1
|
Perkins AQ, Rich EL. Attention-dependent attribute comparisons underlie multi-attribute decision-making in orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623291. [PMID: 39605698 PMCID: PMC11601282 DOI: 10.1101/2024.11.12.623291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Economic decisions often require weighing multiple dimensions, or attributes. The orbitofrontal cortex FC) is thought to be important for computing the integrated value of an option from its attributes and comparing lues to make a choice. Although OFC neurons are known to encode integrated values, evidence for value mparison has been limited. Here, we used a multi-attribute choice task for monkeys to investigate how OFC eurons integrate and compare multi-attribute options. Attributes were represented separately and eye tracking as used to measure attention. We found that OFC neurons encode the value of attended attributes, dependent of other attributes in the same option. Encoding was negatively weighted by the value of the same tribute in the other option, consistent with a comparison between the two like attributes. These results indicate at OFC computes comparisons among attributes rather than integrated values, and does so dynamically, ifting with the focus of attention.
Collapse
|
2
|
Zhang J, Zhou H, Wang S. Distinct visual processing networks for foveal and peripheral visual fields. Commun Biol 2024; 7:1259. [PMID: 39367101 PMCID: PMC11452663 DOI: 10.1038/s42003-024-06980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Foveal and peripheral vision are two distinct modes of visual processing essential for navigating the world. However, it remains unclear if they engage different neural mechanisms and circuits within the visual attentional system. Here, we trained macaques to perform a free-gaze visual search task using natural face and object stimuli and recorded a large number of 14588 visually responsive units from a broadly distributed network of brain regions involved in visual attentional processing. Foveal and peripheral units had substantially different proportions across brain regions and exhibited systematic differences in encoding visual information and visual attention. The spike-local field potential (LFP) coherence of foveal units was more extensively modulated by both attention and visual selectivity, thus indicating differential engagement of the attention and visual coding network compared to peripheral units. Furthermore, we delineated the interaction and coordination between foveal and peripheral processing for spatial attention and saccade selection. Together, the systematic differences between foveal and peripheral processing provide valuable insights into how the brain processes and integrates visual information from different regions of the visual field.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Huihui Zhou
- Peng Cheng Laboratory, Shenzhen, 518000, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Macedo-Lima M, Hamlette LS, Caras ML. Orbitofrontal cortex modulates auditory cortical sensitivity and sound perception in Mongolian gerbils. Curr Biol 2024; 34:3354-3366.e6. [PMID: 38996534 PMCID: PMC11303099 DOI: 10.1016/j.cub.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Although decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remain uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving Mongolian gerbils of both sexes under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervates the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds.
Collapse
Affiliation(s)
| | | | - Melissa L Caras
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Ferro D, Cash-Padgett T, Wang MZ, Hayden BY, Moreno-Bote R. Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex. Nat Commun 2024; 15:6163. [PMID: 39039055 PMCID: PMC11263430 DOI: 10.1038/s41467-024-50214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
During economic choice, options are often considered in alternation, until commitment. Nonetheless, neuroeconomics typically ignores the dynamic aspects of deliberation. We trained two male macaques to perform a value-based decision-making task in which two risky offers were presented in sequence at the opposite sides of the visual field, each followed by a delay epoch where offers were invisible. Surprisingly, during the two delays, subjects tend to look at empty locations where the offers had previously appeared, with longer fixations increasing the probability of choosing the associated offer. Spiking activity in orbitofrontal cortex reflects the value of the gazed offer, or of the offer associated with the gazed empty spatial location, even if it is not the most recent. This reactivation reflects a reevaluation process, as fluctuations in neural spiking correlate with upcoming choice. Our results suggest that look-at-nothing gazing triggers the reactivation of a previously seen offer for further evaluation.
Collapse
Affiliation(s)
- Demetrio Ferro
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
| | - Tyler Cash-Padgett
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Maya Zhe Wang
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rubén Moreno-Bote
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Zhang J, Zhou H, Wang S. Distinct visual processing networks for foveal and peripheral visual fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600415. [PMID: 38979165 PMCID: PMC11230199 DOI: 10.1101/2024.06.24.600415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Foveal and peripheral vision are two distinct modes of visual processing essential for navigating the world. However, it remains unclear if they engage different neural mechanisms and circuits within the visual attentional system. Here, we trained macaques to perform a free-gaze visual search task using natural face and object stimuli and recorded a large number of 14588 visually responsive neurons from a broadly distributed network of brain regions involved in visual attentional processing. Foveal and peripheral units had substantially different proportions across brain regions and exhibited systematic differences in encoding visual information and visual attention. The spike-LFP coherence of foveal units was more extensively modulated by both attention and visual selectivity, thus indicating differential engagement of the attention and visual coding network compared to peripheral units. Furthermore, we delineated the interaction and coordination between foveal and peripheral processing for spatial attention and saccade selection. Finally, the search became more efficient with increasing target-induced desynchronization, and foveal and peripheral units exhibited different correlations between neural responses and search behavior. Together, the systematic differences between foveal and peripheral processing provide valuable insights into how the brain processes and integrates visual information from different regions of the visual field. Significance Statement This study investigates the systematic differences between foveal and peripheral vision, two crucial components of visual processing essential for navigating our surroundings. By simultaneously recording from a large number of neurons in the visual attentional neural network, we revealed substantial variations in the proportion and functional characteristics of foveal and peripheral units across different brain regions. We uncovered differential modulation of functional connectivity by attention and visual selectivity, elucidated the intricate interplay between foveal and peripheral processing in spatial attention and saccade selection, and linked neural responses to search behavior. Overall, our study contributes to a deeper understanding of how the brain processes and integrates visual information for active visual behaviors.
Collapse
|
6
|
Zhang 张艳歌 Y, Wang 王天 T, Dai 戴伟枫 W, Li 李洋 Y, Yang 杨祎 Y, Wu 武宇洁 Y, Huang 黄见操 J, Zhou 周婷婷 T, Xing 邢大军 D. Pupillary Responses Reflect Dynamic Changes in Multiple Cognitive Factors During Associative Learning in Primates. J Neurosci 2024; 44:e2141232024. [PMID: 38514179 PMCID: PMC11063815 DOI: 10.1523/jneurosci.2141-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Associative learning involves complex interactions of multiple cognitive factors. While adult subjects can articulate these factors verbally, for model animals such as macaques, we rely on behavioral outputs. In our study, we used pupillary responses as an alternative measure to capture these underlying cognitive changes. We recorded the dynamic changes in the pupils of three male macaques when they learned the associations between visual stimuli and reward sizes under the classical Pavlovian experimental paradigm. We found that during the long-term learning process, the gradual changes in the pupillary response reflect the changes in the cognitive state of the animals. The pupillary response can be explained by a linear combination of components corresponding to multiple cognitive factors. These components reflect the impact of visual stimuli on the pupils, the prediction of reward values associated with the visual stimuli, and the macaques' understanding of the current experimental reward rules. The changing patterns of these factors during interday and intraday learning clearly demonstrate the enhancement of current reward-stimulus association and the weakening of previous reward-stimulus association. Our study shows that the dynamic response of pupils can serve as an objective indicator to characterize the psychological changes of animals, understand their learning process, and provide important tools for exploring animal behavior during the learning process.
Collapse
Affiliation(s)
- Yange Zhang 张艳歌
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang 王天
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai 戴伟枫
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Li 李洋
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yi Yang 杨祎
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu 武宇洁
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jiancao Huang 黄见操
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tingting Zhou 周婷婷
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing 邢大军
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Chernoff CS, Hynes TJ, Schumacher JD, Ramaiah S, Avramidis DK, Mortazavi L, Floresco SB, Winstanley CA. Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacology (Berl) 2024; 241:767-783. [PMID: 38001266 DOI: 10.1007/s00213-023-06508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.
Collapse
Affiliation(s)
- Chloe S Chernoff
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK.
| | - Tristan J Hynes
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK
| | - Jackson D Schumacher
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of Concordia, Montreal, QC, Canada
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Mittelstadt JK, Kanold PO. Orbitofrontal cortex conveys stimulus and task information to the auditory cortex. Curr Biol 2023; 33:4160-4173.e4. [PMID: 37716349 PMCID: PMC10602585 DOI: 10.1016/j.cub.2023.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Auditory cortical neurons modify their response profiles in response to numerous external factors. During task performance, changes in primary auditory cortex (A1) responses are thought to be driven by top-down inputs from the orbitofrontal cortex (OFC), which may lead to response modification on a trial-by-trial basis. While OFC neurons respond to auditory stimuli and project to A1, the function of OFC projections to A1 during auditory tasks is unknown. Here, we observed the activity of putative OFC terminals in A1 in mice by using in vivo two-photon calcium imaging of OFC terminals under passive conditions and during a tone detection task. We found that behavioral activity modulates but is not necessary to evoke OFC terminal responses in A1. OFC terminals in A1 form distinct populations that exclusively respond to either the tone, reward, or error. Using tones against a background of white noise, we found that OFC terminal activity was modulated by the signal-to-noise ratio (SNR) in both the passive and active conditions and that OFC terminal activity varied with SNR, and thus task difficulty in the active condition. Therefore, OFC projections in A1 are heterogeneous in their modulation of auditory encoding and likely contribute to auditory processing under various auditory conditions.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Yun M, Nejime M, Kawai T, Kunimatsu J, Yamada H, Kim HR, Matsumoto M. Distinct roles of the orbitofrontal cortex, ventral striatum, and dopamine neurons in counterfactual thinking of decision outcomes. SCIENCE ADVANCES 2023; 9:eadh2831. [PMID: 37556536 PMCID: PMC10411892 DOI: 10.1126/sciadv.adh2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Individuals often assess past decisions by comparing what was gained with what would have been gained had they acted differently. Thoughts of past alternatives that counter what actually happened are called "counterfactuals." Recent theories emphasize the role of the prefrontal cortex in processing counterfactual outcomes in decision-making, although how subcortical regions contribute to this process remains to be elucidated. Here we report a clear distinction among the roles of the orbitofrontal cortex, ventral striatum and midbrain dopamine neurons in processing counterfactual outcomes in monkeys. Our findings suggest that actually gained and counterfactual outcome signals are both processed in the cortico-subcortical network constituted by these regions but in distinct manners and integrated only in the orbitofrontal cortex in a way to compare these outcomes. This study extends the prefrontal theory of counterfactual thinking and provides key insights regarding how the prefrontal cortex cooperates with subcortical regions to make decisions using counterfactual information.
Collapse
Affiliation(s)
- Mengxi Yun
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Masafumi Nejime
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Kawai
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jun Kunimatsu
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroshi Yamada
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - HyungGoo R. Kim
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
| | - Masayuki Matsumoto
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
10
|
Lupkin SM, McGinty VB. Monkeys exhibit human-like gaze biases in economic decisions. eLife 2023; 12:e78205. [PMID: 37497784 PMCID: PMC10465126 DOI: 10.7554/elife.78205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In economic decision-making individuals choose between items based on their perceived value. For both humans and nonhuman primates, these decisions are often carried out while shifting gaze between the available options. Recent studies in humans suggest that these shifts in gaze actively influence choice, manifesting as a bias in favor of the items that are viewed first, viewed last, or viewed for the overall longest duration in a given trial. This suggests a mechanism that links gaze behavior to the neural computations underlying value-based choices. In order to identify this mechanism, it is first necessary to develop and validate a suitable animal model of this behavior. To this end, we have created a novel value-based choice task for macaque monkeys that captures the essential features of the human paradigms in which gaze biases have been observed. Using this task, we identified gaze biases in the monkeys that were both qualitatively and quantitatively similar to those in humans. In addition, the monkeys' gaze biases were well-explained using a sequential sampling model framework previously used to describe gaze biases in humans-the first time this framework has been used to assess value-based decision mechanisms in nonhuman primates. Together, these findings suggest a common mechanism that can explain gaze-related choice biases across species, and open the way for mechanistic studies to identify the neural origins of this behavior.
Collapse
Affiliation(s)
- Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
- Behavioral and Neural Sciences Graduate Program, Rutgers UniversityNewarkUnited States
| | - Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
| |
Collapse
|
11
|
Wang ZY, Liu L, Liu Y. A multi-source behavioral and physiological recording system for cognitive assessment. Sci Rep 2023; 13:8149. [PMID: 37208418 DOI: 10.1038/s41598-023-35289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Cognitive assessment has a broad application prospect, including estimate of childhood neuro development and maturation, diagnosis of neurodegenerative diseases, and selection for special profession. With the development of computer technique and behavioral recording sensors, the method of cognitive assessment has been replaced from paper scale test to human-computer interaction. We can not only obtain the results of tasks, but also make it possible to acquire multiple behavioral and physiological data during the task. However, there is still a strong challenge of recording multi-source data synchronously during multi-dimensional cognitive assessments. Therefore, we built a multi-source cognitive assessment system can record multi-pattern behavioral and physiological data and feedback at different spatiotemporal levels. Under this system, we developed a multi-source diagnostic toolset for cognitive assessment, including eye tracking, hand movement, EEG and human-computer interaction data during the cognitive task. 238 participants with different mental disorders were assessed using this system. The results showed that our diagnostic toolset can be used to study the behavioral abnormalities of patients with mental disorders through the characteristics of multi-source data. Furthermore, this system can provide some objective diagnostic criteria such as behavioral characters and EEG features for diagnosis of mental disorders.
Collapse
Affiliation(s)
- Zi-Yang Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Kaskan PM, Nicholas MA, Dean AM, Murray EA. Attention to Stimuli of Learned versus Innate Biological Value Relies on Separate Neural Systems. J Neurosci 2022; 42:9242-9252. [PMID: 36319119 PMCID: PMC9761678 DOI: 10.1523/jneurosci.0925-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/25/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
The neural bases of attention, a set of neural processes that promote behavioral selection, is a subject of intense investigation. In humans, rewarded cues influence attention, even when those cues are irrelevant to the current task. Because the amygdala plays a role in reward processing, and the activity of amygdala neurons has been linked to spatial attention, we reasoned that the amygdala may be essential for attending to rewarded images. To test this possibility, we used an attentional capture task, which provides a quantitative measure of attentional bias. Specifically, we compared reaction times (RTs) of adult male rhesus monkeys with bilateral amygdala lesions and unoperated controls as they made a saccade away from a high- or low-value rewarded image to a peripheral target. We predicted that: (1) RTs will be longer for high- compared with low-value images, revealing attentional capture by rewarded stimuli; and (2) relative to controls, monkeys with amygdala lesions would exhibit shorter RT for high-value images. For comparison, we assessed the same groups of monkeys for attentional capture by images of predators and conspecifics, categories thought to have innate biological value. In performing the attentional capture task, all monkeys were slowed more by high-value relative to low-value rewarded images. Contrary to our prediction, amygdala lesions failed to disrupt this effect. When presented with images of predators and conspecifics, however, monkeys with amygdala lesions showed significantly diminished attentional capture relative to controls. Thus, separate neural pathways are responsible for allocating attention to stimuli with learned versus innate value.SIGNIFICANCE STATEMENT Valuable objects attract attention. The amygdala is known to contribute to reward processing and the encoding of object reward value. We therefore examined whether the amygdala is necessary for allocating attention to rewarded objects. For comparison, we assessed the amygdala's contribution to attending to objects with innate biological value: predators and conspecifics. We found that the macaque amygdala is necessary for directing attention to images with innate biological value, but not for directing attention to recently learned reward-predictive images. These findings indicate that the amygdala makes selective contributions to attending to valuable objects. The data are relevant to mental health disorders, such as social anxiety disorders and small animal phobias, that arise from biased attention to select categories of objects.
Collapse
Affiliation(s)
- Peter M Kaskan
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Mark A Nicholas
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Aaron M Dean
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Elisabeth A Murray
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Zhang W, Xie Y, Yang T. Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex. Nat Commun 2022; 13:6306. [PMID: 36273229 PMCID: PMC9588087 DOI: 10.1038/s41467-022-34084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
The orbitofrontal cortex (OFC) encodes value and plays a key role in value-based decision-making. However, the attentional modulation of the OFC's value encoding is poorly understood. We trained two monkeys to detect a luminance change at a cued location between a pair of visual stimuli, which were over-trained pictures associated with different amounts of juice reward and, thus, different reward salience. Both the monkeys' behavior and the dorsolateral prefrontal cortex neuronal activities indicated that the monkeys actively directed their spatial attention toward the cued stimulus during the task. However, the OFC's neuronal responses were dominated by the stimulus with higher reward salience and encoded its value. The value of the less salient stimulus was only weakly represented regardless of spatial attention. The results demonstrate that reward and spatial attention are distinctly represented in the prefrontal cortex and the OFC maintains a stable representation of reward salience minimally affected by attention.
Collapse
Affiliation(s)
- Wenyi Zhang
- grid.9227.e0000000119573309Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Xie
- grid.9227.e0000000119573309Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tianming Yang
- grid.9227.e0000000119573309Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
14
|
Pai J, Ogasawara T, Bromberg-Martin ES, Ogasawara K, Gereau RW, Monosov IE. Laser stimulation of the skin for quantitative study of decision-making and motivation. CELL REPORTS METHODS 2022; 2:100296. [PMID: 36160041 PMCID: PMC9499993 DOI: 10.1016/j.crmeth.2022.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Neuroeconomics studies how decision-making is guided by the value of rewards and punishments. But to date, little is known about how noxious experiences impact decisions. A challenge is the lack of an aversive stimulus that is dynamically adjustable in intensity and location, readily usable over many trials in a single experimental session, and compatible with multiple ways to measure neuronal activity. We show that skin laser stimulation used in human studies of aversion can be used for this purpose in several key animal models. We then use laser stimulation to study how neurons in the orbitofrontal cortex (OFC), an area whose many roles include guiding decisions among different rewards, encode the value of rewards and punishments. We show that some OFC neurons integrated the positive value of rewards with the negative value of aversive laser stimulation, suggesting that the OFC can play a role in more complex choices than previously appreciated.
Collapse
Affiliation(s)
- Julia Pai
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kei Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W. Gereau
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
15
|
Zha R, Li P, Liu Y, Alarefi A, Zhang X, Li J. The orbitofrontal cortex represents advantageous choice in the Iowa gambling task. Hum Brain Mapp 2022; 43:3840-3856. [PMID: 35476367 PMCID: PMC9294296 DOI: 10.1002/hbm.25887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 01/26/2023] Open
Abstract
A good‐based model, the central neurobiological model of economic decision‐making, proposes that the orbitofrontal cortex (OFC) represents binary choice outcome, that is, the chosen good. A good is defined by a group of determinants characterizing the conditions in which the commodity is offered, including commodity type, cost, risk, time delay, and ambiguity. Previous studies have found that the OFC represents the binary choice outcome in decision‐making tasks involving commodity type, cost, risk, and delay. Real‐life decisions are often complex and involve uncertainty, rewards, and penalties; however, whether the OFC represents binary choice outcomes in a complex decision‐making situation, for example, Iowa gambling task (IGT), remains unclear. Here, we propose that the OFC represents binary choice outcome, that is, advantageous choice versus disadvantageous choice, in the IGT. We propose two hypotheses: first, the activity pattern in the human OFC represents an advantageous choice; and second, choice induces an OFC‐related functional network. Using functional magnetic resonance imaging and advanced machine‐learning tools, we found that the OFC represented an advantageous choice in the IGT. The OFC representation of advantageous choice was related to decision‐making performance. Choice modulated the functional connectivity between the OFC and the superior medial gyrus. In conclusion, the OFC represents an advantageous choice during the IGT. In the framework of a good‐based model, the results extend the role of the OFC to complex decision‐making situation when making a binary choice.
Collapse
Affiliation(s)
- Rujing Zha
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Peng Li
- Department of Automation, School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Liu
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Abdulqawi Alarefi
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China.,Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, Anhui, China.,Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, Anhui, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, Anhui, China
| | - Jun Li
- Department of Automation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Gao L, Liu S, Gou L, Hu Y, Liu Y, Deng L, Ma D, Wang H, Yang Q, Chen Z, Liu D, Qiu S, Wang X, Wang D, Wang X, Ren B, Liu Q, Chen T, Shi X, Yao H, Xu C, Li CT, Sun Y, Li A, Luo Q, Gong H, Xu N, Yan J. Single-neuron projectome of mouse prefrontal cortex. Nat Neurosci 2022; 25:515-529. [PMID: 35361973 DOI: 10.1038/s41593-022-01041-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.
Collapse
Affiliation(s)
- Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lingfeng Gou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yachuang Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yanhe Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Li Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danyi Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qiaoqiao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qingxu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzhi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yangang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China. .,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.
| | - Ninglong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
17
|
Perkins AQ, Rich EL. Identifying identity and attributing value to attributes: reconsidering mechanisms of preference decisions. Curr Opin Behav Sci 2021; 41:98-105. [DOI: 10.1016/j.cobeha.2021.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhou J, Gardner MPH, Schoenbaum G. Is the core function of orbitofrontal cortex to signal values or make predictions? Curr Opin Behav Sci 2021; 41:1-9. [PMID: 33869678 PMCID: PMC8052096 DOI: 10.1016/j.cobeha.2021.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One dominant hypothesis about the function of the orbitofrontal cortex (OFC) is that the OFC signals the subjective values of possible outcomes to other brain areas for learning and decision making. This popular view generally neglects the fact that OFC is not necessary for simple value-based behavior (i.e., when values have been directly experienced). An alternative, emerging view suggests that OFC plays a more general role in representing structural information about the task or environment, derived from prior experience, and relevant to predicting behavioral outcomes, such as value. From this perspective, value signaling is simply one derivative of the core underlying function of OFC. New data in favor of both views have been accumulating rapidly. Here we review these new data in discussing the relative merits of these two ideas.
Collapse
Affiliation(s)
- Jingfeng Zhou
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore MD, USA
| | - Matthew P H Gardner
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore MD, USA
| | - Geoffrey Schoenbaum
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore MD, USA
| |
Collapse
|
19
|
Eldridge MAG, Hines BE, Murray EA. The visual prefrontal cortex of anthropoids: interaction with temporal cortex in decision making and its role in the making of "visual animals". Curr Opin Behav Sci 2021; 41:22-29. [PMID: 33796638 PMCID: PMC8009333 DOI: 10.1016/j.cobeha.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ventral prefrontal cortex (PFC) of primates-a region strongly implicated in decision making-receives highly processed visual sensory inputs from the inferior temporal cortex (ITC) and perirhinal cortex (PRC) and can therefore be considered visual PFC. Usually, the functions of temporal cortex and visual PFC have been discussed in separate literatures. By considering them together, we aim to clarify the ways in which fronto-temporal networks guide decision making. After discussing the ways in which visual PFC interacts with temporal cortex to promote decision making, we offer specific predictions about the selective roles of the ITC- and PRC-based fronto-temporal networks. Finally, we suggest that an increased reliance on visual PFC in anthropoid primates led to our emergence as 'visual' animals.
Collapse
Affiliation(s)
- Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| | - Brendan E Hines
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| | - Elisabeth A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Maisson DJN, Cash-Padgett TV, Wang MZ, Hayden BY, Heilbronner SR, Zimmermann J. Choice-relevant information transformation along a ventrodorsal axis in the medial prefrontal cortex. Nat Commun 2021; 12:4830. [PMID: 34376663 PMCID: PMC8355277 DOI: 10.1038/s41467-021-25219-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Choice-relevant brain regions in prefrontal cortex may progressively transform information about options into choices. Here, we examine responses of neurons in four regions of the medial prefrontal cortex as macaques performed two-option risky choices. All four regions encode economic variables in similar proportions and show similar putative signatures of key choice-related computations. We provide evidence to support a gradient of function that proceeds from areas 14 to 25 to 32 to 24. Specifically, we show that decodability of twelve distinct task variables increases along that path, consistent with the idea that regions that are higher in the anatomical hierarchy make choice-relevant variables more separable. We also show progressively longer intrinsic timescales in the same series. Together these results highlight the importance of the medial wall in choice, endorse a specific gradient-based organization, and argue against a modular functional neuroanatomy of choice.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Tyler V Cash-Padgett
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Maya Z Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
22
|
Hunt LT. Frontal circuit specialisations for decision making. Eur J Neurosci 2021; 53:3654-3671. [PMID: 33864305 DOI: 10.1111/ejn.15236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 11/29/2022]
Abstract
There is widespread consensus that distributed circuits across prefrontal and anterior cingulate cortex (PFC/ACC) are critical for reward-based decision making. The circuit specialisations of these areas in primates were likely shaped by their foraging niche, in which decision making is typically sequential, attention-guided and temporally extended. Here, I argue that in humans and other primates, PFC/ACC circuits are functionally specialised in two ways. First, microcircuits found across PFC/ACC are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. These properties provide the basis of a computational account of time-varying neural activity within PFC/ACC as a decision is being made. Second, the macrocircuit connections (to other brain areas) differ between distinct PFC/ACC cytoarchitectonic subregions. This variation in macrocircuit connections explains why PFC/ACC subregions make unique contributions to reward-based decision tasks and how these contributions are shaped by attention. They predict dissociable neural representations to emerge in orbitofrontal, anterior cingulate and dorsolateral prefrontal cortex during sequential attention-guided choice, as recently confirmed in neurophysiological recordings.
Collapse
Affiliation(s)
- Laurence T Hunt
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Abstract
Value signals in the brain are important for learning, decision-making, and orienting behavior toward relevant goals. Although they can play different roles in behavior and cognition, value representations are often considered to be uniform and static signals. Nonetheless, contextual and mixed representations of value have been widely reported. Here, we review the evidence for heterogeneity in value coding and dynamics in the orbitofrontal cortex. We argue that this diversity plays a key role in the representation of value itself and allows neurons to integrate value with other behaviorally relevant information. We also discuss modeling approaches that can dissociate potential functions of heterogeneous value codes and provide further insight into its importance in behavior and cognition. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Pierre Enel
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aster Q. Perkins
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erin L. Rich
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Purcell JR, Jahn A, Fine JM, Brown JW. Neural correlates of visual attention during risky decision evidence integration. Neuroimage 2021; 234:117979. [PMID: 33771695 PMCID: PMC8159858 DOI: 10.1016/j.neuroimage.2021.117979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022] Open
Abstract
Value-based decision-making is presumed to involve a dynamic integration process that supports assessing the potential outcomes of different choice options. Decision frameworks assume the value of a decision rests on both the desirability and risk surrounding an outcome. Previous work has highlighted neural representations of risk in the human brain, and their relation to decision choice. Key neural regions including the insula and anterior cingulate cortex (ACC) have been implicated in encoding the effects of risk on decision outcomes, including approach and avoidance. Yet, it remains unknown whether these regions are involved in the dynamic integration processes that precede and drive choice, and their relationship with ongoing attention. Here, we used concurrent fMRI and eye-tracking to discern neural activation related to visual attention preceding choice between sure-thing (i.e. safe) and risky gamble options. We found activation in both dorsal ACC (dACC) and posterior insula (PI) scaled in opposite directions with the difference in attention to risky rewards relative to risky losses. PI activation also differentiated foveations on both risky options (rewards and losses) relative to a sure-thing option. These findings point to ACC involvement in ongoing evaluation of risky but higher value options. The role of PI in risky outcomes points to a more general evaluative role in the decision-making that compares both safe and risky outcomes, irrespective of potential for gains or losses.
Collapse
Affiliation(s)
- John R Purcell
- Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA.
| | - Andrew Jahn
- Department of Psychology, University of Michigan, East Hall, 530 Church St, #1265 Ann Arbor, MI 48109, USA.
| | - Justin M Fine
- Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA.
| | - Joshua W Brown
- Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA.
| |
Collapse
|
25
|
Evidence accumulation for value computation in the prefrontal cortex during decision making. Proc Natl Acad Sci U S A 2020; 117:30728-30737. [PMID: 33199637 DOI: 10.1073/pnas.2019077117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key step of decision making is to determine the value associated with each option. The evaluation process often depends on the accumulation of evidence from multiple sources, which may arrive at different times. How evidence is accumulated for value computation in the brain during decision making has not been well studied. To address this problem, we trained rhesus monkeys to perform a decision-making task in which they had to make eye movement choices between two targets, whose reward probabilities had to be determined with the combined evidence from four sequentially presented visual stimuli. We studied the encoding of the reward probabilities associated with the stimuli and the eye movements in the orbitofrontal (OFC) and the dorsolateral prefrontal (DLPFC) cortices during the decision process. We found that the OFC neurons encoded the reward probability associated with individual pieces of evidence in the stimulus domain. Importantly, the representation of the reward probability in the OFC was transient, and the OFC did not encode the reward probability associated with the combined evidence from multiple stimuli. The computation of the combined reward probabilities was observed only in the DLPFC and only in the action domain. Furthermore, the reward probability encoding in the DLPFC exhibited an asymmetric pattern of mixed selectivity that supported the computation of the stimulus-to-action transition of reward information. Our results reveal that the OFC and the DLPFC play distinct roles in the value computation during evidence accumulation.
Collapse
|
26
|
Castegnetti G, Tzovara A, Khemka S, Melinščak F, Barnes GR, Dolan RJ, Bach DR. Representation of probabilistic outcomes during risky decision-making. Nat Commun 2020; 11:2419. [PMID: 32415145 PMCID: PMC7229012 DOI: 10.1038/s41467-020-16202-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Goal-directed behaviour requires prospectively retrieving and evaluating multiple possible action outcomes. While a plethora of studies suggested sequential retrieval for deterministic choice outcomes, it remains unclear whether this is also the case when integrating multiple probabilistic outcomes of the same action. We address this question by capitalising on magnetoencephalography (MEG) in humans who made choices in a risky foraging task. We train classifiers to distinguish MEG field patterns during presentation of two probabilistic outcomes (reward, loss), and then apply these to decode such patterns during deliberation. First, decoded outcome representations have a temporal structure, suggesting alternating retrieval of the outcomes. Moreover, the probability that one or the other outcome is being represented depends on loss magnitude, but not on loss probability, and it predicts the chosen action. In summary, we demonstrate decodable outcome representations during probabilistic decision-making, which are sequentially structured, depend on task features, and predict subsequent action.
Collapse
Affiliation(s)
- Giuseppe Castegnetti
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland.
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
- Department of Computer Science & Faculty of Medicine, University of Bern, Bern, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Saurabh Khemka
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
| | - Filip Melinščak
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing, University College London, London, UK
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing, University College London, London, UK
| |
Collapse
|
27
|
Orbitofrontal cortex is selectively activated in a primate model of attentional bias to cocaine cues. Neuropsychopharmacology 2020; 45:675-682. [PMID: 31461747 PMCID: PMC7021823 DOI: 10.1038/s41386-019-0499-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 01/13/2023]
Abstract
Attentional bias to drug-associated cues correlates with extent of current use, and risk of relapse among those attempting abstinence. Electroencephalogram (EEG) and functional imaging measures in clinical studies have previously investigated the neural basis of attentional bias, but the lack of animal models precluded investigation at the single-unit level. To complement results obtained from clinical studies, we have employed a non-human primate model of attentional bias to cocaine cues while simultaneously recording single-unit activity in cortical and striatal regions implicated in reward processing. Rhesus macaques conditioned to associate particular colors with cocaine or water reward performed an attentional bias task, in which those colors served as irrelevant distractors. Concurrently, multiple electrode arrays for recording single-unit activity were acutely implanted into the orbitofrontal cortex, anterior cingulate cortex, dorsal anterior striatum, and ventral striatum. As in clinical studies, attentional bias was indicated by elongated response times on trials with cocaine-associated distractors compared with trials with water-associated, or control unconditioned distractors. In both animals studied, across an unbiased sample of neurons, the orbitofrontal cortex differentiated distractor condition by the proportion of single-units activated, as well as by population response. In one of the two, the anterior cingulate cortex did as well, but neither striatal region did in either animal. These direct measures of single-unit activity in a primate model complement clinical imaging observations suggesting that cortical mechanisms, especially in orbitofrontal cortex, are likely involved in attentional bias to cocaine-associated environmental cues.
Collapse
|
28
|
Yoo SBM, Hayden BY. The Transition from Evaluation to Selection Involves Neural Subspace Reorganization in Core Reward Regions. Neuron 2020; 105:712-724.e4. [PMID: 31836322 PMCID: PMC7035164 DOI: 10.1016/j.neuron.2019.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/13/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
Economic choice proceeds from evaluation, in which we contemplate options, to selection, in which we weigh options and choose one. These stages must be differentiated so that decision makers do not proceed to selection before evaluation is complete. We examined responses of neurons in two core reward regions, orbitofrontal (OFC) and ventromedial prefrontal cortex (vmPFC), during two-option choice with asynchronous offer presentation. Our data suggest that neurons selective during the first (presumed evaluation) and second (presumed comparison and selection) offer epochs come from a single pool. Stage transition is accompanied by a shift toward orthogonality in the low-dimensional population response manifold. Nonetheless, the relative position of each option in driving responses in the population subspace is preserved. The orthogonalization we observe supports the hypothesis that the transition from evaluation to selection leads to reorganization of response subspace and suggests a mechanism by which value-related signals are prevented from prematurely driving choice.
Collapse
Affiliation(s)
- Seng Bum Michael Yoo
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Economic Decisions through Circuit Inhibition. Curr Biol 2019; 29:3814-3824.e5. [PMID: 31679936 DOI: 10.1016/j.cub.2019.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
Economic choices between goods are thought to rely on the orbitofrontal cortex (OFC), but the decision mechanisms remain poorly understood. To shed light on this fundamental issue, we recorded from the OFC of monkeys choosing between two juices offered sequentially. An analysis of firing rates across time windows revealed the presence of different groups of neurons similar to those previously identified under simultaneous offers. This observation suggested that economic decisions in the two modalities are formed in the same neural circuit. We then examined several hypotheses on the decision mechanisms. OFC neurons encoded good identities and values in a juice-based representation (labeled lines). Contrary to previous assessments, our data argued against the idea that decisions rely on mutual inhibition at the level of offer values. In fact, we showed that previous arguments for mutual inhibition were confounded by differences in value ranges. Instead, decisions seemed to involve mechanisms of circuit inhibition, whereby each offer value indirectly inhibited neurons encoding the opposite choice outcome. Our results reconcile a variety of previous findings and provide a general account for the neuronal underpinnings of economic choices.
Collapse
|
30
|
Visual fixation patterns during economic choice reflect covert valuation processes that emerge with learning. Proc Natl Acad Sci U S A 2019; 116:22795-22801. [PMID: 31636178 PMCID: PMC6842638 DOI: 10.1073/pnas.1906662116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Where we direct our gaze can have a big impact on what we choose. However, where we choose to gaze during the decision process is not well-characterized, despite the important role it plays. In our study, monkeys performed a simple decision-making experiment where they were free to look around a computer screen showing choice options. They then indicated their economic choice with a joystick movement. When choice options appeared, monkeys rapidly gazed toward more valuable and novel stimuli—suggesting there is a system that orients gaze toward important information. However, despite the gaze preference for novel stimuli, subjects did not prefer to choose them. This suggests the mechanisms governing value-guided attentional capture and value-guided choice are dissociable. Visual fixations play a vital role in decision making. Recent studies have demonstrated that the longer subjects fixate an option, the more likely they are to choose it. However, the role of evaluating stimuli covertly (i.e., without fixating them), and how covert evaluations determine where to subsequently fixate, remains relatively unexplored. Here, we trained monkeys to perform a decision-making task where they made binary choices between reward-predictive stimuli which were well-learned (“overtrained”), recently learned (“novel”), or a combination of both (“mixed”). Subjects were free to saccade around the screen and make a choice (via joystick response) at any time. Subjects rarely fixated both options, yet choice behavior was better explained by assuming the values of both stimuli governed choices. The first fixation latency was fast (∼150 ms) but, surprisingly, its direction was value-driven. This suggests covert evaluation of stimulus values prior to first saccade. This was particularly evident for overtrained stimuli. For novel stimuli, first fixations became increasingly value-driven throughout a behavioral session. However, this improvement lagged behind learning of accurate economic choices, suggesting separate processes governed their learning. Finally, mixed trials revealed a strong bias toward fixating the novel stimulus first but no bias toward choosing it. Our results suggest that the primate brain contains fast covert evaluation mechanisms for guiding fixations toward highly valuable and novel information. By employing such covert mechanisms, fixation behavior becomes dissociable from the value comparison processes that drive final choice. This implies that primates use separable decision systems for value-guided fixations and value-guided choice.
Collapse
|
31
|
Overt Attention toward Appetitive Cues Enhances Their Subjective Value, Independent of Orbitofrontal Cortex Activity. eNeuro 2019; 6:ENEURO.0230-19.2019. [PMID: 31554663 PMCID: PMC6825958 DOI: 10.1523/eneuro.0230-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Neural representations of value underlie many behaviors that are crucial for survival. Previously, we found that value representations in primate orbitofrontal cortex (OFC) are modulated by attention, specifically, by overt shifts of gaze toward or away from reward-associated visual cues (McGinty et al., 2016). Here, we investigate the influence of overt attention on behavior by asking how gaze shifts correlate with reward anticipatory responses and whether activity in OFC mediates this correlation. Macaque monkeys viewed pavlovian conditioned appetitive cues on a visual display, while the fraction of time they spent looking toward or away from the cues was measured using an eye tracker. Also measured during cue presentation were the reward anticipation, indicated by conditioned licking responses (CRs), and single-neuron activity in OFC. In general, gaze allocation predicted subsequent licking responses: the longer the monkeys spent looking at a cue at a given time point in a trial, the more likely they were to produce an anticipatory CR later in that trial, as if the subjective value of the cue were increased. To address neural mechanisms, mediation analysis measured the extent to which the gaze–CR correlation could be statistically explained by the concurrently recorded firing of OFC neurons. The resulting mediation effects were indistinguishable from chance. Therefore, while overt attention may increase the subjective value of reward-associated cues (as revealed by anticipatory behaviors), the underlying mechanism remains unknown, as does the functional significance of gaze-driven modulation of OFC value signals.
Collapse
|
32
|
DiNuzzo M, Mascali D, Moraschi M, Bussu G, Maugeri L, Mangini F, Fratini M, Giove F. Brain Networks Underlying Eye's Pupil Dynamics. Front Neurosci 2019; 13:965. [PMID: 31619948 PMCID: PMC6759985 DOI: 10.3389/fnins.2019.00965] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023] Open
Abstract
Phasic changes in eye’s pupil diameter have been repeatedly observed during cognitive, emotional and behavioral activity in mammals. Although pupil diameter is known to be associated with noradrenergic firing in the pontine Locus Coeruleus (LC), thus far the causal chain coupling spontaneous pupil dynamics to specific cortical brain networks remains unknown. In the present study, we acquired steady-state blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data combined with eye-tracking pupillometry from fifteen healthy subjects that were trained to maintain a constant attentional load. Regression analysis revealed widespread visual and sensorimotor BOLD-fMRI deactivations correlated with pupil diameter. Furthermore, we found BOLD-fMRI activations correlated with pupil diameter change rate within a set of brain regions known to be implicated in selective attention, salience, error-detection and decision-making. These regions included LC, thalamus, posterior cingulate cortex (PCC), dorsal anterior cingulate and paracingulate cortex (dACC/PaCC), orbitofrontal cortex (OFC), and right anterior insular cortex (rAIC). Granger-causality analysis performed on these regions yielded a complex pattern of interdependence, wherein LC and pupil dynamics were far apart in the network and separated by several cortical stages. Functional connectivity (FC) analysis revealed the ubiquitous presence of the superior frontal gyrus (SFG) in the networks identified by the brain regions correlated to the pupil diameter change rate. No significant correlations were observed between pupil dynamics, regional activation and behavioral performance. Based on the involved brain regions, we speculate that pupil dynamics reflects brain processing implicated in changes between self- and environment-directed awareness.
Collapse
Affiliation(s)
| | - Daniele Mascali
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Marta Moraschi
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Giorgia Bussu
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | | | | | - Michela Fratini
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,CNR Nanotec, Rome, Italy
| | - Federico Giove
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
33
|
Kuusinen V, Cesnaite E, Peräkylä J, Ogawa KH, Hartikainen KM. Orbitofrontal Lesion Alters Brain Dynamics of Emotion-Attention and Emotion-Cognitive Control Interaction in Humans. Front Hum Neurosci 2018; 12:437. [PMID: 30443211 PMCID: PMC6221981 DOI: 10.3389/fnhum.2018.00437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 11/14/2022] Open
Abstract
Patients with lesion to the orbitofrontal cortex (OFC) experience challenges in emotional control and emotion-guided behaviors. The OFC is known to participate in executive functions and attentional control of emotion and our previous research suggests OFC lesion alters the balance between voluntary and involuntary attention and cognitive control within the context of emotion. To better understand how OFC lesion affects the dynamics and interaction of these functions, we studied EEG and performance of 12 patients with lesion to the OFC and 11 control subjects with intact OFC in a Go/NoGo visual reaction time (RT) task with neutral targets and intervening threat-related emotional distractors (Executive RT Test). Event-related potentials (ERPs), specifically N2P3 peak-to-peak amplitude and the following late positive potential (LPP), were used to measure allocation of attention and cognitive control to emotional distractors. Task performance and Behavior Rating Inventory of Executive Functions—Adult version (BRIEF-A) scores were used to assess executive functions. As expected, the Control group showed increased N2P3 amplitude in the context of threat-related distractors, particularly over the right hemisphere, while LPP was not modulated by these distractors. In contrast, patients with OFC lesion showed no such impact of threat-related distractors on N2P3 amplitude but exhibited increased and prolonged left-lateralized impact of threat on LPP in the Go-condition. In NoGo-condition, the N2P3 amplitude was increased in both groups due to threat, but the impact was seen earlier, i.e., at the N2 peak in the OFC group and later at the P3 peak in Controls. The OFC group committed more errors in the Executive RT Test and reported more problems in BRIEF-A, thus both objective and subjective evidence for challenges in executive functions was obtained in patients with orbitofrontal lesion. Furthermore, the time-course of attention allocation and cognitive control towards task-irrelevant emotional stimuli was altered as evidenced by ERPs. We conclude that orbitofrontal lesion is associated with altered neural dynamics underlying the interaction of involuntary attention to emotion and cognitive control. These alterations in brain dynamics may underlie some of the challenges patients encounter in everyday life when emotional events interact with cognitive demands.
Collapse
Affiliation(s)
- Venla Kuusinen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Elena Cesnaite
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Keith H Ogawa
- Department of Psychology, Saint Mary's College of California, Moraga, CA, United States
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
34
|
Van Slooten JC, Jahfari S, Knapen T, Theeuwes J. How pupil responses track value-based decision-making during and after reinforcement learning. PLoS Comput Biol 2018; 14:e1006632. [PMID: 30500813 PMCID: PMC6291167 DOI: 10.1371/journal.pcbi.1006632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/12/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Cognition can reveal itself in the pupil, as latent cognitive processes map onto specific pupil responses. For instance, the pupil dilates when we make decisions and these pupil size fluctuations reflect decision-making computations during and after a choice. Surprisingly little is known, however, about how pupil responses relate to decisions driven by the learned value of stimuli. This understanding is important, as most real-life decisions are guided by the outcomes of earlier choices. The goal of this study was to investigate which cognitive processes the pupil reflects during value-based decision-making. We used a reinforcement learning task to study pupil responses during value-based decisions and subsequent decision evaluations, employing computational modeling to quantitatively describe the underlying cognitive processes. We found that the pupil closely tracks reinforcement learning processes independently across participants and across trials. Prior to choice, the pupil dilated as a function of trial-by-trial fluctuations in value beliefs about the to-be chosen option and predicted an individual's tendency to exploit high value options. After feedback a biphasic pupil response was observed, the amplitude of which correlated with participants' learning rates. Furthermore, across trials, early feedback-related dilation scaled with value uncertainty, whereas later constriction scaled with signed reward prediction errors. These findings show that pupil size fluctuations can provide detailed information about the computations underlying value-based decisions and the subsequent updating of value beliefs. As these processes are affected in a host of psychiatric disorders, our results indicate that pupillometry can be used as an accessible tool to non-invasively study the processes underlying ongoing reinforcement learning in the clinic.
Collapse
Affiliation(s)
- Joanne C. Van Slooten
- Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, Noord-Holland, The Netherlands
| | - Sara Jahfari
- Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, Noord-Holland, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Tomas Knapen
- Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, Noord-Holland, The Netherlands
- Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, Noord-Holland, The Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, Noord-Holland, The Netherlands
| |
Collapse
|
35
|
Balasubramani PP, Moreno-Bote R, Hayden BY. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice. Front Comput Neurosci 2018; 12:22. [PMID: 29643773 PMCID: PMC5882864 DOI: 10.3389/fncom.2018.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 01/03/2023] Open
Abstract
The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.
Collapse
Affiliation(s)
- Pragathi P. Balasubramani
- Brain and Cognitive Sciences, Center for Visual Science, Center for the Origins of Cognition, University of Rochester, Rochester, NY, United States
| | - Rubén Moreno-Bote
- Department of Information and Communications Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
- Serra Húnter Fellow Programme, University Pompeu Fabra, Barcelona, Spain
| | - Benjamin Y. Hayden
- Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minnesota, MN, United States
| |
Collapse
|