1
|
Zhang WW, Xiang Y, Chen L, Liu ST, Lin CC, Li JX, Xiang LX, Chen NX, Shi DL, Zhang YY, Wang XY, Hu LY, Chen S, Luo Y, Tan CN, Xue PP, Jiang YZ, Li SWC, Yang ZX, Dai JG, Li ZJ, Ran Q. Dietary methionine supplementation promotes mice hematopoiesis after irradiation. Mil Med Res 2024; 11:83. [PMID: 39702305 DOI: 10.1186/s40779-024-00584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND With the increasing risk of nuclear exposure, more attention has been paid to the prevention and treatment of acute radiation syndrome (ARS). Although amino acids are key nutrients involved in hematopoietic regulation, the impacts of amino acids on bone marrow hematopoiesis following irradiation and the associated mechanisms have not been fully elucidated. Hence, it is of paramount importance to study the changes in amino acid metabolism after irradiation and their effects on hematopoiesis as well as the related mechanisms. METHODS The content of serum amino acids was analyzed using metabolomic sequencing. The survival rate and body weight of the irradiated mice were detected after altering the methionine content in the diet. Extracellular matrix (ECM) protein analysis was performed via proteomics analysis. Inflammatory factors were examined by enzyme-linked immunosorbent assay (ELISA). Flow cytometry, Western blotting, and immunofluorescence were employed to determine the mechanism by which S100 calcium-binding protein A4 (S100A4) regulates macrophage polarization. RESULTS The survival time of irradiated mice was significantly associated with alterations in multiple amino acids, particularly methionine. A high methionine diet promoted irradiation tolerance, especially in the recovery of bone marrow hematopoiesis, yet with dose limitations. Folate metabolism could partially alleviate the dose bottleneck by reducing the accumulation of homocysteine. Mechanistically, high methionine levels maintained the abundance of ECM components, including collagens and glycoproteins, in the bone marrow post-irradiation, among which the level of S100A4 was significantly changed. S100A4 regulated macrophage polarization via the STAT3 pathway, inhibited bone marrow inflammation and facilitated the proliferation and differentiation of hematopoietic stem/progenitor cells. CONCLUSIONS We have demonstrated that an appropriate elevation in dietary methionine enhances irradiation tolerance in mice and explains the mechanism by which methionine regulates bone marrow hematopoiesis after irradiation.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Yang Xiang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Li Chen
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Shao-Ting Liu
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
- Department of Nutrition, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chuan-Chuan Lin
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Jiu-Xuan Li
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Li-Xin Xiang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Nan-Xi Chen
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Dong-Ling Shi
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Yang-Yang Zhang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Xue-Ying Wang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Lan-Yue Hu
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Sai Chen
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Ya Luo
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Cheng-Ning Tan
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Pei-Pei Xue
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Yang-Zhou Jiang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China
| | - Sheng-Wen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA, 92868-3874, USA
- Department of Neurology, University of California - Irvine School of Medicine, Orange, CA, 92868, USA
| | - Zhen-Xing Yang
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China.
| | - Ji-Gang Dai
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China.
- Department of Thoracic Surgery, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zhong-Jun Li
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China.
| | - Qian Ran
- Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, 400037, China.
| |
Collapse
|
2
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Ng AP. All wired up: heptads in hematopoiesis. Blood 2023; 142:1407-1409. [PMID: 37883110 DOI: 10.1182/blood.2023022014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Affiliation(s)
- Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research
| |
Collapse
|
4
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
5
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
6
|
Dupont C, Schäffers OJ, Tan BF, Merzouk S, Bindels EM, Zwijsen A, Huylebroeck D, Gribnau J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. SCIENCE ADVANCES 2023; 9:eadd2913. [PMID: 36652512 PMCID: PMC9848479 DOI: 10.1126/sciadv.add2913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier J. M. Schäffers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Beatrice F. Tan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Sureshchandra S, Chan CN, Robino JJ, Parmelee LK, Nash MJ, Wesolowski SR, Pietras EM, Friedman JE, Takahashi D, Shen W, Jiang X, Hennebold JD, Goldman D, Packwood W, Lindner JR, Roberts CT, Burwitz BJ, Messaoudi I, Varlamov O. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Reports 2022; 17:2595-2609. [PMID: 36332628 PMCID: PMC9768582 DOI: 10.1016/j.stemcr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA
| | - Chi N Chan
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Lindsay K Parmelee
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Michael J Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric M Pietras
- Department of Immunology and Microbiology, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana Takahashi
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Weining Shen
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Xiwen Jiang
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Devorah Goldman
- Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan R Lindner
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006; Vaccine & Gene Therapy Institute, Beaverton, OR 97006, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA; Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006.
| |
Collapse
|
8
|
Serina Secanechia YN, Bergiers I, Rogon M, Arnold C, Descostes N, Le S, López-Anguita N, Ganter K, Kapsali C, Bouilleau L, Gut A, Uzuotaite A, Aliyeva A, Zaugg JB, Lancrin C. Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition. Sci Rep 2022; 12:16974. [PMID: 36217016 PMCID: PMC9550822 DOI: 10.1038/s41598-022-20906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.
Collapse
Affiliation(s)
- Yasmin Natalia Serina Secanechia
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Isabelle Bergiers
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419619.20000 0004 0623 0341Present Address: Therapeutics Discovery, Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Matt Rogon
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Centre for Biomolecular Network Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Arnold
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicolas Descostes
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, Bioinformatics Services, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Stephanie Le
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Natalia López-Anguita
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419538.20000 0000 9071 0620Present Address: Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Kerstin Ganter
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Chrysi Kapsali
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Lea Bouilleau
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Aaron Gut
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Auguste Uzuotaite
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Ayshan Aliyeva
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christophe Lancrin
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
9
|
Gomez-Salinero JM, Itkin T, Houghton S, Badwe C, Lin Y, Kalna V, Dufton N, Peghaire CR, Yokoyama M, Wingo M, Lu TM, Li G, Xiang JZ, Hsu YMS, Redmond D, Schreiner R, Birdsey GM, Randi AM, Rafii S. Cooperative ETS Transcription Factors Enforce Adult Endothelial Cell Fate and Cardiovascular Homeostasis. NATURE CARDIOVASCULAR RESEARCH 2022; 1:882-899. [PMID: 36713285 PMCID: PMC7614113 DOI: 10.1038/s44161-022-00128-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
Current dogma dictates that during adulthood, endothelial cells (ECs) are locked in an immutable stable homeostatic state. By contrast, herein we show that maintenance of EC fate and function are linked and active processes, which depend on the constitutive cooperativity of only two ETS-transcription factors (TFs) ERG and Fli1. While deletion of either Fli1 or ERG manifest subtle vascular dysfunction, their combined genetic deletion in adult EC results in acute vasculopathy and multiorgan failure, due to loss of EC fate and integrity, hyperinflammation, and spontaneous thrombosis, leading to death. ERG and Fli1 co-deficiency cause rapid transcriptional silencing of pan- and organotypic vascular core genes, with dysregulation of inflammation and coagulation pathways. Vascular hyperinflammation leads to impaired hematopoiesis with myeloid skewing. Accordingly, enforced ERG and FLI1 expression in adult human mesenchymal stromal cells activates vascular programs and functionality enabling engraftment of perfusable vascular network. GWAS-analysis identified vascular diseases are associated with FLI1/Erg mutations. Constitutive expression of ERG and Fli1 uphold EC fate, physiological function, and resilience in adult vasculature; while their functional loss can contribute to systemic human diseases.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Tomer Itkin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Sean Houghton
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Chaitanya Badwe
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Viktoria Kalna
- National Heart and Lung Institute, Imperial College London, London, UK
- Human Genetics and Computational Biology GSK, UK (current address)
| | - Neil Dufton
- National Heart and Lung Institute, Imperial College London, London, UK
- Queen Mary University of London, Centre for Microvascular Research, William Harvey Research Centre, UK (current address)
| | - Claire R Peghaire
- National Heart and Lung Institute, Imperial College London, London, UK
- University of Bordeaux, Inserm UMR1034, Biology of Cardiovascular Diseases, Pessac, France (current address)
| | - Masataka Yokoyama
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Matthew Wingo
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Tyler M. Lu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ge Li
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | | | - Yen-Michael Sheng Hsu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (current address)
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA (current address)
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Graeme M Birdsey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, NY, USA
| |
Collapse
|
10
|
Kafkia E, Andres-Pons A, Ganter K, Seiler M, Smith TS, Andrejeva A, Jouhten P, Pereira F, Franco C, Kuroshchenkova A, Leone S, Sawarkar R, Boston R, Thaventhiran J, Zaugg JB, Lilley KS, Lancrin C, Beck M, Patil KR. Operation of a TCA cycle subnetwork in the mammalian nucleus. SCIENCE ADVANCES 2022; 8:eabq5206. [PMID: 36044572 PMCID: PMC9432838 DOI: 10.1126/sciadv.abq5206] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 05/23/2023]
Abstract
Nucleic acid and histone modifications critically depend on the tricarboxylic acid (TCA) cycle for substrates and cofactors. Although a few TCA cycle enzymes have been reported in the nucleus, the corresponding pathways are considered to operate in mitochondria. Here, we show that a part of the TCA cycle is operational also in the nucleus. Using 13C-tracer analysis, we identified activity of glutamine-to-fumarate, citrate-to-succinate, and glutamine-to-aspartate routes in the nuclei of HeLa cells. Proximity labeling mass spectrometry revealed a spatial vicinity of the involved enzymes with core nuclear proteins. We further show nuclear localization of aconitase 2 and 2-oxoglutarate dehydrogenase in mouse embryonic stem cells. Nuclear localization of the latter enzyme, which produces succinyl-CoA, changed from pluripotency to a differentiated state with accompanying changes in the nuclear protein succinylation. Together, our results demonstrate operation of an extended metabolic pathway in the nucleus, warranting a revision of the canonical view on metabolic compartmentalization.
Collapse
Affiliation(s)
- Eleni Kafkia
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Amparo Andres-Pons
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kerstin Ganter
- European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Markus Seiler
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Tom S. Smith
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paula Jouhten
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- VTT Technical Research Center of Finland, Helsinki, Finland
| | - Filipa Pereira
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Catarina Franco
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Kuroshchenkova
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sergio Leone
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ritwick Sawarkar
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rebecca Boston
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - James Thaventhiran
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Judith B. Zaugg
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | - Martin Beck
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Adamov A, Serina Secanechia YN, Lancrin C. Single-cell transcriptome analysis of embryonic and adult endothelial cells allows to rank the hemogenic potential of post-natal endothelium. Sci Rep 2022; 12:12177. [PMID: 35842474 PMCID: PMC9288434 DOI: 10.1038/s41598-022-16127-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are crucial for the continuous production of blood cells during life. The transplantation of these cells is one of the most common treatments to cure patient suffering of blood diseases. However, the lack of suitable donors is a major limitation. One option to get HSCs matching perfectly a patient is cellular reprogramming. HSCs emerge from endothelial cells in blood vessels during embryogenesis through the endothelial to hematopoietic transition. Here, we used single-cell transcriptomics analysis to compare embryonic and post-natal endothelial cells to investigate the potential of adult vasculature to be reprogrammed in hematopoietic stem cells. Although transcriptional similarities have been found between embryonic and adult endothelial cells, we found some key differences in term of transcription factors expression. There is a deficit of expression of Runx1, Tal1, Lyl1 and Cbfb in adult endothelial cells compared to their embryonic counterparts. Using a combination of gene expression profiling and gene regulatory network analysis, we found that endothelial cells from the pancreas, brain, kidney and liver appear to be the most suitable targets for cellular reprogramming into HSCs. Overall, our work provides an important resource for the rational design of a reprogramming strategy for the generation of HSCs.
Collapse
Affiliation(s)
- Artem Adamov
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
- Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, Russia, 141700
- Institut de la Vision, INSERM, Paris, France
| | - Yasmin Natalia Serina Secanechia
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
12
|
Luanpitpong S, Kang X, Janan M, Thumanu K, Li J, Kheolamai P, Issaragrisil S. Metabolic sensor O-GlcNAcylation regulates erythroid differentiation and globin production via BCL11A. Stem Cell Res Ther 2022; 13:274. [PMID: 35739577 PMCID: PMC9219246 DOI: 10.1186/s13287-022-02954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
Background Human erythropoiesis is a tightly regulated, multistep process encompassing the differentiation of hematopoietic stem cells (HSCs) toward mature erythrocytes. Cellular metabolism is an important regulator of cell fate determination during the differentiation of HSCs. However, how O-GlcNAcylation, a posttranslational modification of proteins that is an ideal metabolic sensor, contributes to the commitment of HSCs to the erythroid lineage and to the terminal erythroid differentiation has not been addressed. Methods Cellular O-GlcNAcylation was manipulated using small molecule inhibition or CRISPR/Cas9 manipulation of catalyzing enzyme O-GlcNAc transferase (OGT) and removing enzyme O-GlcNAcase (OGA) in two cell models of erythroid differentiation, starting from: (i) human umbilical cord blood-derived CD34+ hematopoietic stem/progenitor cells (HSPCs) to investigate the erythroid lineage specification and differentiation; and (ii) human-derived erythroblastic leukemia K562 cells to investigate the terminal differentiation. The functional and regulatory roles of O-GlcNAcylation in erythroid differentiation, maturation, and globin production were investigated, and downstream signaling was delineated. Results First, we observed that two-step inhibition of OGT and OGA, which were established from the observed dynamics of O-GlcNAc level along the course of differentiation, promotes HSPCs toward erythroid differentiation and enucleation, in agreement with an upregulation of a multitude of erythroid-associated genes. Further studies in the efficient K562 model of erythroid differentiation confirmed that OGA inhibition and subsequent hyper-O-GlcNAcylation enhance terminal erythroid differentiation and affect globin production. Mechanistically, we found that BCL11A is a key mediator of O-GlcNAc-driven erythroid differentiation and β- and α-globin production herein. Additionally, analysis of biochemical contents using synchrotron-based Fourier transform infrared (FTIR) spectroscopy showed unique metabolic fingerprints upon OGA inhibition during erythroid differentiation, supporting that metabolic reprogramming plays a part in this process. Conclusions The evidence presented here demonstrated the novel regulatory role of O-GlcNAc/BCL11A axis in erythroid differentiation, maturation, and globin production that could be important in understanding erythropoiesis and hematologic disorders whose etiology is related to impaired erythroid differentiation and hemoglobinopathies. Our findings may lay the groundwork for future clinical applications toward an ex vivo production of functional human reticulocytes for transfusion from renewable cell sources, i.e., HSPCs and pluripotent stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02954-5.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Jingting Li
- Institute of Precision Medicine, Department of Burns, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Combined Analysis of Transcriptome and T-Cell Receptor Alpha and Beta (TRA /TRB ) Repertoire in Paucicellular Samples at the Single-Cell Level. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:231-259. [PMID: 35622330 DOI: 10.1007/978-1-0716-2115-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the advent of next-generation sequencing (NGS) methodologies, the total repertoires of B and T cells can be disclosed in much more detail than ever before. Even though many of these strategies do provide in-depth and high-resolution information of the immunoglobulin (IG) and/or T-cell receptor (TR) repertoire, one clear disadvantage is that the IG/TR profiles cannot be connected to individual cells. Single-cell technologies do allow to study the IG/TR repertoire at the individual cell level. This is especially relevant in cell samples in which much heterogeneity of the cell population is expected. By combining the IG/TR repertoire with transcriptome data, the reactivity of the B or T cell can be associated with activation or maturation stages. An additional advantage of such single-cell technologies is that the combination of both IG and both TR chains can be studied on a per cell basis, which better reflects the antigen receptor reactivity of cells. Here we present the ICELL8 single-cell method for the parallel analysis of the TR repertoire and transcriptome, which is especially useful in samples that contain relatively few cells.
Collapse
|
14
|
Ben-David Y, Gajendran B, Sample KM, Zacksenhaus E. Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cell Mol Life Sci 2022; 79:163. [PMID: 35412146 PMCID: PMC11072361 DOI: 10.1007/s00018-022-04160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on normal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and their potential clinical applications is discussed.
Collapse
Affiliation(s)
- Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, Max Bell Research Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
15
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Thoms JAI, Truong P, Subramanian S, Knezevic K, Harvey G, Huang Y, Seneviratne JA, Carter DR, Joshi S, Skhinas J, Chacon D, Shah A, de Jong I, Beck D, Göttgens B, Larsson J, Wong JWH, Zanini F, Pimanda JE. Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 2021; 138:1441-1455. [PMID: 34075404 DOI: 10.1182/blood.2020009707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Collapse
Affiliation(s)
| | - Peter Truong
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Kathy Knezevic
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gregory Harvey
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Yizhou Huang
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanna Skhinas
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Dominik Beck
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome and Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fabio Zanini
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; and
| | - John E Pimanda
- School of Medical Sciences
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
17
|
Karlsson G, Sommarin MNE, Böiers C. Defining the Emerging Blood System During Development at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:660350. [PMID: 34055791 PMCID: PMC8158578 DOI: 10.3389/fcell.2021.660350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Developmental hematopoiesis differs from adult and is far less described. In the developing embryo, waves of lineage-restricted blood precede the ultimate emergence of definitive hematopoietic stem cells (dHSCs) capable of maintaining hematopoiesis throughout life. During the last two decades, the advent of single-cell genomics has provided tools to circumvent previously impeding characteristics of embryonic hematopoiesis, such as cell heterogeneity and rare cell states, allowing for definition of lineage trajectories, cellular hierarchies, and cell-type specification. The field has rapidly advanced from microfluidic platforms and targeted gene expression analysis, to high throughput unbiased single-cell transcriptomic profiling, single-cell chromatin analysis, and cell tracing-offering a plethora of tools to resolve important questions within hematopoietic development. Here, we describe how these technologies have been implemented to address a wide range of aspects of embryonic hematopoiesis ranging from the gene regulatory network of dHSC formation via endothelial to hematopoietic transition (EHT) and how EHT can be recapitulated in vitro, to hematopoietic trajectories and cell fate decisions. Together, these studies have important relevance for regenerative medicine and for our understanding of genetic blood disorders and childhood leukemias.
Collapse
Affiliation(s)
| | | | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Muskens IS, Li S, Jackson T, Elliot N, Hansen HM, Myint SS, Pandey P, Schraw JM, Roy R, Anguiano J, Goudevenou K, Siegmund KD, Lupo PJ, de Bruijn MFTR, Walsh KM, Vyas P, Ma X, Roy A, Roberts I, Wiemels JL, de Smith AJ. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat Commun 2021; 12:821. [PMID: 33547282 PMCID: PMC7865055 DOI: 10.1038/s41467-021-21064-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Down syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10-8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Thomas Jackson
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Natalina Elliot
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Priyatama Pandey
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Jeremy M Schraw
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - Ritu Roy
- Computational Biology and Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Joaquin Anguiano
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Katerina Goudevenou
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Anindita Roy
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Irene Roberts
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA.
| |
Collapse
|
19
|
Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf 2021; 20:20-32. [PMID: 33388438 DOI: 10.1016/j.jtos.2020.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This study aimed to uncover novel cell types in heterogenous basal limbus of human cornea for identifying LSC at single cell resolution. METHODS Single cells of human limbal basal epithelium were isolated from young donor corneas. Single-cell RNA-Sequencing was performed using 10x Genomics platform, followed by clustering cell types through the graph-based visualization method UMAP and unbiased computational informatic analysis. Tissue RNA in situ hybridization with RNAscope, immunofluorescent staining and multiple functional assays were performed using human corneas and limbal epithelial culture models. RESULTS Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters belonging to three lineages. A smallest cluster (0.4% of total cells) was identified as LSCs based on their quiescent and undifferentiated states with enriched marker genes for putative epithelial stem cells. TSPAN7 and SOX17 are discovered and validated as new LSC markers based on their exclusive expression pattern and spatial localization in limbal basal epithelium by RNAscope and immunostaining, and functional role in cell growth and tissue regeneration models with RNA interference in cultures. Interestingly, five cell types/states mapping a developmental trajectory of LSC from quiescence to proliferation and differentiation are uncovered by Monocle3 and CytoTRACE pseudotime analysis. The transcription factor networks linking novel signaling pathways are revealed to maintain LSC stemness. CONCLUSIONS This human corneal scRNA-Seq identifies the LSC population and uncovers novel cell types mapping the differentiation trajectory in heterogenous limbal basal epithelium. The findings provide insight into LSC concept and lay the foundation for understanding the corneal homeostasis and diseases.
Collapse
|
20
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
21
|
Litjens NHR, Langerak AW, van der List ACJ, Klepper M, de Bie M, Azmani Z, den Dekker AT, Brouwer RWW, Betjes MGH, Van IJcken WFJ. Validation of a Combined Transcriptome and T Cell Receptor Alpha/Beta (TRA/TRB) Repertoire Assay at the Single Cell Level for Paucicellular Samples. Front Immunol 2020; 11:1999. [PMID: 33013853 PMCID: PMC7500136 DOI: 10.3389/fimmu.2020.01999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Transcriptomics can be combined with TRA and TRB clonotype analysis at the single cell level. The aim of this study was to validate this approach on the ICELL8 Single-Cell system and to evaluate its usefulness to analyse clinical paucicellular samples. For this purpose, we carefully selected T cell lines with defined TRA/TRB clonotypes as well as clinical samples enriched for CD3+ T cells that possess a complex TCR repertoire. Low cell numbers of the different samples were dispensed in a chip on the ICELL8 Single-Cell System. Two sequencing libraries were generated from each single cell cDNA preparation, one for the TRA/TRB repertoire and one for the 5' ends of transcripts, and subsequently sequenced. Transcriptome analysis revealed that the cell lines on average express 2,268 unique genes/cell and T cells of clinical samples 770 unique genes/cell. The expected combined TRA/TRB clonotype was determined for on average 71% of the cells of the cell lines. In the clinical samples the TRA/TRB repertoire was more complex than those of the cell lines. Furthermore, the TRB clonotype distribution of the clinical samples was positively correlated to frequencies of TCRVβ families in CD3+ T cells obtained by a flow cytometry-based approach (Spearman's Rho correlation coefficient 0.81, P = 6.49 * 10-7). Combined analyses showed that transcriptome-based cell type-specific clusters in clinical samples corresponded to clinical features such as CMV status. In conclusion, we showed that the ICELL8 Single-Cell System enabled combined interrogation of both TRA/TRB repertoire and transcriptome of paucicellular clinical samples. This opens the way to study the response of single T cells within heterogeneous samples for both their transcriptome and TRA/TRB clonotypes in disease or upon treatment.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Amy C J van der List
- Department of Internal Medicine Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Mariska Klepper
- Department of Internal Medicine Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Zakia Azmani
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Alexander T den Dekker
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Wilfred F J Van IJcken
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
22
|
Jakab M, Augustin HG. Understanding angiodiversity: insights from single cell biology. Development 2020; 147:147/15/dev146621. [DOI: 10.1242/dev.146621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Blood vessels have long been considered as passive conduits for delivering blood. However, in recent years, cells of the vessel wall (endothelial cells, smooth muscle cells and pericytes) have emerged as active, highly dynamic components that orchestrate crosstalk between the circulation and organs. Encompassing the whole body and being specialized to the needs of distinct organs, it is not surprising that vessel lining cells come in different flavours. There is calibre-specific specialization (arteries, arterioles, capillaries, venules, veins), but also organ-specific heterogeneity in different microvascular beds (continuous, discontinuous, sinusoidal). Recent technical advances in the field of single cell biology have enabled the profiling of thousands of single cells and, hence, have allowed for the molecular dissection of such angiodiversity, yielding a hitherto unparalleled level of spatial and functional resolution. Here, we review how these approaches have contributed to our understanding of angiodiversity.
Collapse
Affiliation(s)
- Moritz Jakab
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Serina Secanechia Y, Lancrin C. MOF Histone Acetyltransferase in Blood Cell Development. Trends Genet 2020; 36:632-634. [PMID: 32631633 DOI: 10.1016/j.tig.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Gene expression is regulated by transcription factors (TFs) and chromatin modifiers such as histone acetyltransferases (HATs). Pessoa Rodrigues et al. revealed the role of the Males absent on the first (MOF) HAT in hematopoietic stem cell (HSC) differentiation into red blood cells. This work raises interesting questions about how MOF controls other hematopoietic differentiation processes.
Collapse
Affiliation(s)
| | - Christophe Lancrin
- EMBL Rome - Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015 Monterotondo, Italy.
| |
Collapse
|
24
|
Soto X, Biga V, Kursawe J, Lea R, Doostdar P, Thomas R, Papalopulu N. Dynamic properties of noise and Her6 levels are optimized by miR-9, allowing the decoding of the Her6 oscillator. EMBO J 2020; 39:e103558. [PMID: 32395844 PMCID: PMC7298297 DOI: 10.15252/embj.2019103558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.
Collapse
Affiliation(s)
- Ximena Soto
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Veronica Biga
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Jochen Kursawe
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Robert Lea
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Parnian Doostdar
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Riba Thomas
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
25
|
|
26
|
Oatley M, Bölükbası ÖV, Svensson V, Shvartsman M, Ganter K, Zirngibl K, Pavlovich PV, Milchevskaya V, Foteva V, Natarajan KN, Baying B, Benes V, Patil KR, Teichmann SA, Lancrin C. Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition. Nat Commun 2020; 11:586. [PMID: 31996681 PMCID: PMC6989687 DOI: 10.1038/s41467-019-14171-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The intermediary steps of this process are unclear, in particular the identity of endothelial cells that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody screening, we identify CD44 as a marker of EHT enabling us to isolate robustly the different stages of EHT in the aorta-gonad-mesonephros (AGM) region. This allows us to provide a detailed phenotypical and transcriptional profile of CD44-positive arterial endothelial cells from which HSPCs emerge. They are characterized with high expression of genes related to Notch signalling, TGFbeta/BMP antagonists, a downregulation of genes related to glycolysis and the TCA cycle, and a lower rate of cell cycle. Moreover, we demonstrate that by inhibiting the interaction between CD44 and its ligand hyaluronan, we can block EHT, identifying an additional regulator of HSPC development. The endothelial to haematopoietic transition (EHT) is the process where haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). Here the authors use single cell transcriptomics and antibody screening to identify CD44 as a marker of EHT that is required for EHT and HSPC development.
Collapse
Affiliation(s)
- Morgan Oatley
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Özge Vargel Bölükbası
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.,Stem Cell and Regenerative Biology Department, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Valentine Svensson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.,Pachter Lab, Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, USA
| | - Maya Shvartsman
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Katharina Zirngibl
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Polina V Pavlovich
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.,Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, 141700, Russia.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
| | - Vladislava Milchevskaya
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Institut für Medizinische Statistik und Bioinformatik, Bachemer Strasse 86, 50931, Köln, Germany
| | - Vladimira Foteva
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Kedar N Natarajan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Biochemistry and Molecular Biology, The University of Southern Denmark, Danish Institute for Advanced Study, Campusvej 55, 5230, Odense M, Denmark
| | - Bianka Baying
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Kiran R Patil
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
27
|
Shvartsman M, Bilican S, Lancrin C. Iron deficiency disrupts embryonic haematopoiesis but not the endothelial to haematopoietic transition. Sci Rep 2019; 9:6414. [PMID: 31015568 PMCID: PMC6478831 DOI: 10.1038/s41598-019-42765-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, we aimed to explore how cellular iron status affects embryonic haematopoiesis. For this purpose, we used a model of mouse embryonic stem cell differentiation into embryonic haematopoietic progenitors. We modulated the iron status by adding either the iron chelator Deferoxamine (DFO) for iron deficiency, or ferric ammonium citrate for iron excess, and followed the emergence of developing haematopoietic progenitors. Interestingly, we found that iron deficiency did not block the endothelial to haematopoietic transition, the first step of haematopoiesis. However, it did reduce the proliferation, survival and clonogenic capacity of haematopoietic progenitors. Surprisingly, iron deficiency affected erythro-myeloid progenitors significantly more than the primitive erythroid ones. Erythro-myeloid progenitors expressed less transferrin-receptor on the cell surface and had less labile iron compared to primitive erythroid progenitors, which could reduce their capacity to compete for scarce iron and survive iron deficiency. In conclusion, we show that iron deficiency could disturb haematopoiesis at an early embryonic stage by compromising more severely the survival, proliferation and differentiation of definitive haematopoietic progenitors compared to restricted erythroid progenitors.
Collapse
Affiliation(s)
- Maya Shvartsman
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015, Monterotondo, Italy.
| | - Saygın Bilican
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015, Monterotondo, Italy
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
28
|
Bergiers I, Tischer C, Vargel Bölükbaşı Ö, Lancrin C. Quantification of Mouse Hematopoietic Progenitors' Formation Using Time-lapse Microscopy and Image Analysis. Bio Protoc 2019; 9:e3137. [PMID: 30652115 DOI: 10.21769/bioprotoc.3137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In vitro differentiation of mouse embryonic stem cells (mESCs) towards blood cells constitutes a well-established system to study the endothelial-to-hematopoietic transition (EHT) at the onset of blood development. Assessing the emergence of small non-adherent round blood cells in the culture without disturbing it is essential to evaluate the progression of EHT and also to test conditions potentially enhancing or repressing this process. Here, we describe how to quantify the formation of mouse hematopoietic progenitors during EHT in normal conditions or following over-expression of eight essential transcription factors using time-lapse microscopy and image analysis.
Collapse
Affiliation(s)
- Isabelle Bergiers
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit Monterotondo, Italy
| | - Christian Tischer
- European Molecular Biology Laboratory, EMBL Heidelberg, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Özge Vargel Bölükbaşı
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit Monterotondo, Italy
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit Monterotondo, Italy
| |
Collapse
|
29
|
Periostin and Integrin Signaling in Stem Cell Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:163-176. [DOI: 10.1007/978-981-13-6657-4_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Zhang Y, Gao S, Xia J, Liu F. Hematopoietic Hierarchy - An Updated Roadmap. Trends Cell Biol 2018; 28:976-986. [PMID: 29935893 DOI: 10.1016/j.tcb.2018.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
The classical roadmap of hematopoietic hierarchy has been proposed for nearly 20 years and has become a dogma of stem cell research for most types of adult stem cells, including hematopoietic stem cells (HSCs). However, with the development of new technologies such as omics approaches at single-cell resolution, recent studies in vitro and in vivo have suggested that heterogeneity is a common feature of HSCs and their progenies. While these findings broaden our understanding of hematopoiesis, they also challenge the well-accepted hematopoietic hierarchy roadmap. Here, we review recent advances in the hematopoiesis field and provide an updated view to incorporate these new findings as well as to reflect on the complexity of HSCs and their derivatives in development and adulthood.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; These authors contributed equally to this work
| | - Shuai Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; These authors contributed equally to this work
| | - Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; These authors contributed equally to this work
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; http://english.biomembrane.ioz.cas.cn/research/groups/liufeng.
| |
Collapse
|