1
|
Zhang XY, Zhang JH, Li XC, Lu H, Liu TCY. Exercise-induced upregulation of TRIM9 attenuates neuroinflammation in Alzheimer's disease-like rat. Int Immunopharmacol 2025; 144:113676. [PMID: 39580859 DOI: 10.1016/j.intimp.2024.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Exercise exerts protective effects against Alzheimer's disease (AD). However, the factors and mechanisms underlying these effects remain largely unknown. This study aims to elucidate the molecular mechanisms by which exercise exerts its protective effects against AD. METHODS Male 7-week-old Sprague-Dawley rats were randomly allocated to four groups (n = 10 per group): control (CON), exercise control (EXE), sedentary AD model induced by intracerebroventricular streptozotocin (STZ) injection, and AD model with treadmill exercise (EXE + STZ). The exercise groups underwent a 13-week treadmill exercise. An intracerebroventricular injection of STZ was used to induce a rat model of AD. The Barnes maze task was employed as an assessment of spatial learning and memory. Hippocampal tissues from three rats per group was collected for proteomic analysis. Immunofluorescence staining, western blot analysis and polymerase chain reaction were performed for the evaluation of Aβ production, tau hyperphosphorylation, differential protein and corresponding signaling pathway. RESULTS Treadmill exercise could significantly improve STZ-induced cognitive dysfunction and provide neuroprotection by reducing Aβ deposition and tau hyperphosphorylation. Proteomic analysis and further studies demonstrated that treadmill training could significantly increase the expression of tripartite motif-containing 9 (TRIM9). Subsequent research indicated that the upregulation of TRIM9 maybe due, in part,to the inhibition of the NF-κB pathway, thereby reducing the pro-inflammatory factor, and exerting an anti-inflammatory effect. CONCLUSIONS Treadmill exercise attenuates cognitive decline in AD models by upregulating TRIM9 expression, which in turn inhibits NF-κB-mediated neuroinflammation. These findings suggest that TRIM9 may serve as a potential therapeutic target for immunomodulatory strategies against AD.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Jia-Hao Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Xiao-Chuan Li
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Hui Lu
- Open Mind Digital Life and Mental Model Laboratory, Shenzhen, Guangzhou 518000, China.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Riaz Z, Richardson GS, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Kanthasamy AG. Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson's and other related neurodegenerative diseases. Mol Neurodegener 2024; 19:87. [PMID: 39578912 PMCID: PMC11585115 DOI: 10.1186/s13024-024-00774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson's disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.
Collapse
Affiliation(s)
- Zainab Riaz
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gabriel S Richardson
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Anumantha G Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Zhao Z, Song X, Wang Y, Yu L, Huang G, Li Y, Zong R, Liu T, Ji Q, Zheng Y, Liu B, Zhu Q, Chen L, Gao C, Liu H. E3 ubiquitin ligase TRIM31 alleviates dopaminergic neurodegeneration by promoting proteasomal degradation of VDAC1 in Parkinson's Disease model. Cell Death Differ 2024; 31:1410-1421. [PMID: 38918620 PMCID: PMC11519394 DOI: 10.1038/s41418-024-01334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the pathogenesis of Parkinson's disease (PD). As a mitochondrial governor, voltage-dependent anion channel 1 (VDAC1) is critical for cell survival and death signals and implicated in neurodegenerative diseases. However, the mechanisms of VDAC1 regulation are poorly understood and the role of tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase which is enriched in mitochondria, in PD remains unclear. In this study, we found that TRIM31-/- mice developed age associated motor defects and dopaminergic (DA) neurodegeneration spontaneously. In addition, TRIM31 was markedly reduced both in nigrostriatal region of PD mice induced by MPTP and in SH-SY5Y cells stimulated by MPP+. TRIM31 deficiency significantly aggravated DA neurotoxicity induced by MPTP. Mechanistically, TRIM31 interacted with VDAC1 and catalyzed the K48-linked polyubiquitination to degrade it through its E3 ubiquitin ligase activity. In conclusion, we demonstrated for the first time that TRIM31 served as an important regulator in DA neuronal homeostasis by facilitating VDAC1 degradation through the ubiquitin-proteasome pathway. Our study identified TRIM31 as a novel potential therapeutic target and pharmaceutical intervention to the interaction between TRIM31 and VDAC1 may provide a promising strategy for PD.
Collapse
Affiliation(s)
- Ze Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xiaomeng Song
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Lu Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Gan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yiquan Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Runzhe Zong
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Tengfei Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Qiuran Ji
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, Jinan, Shandong, PR China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
5
|
Lin KH, Hibbert JE, Flynn CG, Lemens JL, Torbey MM, Steinert ND, Flejsierowicz PM, Melka KM, Lindley GT, Lares M, Setaluri V, Wagers AJ, Hornberger TA. Satellite cell-derived TRIM28 is pivotal for mechanical load- and injury-induced myogenesis. EMBO Rep 2024; 25:3812-3841. [PMID: 39143258 PMCID: PMC11387408 DOI: 10.1038/s44319-024-00227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discover that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Interestingly, different from the role reported in a previous study based on C2C12 myoblasts, multiple lines of both in vitro and in vivo evidence reveal that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 are not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discover that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jamie E Hibbert
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Corey Gk Flynn
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Jake L Lemens
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Melissa M Torbey
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Nathaniel D Steinert
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Philip M Flejsierowicz
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Kiley M Melka
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Garrison T Lindley
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA.
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Du T, Li G, Zong Q, Luo H, Pan Y, Ma K. Nuclear alpha-synuclein accelerates cell senescence and neurodegeneration. Immun Ageing 2024; 21:47. [PMID: 38997709 PMCID: PMC11242018 DOI: 10.1186/s12979-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The progression of Parkinson's disease (PD) is related to ageing. The accumulation of nuclear alpha-synuclein (α-syn) may accelerate the occurrence of neurodegenerative diseases, but its role in PD remains poorly understood. METHODS In the present study, α-syn expression was specifically targeted to the nucleus by constructing an adeno-associated virus (AAV) vector in which a nuclear localization sequence (NLS) was added to the α-syn coding sequence. Virus-mediated gene transfer, behavioural tests, RNA-Seq, immunohistochemistry, western blotting, and quantitative real-time PCR were then performed. RESULTS In vivo experiments using a mouse model showed that nuclear α-syn increased the severity of the PD-like phenotype, including the loss of dopaminergic neurons concomitant with motor impairment and the formation of α-syn inclusions. These nuclear inclusions contained α-syn species of high molecular weights and induced strong transcriptional dysregulation, especially induced high expression of p21 and senescence-associated secretory phenotype (SASP)-related genes. In addition, the transcriptional alterations induced by nuclear α-syn were associated with gliosis, inflammation, oxidative and DNA damage, and lysosomal dysfunction, and they eventually accelerated neuronal loss and neurodegeneration. CONCLUSIONS Our results suggest that nuclear α-syn plays a crucial role in PD pathogenesis.
Collapse
Affiliation(s)
- Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guoxiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Haiyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118, China.
| |
Collapse
|
7
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Parmasad JLA, Ricke KM, Nguyen B, Stykel MG, Buchner-Duby B, Bruce A, Geertsma HM, Lian E, Lengacher NA, Callaghan SM, Joselin A, Tomlinson JJ, Schlossmacher MG, Stanford WL, Ma J, Brundin P, Ryan SD, Rousseaux MWC. Genetic and pharmacological reduction of CDK14 mitigates synucleinopathy. Cell Death Dis 2024; 15:246. [PMID: 38575601 PMCID: PMC10994937 DOI: 10.1038/s41419-024-06534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.
Collapse
Affiliation(s)
- Jean-Louis A Parmasad
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Amanda Bruce
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Haley M Geertsma
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eric Lian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie A Lengacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alvin Joselin
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Julianna J Tomlinson
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - William L Stanford
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jiyan Ma
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Yan J, Oyler-Castrillo P, Ravisankar P, Ward CC, Levesque S, Jing Y, Simpson D, Zhao A, Li H, Yan W, Goudy L, Schmidt R, Solley SC, Gilbert LA, Chan MM, Bauer DE, Marson A, Parsons LR, Adamson B. Improving prime editing with an endogenous small RNA-binding protein. Nature 2024; 628:639-647. [PMID: 38570691 PMCID: PMC11023932 DOI: 10.1038/s41586-024-07259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.
Collapse
Affiliation(s)
- Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Paul Oyler-Castrillo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Carl C Ward
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Sébastien Levesque
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Anqi Zhao
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hui Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Weihao Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laine Goudy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michelle M Chan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Effector functions are required for broad and potent protection of neonatal mice with antibodies targeting HSV glycoprotein D. Cell Rep Med 2024; 5:101417. [PMID: 38350452 PMCID: PMC10897633 DOI: 10.1016/j.xcrm.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Multiple failed herpes simplex virus (HSV) vaccine candidates induce robust neutralizing antibody (Ab) responses in clinical trials, raising the hypothesis that Fc-domain-dependent effector functions may be critical for protection. While neonatal HSV (nHSV) infection results in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, supporting the hypothesis that Ab-based therapeutics could protect neonates from HSV. We therefore investigated the mechanisms of monoclonal Ab (mAb)-mediated protection in a mouse model of nHSV infection. For a panel of glycoprotein D (gD)-specific mAbs, neutralization and effector functions contributed to nHSV-1 protection. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types consistent with vaccine trial results. Effector functions are therefore crucial for protection by these gD-specific mAbs, informing effective Ab and vaccine design and demonstrating the potential of polyfunctional Abs as therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
11
|
Santhosh Kumar S, Naseri NN, Pather SR, Hallacli E, Ndayisaba A, Buenaventura C, Acosta K, Roof J, Fazelinia H, Spruce LA, Luk K, Khurana V, Rhoades E, Shalem O. Sequential CRISPR screening reveals partial NatB inhibition as a strategy to mitigate alpha-synuclein levels in human neurons. SCIENCE ADVANCES 2024; 10:eadj4767. [PMID: 38335281 PMCID: PMC10857481 DOI: 10.1126/sciadv.adj4767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.
Collapse
Affiliation(s)
- Saranya Santhosh Kumar
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima N. Naseri
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarshan R. Pather
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erinc Hallacli
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Chris Buenaventura
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Acosta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A. Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Khurana
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Pragati, Sarkar S. Reinstated Activity of Human Tau-induced Enhanced Insulin Signaling Restricts Disease Pathogenesis by Regulating the Functioning of Kinases/Phosphatases and Tau Hyperphosphorylation in Drosophila. Mol Neurobiol 2024; 61:982-1001. [PMID: 37674037 DOI: 10.1007/s12035-023-03599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
Tauopathies such as Alzheimer's disease (AD), Frontotemporal dementia, and parkinsonism linked to chromosome 17 (FTDP-17), etc. are characterized by tau hyperphosphorylation and distinguished accumulation of paired helical filaments (PHFs)/or neurofibrillary tangles (NFTs) in a specific-neuronal subset of the brain. Among different reported risk factors, type 2 diabetes (T2D) has gained attention due to its correlation with tau pathogenesis. However, mechanistic details and the precise contribution of insulin pathway in tau etiology is still debatable. We demonstrate that expression of human tau causes overactivation of insulin pathway in Drosophila disease models. We subsequently noted that tissue-specific downregulation of insulin signaling or even exclusive reduction of its growth-promoting sub-branch effectively reinstates the overactivated insulin signaling pathway in human tau expressing cells, which in turn restricts pathogenic tau hyperphosphorylation and aggregate formation. It was further noted that restored tau phosphorylation was achieved due to a reestablished balance between the levels of different kinase(s) (GSK3β and ERK/P38 MAP kinase) and phosphatase (PP2A). Taken together, our study demonstrates a precise involvement of the insulin pathway and associated molecular events in the pathogenesis of human tauopathies in Drosophila, which will be immensely helpful in developing novel therapeutic options against these devastating human brain disorders. Moreover, our study reveals an interesting link between tau etiology and aberrant insulin signaling, which is a characteristic feature of Type 2 Diabetes.
Collapse
Affiliation(s)
- Pragati
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Lin KH, Hibbert JE, Lemens JL, Torbey MM, Steinert ND, Flejsierowicz PM, Melka KM, Lares M, Setaluri V, Hornberger TA. The role of satellite cell-derived TRIM28 in mechanical load- and injury-induced myogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572566. [PMID: 38187693 PMCID: PMC10769277 DOI: 10.1101/2023.12.20.572566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discovered that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Unexpectedly, multiple lines of both in vitro and in vivo evidence revealed that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 were not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discovered that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Jake L. Lemens
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Melissa M. Torbey
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Nathaniel D. Steinert
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Philip M. Flejsierowicz
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Kiley M. Melka
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin - Madison, WI, USA
| | | | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
14
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
15
|
Dudley-Fraser J, Rittinger K. It's a TRIM-endous view from the top: the varied roles of TRIpartite Motif proteins in brain development and disease. Front Mol Neurosci 2023; 16:1287257. [PMID: 38115822 PMCID: PMC10728303 DOI: 10.3389/fnmol.2023.1287257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The tripartite motif (TRIM) protein family members have been implicated in a multitude of physiologies and pathologies in different tissues. With diverse functions in cellular processes including regulation of signaling pathways, protein degradation, and transcriptional control, the impact of TRIM dysregulation can be multifaceted and complex. Here, we focus on the cellular and molecular roles of TRIMs identified in the brain in the context of a selection of pathologies including cancer and neurodegeneration. By examining each disease in parallel with described roles in brain development, we aim to highlight fundamental common mechanisms employed by TRIM proteins and identify opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jane Dudley-Fraser
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
16
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Antibody effector functions are required for broad and potent protection of neonates from herpes simplex virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555423. [PMID: 37693377 PMCID: PMC10491243 DOI: 10.1101/2023.08.29.555423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The failure of multiple herpes simplex virus (HSV) vaccine candidates that induce neutralizing antibody responses raises the hypothesis that other activities, such as Fc domain-dependent effector functions, may be critical for protection. While neonatal HSV (nHSV) infection result in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, suggesting the potential efficacy of antibody-based therapeutics to protect neonates. We therefore investigated the mechanisms of monoclonal antibody (mAb)-mediated protection in a mouse model of nHSV infection. Both neutralization and effector functions contributed to robust protection against nHSV-1. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types that is consistent with vaccine trial results. Together, these results emphasize that effector functions are crucial for optimal mAb-mediated protection, informing effective Ab and vaccine design, and demonstrating the potential of polyfunctional Abs as potent therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D. Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M. Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Lead Contact
| |
Collapse
|
17
|
Zhang ZY, Harischandra DS, Wang R, Ghaisas S, Zhao JY, McMonagle TP, Zhu G, Lacuarta KD, Song J, Trojanowski JQ, Xu H, Lee VMY, Yang X. TRIM11 protects against tauopathies and is down-regulated in Alzheimer's disease. Science 2023; 381:eadd6696. [PMID: 37499037 PMCID: PMC11550485 DOI: 10.1126/science.add6696] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
Aggregation of tau into filamentous inclusions underlies Alzheimer's disease (AD) and numerous other neurodegenerative tauopathies. The pathogenesis of tauopathies remains unclear, which impedes the development of disease-modifying treatments. Here, by systematically analyzing human tripartite motif (TRIM) proteins, we identified a few TRIMs that could potently inhibit tau aggregation. Among them, TRIM11 was markedly down-regulated in AD brains. TRIM11 promoted the proteasomal degradation of mutant tau as well as superfluous normal tau. It also enhanced tau solubility by acting as both a molecular chaperone to prevent tau misfolding and a disaggregase to dissolve preformed tau fibrils. TRIM11 maintained the connectivity and viability of neurons. Intracranial delivery of TRIM11 through adeno-associated viruses ameliorated pathology, neuroinflammation, and cognitive impairments in multiple animal models of tauopathies. These results suggest that TRIM11 down-regulation contributes to the pathogenesis of tauopathies and that restoring TRIM11 expression may represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dilshan S. Harischandra
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruifang Wang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shivani Ghaisas
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Janet Y. Zhao
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas P. McMonagle
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Guixin Zhu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kenzo D. Lacuarta
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jianing Song
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
18
|
Siano G, Madaro G, Caiazza MC, Allouch A, Varisco M, Mignanelli M, Cattaneo A, Di Primio C. Tau-dependent HDAC1 nuclear reduction is associated with altered VGluT1 expression. Front Cell Dev Biol 2023; 11:1151223. [PMID: 37266450 PMCID: PMC10229822 DOI: 10.3389/fcell.2023.1151223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
During AD pathology, Tau protein levels progressively increase from early pathological stages. Tau altered expression causes an unbalance of Tau subcellular localization in the cytosol and in the nuclear compartment leading to synaptic dysfunction, neuronal cell death and neurodegeneration as a consequence. Due to the relevant role of epigenetic remodellers in synaptic activity in physiology and in neurodegeneration, in particular of TRIM28 and HDAC1, we investigated the relationship between Tau and these epigenetic factors. By molecular, imaging and biochemical approaches, here we demonstrate that Tau altered expression in the neuronal cell line SH-SY5y does not alter TRIM28 and HDAC1 expression but it induces a subcellular reduction of HDAC1 in the nuclear compartment. Remarkably, HDAC1 reduced activity modulates the expression of synaptic genes in a way comparable to that observed by Tau increased levels. These results support a competitive relationship between Tau levels and HDAC1 subcellular localization and nuclear activity, indicating a possible mechanism mediating the alternative role of Tau in the pathological alteration of synaptic genes expression.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Giuseppe Madaro
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Maria Claudia Caiazza
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Awatef Allouch
- Cell Death, Immunity and Therapeutic Innovation Team, Gustave Roussy Cancer Campus, Villejuif, France
| | - Martina Varisco
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Marianna Mignanelli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Antonino Cattaneo
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| |
Collapse
|
19
|
Sugeno N, Hasegawa T. Unraveling the Complex Interplay between Alpha-Synuclein and Epigenetic Modification. Int J Mol Sci 2023; 24:ijms24076645. [PMID: 37047616 PMCID: PMC10094812 DOI: 10.3390/ijms24076645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alpha-synuclein (αS) is a small, presynaptic neuronal protein encoded by the SNCA gene. Point mutations and gene multiplication of SNCA cause rare familial forms of Parkinson’s disease (PD). Misfolded αS is cytotoxic and is a component of Lewy bodies, which are a pathological hallmark of PD. Because SNCA multiplication is sufficient to cause full-blown PD, gene dosage likely has a strong impact on pathogenesis. In sporadic PD, increased SNCA expression resulting from a minor genetic background and various environmental factors may contribute to pathogenesis in a complementary manner. With respect to genetic background, several risk loci neighboring the SNCA gene have been identified, and epigenetic alterations, such as CpG methylation and regulatory histone marks, are considered important factors. These alterations synergistically upregulate αS expression and some post-translational modifications of αS facilitate its translocation to the nucleus. Nuclear αS interacts with DNA, histones, and their modifiers to alter epigenetic status; thereby, influencing the stability of neuronal function. Epigenetic changes do not affect the gene itself but can provide an appropriate transcriptional response for neuronal survival through DNA methylation or histone modifications. As a new approach, publicly available RNA sequencing datasets from human midbrain-like organoids may be used to compare transcriptional responses through epigenetic alterations. This informatic approach combined with the vast amount of transcriptomics data will lead to the discovery of novel pathways for the development of disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
20
|
Pan M, Li X, Xu G, Tian X, Li Y, Fang W. Tripartite Motif Protein Family in Central Nervous System Diseases. Cell Mol Neurobiol 2023:10.1007/s10571-023-01337-5. [PMID: 36988770 DOI: 10.1007/s10571-023-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Tripartite motif (TRIM) protein superfamily is a group of E3 ubiquitin ligases characterized by the conserved RING domain, the B-box domain, and the coiled-coil domain (RBCC). It is widely involved in various physiological and pathological processes, such as intracellular signal transduction, cell cycle regulation, oncogenesis, and innate immune response. Central nervous system (CNS) diseases are composed of encephalopathy and spinal cord diseases, which have a high disability and mortality rate. Patients are often unable to take care of themselves and their life quality can be seriously declined. Initially, the function research of TRIM proteins mainly focused on cancer. However, in recent years, accumulating attention is paid to the roles they play in CNS diseases. In this review, we integrate the reported roles of TRIM proteins in the pathological process of CNS diseases and related signaling pathways, hoping to provide theoretical bases for further research in treating CNS diseases targeting TRIM proteins. TRIM proteins participated in CNS diseases. TRIM protein family is characterized by a highly conserved RBCC domain, referring to the RING domain, the B-box domain, and the coiled-coil domain. Recent research has discovered the relations between TRIM proteins and various CNS diseases, especially Alzheimer's disease, Parkinson's disease, and ischemic stroke.
Collapse
Affiliation(s)
- Mengtian Pan
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Guangchen Xu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xinjuan Tian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
21
|
Shi P, Murphy MR, Aparicio AO, Kesner JS, Fang Z, Chen Z, Trehan A, Guo Y, Wu X. Collateral activity of the CRISPR/RfxCas13d system in human cells. Commun Biol 2023; 6:334. [PMID: 36977923 PMCID: PMC10049998 DOI: 10.1038/s42003-023-04708-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
CRISPR/Cas13 systems are increasingly used for programmable targeting of RNAs. While Cas13 nucleases are capable of degrading both target RNAs and bystander RNAs in vitro and in bacteria, initial studies fail to detect collateral degradation of non-target RNAs in eukaryotic cells. Here we show that RfxCas13d, also known as CasRx, a widely used Cas13 system, can cause collateral transcriptome destruction when targeting abundant reporter RNA and endogenous RNAs, resulting in proliferation defect in target cells. While these results call for caution of using RfxCas13d for targeted RNA knockdown, we demonstrated that the collateral activity can be harnessed for selective depletion of a specific cell population defined by a marker RNA in an in vitro setting.
Collapse
Affiliation(s)
- Peiguo Shi
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Michael R Murphy
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexis O Aparicio
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jordan S Kesner
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhou Fang
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ziheng Chen
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aditi Trehan
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yang Guo
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Kim J, de Haro M, Al-Ramahi I, Garaicoechea LL, Jeong HH, Sonn JY, Tadros B, Liu Z, Botas J, Zoghbi HY. Evolutionarily conserved regulators of tau identify targets for new therapies. Neuron 2023; 111:824-838.e7. [PMID: 36610398 DOI: 10.1016/j.neuron.2022.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/29/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Tauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain. Three of these hits (USP7, RNF130, and RNF149) converge on the C terminus of Hsc70-interacting protein (CHIP) to regulate tau levels, highlighting the role of CHIP in maintaining tau proteostasis in the brain. Knockdown of each of these three genes in adult tauopathy mice reduced tau levels and rescued the disease phenotypes. This study thus identifies several points of intervention to reduce tau levels and demonstrates that reduction of tau levels via regulation of this pathway is a viable therapeutic strategy for Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jun Young Sonn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Bakhos Tadros
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
24
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
25
|
Hashemabadi M, Sasan H, Amandadi M, Esmaeilzadeh-Salestani K, Esmaeili-Mahani S, Ravan H. CRISPR/Cas9-Mediated Disruption of ZNF543 Gene: An Approach Toward Discovering Its Relation to TRIM28 Gene in Parkinson's Disease. Mol Biotechnol 2023; 65:243-251. [PMID: 35467255 DOI: 10.1007/s12033-022-00494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/08/2022] [Indexed: 01/18/2023]
Abstract
Genetic studies of familial forms of Parkinson's disease (PD) have shown that the ZNF543 gene is a candidate gene that operates relevant to this disease. However, until now, there is no evidence for ZNF543 gene function in PD, and mechanisms resulting from its mutation have not been elucidated. Given the same genetic location of the ZNF543 gene with TRIM28 and their effects on PD pathogenesis, we surmised that ZNF543 might act as a transcription factor for TRIM28 gene expression. By knocking out the ZNF543 gene via the CRISPR/Cas9 editing platform, we assessed the functional effect of loss of expression of this gene on TRIM28 gene expression. Four sgRNAs with different PAM sequences were designed against two parts of the regulatory region of ZNF543 gene, and highly efficient disruption of ZNF543 expression in human neuroblastoma cell line was evaluated by polymerase chain reaction and T7 endonuclease assay. Moreover, evaluation of TRIM28 gene expression in ZNF543-knocked-out cells indicated a significant increase in TRIM28 gene expression, suggesting that ZNF543 probably regulates the expression of TRIM28. This approach offers a window into pinpointing the mechanism by which ZNF543 gene mutations mediate PD pathogenicity.
Collapse
Affiliation(s)
- Mohammad Hashemabadi
- Department of Genetic, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hosseinali Sasan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
26
|
Nuclear α-Synuclein-Derived Cytotoxic Effect via Altered Ribosomal RNA Processing in Primary Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 24:ijms24032132. [PMID: 36768455 PMCID: PMC9917353 DOI: 10.3390/ijms24032132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
α-Synuclein (αSyn) is an important player in Parkinson's disease (PD) pathogenesis. The aggregation of αSyn is mainly formed in the cytoplasm, whereas some αSyn accumulation has also been found in the nuclei of neurons. To assess the effect of nuclear αSyn, we generated αSyn conjugated with a nuclear export signal (NES) or a nuclear localization signal (NLS), and compared them with wild-type αSyn in primary mouse embryonic fibroblasts (MEF) using DNA transfection. Overexpression of NLS-αSyn increased cytotoxicity. The levels of apoptotic markers were increased by NLS-αSyn in MEF. Interestingly, an increase in the levels of 40S ribosomal protein 15 was observed in MEF expressing NLS-αSyn. These MEF also showed a higher 28S/18S rRNA ratio. Intriguingly, the expression of NLS-αSyn in MEF enhanced segmentation of nucleolin (NCL)-positive nucleolar structures. We also observed that the downregulation of NCL, using shRNA, promoted a relatively higher 28S/18S rRNA ratio. The reduction in NCL expression accelerated the accumulation of αSyn, and NCL transfection enhanced the degradation of αSyn. These results suggest that nuclear αSyn contributes to the alteration in ribosomal RNA processing via NCL malfunction-mediated nucleolar segmentation, and that NCL is a key factor for the degradation of αSyn.
Collapse
|
27
|
Benyair R, Giridharan SSP, Rivero-Ríos P, Hasegawa J, Bristow E, Eskelinen EL, Shmueli MD, Fishbain-Yoskovitz V, Merbl Y, Sharkey LM, Paulson HL, Hanson PI, Patnaik S, Al-Ramahi I, Botas J, Marugan J, Weisman LS. Upregulation of the ESCRT pathway and multivesicular bodies accelerates degradation of proteins associated with neurodegeneration. AUTOPHAGY REPORTS 2023; 2:2166722. [PMID: 37064812 PMCID: PMC10101321 DOI: 10.1080/27694127.2023.2166722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer's disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ron Benyair
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Sai Srinivas Panapakkam Giridharan
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Pilar Rivero-Ríos
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Junya Hasegawa
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Emily Bristow
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, Michigan, United States
| | - Samarjit Patnaik
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, Texas, United States
| | - Juan Botas
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, Texas, United States
| | - Juan Marugan
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
28
|
Richter F, Stanojlovic M, Käufer C, Gericke B, Feja M. A Mouse Model to Test Novel Therapeutics for Parkinson's Disease: an Update on the Thy1-aSyn ("line 61") Mice. Neurotherapeutics 2023; 20:97-116. [PMID: 36715870 PMCID: PMC10119371 DOI: 10.1007/s13311-022-01338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/31/2023] Open
Abstract
Development of neuroprotective therapeutics for Parkinson's disease (PD) is facing a lack of translation from pre-clinical to clinical trials. One strategy for improvement is to increase predictive validity of pre-clinical studies by using extensively characterized animal models with a comprehensive set of validated pharmacodynamic readouts. Mice over-expressing full-length, human, wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn line 61) reproduce key features of sporadic PD, such as progressive loss of striatal dopamine, alpha-synuclein pathology, deficits in motor and non-motor functions, and elevation of inflammatory markers. Extensive work with this model by multiple laboratories over the past decade further increased confidence in its robustness and validity, especially for analyzing pathomechanisms of alpha-synuclein pathology and down-stream pathways, and for pre-clinical drug testing. Interestingly, while postnatal transgene expression is widespread in central and peripheral neurons, the extent and progression of down-stream pathology differs between brain regions, thereby replicating the characteristic selective vulnerability of neurodegenerative diseases. In-depth characterization of these readouts in conjunction with behavioral deficits has led to more informative endpoints for pre-clinical trials. Each drug tested in Thy1-aSyn line 61 enhances knowledge on how molecular targets, pathology, and functional behavioral readouts are interconnected, thereby further optimizing the platform towards predictive validity for clinical trials. Here, we present the current state of the art using Thy1-aSyn line 61 for drug target discovery, validation, and pre-clinical testing.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience Hannover, Hannover, Germany.
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
29
|
Ma S, Xia T, Wang X, Wang H. Identification and validation of biomarkers based on cellular senescence in mild cognitive impairment. Front Aging Neurosci 2023; 15:1139789. [PMID: 37187578 PMCID: PMC10176455 DOI: 10.3389/fnagi.2023.1139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Background Mild cognitive impairment (MCI), a syndrome defined as decline of cognitive function greater than expected for an individual's age and education level, occurs in up to 22.7% of elderly patients in United States, causing the heavy psychological and economic burdens to families and society. Cellular senescence (CS) is a stress response that accompanies permanent cell-cycle arrest, which has been reported to be a fundamental pathological mechanism of many age-related diseases. This study aims to explore biomarkers and potential therapeutic targets in MCI based on CS. Methods The mRNA expression profiles of peripheral blood samples from patients in MCI and non-MCI group were download from gene expression omnibus (GEO) database (GSE63060 for training and GSE18309 for external validation), CS-related genes were obtained from CellAge database. Weighted gene co-expression network analysis (WGCNA) was conducted to discover the key relationships behind the co-expression modules. The differentially expressed CS-related genes would be obtained through overlapping among the above datasets. Then, pathway and GO enrichment analyses were performed to further elucidate the mechanism of MCI. The protein-protein interaction network was used to extract hub genes and the logistic regression was performed to distinguish the MCI patients from controls. The hub gene-drug network, hub gene-miRNA network as well as transcription factor-gene regulatory network were used to analyze potential therapeutic targets for MCI. Results Eight CS-related genes were identified as key gene signatures in MCI group, which were mainly enriched in the regulation of response to DNA damage stimulus, Sin3 complex and transcription corepressor activity. The receiver operating characteristic curves of logistic regression diagnostic model were constructed and presented great diagnostic value in both training and validation set. Conclusion Eight CS-related hub genes - SMARCA4, GAPDH, SMARCB1, RUNX1, SRC, TRIM28, TXN, and PRPF19 - serve as candidate biomarkers for MCI and display the excellent diagnostic value. Furthermore, we also provide a theoretical basis for targeted therapy against MCI through the above hub genes.
Collapse
Affiliation(s)
- Songmei Ma
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, The First People’s Hospital of Shangqiu, Shangqiu, Henan, China
| | - Tong Xia
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- *Correspondence: Haiyun Wang,
| |
Collapse
|
30
|
Characterisation of Amyloid Aggregation and Inhibition by Diffusion-Based Single-Molecule Fluorescence Techniques. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein amyloid aggregation has been associated with more than 50 human disorders, including the most common neurodegenerative disorders Alzheimer’s and Parkinson’s disease. Interfering with this process is considered as a promising therapeutic strategy for these diseases. Our understanding of the process of amyloid aggregation and its role in disease has typically been limited by the use of ensemble-based biochemical and biophysical techniques, owing to the intrinsic heterogeneity and complexity of the process. Single-molecule techniques, and particularly diffusion-based single-molecule fluorescence approaches, have been instrumental to obtain meaningful information on the dynamic nature of the fibril-forming process, as well as the characterisation of the heterogeneity of the amyloid aggregates and the understanding of the molecular basis of inhibition of a number of molecules with therapeutic interest. In this article, we reviewed some recent contributions on the characterisation of the amyloid aggregation process, the identification of distinct structural groups of aggregates in homotypic or heterotypic aggregation, as well as on the study of the interaction of amyloid aggregates with other molecules, allowing the estimation of the binding sites, affinities, and avidities as examples of the type of relevant information we can obtain about these processes using these techniques.
Collapse
|
31
|
Negative Feedback Loop Mechanism between EAF1/2 and DBC1 in Regulating ELL Stability and Functions. Mol Cell Biol 2022; 42:e0015122. [PMID: 36036574 PMCID: PMC9590304 DOI: 10.1128/mcb.00151-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although ELL-associated factors 1 and 2 (EAF1/2) have been shown to enhance RNA polymerase II-mediated transcription in vitro, their functional roles in vivo are poorly known. In this report, we show functions of these proteins in regulating ELL stability through their competitive binding with HDAC3 at the N terminus of ELL. Reduced HDAC3 binding to ELL causes increased acetylation leading to reduced ubiquitylation-mediated degradation. Similar functional roles played by DBC1 in regulating ELL stability further prompted in-depth analyses that demonstrated presence of negative feedback loop mechanisms between DBC1 and EAF1/2 in maintaining overall ELL level. Mechanistically, increased DBC1 reduces EAF1/2 level through increased ubiquitylation involving E3 ubiquitin ligase TRIM28, whereas increased EAF1/2 reduces DBC1 level through reduced transcription. Physiologically, after a few passages, ELL levels in either DBC1 or EAF1 knockdown cells are restored through enhanced expression of EAF1 and DBC1, respectively. Interestingly, for maintenance of ELL level, mammalian cells prefer the EAF1-dependent pathway during exposure to genotoxic stress, and the DBC1-dependent pathway during exposure to growth factors. Thus, we describe coordinated functions of multiple factors, including EAF1/2, HDAC3, DBC1, and TRIM28 in regulating ELL protein level for optimal target gene expression in a context-dependent manner within mammalian cells.
Collapse
|
32
|
Sawyer RP, Stone HK, Salim H, Lu X, Weirauch MT, Kottyan L. Frontotemporal degeneration genetic risk loci and transcription regulation as a possible mechanistic link to disease risk. Medicine (Baltimore) 2022; 101:e31078. [PMID: 36253972 PMCID: PMC9575772 DOI: 10.1097/md.0000000000031078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The etiology of Frontotemporal Degeneration (FTD) is not well understood. Genetic studies have established common genetic variants (GVs) that are associated with increased FTD risk. We review previous genome wide association studies (GWAS) of FTD and nominate specific transcriptional regulators as potential key players in the etiology of this disease. A list of GVs associated with FTD was compiled from published GWAS. The regulatory element locus intersection (RELI) tool was used to calculate the enrichment of the overlap between disease risk GVs and the genomic coordinates of data from a collection of >10,000 chromatin immunoprecipitation (ChIP-seq) experiments. After linkage disequilibrium expansion of the previously reported tag associated GVs, we identified 914 GV at 47 independent risk loci. Using the RELI algorithm, we identified several transcriptional regulators with enriched binding at FTD risk loci (0.05 < corrected P value <1.18 × 10-27), including Tripartite motif-containing 28 (TRIM28) and Chromodomain-Helicase DNA-binding 1 (CHD1) which have previously observed roles in FTD. FTD is a complex disease, and immune dysregulation has been previously implicated as a potential underlying cause. This assessment of established FTD risk loci and analysis of possible function implicates transcriptional dysregulation, and specifically particular transcriptional regulators with known roles in the immune response as important in the genetic etiology of FTD.
Collapse
Affiliation(s)
- Russell P. Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- *Correspondence: Russell P. Sawyer, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, 45219, USA (e-mail: )
| | - Hillarey K. Stone
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hanan Salim
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Kottyan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
33
|
Zhu Y, Afolabi LO, Wan X, Shim JS, Chen L. TRIM family proteins: roles in proteostasis and neurodegenerative diseases. Open Biol 2022; 12:220098. [PMID: 35946309 PMCID: PMC9364147 DOI: 10.1098/rsob.220098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.
Collapse
Affiliation(s)
- Yan Zhu
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Lukman O. Afolabi
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, People's Republic of China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| |
Collapse
|
34
|
Lagisetty Y, Bourquard T, Al-Ramahi I, Mangleburg CG, Mota S, Soleimani S, Shulman JM, Botas J, Lee K, Lichtarge O. Identification of risk genes for Alzheimer's disease by gene embedding. CELL GENOMICS 2022; 2:100162. [PMID: 36268052 PMCID: PMC9581494 DOI: 10.1016/j.xgen.2022.100162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer's disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares the functional perturbations induced in gene interaction network neighborhoods by coding variants from disease versus healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes were differentially expressed in post mortem AD brains and modulated neurological phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of other complex diseases.
Collapse
Affiliation(s)
- Yashwanth Lagisetty
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
35
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
36
|
Yu D, Zarate N, White A, Coates D, Tsai W, Nanclares C, Cuccu F, Yue JS, Brown TG, Mansky RH, Jiang K, Kim H, Nichols-Meade T, Larson SN, Gundry K, Zhang Y, Tomas-Zapico C, Lucas JJ, Benneyworth M, Öz G, Cvetanovic M, Araque A, Gomez-Pastor R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in huntington's disease. Acta Neuropathol Commun 2022; 10:83. [PMID: 35659303 PMCID: PMC9164558 DOI: 10.1186/s40478-022-01379-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene for which no therapies are available. HTT mutation causes protein misfolding and aggregation, preferentially affecting medium spiny neurons (MSNs) of the basal ganglia. Transcriptional perturbations in synaptic genes and neuroinflammation are key processes that precede MSN dysfunction and motor symptom onset. Understanding the interplay between these processes is crucial to develop effective therapeutic strategies to treat HD. We investigated the role of protein kinase CK2α', a kinase upregulated in MSNs in HD and previously associated with Parkinson's disease (PD), in the regulation of neuroinflammation and synaptic function in HD. We used the heterozygous knock-in zQ175 HD mouse model and compared that to zQ175 mice lacking one allele of CK2α' (zQ175:CK2α'(±)). CK2α' haploinsufficiency in zQ175 mice resulted in decreased levels of pro-inflammatory cytokines, HTT aggregation, astrogliosis and transcriptional alterations of synaptic genes related to glutamatergic signaling. zQ175:CK2α'(±) mice also presented increased frequency of striatal miniature excitatory postsynaptic currents (mEPSCs), an indicator of synaptic activity, and improved motor coordination compared to zQ175 mice. Neuropathological and phenotypic changes mediated by CK2α' were connected to alpha-synuclein (α-syn) dysregulation and correlated with differences in α-syn serine 129 phosphorylation (pS129-α-syn), a post-translational modification involved in α-synucleinopathy and shown to be regulated by CK2 in PD. pS129-α-syn was increased in the nuclei of MSNs in zQ175 mice and in the striatum of patients with HD, and it decreased in zQ175:CK2α'(±) mice. Collectively, our data established a novel connection between CK2α', neuroinflammation and synaptic gene dysregulation with synucleinopathy in HD and suggested common molecular mechanisms of neurodegeneration between HD and PD. Our results also support CK2α' inhibition as a potential therapeutic strategy to modulate neuronal function and neuroprotection in HD.
Collapse
Affiliation(s)
- Dahyun Yu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Nicole Zarate
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - De’jah Coates
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Wei Tsai
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Carmen Nanclares
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Francesco Cuccu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Johnny S. Yue
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Mounds View High School, Arden Hills, MN USA
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Kevin Jiang
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Tessa Nichols-Meade
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Sarah N. Larson
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Katherine Gundry
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN USA
| | - Cristina Tomas-Zapico
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Jose J. Lucas
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Benneyworth
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Gülin Öz
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Marija Cvetanovic
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Alfonso Araque
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| |
Collapse
|
37
|
Geertsma HM, Suk TR, Ricke KM, Horsthuis K, Parmasad JLA, Fisk ZA, Callaghan SM, Rousseaux MWC. Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Hum Mol Genet 2022; 31:3613-3628. [PMID: 35179202 PMCID: PMC9616578 DOI: 10.1093/hmg/ddac035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/14/2022] Open
Abstract
A growing body of evidence suggests that nuclear alpha-synuclein (αSyn) plays a role in the pathogenesis of Parkinson’s disease (PD). However, this question has been difficult to address as controlling the localization of αSyn in experimental systems often requires protein overexpression, which affects its aggregation propensity. To overcome this, we engineered SncaNLS mice, which localize endogenous αSyn to the nucleus. We characterized these mice on a behavioral, histological and biochemical level to determine whether the increase of nuclear αSyn is sufficient to elicit PD-like phenotypes. SncaNLS mice exhibit age-dependent motor deficits and altered gastrointestinal function. We found that these phenotypes were not linked to αSyn aggregation or phosphorylation. Through histological analyses, we observed motor cortex atrophy in the absence of midbrain dopaminergic neurodegeneration. We sampled cortical proteomes of SncaNLS mice and controls to determine the molecular underpinnings of these pathologies. Interestingly, we found several dysregulated proteins involved in dopaminergic signaling, including Darpp32, Pde10a and Gng7, which we further confirmed was decreased in cortical samples of the SncaNLS mice compared with controls. These results suggest that chronic endogenous nuclear αSyn can elicit toxic phenotypes in mice, independent of its aggregation. This model raises key questions related to the mechanism of αSyn toxicity in PD and provides a new model to study an underappreciated aspect of PD pathogenesis.
Collapse
Affiliation(s)
- Haley M Geertsma
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Terry R Suk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Konrad M Ricke
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Kyra Horsthuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Jean-Louis A Parmasad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Zoe A Fisk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Steve M Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Maxime W C Rousseaux
- To whom correspondence should be addressed at: University of Ottawa, 451 Smyth Road, Ottawa, K1H8M5, Canada. Tel: +1 6138625800 ext. 8611;
| |
Collapse
|
38
|
HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat Commun 2022; 13:316. [PMID: 35031618 PMCID: PMC8760265 DOI: 10.1038/s41467-021-27944-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that modulates target gene expression in response to changes in oxygen availability. Here the authors show that HIF-1 forms a complex with TRIM28 and DNA-dependent protein kinase (DNA-PK) that phosphorylates TRIM28. This leads to CDK9 recruitment, which stimulates RNA polymerase II (RNAPII) pause release and transcriptional elongation.
Collapse
|
39
|
Huang YH, Chen CW, Sundaramurthy V, Słabicki M, Hao D, Watson CJ, Tovy A, Reyes JM, Dakhova O, Crovetti BR, Galonska C, Lee M, Brunetti L, Zhou Y, Tatton-Brown K, Huang Y, Cheng X, Meissner A, Valk PJM, Van Maldergem L, Sanders MA, Blundell JR, Li W, Ebert BL, Goodell MA. Systematic Profiling of DNMT3A Variants Reveals Protein Instability Mediated by the DCAF8 E3 Ubiquitin Ligase Adaptor. Cancer Discov 2022; 12:220-235. [PMID: 34429321 PMCID: PMC8758508 DOI: 10.1158/2159-8290.cd-21-0560] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023]
Abstract
Clonal hematopoiesis is a prevalent age-related condition associated with a greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A (DNMT3A) are the most common driver of this state. DNMT3A variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations are unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated DNMT3A mutations, and found that 74% were loss-of-function mutations. Half of these variants exhibited reduced protein stability and, as a class, correlated with greater clonal expansion and acute myeloid leukemia development. We investigated the mechanisms underlying the instability using a CRISPR screen and uncovered regulated destruction of DNMT3A mediated by the DCAF8 E3 ubiquitin ligase adaptor. We establish a new paradigm to classify novel variants that has prognostic and potential therapeutic significance for patients with hematologic disease. SIGNIFICANCE: DNMT3A has emerged as the most important epigenetic regulator and tumor suppressor in the hematopoietic system. Our study represents a systematic and high-throughput method to characterize the molecular impact of DNMT3A missense mutations and the discovery of a regulated destruction mechanism of DNMT3A offering new prognostic and future therapeutic avenues.See related commentary by Ma and Will, p. 23.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Yung-Hsin Huang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas
| | - Venkatasubramaniam Sundaramurthy
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Division of Hematology, Brigham and Women's Hospital, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Dapeng Hao
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Caroline J Watson
- Department of Oncology, University of Cambridge, Cambridge; Early Detection Programme, CRUK Cambridge Cancer Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Olga Dakhova
- Section of Hematology-Oncology, Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Brielle R Crovetti
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
| | - Christina Galonska
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Minjung Lee
- Center for Translational Cancer Research, Texas A&M University, Institute of Biosciences and Technology, Houston, Texas
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
| | - Yubin Zhou
- Center for Translational Cancer Research, Texas A&M University, Institute of Biosciences and Technology, Houston, Texas
| | - Katrina Tatton-Brown
- Division of Genetics and Epidemiology, Institute of Cancer Research, South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Yun Huang
- Center for Translational Cancer Research, Texas A&M University, Institute of Biosciences and Technology, Houston, Texas
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lionel Van Maldergem
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, University of Franche-Comté, Besançon, France
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jamie R Blundell
- Department of Oncology, University of Cambridge, Cambridge; Early Detection Programme, CRUK Cambridge Cancer Centre, University of Cambridge, Cambridge, United Kingdom
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Division of Hematology, Brigham and Women's Hospital, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Margaret A Goodell
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.
- Stem Cells and Regenerative Medicine Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult Scler Relat Disord 2022; 57:103318. [PMID: 35158423 DOI: 10.1016/j.msard.2021.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is one of the chronic inflammatory diseases with neurological disability in the central nervous system (CNS). Although the exact cause of MS is still largely unknown, both genetic and environmental factors are thought to play a role in disease risk. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS. HERVs are normally silenced or expressed at low levels, although their expression is higher in MS than in the healthy population. Several studies highlighted the plausible interaction between HERVs and other MS risk factors, including viral infection like Epstein-Barr viruses and vitamin D deficiency which may lead to high expression of HERVs in these patients. Understanding how HERVs act in this scenario can improve our understanding towards MS etiology and may lead to the development of antiretroviral therapies in these patients. Here in this review, we try to examine the different HERVs expression implicated in MS and their association with EBV infection and vitamin D status.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Geertsma HM, Ricke KM, Rousseaux MWC. Assessment of Dopaminergic Neurodegeneration in Mice. Methods Mol Biol 2022; 2515:151-169. [PMID: 35776351 DOI: 10.1007/978-1-0716-2409-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuron death is a key feature of neurological disorders like Alzheimer's or Parkinson's disease (PD). As a result, analysis of neurodegeneration is often considered a central experiment in the postmortem characterization of preclinical PD animal models. Stereology provides a precise estimate of particles, like neurons, in three-dimensional objects, like the brain, and is the gold standard quantification approach for the assessment of neuron survival in neurodegenerative disease research. Here, we provide a detailed step-by-step guide for the quantification of dopaminergic neurons in the substantia nigra pars compacta, a brain area prone to neuron loss in PD. In addition, we outline the protocol for the analysis of the dopaminergic terminals in the striatum, the projection area of midbrain dopaminergic neurons, as a readout for the integrity of the nigrostriatal projections.
Collapse
Affiliation(s)
- Haley M Geertsma
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
42
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
43
|
Shan FY, Fung KM, Zieneldien T, Kim J, Cao C, Huang JH. Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life (Basel) 2021; 11:life11111126. [PMID: 34833002 PMCID: PMC8621244 DOI: 10.3390/life11111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neurodegenerative disorders are complex disorders that display a variety of clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease, and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless, α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy bodies. In order to obtain a more proficient understanding in the pathological progression of these synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways. Abstract α-synuclein is considered the main pathological protein in a variety of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. As of now, numerous studies have been aimed at examining the post-translational modifications of α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization, as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the development of potent targeted therapies.
Collapse
Affiliation(s)
- Frank Y. Shan
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Correspondence: (F.Y.S.); (T.Z.)
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Medical Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
- Correspondence: (F.Y.S.); (T.Z.)
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA;
| |
Collapse
|
44
|
Siano G, Falcicchia C, Origlia N, Cattaneo A, Di Primio C. Non-Canonical Roles of Tau and Their Contribution to Synaptic Dysfunction. Int J Mol Sci 2021; 22:ijms221810145. [PMID: 34576308 PMCID: PMC8466023 DOI: 10.3390/ijms221810145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| | - Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Roma, Italy
- Correspondence: (A.C.); (C.D.P.)
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
- Correspondence: (A.C.); (C.D.P.)
| |
Collapse
|
45
|
Markmiller S, Sathe S, Server KL, Nguyen TB, Fulzele A, Cody N, Javaherian A, Broski S, Finkbeiner S, Bennett EJ, Lécuyer E, Yeo GW. Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress. Cell Rep 2021; 36:109685. [PMID: 34496257 PMCID: PMC11341010 DOI: 10.1016/j.celrep.2021.109685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Persistent cytoplasmic aggregates containing RNA binding proteins (RBPs) are central to the pathogenesis of late-onset neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). These aggregates share components, molecular mechanisms, and cellular protein quality control pathways with stress-induced RNA granules (SGs). Here, we assess the impact of stress on the global mRNA localization landscape of human pluripotent stem cell-derived motor neurons (PSC-MNs) using subcellular fractionation with RNA sequencing and proteomics. Transient stress disrupts subcellular RNA and protein distributions, alters the RNA binding profile of SG- and ALS-relevant RBPs and recapitulates disease-associated molecular changes such as aberrant splicing of STMN2. Although neurotypical PSC-MNs re-establish a normal subcellular localization landscape upon recovery from stress, cells harboring ALS-linked mutations are intransigent and display a delayed-onset increase in neuronal cell death. Our results highlight subcellular molecular distributions as predictive features and underscore the utility of cellular stress as a paradigm to study ALS-relevant mechanisms.
Collapse
Affiliation(s)
- Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Kari L Server
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neal Cody
- Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Ashkan Javaherian
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sara Broski
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA.
| |
Collapse
|
46
|
Wang C, Songyang Z, Huang Y. TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. Cell Biosci 2021; 11:149. [PMID: 34330324 PMCID: PMC8325274 DOI: 10.1186/s13578-021-00660-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background About 10–15% of tumor cells extend telomeres through the alternative lengthening of telomeres (ALT) mechanism, which is a recombination-dependent replication pathway. It is generally believed that ALT cells are related to the chromatin modification of telomeres. However, the mechanism of ALT needs to be further explored. Results Here we found that TRIM28/KAP1 is preferentially located on the telomeres of ALT cells and interacts with telomeric shelterin/telosome complex. Knocking down TRIM28 in ALT cells delayed cell growth, decreased the level of C-circle which is one kind of extrachromosomal circular telomeric DNA, increased the frequency of ALT-associated promyelocytic leukemia bodies (APBs), led to telomere prolongation and increased the telomere sister chromatid exchange in ALT cells. Mechanistically, TRIM28 protects telomere histone methyltransferase SETDB1 from degradation, thus maintaining the H3K9me3 heterochromatin state of telomere DNA. Conclusions Our work provides a model that TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. In general, our results reveal the mechanism of telomere heterochromatin maintenance and its effect on ALT, and TRIM28 may serve as a target for the treatment of ALT tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00660-y.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
47
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
48
|
Genome-wide CRISPR screen identifies protein pathways modulating tau protein levels in neurons. Commun Biol 2021; 4:736. [PMID: 34127790 PMCID: PMC8203616 DOI: 10.1038/s42003-021-02272-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Aggregates of hyperphosphorylated tau protein are a pathological hallmark of more than 20 distinct neurodegenerative diseases, including Alzheimer’s disease, progressive supranuclear palsy, and frontotemporal dementia. While the exact mechanism of tau aggregation is unknown, the accumulation of aggregates correlates with disease progression. Here we report a genome-wide CRISPR screen to identify modulators of endogenous tau protein for the first time. Primary screens performed in SH-SY5Y cells, identified positive and negative regulators of tau protein levels. Hit validation of the top 43 candidate genes was performed using Ngn2-induced human cortical excitatory neurons. Using this approach, genes and pathways involved in modulation of endogenous tau levels were identified, including chromatin modifying enzymes, neddylation and ubiquitin pathway members, and components of the mTOR pathway. TSC1, a critical component of the mTOR pathway, was further validated in vivo, demonstrating the relevance of this screening strategy. These findings may have implications for treating neurodegenerative diseases in the future. Using an unbiased genome-wide CRISPR screen approach, Sanchez et al. identified modulators of endogenous tau protein. This study suggests that chromatin modifiers, neddylation, ubiquitination, and the mTOR pathways regulate overall levels of tau protein in neurons, which could help in future identification of therapeutics for neurodegenerative diseases.
Collapse
|
49
|
Chang J, Hwang HJ, Kim B, Choi YG, Park J, Park Y, Lee BS, Park H, Yoon MJ, Woo JS, Kim C, Park MS, Lee JB, Kim YK. TRIM28 functions as a negative regulator of aggresome formation. Autophagy 2021; 17:4231-4248. [PMID: 33783327 DOI: 10.1080/15548627.2021.1909835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Selective recognition and elimination of misfolded polypeptides are crucial for protein homeostasis. When the ubiquitin-proteasome system is impaired, misfolded polypeptides tend to form small cytosolic aggregates and are transported to the aggresome and eventually eliminated by the autophagy pathway. Despite the importance of this process, the regulation of aggresome formation remains poorly understood. Here, we identify TRIM28/TIF1β/KAP1 (tripartite motif containing 28) as a negative regulator of aggresome formation. Direct interaction between TRIM28 and CTIF (cap binding complex dependent translation initiation factor) leads to inefficient aggresomal targeting of misfolded polypeptides. We also find that either treatment of cells with poly I:C or infection of the cells by influenza A viruses triggers the phosphorylation of TRIM28 at S473 in a way that depends on double-stranded RNA-activated protein kinase. The phosphorylation promotes association of TRIM28 with CTIF, inhibits aggresome formation, and consequently suppresses viral proliferation. Collectively, our data provide compelling evidence that TRIM28 is a negative regulator of aggresome formation.AbbreviationsBAG3: BCL2-associated athanogene 3; CTIF: CBC-dependent translation initiation factor; CED: CTIF-EEF1A1-DCTN1; DCTN1: dynactin subunit 1; EEF1A1: eukaryotic translation elongation factor 1 alpha 1; EIF2AK2: eukaryotic translation initiation factor 2 alpha kinase 2; HDAC6: histone deacetylase 6; IAV: influenza A virus; IP: immunoprecipitation; PLA: proximity ligation assay; polypeptidyl-puro: polypeptidyl-puromycin; qRT-PCR: quantitative reverse-transcription PCR; siRNA: small interfering RNA.
Collapse
Affiliation(s)
- Jeeyoon Chang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Jung Hwang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Byungju Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeon-Gil Choi
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Ban Seok Lee
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Min Ji Yoon
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jae-Sung Woo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chungho Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|