challenging real-world environments.
Collapse
|
32
|
Gruntman E, Romani S, Reiser MB. The computation of directional selectivity in the Drosophila OFF motion pathway. eLife 2019; 8:e50706. [PMID: 31825313 PMCID: PMC6917495 DOI: 10.7554/elife.50706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/30/2019] [Indexed: 01/23/2023] Open
Abstract
In flies, the direction of moving ON and OFF features is computed separately. T4 (ON) and T5 (OFF) are the first neurons in their respective pathways to extract a directionally selective response from their non-selective inputs. Our recent study of T4 found that the integration of offset depolarizing and hyperpolarizing inputs is critical for the generation of directional selectivity. However, T5s lack small-field inhibitory inputs, suggesting they may use a different mechanism. Here we used whole-cell recordings of T5 neurons and found a similar receptive field structure: fast depolarization and persistent, spatially offset hyperpolarization. By assaying pairwise interactions of local stimulation across the receptive field, we found no amplifying responses, only suppressive responses to the non-preferred motion direction. We then evaluated passive, biophysical models and found that a model using direct inhibition, but not the removal of excitation, can accurately predict T5 responses to a range of moving stimuli.
Collapse
Affiliation(s)
- Eyal Gruntman
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Sandro Romani
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
33
|
de Andres-Bragado L, Sprecher SG. Mechanisms of vision in the fruit fly. CURRENT OPINION IN INSECT SCIENCE 2019; 36:25-32. [PMID: 31325739 DOI: 10.1016/j.cois.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Vision is essential to maximize the efficiency of daily tasks such as feeding, avoiding predators or finding mating partners. An advantageous model is Drosophila melanogaster, since it offers tools that allow genetic and neuronal manipulation with high spatial and temporal resolution, which can be combined with behavioral, anatomical and physiological assays. Recent advances have expanded our knowledge on the neural circuitry underlying such important behaviors as color vision (role of reciprocal inhibition to enhance color signal at the level of the ommatidia); motion vision (motion-detection neurones receive both excitatory and inhibitory input), and sensory processing (role of the central complex in spatial navigation, and in orchestrating the information from other senses and the inner state). Research on synergies between pathways is shaping the field.
Collapse
Affiliation(s)
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
34
|
Werkhoven Z, Rohrsen C, Qin C, Brembs B, de Bivort B. MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. PLoS One 2019; 14:e0224243. [PMID: 31765421 PMCID: PMC6876843 DOI: 10.1371/journal.pone.0224243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Fast object tracking in real time allows convenient tracking of very large numbers of animals and closed-loop experiments that control stimuli for many animals in parallel. We developed MARGO, a MATLAB-based, real-time animal tracking suite for custom behavioral experiments. We demonstrated that MARGO can rapidly and accurately track large numbers of animals in parallel over very long timescales, typically when spatially separated such as in multiwell plates. We incorporated control of peripheral hardware, and implemented a flexible software architecture for defining new experimental routines. These features enable closed-loop delivery of stimuli to many individuals simultaneously. We highlight MARGO's ability to coordinate tracking and hardware control with two custom behavioral assays (measuring phototaxis and optomotor response) and one optogenetic operant conditioning assay. There are currently several open source animal trackers. MARGO's strengths are 1) fast and accurate tracking, 2) high throughput, 3) an accessible interface and data output and 4) real-time closed-loop hardware control for for sensory and optogenetic stimuli, all of which are optimized for large-scale experiments.
Collapse
Affiliation(s)
- Zach Werkhoven
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Christian Rohrsen
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Chuan Qin
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Benjamin de Bivort
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Werkhoven Z, Rohrsen C, Qin C, Brembs B, de Bivort B. MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. PLoS One 2019; 14:e0224243. [PMID: 31765421 DOI: 10.1101/593046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023] Open
Abstract
Fast object tracking in real time allows convenient tracking of very large numbers of animals and closed-loop experiments that control stimuli for many animals in parallel. We developed MARGO, a MATLAB-based, real-time animal tracking suite for custom behavioral experiments. We demonstrated that MARGO can rapidly and accurately track large numbers of animals in parallel over very long timescales, typically when spatially separated such as in multiwell plates. We incorporated control of peripheral hardware, and implemented a flexible software architecture for defining new experimental routines. These features enable closed-loop delivery of stimuli to many individuals simultaneously. We highlight MARGO's ability to coordinate tracking and hardware control with two custom behavioral assays (measuring phototaxis and optomotor response) and one optogenetic operant conditioning assay. There are currently several open source animal trackers. MARGO's strengths are 1) fast and accurate tracking, 2) high throughput, 3) an accessible interface and data output and 4) real-time closed-loop hardware control for for sensory and optogenetic stimuli, all of which are optimized for large-scale experiments.
Collapse
Affiliation(s)
- Zach Werkhoven
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Christian Rohrsen
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Chuan Qin
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Benjamin de Bivort
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
36
|
How fly neurons compute the direction of visual motion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:109-124. [PMID: 31691093 PMCID: PMC7069908 DOI: 10.1007/s00359-019-01375-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Detecting the direction of image motion is a fundamental component of visual computation, essential for survival of the animal. However, at the level of individual photoreceptors, the direction in which the image is shifting is not explicitly represented. Rather, directional motion information needs to be extracted from the photoreceptor array by comparing the signals of neighboring units over time. The exact nature of this process as implemented in the visual system of the fruit fly Drosophila melanogaster has been studied in great detail, and much progress has recently been made in determining the neural circuits giving rise to directional motion information. The results reveal the following: (1) motion information is computed in parallel ON and OFF pathways. (2) Within each pathway, T4 (ON) and T5 (OFF) cells are the first neurons to represent the direction of motion. Four subtypes of T4 and T5 cells exist, each sensitive to one of the four cardinal directions. (3) The core process of direction selectivity as implemented on the dendrites of T4 and T5 cells comprises both an enhancement of signals for motion along their preferred direction as well as a suppression of signals for motion along the opposite direction. This combined strategy ensures a high degree of direction selectivity right at the first stage where the direction of motion is computed. (4) At the subsequent processing stage, tangential cells spatially integrate direct excitation from ON and OFF-selective T4 and T5 cells and indirect inhibition from bi-stratified LPi cells activated by neighboring T4/T5 terminals, thus generating flow-field-selective responses.
Collapse
|
37
|
Chen J, Mandel HB, Fitzgerald JE, Clark DA. Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. eLife 2019; 8:e47579. [PMID: 31613221 PMCID: PMC6884396 DOI: 10.7554/elife.47579] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023] Open
Abstract
Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here, we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | - Holly B Mandel
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| | - James E Fitzgerald
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
38
|
Spatiotemporally Asymmetric Excitation Supports Mammalian Retinal Motion Sensitivity. Curr Biol 2019; 29:3277-3288.e5. [PMID: 31564498 PMCID: PMC6865067 DOI: 10.1016/j.cub.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022]
Abstract
The detection of visual motion is a fundamental function of the visual system. How motion speed and direction are computed together at the cellular level, however, remains largely unknown. Here, we suggest a circuit mechanism by which excitatory inputs to direction-selective ganglion cells in the mouse retina become sensitive to the motion speed and direction of image motion. Electrophysiological, imaging, and connectomic analyses provide evidence that the dendrites of ON direction-selective cells receive spatially offset and asymmetrically filtered glutamatergic inputs along motion-preference axis from asymmetrically wired bipolar and amacrine cell types with distinct release dynamics. A computational model shows that, with this spatiotemporal structure, the input amplitude becomes sensitive to speed and direction by a preferred direction enhancement mechanism. Our results highlight the role of an excitatory mechanism in retinal motion computation by which feature selectivity emerges from non-selective inputs.
Collapse
|
39
|
Molina-Obando S, Vargas-Fique JF, Henning M, Gür B, Schladt TM, Akhtar J, Berger TK, Silies M. ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition. eLife 2019; 8:e49373. [PMID: 31535971 PMCID: PMC6845231 DOI: 10.7554/elife.49373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023] Open
Abstract
Sensory systems sequentially extract increasingly complex features. ON and OFF pathways, for example, encode increases or decreases of a stimulus from a common input. This ON/OFF pathway split is thought to occur at individual synaptic connections through a sign-inverting synapse in one of the pathways. Here, we show that ON selectivity is a multisynaptic process in the Drosophila visual system. A pharmacogenetics approach demonstrates that both glutamatergic inhibition through GluClα and GABAergic inhibition through Rdl mediate ON responses. Although neurons postsynaptic to the glutamatergic ON pathway input L1 lose all responses in GluClα mutants, they are resistant to a cell-type-specific loss of GluClα. This shows that ON selectivity is distributed across multiple synapses, and raises the possibility that cell-type-specific manipulations might reveal similar strategies in other sensory systems. Thus, sensory coding is more distributed than predicted by simple circuit motifs, allowing for robust neural processing.
Collapse
Affiliation(s)
- Sebastian Molina-Obando
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - Juan Felipe Vargas-Fique
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - Miriam Henning
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
| | - Burak Gür
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - T Moritz Schladt
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (caesar)BonnGermany
| | - Junaid Akhtar
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (caesar)BonnGermany
- Institute of Physiology and PathophysiologyPhilipps-Universität MarburgMarburgGermany
| | - Marion Silies
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
| |
Collapse
|
40
|
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors. Nat Neurosci 2019; 22:1318-1326. [PMID: 31346296 PMCID: PMC6748873 DOI: 10.1038/s41593-019-0443-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Direction-selective neurons respond to visual motion in a preferred direction. They are direction-opponent if they are also inhibited by motion in the opposite direction. In flies and vertebrates, direction opponency has been observed in second-order direction-selective neurons, which achieve this opponency by subtracting signals from first-order direction-selective cells with opposite directional tunings. Here, we report direction opponency in Drosophila that emerges in first-order direction-selective neurons, the elementary motion detectors T4 and T5. This opponency persists when synaptic output from these cells is blocked, suggesting that it arises from feedforward, not feedback, computations. These observations exclude a broad class of linear-nonlinear models that have been proposed to describe direction-selective computations. However, they are consistent with models that include dynamic nonlinearities. Simulations of opponent models suggest that direction opponency in first-order motion detectors improves motion discriminability by suppressing noise generated by the local structure of natural scenes.
Collapse
|
41
|
Extreme Compartmentalization in a Drosophila Amacrine Cell. Curr Biol 2019; 29:1545-1550.e2. [PMID: 31031119 DOI: 10.1016/j.cub.2019.03.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
A neuron is conventionally regarded as a single processing unit. It receives input from one or several presynaptic cells, transforms these signals, and transmits one output signal to its postsynaptic partners. Exceptions exist: amacrine cells in the mammalian retina [1-3] or interneurons in the locust mesothoracic ganglion [4] are thought to represent many electrically isolated microcircuits within one neuron. An extreme case of such an amacrine cell has recently been described in the Drosophila visual system. This cell, called CT1, reaches into two neuropils of the optic lobe, where it visits each of 700 repetitive columns, thereby covering the whole visual field [5, 6]. Due to its unusual morphology, CT1 has been suspected to perform local computations [6, 7], but this has never been proven. Using 2-photon calcium imaging and visual stimulation, we find highly compartmentalized retinotopic response properties in neighboring terminals of CT1, with each terminal acting as an independent functional unit. Model simulations demonstrate that this extreme case of compartmentalization is at the biophysical limit of neural computation.
Collapse
|
42
|
Schilling T, Ali AH, Leonhardt A, Borst A, Pujol-Martí J. Transcriptional control of morphological properties of direction-selective T4/T5 neurons in Drosophila. Development 2019; 146:dev169763. [PMID: 30642835 PMCID: PMC6361130 DOI: 10.1242/dev.169763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/07/2019] [Indexed: 02/02/2023]
Abstract
In the Drosophila visual system, T4/T5 neurons represent the first stage of computation of the direction of visual motion. T4 and T5 neurons exist in four subtypes, each responding to motion in one of the four cardinal directions and projecting axons into one of the four lobula plate layers. However, all T4/T5 neurons share properties essential for sensing motion. How T4/T5 neurons acquire their properties during development is poorly understood. We reveal that the transcription factors SoxN and Sox102F control the acquisition of properties common to all T4/T5 neuron subtypes, i.e. the layer specificity of dendrites and axons. Accordingly, adult flies are motion blind after disruption of SoxN or Sox102F in maturing T4/T5 neurons. We further find that the transcription factors Ato and Dac are redundantly required in T4/T5 neuron progenitors for SoxN and Sox102F expression in T4/T5 neurons, linking the transcriptional programmes specifying progenitor identity to those regulating the acquisition of morphological properties in neurons. Our work will help to link structure, function and development in a neuronal type performing a computation that is conserved across vertebrate and invertebrate visual systems.
Collapse
Affiliation(s)
- Tabea Schilling
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aicha H Ali
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aljoscha Leonhardt
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Jesús Pujol-Martí
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
43
|
Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, Ansari N, Cheatham N, Lauchie S, Neace E, Ogundeyi O, Ordish C, Peel D, Shinomiya A, Smith C, Takemura S, Talebi I, Rivlin PK, Nern A, Scheffer LK, Plaza SM, Meinertzhagen IA. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 2019; 8:40025. [PMID: 30624205 PMCID: PMC6338461 DOI: 10.7554/elife.40025] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023] Open
Abstract
Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In Drosophila melanogaster, recently discovered synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest a motion model that is increasingly intricate when compared with the ubiquitous Hassenstein-Reichardt model. By contrast, our knowledge of OFF-pathway (T5) has been incomplete. Here, we present a conclusive and comprehensive connectome that, for the first time, integrates detailed connectivity information for inputs to both the T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. Although the two pathways are probably evolutionarily linked and exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Namra Ansari
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David Peel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| |
Collapse
|
44
|
Fu Q, Wang H, Hu C, Yue S. Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review. ARTIFICIAL LIFE 2019; 25:263-311. [PMID: 31397604 DOI: 10.1162/artl_a_00297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motion perception is a critical capability determining a variety of aspects of insects' life, including avoiding predators, foraging, and so forth. A good number of motion detectors have been identified in the insects' visual pathways. Computational modeling of these motion detectors has not only been providing effective solutions to artificial intelligence, but also benefiting the understanding of complicated biological visual systems. These biological mechanisms through millions of years of evolutionary development will have formed solid modules for constructing dynamic vision systems for future intelligent machines. This article reviews the computational motion perception models originating from biological research on insects' visual systems in the literature. These motion perception models or neural networks consist of the looming-sensitive neuronal models of lobula giant movement detectors (LGMDs) in locusts, the translation-sensitive neural systems of direction-selective neurons (DSNs) in fruit flies, bees, and locusts, and the small-target motion detectors (STMDs) in dragonflies and hoverflies. We also review the applications of these models to robots and vehicles. Through these modeling studies, we summarize the methodologies that generate different direction and size selectivity in motion perception. Finally, we discuss multiple systems integration and hardware realization of these bio-inspired motion perception models.
Collapse
Affiliation(s)
- Qinbing Fu
- Guangzhou University, School of Mechanical and Electrical Engineering; Machine Life and Intelligence Research Centre
- University of Lincoln, Computational Intelligence Lab, School of Computer Science; Lincoln Centre for Autonomous Systems.
| | - Hongxin Wang
- University of Lincoln, Computational Intelligence Lab, School of Computer Science; Lincoln Centre for Autonomous Systems.
| | - Cheng Hu
- Guangzhou University, School of Mechanical and Electrical Engineering; Machine Life and Intelligence Research Centre
- University of Lincoln, Computational Intelligence Lab, School of Computer Science; Lincoln Centre for Autonomous Systems.
| | - Shigang Yue
- Guangzhou University, School of Mechanical and Electrical Engineering; Machine Life and Intelligence Research Centre
- University of Lincoln, Computational Intelligence Lab, School of Computer Science; Lincoln Centre for Autonomous Systems.
| |
Collapse
|
45
|
Creamer MS, Mano O, Clark DA. Visual Control of Walking Speed in Drosophila. Neuron 2018; 100:1460-1473.e6. [PMID: 30415994 PMCID: PMC6405217 DOI: 10.1016/j.neuron.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
Abstract
An animal's self-motion generates optic flow across its retina, and it can use this visual signal to regulate its orientation and speed through the world. While orientation control has been studied extensively in Drosophila and other insects, much less is known about the visual cues and circuits that regulate translational speed. Here, we show that flies regulate walking speed with an algorithm that is tuned to the speed of visual motion, causing them to slow when visual objects are nearby. This regulation does not depend strongly on the spatial structure or the direction of visual stimuli, making it algorithmically distinct from the classic computation that controls orientation. Despite the different algorithms, the visual circuits that regulate walking speed overlap with those that regulate orientation. Taken together, our findings suggest that walking speed is controlled by a hierarchical computation that combines multiple motion detectors with distinct tunings. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
46
|
Cyr A, Thériault F, Ross M, Berberian N, Chartier S. Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context. Front Neurorobot 2018; 12:75. [PMID: 30524261 PMCID: PMC6256284 DOI: 10.3389/fnbot.2018.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.
Collapse
Affiliation(s)
- André Cyr
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Frédéric Thériault
- Department of Computer Science, Cégep du Vieux Montréal, Montreal, QC, Canada
| | - Matthew Ross
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Nareg Berberian
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Sylvain Chartier
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| |
Collapse
|
47
|
Dalgaty T, Vianello E, De Salvo B, Casas J. Insect-inspired neuromorphic computing. CURRENT OPINION IN INSECT SCIENCE 2018; 30:59-66. [PMID: 30553486 DOI: 10.1016/j.cois.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
The steady improvement in the performance of computing systems seen for many decades is levelling off as the miniaturization of semiconducting technology approaches the atomic limit, facing severe physical and technological issues. Neuromorphic computing is an emerging solution which makes use of silicon technology in a different way, inline with the computational principles observed in animal nervous systems. In this article, we argue that the nervous systems of insects in particular offer themselves as an ideal starting point for incorporation into realistic neuromorphic systems and review research in developing insect-inspired neuromorphic systems. We conclude with an exciting yet tangible vision of a full neuromorphic sensory-motor system where a liquid state machine modelling the function of the insect mushroom body links input to output and allows for amalgamation of the work discussed in a hierarchical framework of a full system inspired by the concept of how information flows through insects.
Collapse
Affiliation(s)
| | | | | | - Jerome Casas
- Insect Biology Research Institute, UMR CNRS 7261, University of Tours, Tours 37200, France.
| |
Collapse
|
48
|
Salazar-Gatzimas E, Agrochao M, Fitzgerald JE, Clark DA. The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways. Curr Biol 2018; 28:3748-3762.e8. [PMID: 30471993 DOI: 10.1016/j.cub.2018.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 10/27/2022]
Abstract
Both vertebrates and invertebrates perceive illusory motion, known as "reverse-phi," in visual stimuli that contain sequential luminance increments and decrements. However, increment (ON) and decrement (OFF) signals are initially processed by separate visual neurons, and parallel elementary motion detectors downstream respond selectively to the motion of light or dark edges, often termed ON- and OFF-edges. It remains unknown how and where ON and OFF signals combine to generate reverse-phi motion signals. Here, we show that each of Drosophila's elementary motion detectors encodes motion by combining both ON and OFF signals. Their pattern of responses reflects combinations of increments and decrements that co-occur in natural motion, serving to decorrelate their outputs. These results suggest that the general principle of signal decorrelation drives the functional specialization of parallel motion detection channels, including their selectivity for moving light or dark edges.
Collapse
Affiliation(s)
- Emilio Salazar-Gatzimas
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
49
|
Richter FG, Fendl S, Haag J, Drews MS, Borst A. Glutamate Signaling in the Fly Visual System. iScience 2018; 7:85-95. [PMID: 30267688 PMCID: PMC6135900 DOI: 10.1016/j.isci.2018.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022] Open
Abstract
For a proper understanding of neural circuit function, it is important to know which signals neurons relay to their downstream partners. Calcium imaging with genetically encoded calcium sensors like GCaMP has become the default approach for mapping these responses. How well such measurements represent the true neurotransmitter output of any given cell, however, remains unclear. Here, we demonstrate the viability of the glutamate sensor iGluSnFR for 2-photon in vivo imaging in Drosophila melanogaster and prove its usefulness for estimating spatiotemporal receptive fields in the visual system. We compare the results obtained with iGluSnFR with the ones obtained with GCaMP6f and find that the spatial aspects of the receptive fields are preserved between indicators. In the temporal domain, however, measurements obtained with iGluSnFR reveal the underlying response properties to be much faster than those acquired with GCaMP6f. Our approach thus offers a more accurate description of glutamatergic neurons in the fruit fly.
Collapse
Affiliation(s)
| | - Sandra Fendl
- Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Jürgen Haag
- Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Michael S Drews
- Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany.
| |
Collapse
|
50
|
Barnhart EL, Wang IE, Wei H, Desplan C, Clandinin TR. Sequential Nonlinear Filtering of Local Motion Cues by Global Motion Circuits. Neuron 2018; 100:229-243.e3. [PMID: 30220510 DOI: 10.1016/j.neuron.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/20/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Many animals guide their movements using optic flow, the displacement of stationary objects across the retina caused by self-motion. How do animals selectively synthesize a global motion pattern from its local motion components? To what extent does this feature selectivity rely on circuit mechanisms versus dendritic processing? Here we used in vivo calcium imaging to identify pre- and postsynaptic mechanisms for processing local motion signals in global motion detection circuits in Drosophila. Lobula plate tangential cells (LPTCs) detect global motion by pooling input from local motion detectors, T4/T5 neurons. We show that T4/T5 neurons suppress responses to adjacent local motion signals whereas LPTC dendrites selectively amplify spatiotemporal sequences of local motion signals consistent with preferred global patterns. We propose that sequential nonlinear suppression and amplification operations allow optic flow circuitry to simultaneously prevent saturating responses to local signals while creating selectivity for global motion patterns critical to behavior.
Collapse
Affiliation(s)
- Erin L Barnhart
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Huayi Wei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|