1
|
Sim M, Kim YG, Lee JH, Lee J. Antibiofilm Activities of Multiple Halogenated Pyrimidines Against Staphylococcus aureus. Int J Mol Sci 2024; 25:12830. [PMID: 39684543 DOI: 10.3390/ijms252312830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Staphylococcus aureus, prevalent in hospital and community settings, forms biofilms that are highly resistant to antibiotics and immune responses, complicating treatment and contributing to chronic infections. These challenges underscore the need for novel treatments that target biofilm formation and effectively reduce bacterial virulence. This study investigates the antibiofilm and antimicrobial efficacy of novel halogenated pyrimidine derivatives against S. aureus, focusing on three compounds identified as potent biofilm inhibitors: 2,4-dichloro-5-fluoropyrimidine (24DC5FP), 5-bromo-2,4-dichloro-7H-pyrrolo[2,3-d]pyrimidine (24DC5BPP), and 2,4-dichloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidine (24DC5IPP). The three active compounds are bacteriostatic. In particular, 24DC5FP at 5 µg/mL achieved a 95% reduction in hemolysis with a minimum inhibitory concentration (MIC) of 50 µg/mL. Interestingly, 24DC5FP increased cell size and produced wrinkled colonies. qRT-PCR analysis showed that 24DC5FP suppressed the gene expressions of agrA and RNAIII (quorum sensing regulator and effector), hla (α-hemolysin), nuc1 (nucleases nuc1), and saeR (S. aureus virulence regulator). These findings suggest that extensive halogenation enhances the antibiofilm and antivirulence activities of pyrimidine derivatives, offering a promising strategy for combatting S. aureus infections, including those resistant to conventional treatments.
Collapse
Affiliation(s)
- MinHwi Sim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Adedeji-Olulana AF, Wacnik K, Lafage L, Pasquina-Lemonche L, Tinajero-Trejo M, Sutton JAF, Bilyk B, Irving SE, Portman Ross CJ, Meacock OJ, Randerson SA, Beattie E, Owen DS, Florence J, Durham WM, Hornby DP, Corrigan RM, Green J, Hobbs JK, Foster SJ. Two codependent routes lead to high-level MRSA. Science 2024; 386:573-580. [PMID: 39480932 DOI: 10.1126/science.adn1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), in which acquisition of mecA [which encodes the cell wall peptidoglycan biosynthesis component penicillin-binding protein 2a (PBP2a)] confers resistance to β-lactam antibiotics, is of major clinical concern. We show that, in the presence of antibiotics, MRSA adopts an alternative mode of cell division and shows an altered peptidoglycan architecture at the division septum. PBP2a can replace the transpeptidase activity of the endogenous and essential PBP2 but not that of PBP1, which is responsible for the distinctive native septal peptidoglycan architecture. Successful division without PBP1 activity requires the alternative division mode and is enabled by several possible chromosomal potentiator (pot) mutations. MRSA resensitizing agents differentially interfere with the two codependent mechanisms required for high-level antibiotic resistance, which provides opportunities for new interventions.
Collapse
Affiliation(s)
| | - Katarzyna Wacnik
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Lucia Lafage
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laia Pasquina-Lemonche
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Mariana Tinajero-Trejo
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Joshua A F Sutton
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Bohdan Bilyk
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Sophie E Irving
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Callum J Portman Ross
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Oliver J Meacock
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Sam A Randerson
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Ewan Beattie
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - David S Owen
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - James Florence
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - William M Durham
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - David P Hornby
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Green
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Jamie K Hobbs
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Pinho MG, Foster SJ. Cell Growth and Division of Staphylococcus aureus. Annu Rev Microbiol 2024; 78:293-310. [PMID: 39565951 DOI: 10.1146/annurev-micro-041222-125931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.
Collapse
Affiliation(s)
- Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal;
| | - Simon J Foster
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom;
| |
Collapse
|
4
|
Baudoin M, Chouquet A, Nguyen M, Zapun A, Pérès B, Morlot C, Durmort C, Wong YS. To click or not to click for short pulse-labeling of the bacterial cell wall. RSC Adv 2024; 14:33133-33142. [PMID: 39434986 PMCID: PMC11492190 DOI: 10.1039/d4ra04945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
A method of choice to study the spatio-temporal dynamics of bacterial cell growth and division is to analyze the localization of cell wall synthesis regions by fluorescence microscopy. For this, nascent cell wall biopolymers need to be labeled with fluorescent reporters, like fluorescent d-alanines (FDAs) that can be incorporated into the peptidoglycan. To achieve high spatial and temporal resolution, dense, high-intensity fluorescence labeling must be obtained in the shortest possible time. However, modifications carried by d-Ala can hinder their uptake by the enzymes that incorporate them into the peptidoglycan, such as the d,d-transpeptidases. Conversely, these modifications can impede the elimination of the incorporated d-Ala derivatives by d,d-carboxypeptidases, making the labeling more persistent. In this context, we synthesized clickable d-Alas and tested their incorporation into the peptidoglycan using different labeling approaches, prior or after their conjugation to clickable fluorescent dyes through SPAAC reaction. Our data allow ranking of the d-Ala derivatives in terms of their ease of incorporation and resistance to trimming during one-step, "one-pot" two-step or sequential two-step labeling strategies. We further show that a hybrid "one-step" approach, in which a FDA is used in combination with clickable choline and fluorescent dye, enables two-color co-labeling of peptidoglycan and teichoic acids. Finally, we identify a strategy compatible with the cell fixation required for super-resolution microscopy, by combining one-step labeling with FDA and sequential two-step labeling with clickable choline and fluorescent dye, allowing to obtain two-color high-resolution images of peptidoglycan and teichoic acid synthesis regions.
Collapse
Affiliation(s)
| | - Anne Chouquet
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - Mai Nguyen
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS, DPM 38000 Grenoble France
| | - Cécile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - Claire Durmort
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | | |
Collapse
|
5
|
Ludwig K, Puls JS, Matos de Opitz CL, Innocenti P, Daniel JM, Bornikoel J, Arts M, Krannich S, Straetener J, Brajtenbach D, Henrichfreise B, Sass P, Mueller A, Martin NI, Brötz-Oesterhelt H, Kubitscheck U, Grein F, Schneider T. The Dual Mode of Antibacterial Action of the Synthetic Small Molecule DCAP Involves Lipid II Binding. J Am Chem Soc 2024; 146:24855-24862. [PMID: 39197836 PMCID: PMC11403595 DOI: 10.1021/jacs.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The synthetic small molecule DCAP is a chemically well-characterized compound with antibiotic activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens. Until now, its mechanism of action was proposed to rely exclusively on targeting the bacterial membrane, thereby causing membrane depolarization, and increasing membrane permeability (Eun et al. 2012, J. Am. Chem. Soc. 134 (28), 11322-11325; Hurley et al. 2015, ACS Med. Chem. Lett. 6, 466-471). Here, we show that the antibiotic activity of DCAP results from a dual mode of action that is more targeted and multifaceted than previously anticipated. Using microbiological and biochemical assays in combination with fluorescence microscopy, we provide evidence that DCAP interacts with undecaprenyl pyrophosphate-coupled cell envelope precursors, thereby blocking peptidoglycan biosynthesis and impairing cell division site organization. Our work discloses a concise model for the mode of action of DCAP which involves the binding to a specific target molecule to exert pleiotropic effects on cell wall biosynthetic and divisome machineries.
Collapse
Affiliation(s)
- Kevin
C. Ludwig
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jan-Samuel Puls
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Cruz L. Matos de Opitz
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Paolo Innocenti
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jan-Martin Daniel
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jan Bornikoel
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Melina Arts
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Sebastian Krannich
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Jan Straetener
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Dominik Brajtenbach
- Clausius-Institute
for Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Beate Henrichfreise
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Peter Sass
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), Partner Site
Tübingen, 72076 Tübingen, Germany
| | - Anna Mueller
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), Partner Site
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrich Kubitscheck
- Clausius-Institute
for Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
6
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2024; 121:e2401831121. [PMID: 38875147 PMCID: PMC11194595 DOI: 10.1073/pnas.2401831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
Affiliation(s)
- Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Melissa M. Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Marc A. Touraev
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Julia E. Page
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Sidney L. Shaw
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | | | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| |
Collapse
|
7
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575112. [PMID: 38328058 PMCID: PMC10849506 DOI: 10.1101/2024.01.10.575112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
|
8
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in Staphylococcus aureus. Nat Microbiol 2024; 9:801-813. [PMID: 38443581 PMCID: PMC10914604 DOI: 10.1038/s41564-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively. Transposon sequencing of the sorted populations identified more than 20 previously uncharacterized factors impacting these processes. Cells inactivated for one of these proteins, factor preventing extra Z-rings (FacZ, SAOUHSC_01855), showed aberrant membrane invaginations and multiple FtsZ cytokinetic rings. These phenotypes were suppressed in mutants lacking the conserved cell-division protein GpsB, which forms an interaction hub bridging envelope biogenesis factors with the cytokinetic ring in S. aureus. FacZ was found to interact directly with GpsB in vitro and in vivo. We therefore propose that FacZ is an envelope biogenesis factor that antagonizes GpsB function to prevent aberrant division events in S. aureus.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler A Sisley
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron Mychack
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Richard W Baker
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z Rudner
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Thomas G Bernhardt
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Jia Y, Chen W, Tang R, Zhang J, Liu X, Dong R, Hu F, Jiang X. Multi-armed antibiotics for Gram-positive bacteria. Cell Host Microbe 2023; 31:1101-1110.e5. [PMID: 37442098 DOI: 10.1016/j.chom.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Antibiotic resistance is a serious threat to public health. Here, we propose a multi-armed chemical scaffold (MACS) for antibiotic screening, which refers to multi-armed molecules (MAMs) consisting of a core unit and three or four arms, neither of which is active for pathogens. Based on a structure-activity relationship study of MAMs, we discover a class of multi-armed antibiotics (MAAs) with a core similar to ethylene (E), carbon atom (C), benzene (B), nitrogen atom (N), and triazine (T) and three or four 4-phenylbenzoic acid (PBA) arms, or a B core and three 4-vinylbenzoic acid (VBA) or 4-ethynylbenzoic acid (EBA) arms. They can selectively interact with Gram-positive bacteria and inhibit cell wall assembly by targeting the lipid carriers of cell wall biosynthesis. MAAs have excellent antibacterial activities against Gram-positive bacteria, including clinical multi-drug-resistant (MDR) isolates. Our study provides a chemical scaffold and identifies eight antibacterial lead compounds for the development of antibiotics.
Collapse
Affiliation(s)
- Yuexiao Jia
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P.R. China; Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P.R. China
| | - Rongbing Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Jiangjiang Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Ruihua Dong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P.R. China.
| |
Collapse
|
10
|
Xu L, Henriksen C, Mebus V, Guérillot R, Petersen A, Jacques N, Jiang JH, Derks RJE, Sánchez-López E, Giera M, Leeten K, Stinear TP, Oury C, Howden BP, Peleg AY, Frees D. A Clinically Selected Staphylococcus aureus clpP Mutant Survives Daptomycin Treatment by Reducing Binding of the Antibiotic and Adapting a Rod-Shaped Morphology. Antimicrob Agents Chemother 2023; 67:e0032823. [PMID: 37184389 PMCID: PMC10269151 DOI: 10.1128/aac.00328-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and β-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor Mebus
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Guérillot
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Jhih-Hang Jiang
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Rico J. E. Derks
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Elena Sánchez-López
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Kirsten Leeten
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. Identification of FacZ as a division site placement factor in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538170. [PMID: 37162900 PMCID: PMC10168275 DOI: 10.1101/2023.04.24.538170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for S. aureus mutants with defects in envelope integrity and cell division. We identified many known envelope biogenesis factors as well as a large collection of new factors with roles in this process. Mutants inactivated for one of the hits, the uncharacterized SAOUHSC_01855 protein, displayed aberrant membrane invaginations and multiple FtsZ cytokinetic ring structures. This factor is broadly distributed among Firmicutes, and its inactivation in B. subtilis similarly caused division and membrane defects. We therefore renamed the protein FacZ (Firmicute-associated coordinator of Z-rings). In S. aureus, inactivation of the conserved cell division protein GpsB suppressed the division and morphological defects of facZ mutants. Additionally, FacZ and GpsB were found to interact directly in a purified system. Thus, FacZ is a novel antagonist of GpsB function with a conserved role in controlling division site placement in S. aureus and other Firmicutes.
Collapse
Affiliation(s)
- Thomas M. Bartlett
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler A. Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard W. Baker
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z. Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Puls JS, Brajtenbach D, Schneider T, Kubitscheck U, Grein F. Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. SCIENCE ADVANCES 2023; 9:eade9023. [PMID: 36947615 PMCID: PMC10032595 DOI: 10.1126/sciadv.ade9023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bacterial cell wall biosynthesis is the target of many important antibiotics. Its spatiotemporal organization is closely coordinated with cell division. However, the role of peptidoglycan synthesis within cell division is not fully understood. Even less is known about the impact of antibiotics on the coordination of these two essential processes. Visualizing the essential cell division protein FtsZ and other key proteins in Staphylococcus aureus, we show that antibiotics targeting peptidoglycan synthesis arrest cell division within minutes of treatment. The glycopeptides vancomycin and telavancin completely inhibit septum constriction in all phases of cell division. The beta-lactam oxacillin stops division progress by preventing recruitment of the major peptidoglycan synthase PBP2 to the septum, revealing PBP2 as crucial for septum closure. Our work identifies cell division as key cellular target of these antibiotics and provides evidence that peptidoglycan synthesis is the essential driving force of septum constriction throughout cell division of S. aureus.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
13
|
Bryan E, Ferrer-González E, Sagong HY, Fujita J, Mark L, Kaul M, LaVoie EJ, Matsumura H, Pilch DS. Structural and Antibacterial Characterization of a New Benzamide FtsZ Inhibitor with Superior Bactericidal Activity and In Vivo Efficacy Against Multidrug-Resistant Staphylococcus aureus. ACS Chem Biol 2023; 18:629-642. [PMID: 36854145 PMCID: PMC10274580 DOI: 10.1021/acschembio.2c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant (MDR) bacterial pathogen of acute clinical significance. Resistance to current standard-of-care antibiotics, such as vancomycin and linezolid, among nosocomial and community-acquired MRSA clinical isolates is on the rise. This threat to global public health highlights the need to develop new antibiotics for the treatment of MRSA infections. Here, we describe a new benzamide FtsZ inhibitor (TXH9179) with superior antistaphylococcal activity relative to earlier-generation benzamides like PC190723 and TXA707. TXH9179 was found to be 4-fold more potent than TXA707 against a library of 55 methicillin-sensitive S. aureus (MSSA) and MRSA clinical isolates, including MRSA isolates resistant to vancomycin and linezolid. TXH9179 was also associated with a lower frequency of resistance relative to TXA707 in all but one of the MSSA and MRSA isolates examined, with the observed resistance being due to mutations in the ftsZ gene. TXH9179 induced changes in MRSA cell morphology, cell division, and FtsZ localization are fully consistent with its actions as a FtsZ inhibitor. Crystallographic studies demonstrate the direct interaction of TXH9179 with S. aureus FtsZ (SaFtsZ), while delineating the key molecular contacts that drive complex formation. TXH9179 was not associated with any mammalian cytotoxicity, even at a concentration 10-fold greater than that producing antistaphylococcal activity. In serum, the carboxamide prodrug of TXH9179 (TXH1033) is rapidly hydrolyzed to TXH9179 by serum acetylcholinesterases. Significantly, both intravenously and orally administered TXH1033 exhibited enhanced in vivo efficacy relative to the carboxamide prodrug of TXA707 (TXA709) in treating a mouse model of systemic (peritonitis) MRSA infection. Viewed as a whole, our results highlight TXH9179 as a promising new benzamide FtsZ inhibitor worthy of further development.
Collapse
Affiliation(s)
- Eric Bryan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Edgar Ferrer-González
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Hye Yeon Sagong
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, New Jersey 08852, United States
| | - Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lilly Mark
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, New Jersey 08852, United States
| | - Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Shiga 525-8577, Japan
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| |
Collapse
|
14
|
Sidders AE, Kedziora KM, Arts M, Daniel JM, de Benedetti S, Beam JE, Bui DT, Parsons JB, Schneider T, Rowe SE, Conlon BP. Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations. eLife 2023; 12:80246. [PMID: 36876902 PMCID: PMC10030119 DOI: 10.7554/elife.80246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.
Collapse
Affiliation(s)
- Ashelyn E Sidders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Bioinformatics and Analytics Research Collaborative, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Jan-Martin Daniel
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | | | - Jenna E Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Duyen T Bui
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joshua B Parsons
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Division of Infectious Diseases, Duke University, Durham, United States
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
15
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
16
|
Lund V, Gangotra H, Zhao Z, Sutton JAF, Wacnik K, DeMeester K, Liang H, Santiago C, Leimkuhler Grimes C, Jones S, Foster SJ. Coupling Novel Probes with Molecular Localization Microscopy Reveals Cell Wall Homeostatic Mechanisms in Staphylococcus aureus. ACS Chem Biol 2022; 17:3298-3305. [PMID: 36414253 PMCID: PMC9764285 DOI: 10.1021/acschembio.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Bacterial cell wall peptidoglycan is essential for viability, and its synthesis is targeted by antibiotics, including penicillin. To determine how peptidoglycan homeostasis controls cell architecture, growth, and division, we have developed novel labeling approaches. These are compatible with super-resolution fluorescence microscopy to examine peptidoglycan synthesis, hydrolysis, and the localization of the enzymes required for its biosynthesis (penicillin binding proteins (PBPs)). Synthesis of a cephalosporin-based fluorescent probe revealed a pattern of PBPs at the septum during division, supporting a model of dispersed peptidoglycan synthesis. Metabolic and hydroxylamine-based probes respectively enabled the synthesis of glycan strands and associated reducing termini of the peptidoglycan to be mapped. Foci and arcs of reducing termini appear as a result of both synthesis of glycan strands and glucosaminidase activity of the major peptidoglycan hydrolase, SagB. Our studies provide molecular level details of how essential peptidoglycan dynamics are controlled during growth and division.
Collapse
Affiliation(s)
- Victoria
A. Lund
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Haneesh Gangotra
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Zhen Zhao
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Joshua A. F. Sutton
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katarzyna Wacnik
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kristen DeMeester
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Hai Liang
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia Santiago
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Simon Jones
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Simon J. Foster
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
17
|
The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis. Commun Biol 2022; 5:1228. [DOI: 10.1038/s42003-022-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractBacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.
Collapse
|
18
|
Lamanna MM, Manzoor I, Joseph M, Ye ZA, Benedet M, Zanardi A, Ren Z, Wang X, Massidda O, Tsui HT, Winkler ME. Roles of RodZ and class A PBP1b in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoid-shaped cells of Streptococcus pneumoniae D39. Mol Microbiol 2022; 118:336-368. [PMID: 36001060 PMCID: PMC9804626 DOI: 10.1111/mmi.14969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023]
Abstract
RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.
Collapse
Affiliation(s)
- Melissa M. Lamanna
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Irfan Manzoor
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Merrin Joseph
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Ziyun A. Ye
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessia Zanardi
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Zhongqing Ren
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Xindan Wang
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Ho‐Ching T. Tsui
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Malcolm E. Winkler
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
19
|
Zhang C, Reymond L, Rutschmann O, Meyer MA, Denereaz J, Qiao J, Ryckebusch F, Griffié J, Stepp WL, Manley S. Fluorescent d-Amino Acids for Super-resolution Microscopy of the Bacterial Cell Wall. ACS Chem Biol 2022; 17:2418-2424. [PMID: 35994360 DOI: 10.1021/acschembio.2c00496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent d-amino acids (FDAAs) have previously been developed to enable in situ highlighting of locations of bacterial cell wall growth. Most bacterial cells lie at the edge of the diffraction limit of visible light; thus, resolving the precise details of peptidoglycan (PG) biosynthesis requires super-resolution microscopy after probe incorporation. Single molecule localization microscopy (SMLM) has stringent requirements on the fluorophore photophysical properties and therefore has remained challenging in this context. Here, we report the synthesis and characterization of new FDAAs compatible with one-step labeling and SMLM imaging. We demonstrate the incorporation of our probes and their utility for visualizing PG at the nanoscale in Gram-negative, Gram-positive, and mycobacteria species. This improved FDAA toolkit will endow researchers with a nanoscale perspective on the spatial distribution of PG biosynthesis for a broad range of bacterial species.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Luc Reymond
- Biomolecular Screening Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ophélie Rutschmann
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mischa A Meyer
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland.,Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julien Denereaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Jiangtao Qiao
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Faustine Ryckebusch
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Juliette Griffié
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Willi L Stepp
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
20
|
Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division. mBio 2022; 13:e0066922. [PMID: 35703435 PMCID: PMC9426605 DOI: 10.1128/mbio.00669-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bacterial cell division is a complex process requiring the coordination of multiple components to allow the appropriate spatial and temporal control of septum formation and cell scission. Peptidoglycan (PG) is the major structural component of the septum, and our recent studies in the human pathogen Staphylococcus aureus have revealed a complex, multistage PG architecture that develops during septation. Penicillin-binding proteins (PBPs) are essential for the final steps of PG biosynthesis; their transpeptidase activity links the peptide side chains of nascent glycan strands. PBP1 is required for cell division in S. aureus, and here, we demonstrate that it has multiple essential functions associated with its enzymatic activity and as a regulator of division. Loss of PBP1, or just its C-terminal PASTA domains, results in cessation of division at the point of septal plate formation. The PASTA domains can bind PG and thereby potentially coordinate the cell division process. The transpeptidase activity of PBP1 is also essential, but its loss leads to a strikingly different phenotype of thickened and aberrant septa, which is phenocopied by the morphological effects of adding the PBP1-specific β-lactam, meropenem. Together, these results lead to a model for septal PG synthesis where PBP1 enzyme activity is required for the characteristic architecture of the septum and PBP1 protein molecules enable the formation of the septal plate.
Collapse
|
21
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
22
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
23
|
Abstract
Cell division and cell wall synthesis in staphylococci need to be precisely coordinated and controlled to allow the cell to multiply while maintaining its nearly spherical shape. The mechanisms ensuring correct placement of the division plane and synthesis of new cell wall have been studied intensively. However, hitherto unknown factors and proteins are likely to play key roles in this complex interplay. Here, we identified and investigated a protein with a major influence on cell morphology in Staphylococcus aureus. The protein, named SmdA (for staphylococcal morphology determinant A), is a membrane protein with septum-enriched localization. By CRISPRi knockdown and overexpression combined with different microscopy techniques, we demonstrated that proper levels of SmdA were necessary for cell division, including septum formation and cell splitting. We also identified conserved residues in SmdA that were critical for its functionality. Pulldown and bacterial two-hybrid interaction experiments showed that SmdA interacted with several known cell division and cell wall synthesis proteins, including penicillin-binding proteins (PBPs) and EzrA. Notably, SmdA also affected susceptibility to cell wall targeting antibiotics, particularly in methicillin-resistant S. aureus (MRSA). Together, our results showed that S. aureus was dependent on balanced amounts of membrane attached SmdA to carry out proper cell division.
Collapse
|
24
|
Ithurbide S, Gribaldo S, Albers SV, Pende N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol 2022; 30:665-678. [PMID: 35246355 DOI: 10.1016/j.tim.2022.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Compared with the extensive knowledge on cell division in model eukaryotes and bacteria, little is known about how archaea divide. Interestingly, both endosomal sorting complex required for transport (ESCRT)-based and FtsZ-based cell division systems are found in members of the Archaea. In the past couple of years, several studies have started to shed light on FtsZ-based cell division processes in members of the Euryarchaeota. In this review we highlight recent findings in this emerging field of research. We present current knowledge of the cell division machinery of halophiles which relies on two FtsZ proteins, and we compare it with that of methanobacteria, which relies on only one FtsZ. Finally, we discuss how these differences relate to the distinct cell envelopes of these two archaeal model systems.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
25
|
Sorzabal-Bellido I, Barbieri L, Beckett AJ, Prior IA, Susarrey-Arce A, Tiggelaar RM, Fothergill J, Raval R, Diaz Fernandez YA. Effect of Local Topography on Cell Division of Staphylococcus spp. NANOMATERIALS 2022; 12:nano12040683. [PMID: 35215010 PMCID: PMC8877970 DOI: 10.3390/nano12040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.
Collapse
Affiliation(s)
- Ioritz Sorzabal-Bellido
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
| | - Luca Barbieri
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK;
| | - Alison J. Beckett
- Biomedical Electron Microscopy Unit, University of Liverpool, Liverpool L69 3BX, UK; (A.J.B.); (I.A.P.)
| | - Ian A. Prior
- Biomedical Electron Microscopy Unit, University of Liverpool, Liverpool L69 3BX, UK; (A.J.B.); (I.A.P.)
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Roald M. Tiggelaar
- NanoLab Cleanroom, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Joanne Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK;
| | - Rasmita Raval
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
- Correspondence: (R.R.); (Y.A.D.F.)
| | - Yuri A. Diaz Fernandez
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
- Correspondence: (R.R.); (Y.A.D.F.)
| |
Collapse
|
26
|
Metabolic biorthogonal labeling and dSTORM imaging of peptidoglycan synthesis in Streptococcus pneumoniae. STAR Protoc 2021; 2:101006. [PMID: 34977669 PMCID: PMC8683770 DOI: 10.1016/j.xpro.2021.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence microscopy is a method of choice for studying peptidoglycan assembly, but it presents two major challenges: the peptidoglycan must be labeled with a probe that will not perturb the physiological process, and the spatial resolution must reach the nanometer scale to reveal fine details of the synthesis process. This protocol meets both challenges by combining biorthogonal metabolic labeling of peptidoglycan in Streptococcus pneumoniae with super-resolution fluorescence microscopy (dSTORM), also providing cues to adapt it to other bacteria. For complete details on the use and execution of this protocol, please refer to Trouve et al. (2021). Peptidoglycan can be labeled with a clickable D-Ala-D-Ala dipeptide The labeled peptidoglycan can be conjugated to a clickable Alexa Fluor 647 dye Fluorescently labeled peptidoglycan can be observed at 30-nm resolution by dSTORM
Collapse
|
27
|
Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics. Proc Natl Acad Sci U S A 2021; 118:2106022118. [PMID: 34716264 PMCID: PMC8612353 DOI: 10.1073/pnas.2106022118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.
Collapse
|
28
|
Tank RG, Lund VA, Kumar S, Turner RD, Lafage L, Pasquina Lemonche L, Bullough PA, Cadby A, Foster SJ, Hobbs JK. Correlative Super-Resolution Optical and Atomic Force Microscopy Reveals Relationships Between Bacterial Cell Wall Architecture and Synthesis in Bacillus subtilis. ACS NANO 2021; 15:16011-16018. [PMID: 34533301 PMCID: PMC8552488 DOI: 10.1021/acsnano.1c04375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding how bacteria grow and divide requires insight into both the molecular-level dynamics of ultrastructure and the chemistry of the constituent components. Atomic force microscopy (AFM) can provide near molecular resolution images of biological systems but typically provides limited chemical information. Conversely, while super-resolution optical microscopy allows localization of particular molecules and chemistries, information on the molecular context is difficult to obtain. Here, we combine these approaches into STORMForce (stochastic optical reconstruction with atomic force microscopy) and the complementary SIMForce (structured illumination with atomic force microscopy), to map the synthesis of the bacterial cell wall structural macromolecule, peptidoglycan, during growth and division in the rod-shaped bacterium Bacillus subtilis. Using "clickable" d-amino acid incorporation, we fluorescently label and spatially localize a short and controlled period of peptidoglycan synthesis and correlate this information with high-resolution AFM of the resulting architecture. During division, septal synthesis occurs across its developing surface, suggesting a two-stage process with incorporation at the leading edge and with considerable in-filling behind. During growth, the elongation of the rod occurs through bands of synthesis, spaced by ∼300 nm, and corresponds to denser regions of the internal cell wall as revealed by AFM. Combining super-resolution optics and AFM can provide insights into the synthesis processes that produce the complex architectures of bacterial structural biopolymers.
Collapse
Affiliation(s)
- Raveen
K. G. Tank
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Victoria A. Lund
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Sandip Kumar
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert D. Turner
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Computer Science, University of Sheffield, Sheffield, S1 4DP, United Kingdom
| | - Lucia Lafage
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Laia Pasquina Lemonche
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Per A. Bullough
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ashley Cadby
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Simon J. Foster
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jamie K. Hobbs
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
29
|
Martínez-Caballero S, Mahasenan KV, Kim C, Molina R, Feltzer R, Lee M, Bouley R, Hesek D, Fisher JF, Muñoz IG, Chang M, Mobashery S, Hermoso JA. Integrative structural biology of the penicillin-binding protein-1 from Staphylococcus aureus, an essential component of the divisome machinery. Comput Struct Biotechnol J 2021; 19:5392-5405. [PMID: 34667534 PMCID: PMC8493512 DOI: 10.1016/j.csbj.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
The penicillin-binding proteins are the enzyme catalysts of the critical transpeptidation crosslinking polymerization reaction of bacterial peptidoglycan synthesis and the molecular targets of the penicillin antibiotics. Here, we report a combined crystallographic, small-angle X-ray scattering (SAXS) in-solution structure, computational and biophysical analysis of PBP1 of Staphylococcus aureus (saPBP1), providing mechanistic clues about its function and regulation during cell division. The structure reveals the pedestal domain, the transpeptidase domain, and most of the linker connecting to the "penicillin-binding protein and serine/threonine kinase associated" (PASTA) domains, but not its two PASTA domains, despite their presence in the construct. To address this absence, the structure of the PASTA domains was determined at 1.5 Å resolution. Extensive molecular-dynamics simulations interpret the PASTA domains of saPBP1 as conformationally mobile and separated from the transpeptidase domain. This conclusion was confirmed by SAXS experiments on the full-length protein in solution. A series of crystallographic complexes with β-lactam antibiotics (as inhibitors) and penta-Gly (as a substrate mimetic) allowed the molecular characterization of both inhibition by antibiotics and binding for the donor and acceptor peptidoglycan strands. Mass-spectrometry experiments with synthetic peptidoglycan fragments revealed binding by PASTA domains in coordination with the remaining domains. The observed mobility of the PASTA domain in saPBP1 could play a crucial role for in vivo interaction with its glycosyltransferase partner in the membrane or with other components of the divisome machinery, as well as for coordination of transpeptidation and polymerization processes in the bacterial divisome.
Collapse
Affiliation(s)
- Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Rhona Feltzer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Renee Bouley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Inés G Muñoz
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| |
Collapse
|
30
|
Gibson JF, Pidwill GR, Carnell OT, Surewaard BGJ, Shamarina D, Sutton JAF, Jeffery C, Derré-Bobillot A, Archambaud C, Siggins MK, Pollitt EJG, Johnston SA, Serror P, Sriskandan S, Renshaw SA, Foster SJ. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog 2021; 17:e1009880. [PMID: 34529737 PMCID: PMC8478205 DOI: 10.1371/journal.ppat.1009880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection. S. aureus is a commensal inhabitant of the human skin and nares. However, it can cause serious diseases if it is able to breach our protective barriers such as the skin, often via wounds or surgery. If infection occurs via a wound, this initial inoculum contains both the pathogen, other members of the microflora and also wider environmental microbes. We have previously described “augmentation”, whereby this other non-pathogenic material can enhance the ability of S. aureus to lead to a serious disease outcome. Here we have determined the breadth of augmenting material and elucidated the cellular and molecular basis for its activity. Augmentation occurs via shielding of S. aureus from the direct bactericidal effects of reactive oxygen species produced by macrophages. This initial protection enables the effective establishment of S. aureus infection. Understanding augmentation not only explains an important facet of the interaction of S. aureus with our innate immune system, but also provides a platform for the development of novel prophylaxis approaches.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Bas G. J. Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Charlotte Jeffery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthew K. Siggins
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eric J. G. Pollitt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Simon A. Johnston
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| |
Collapse
|
31
|
Shepherd JW, Lecinski S, Wragg J, Shashkova S, MacDonald C, Leake MC. Molecular crowding in single eukaryotic cells: Using cell environment biosensing and single-molecule optical microscopy to probe dependence on extracellular ionic strength, local glucose conditions, and sensor copy number. Methods 2021; 193:54-61. [PMID: 33157192 PMCID: PMC7612245 DOI: 10.1016/j.ymeth.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
The physical and chemical environment inside cells is of fundamental importance to all life but has traditionally been difficult to determine on a subcellular basis. Here we combine cutting-edge genomically integrated FRET biosensing to readout localized molecular crowding in single live yeast cells. Confocal microscopy allows us to build subcellular crowding heatmaps using ratiometric FRET, while whole-cell analysis demonstrates crowding is reduced when yeast is grown in elevated glucose concentrations. Simulations indicate that the cell membrane is largely inaccessible to these sensors and that cytosolic crowding is broadly uniform across each cell over a timescale of seconds. Millisecond single-molecule optical microscopy was used to track molecules and obtain brightness estimates that enabled calculation of crowding sensor copy numbers. The quantification of diffusing molecule trajectories paves the way for correlating subcellular processes and the physicochemical environment of cells under stress.
Collapse
Affiliation(s)
- Jack W Shepherd
- Department of Physics, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom.
| | - Sarah Lecinski
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - Jasmine Wragg
- School of Natural Sciences, University of York, York YO10 5DD, United Kingdom
| | - Sviatlana Shashkova
- Department of Physics, University of York, York YO10 5DD, United Kingdom; Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Chris MacDonald
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
32
|
Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant Staphylococcus aureus. J Bacteriol 2021; 203:e0020421. [PMID: 34031040 DOI: 10.1128/jb.00204-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen of acute clinical importance. Combination treatment with an FtsZ inhibitor potentiates the activity of penicillin binding protein (PBP)-targeting β-lactam antibiotics against MRSA. To explore the mechanism underlying this synergistic behavior, we examined the impact of treatment with the FtsZ inhibitor TXA707 on the spatial localization of the five PBP proteins expressed in MRSA. In the absence of drug treatment, PBP1, PBP2, PBP3, and PBP4 colocalize with FtsZ at the septum, contributing to new cell wall formation. In contrast, PBP2a localizes to distinct foci along the cell periphery. Upon treatment with TXA707, septum formation becomes disrupted, and FtsZ relocalizes away from midcell. PBP1 and PBP3 remain significantly colocalized with FtsZ, while PBP2, PBP4, and PBP2a localize away from FtsZ to specific sites along the periphery of the enlarged cells. We also examined the impact on PBP2a and PBP2 localization of treatment with β-lactam antibiotic oxacillin alone and in synergistic combination with TXA707. Significantly, PBP2a localizes to the septum in approximately 15% of the oxacillin-treated cells, a behavior that likely contributes to the β-lactam resistance of MRSA. Combination treatment with TXA707 causes both PBP2a and PBP2 to localize in malformed septum-like structures. Our collective results suggest that PBP2, PBP4, and PBP2a may function collaboratively in peripheral cell wall repair and maintenance in response to FtsZ inhibition by TXA707. Cotreatment with oxacillin appears to reduce the availability of PBP2a to assist in this repair, thereby rendering the MRSA cells more susceptible to the β-lactam. IMPORTANCE MRSA is a multidrug-resistant bacterial pathogen of acute clinical importance, infecting many thousands of individuals globally each year. The essential cell division protein FtsZ has been identified as an appealing target for the development of new drugs to combat MRSA infections. Through synergistic actions, FtsZ-targeting agents can sensitize MRSA to antibiotics like the β-lactams that would otherwise be ineffective. This study provides key insights into the mechanism underlying this synergistic behavior as well as MRSA resistance to β-lactam drugs. The results of this work will help guide the identification and optimization of combination drug regimens that can effectively treat MRSA infections and reduce the potential for future resistance.
Collapse
|
33
|
Leake MC. Correlative approaches in single-molecule biophysics: A review of the progress in methods and applications. Methods 2021; 193:1-4. [PMID: 34171486 DOI: 10.1016/j.ymeth.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here, we discuss a collection of cutting-edge techniques and applications in use today by some of the leading experts in the field of correlative approaches in single-molecule biophysics. A key difference in emphasis, compared with traditional single-molecule biophysics approaches detailed previously, is on the emphasis of the development and use of complex methods which explicitly combine multiple approaches to increase biological insights at the single-molecule level. These so-called correlative single-molecule biophysics methods rely on multiple, orthogonal tools and analysis, as opposed to any one single driving technique. Importantly, they span both in vivo and in vitro biological systems as well as the interfaces between theory and experiment in often highly integrated ways, very different to earlier traditional non-integrative approaches. The first applications of correlative single-molecule methods involved adaption of a range of different experimental technologies to the same biological sample whose measurements were synchronised. However, now we find a greater flora of integrated methods emerging that include approaches applied to different samples at different times and yet still permit useful molecular-scale correlations to be performed. The resultant findings often enable far greater precision of length and time scales of measurements, and a more nuanced understanding of the interplay between different processes in the same cell. Many new correlative single-molecule biophysics techniques also include more complex, physiologically relevant approaches as well as an increasing number that combine of approaches advanced computational methods and mathematical analysis with experimental tools. Here, we review the motivation behind the development of correlative single-molecule microscopy methods, its history and recent progress in the field.
Collapse
Affiliation(s)
- Mark C Leake
- Department of Physics, University of York, UK; Department of Biology, University of York, UK
| |
Collapse
|
34
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
35
|
Straume D, Piechowiak KW, Kjos M, Håvarstein LS. Class A PBPs: It is time to rethink traditional paradigms. Mol Microbiol 2021; 116:41-52. [PMID: 33709487 DOI: 10.1111/mmi.14714] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Until recently, class A penicillin-binding proteins (aPBPs) were the only enzymes known to catalyze glycan chain polymerization from lipid II in bacteria. Hence, the discovery of two novel lipid II polymerases, FtsW and RodA, raises new questions and has consequently received a lot of attention from the research community. FtsW and RodA are essential and highly conserved members of the divisome and elongasome, respectively, and work in conjunction with their cognate class B PBPs (bPBPs) to synthesize the division septum and insert new peptidoglycan into the lateral cell wall. The identification of FtsW and RodA as peptidoglycan glycosyltransferases has raised questions regarding the role of aPBPs in peptidoglycan synthesis and fundamentally changed our understanding of the process. Despite their dethronement, aPBPs are essential in most bacteria. So, what is their function? In this review, we discuss recent progress in answering this question and present our own views on the topic.
Collapse
Affiliation(s)
- Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
36
|
Gonik E, Rodríguez Sartori D, David Gara P, Miñán A, Fernández Lorenzo de Mele M, Gonzalez MC. Staphylococcus aureus biofilm eradication by the synergistic effect exerted by PEG-coated silicon dots immobilized in silica films and light irradiation. NANOTECHNOLOGY 2021; 32:095105. [PMID: 33137803 DOI: 10.1088/1361-6528/abc6dd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immobilization of PEG-covered silicon dots, PEGSiDs, on glass substrates was performed following a simple strategy involving particle embedding by a sol-gel process forming a silica film on glass slides. The obtained films, denoted as fSiO x -PEGSiD, constitute a water-wettable, strongly supported, photoluminescent glass coating. The films showed high capacity for photosensitizing singlet oxygen (1O2) in the UVA when immersed in water. Staphylococcus aureus colonies formed on fSiO x -PEGSiDs modified glasses revealed the inhibition of bacterial adhesion and bacterial growth leading to the formation of loosely-packed and smaller S. aureus colonies. Upon 350 nm light irradiation of the biofilmed fSiO x -PEGSiDs -modified glasses, S. aureus growth was inhibited and bacteria killed reducing the number of living bacteria by three orders of magnitude. Eradication of attached bacteria was achieved by the synergistic effect exerted by a less adherent fSiO x -PEGSiDs surface that inhibits biofilm formation and the ability of the surface to photosensitize 1O2 to kill bacteria.
Collapse
Affiliation(s)
- Eduardo Gonik
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional deInvestigaciones Científicas y Técnicas (CONICET), Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina
| | - Damián Rodríguez Sartori
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | - Pedro David Gara
- Centro de Investigaciones Ópticas (CONICET-CIC-UNLP), C.C.3 (1897) Gonnet, Bs. As., Argentina and Dpto. de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | - Mónica Fernández Lorenzo de Mele
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata, (1900) La Plata, Argentina
| | - Mónica C Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| |
Collapse
|
37
|
Perez AJ, Boersma MJ, Bruce KE, Lamanna MM, Shaw SL, Tsui HCT, Taguchi A, Carlson EE, VanNieuwenhze MS, Winkler ME. Organization of peptidoglycan synthesis in nodes and separate rings at different stages of cell division of Streptococcus pneumoniae. Mol Microbiol 2020; 115:1152-1169. [PMID: 33269494 DOI: 10.1111/mmi.14659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid-shaped Streptococcus pneumoniae (Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examined Spn cells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D-SIM (structured-illumination microscopy). Labeling with fluorescent D-amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin-binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading-edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA-marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced "nodes" of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Michael J Boersma
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Melissa M Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Atsushi Taguchi
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
38
|
Sierra R, Prados J, Panasenko OO, Andrey DO, Fleuchot B, Redder P, Kelley WL, Viollier PH, Renzoni A. Insights into the global effect on Staphylococcus aureus growth arrest by induction of the endoribonuclease MazF toxin. Nucleic Acids Res 2020; 48:8545-8561. [PMID: 32735661 PMCID: PMC7470975 DOI: 10.1093/nar/gkaa617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
A crucial bacterial strategy to avoid killing by antibiotics is to enter a growth arrested state, yet the molecular mechanisms behind this process remain elusive. The conditional overexpression of mazF, the endoribonuclease toxin of the MazEF toxin–antitoxin system in Staphylococcus aureus, is one approach to induce bacterial growth arrest, but its targets remain largely unknown. We used overexpression of mazF and high-throughput sequence analysis following the exact mapping of non-phosphorylated transcriptome ends (nEMOTE) technique to reveal in vivo toxin cleavage sites on a global scale. We obtained a catalogue of MazF cleavage sites and unearthed an extended MazF cleavage specificity that goes beyond the previously reported one. We correlated transcript cleavage and abundance in a global transcriptomic profiling during mazF overexpression. We observed that MazF affects RNA molecules involved in ribosome biogenesis, cell wall synthesis, cell division and RNA turnover and thus deliver a plausible explanation for how mazF overexpression induces stasis. We hypothesize that autoregulation of MazF occurs by directly modulating the MazEF operon, such as the rsbUVW genes that regulate the sigma factor SigB, including an observed cleavage site on the MazF mRNA that would ultimately play a role in entry and exit from bacterial stasis.
Collapse
Affiliation(s)
- Roberto Sierra
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Olesya O Panasenko
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland
| | - Diego O Andrey
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Betty Fleuchot
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Redder
- Centre de Biologie Intégrative, Université de Toulouse III, Toulouse 31400, France
| | - William L Kelley
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
39
|
Su HN, Li K, Zhao LS, Yuan XX, Zhang MY, Liu SM, Chen XL, Liu LN, Zhang YZ. Structural Visualization of Septum Formation in Staphylococcus warneri Using Atomic Force Microscopy. J Bacteriol 2020; 202:e00294-20. [PMID: 32900866 PMCID: PMC7484183 DOI: 10.1128/jb.00294-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Cell division of Staphylococcus adopts a "popping" mechanism that mediates extremely rapid separation of the septum. Elucidating the structure of the septum is crucial for understanding this exceptional bacterial cell division mechanism. Here, the septum structure of Staphylococcus warneri was extensively characterized using high-speed time-lapse confocal microscopy, atomic force microscopy, and electron microscopy. The cells of S. warneri divide in a fast popping manner on a millisecond timescale. Our results show that the septum is composed of two separable layers, providing a structural basis for the ultrafast daughter cell separation. The septum is formed progressively toward the center with nonuniform thickness of the septal disk in radial directions. The peptidoglycan on the inner surface of double-layered septa is organized into concentric rings, which are generated along with septum formation. Moreover, this study signifies the importance of new septum formation in initiating new cell cycles. This work unravels the structural basis underlying the popping mechanism that drives S. warneri cell division and reveals a generic structure of the bacterial cell.IMPORTANCE This work shows that the septum of Staphylococcus warneri is composed of two layers and that the peptidoglycan on the inner surface of the double-layered septum is organized into concentric rings. Moreover, new cell cycles of S. warneri can be initiated before the previous cell cycle is complete. This work advances our knowledge about a basic structure of bacterial cell and provides information on the double-layered structure of the septum for bacteria that divide with the "popping" mechanism.
Collapse
Affiliation(s)
- Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Kang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Xue Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Meng-Yao Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Si-Min Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
40
|
Wollman AJ, Muchová K, Chromiková Z, Wilkinson AJ, Barák I, Leake MC. Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Comput Struct Biotechnol J 2020; 18:1474-1486. [PMID: 32637045 PMCID: PMC7327415 DOI: 10.1016/j.csbj.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to ~ 700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σF, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.
Collapse
Affiliation(s)
- Adam J.M. Wollman
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mark C. Leake
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
41
|
Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, Wilson JS, Chakrabarti B, Bullough PA, Foster SJ, Hobbs JK. The architecture of the Gram-positive bacterial cell wall. Nature 2020; 582:294-297. [PMID: 32523118 PMCID: PMC7308169 DOI: 10.1038/s41586-020-2236-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2020] [Indexed: 02/05/2023]
Abstract
The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics1,2. Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor1,3. In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength4-6. Here we applied atomic force microscopy7-12 to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent; the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface13,14, providing information complementary to traditional structural biology approaches.
Collapse
Affiliation(s)
- L Pasquina-Lemonche
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - J Burns
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - R D Turner
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - S Kumar
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - R Tank
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - N Mullin
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - J S Wilson
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - B Chakrabarti
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - P A Bullough
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - S J Foster
- Krebs Institute, University of Sheffield, Sheffield, UK.
- The Florey Institute, University of Sheffield, Sheffield, UK.
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| | - J K Hobbs
- Krebs Institute, University of Sheffield, Sheffield, UK.
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK.
- The Florey Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
42
|
Shaku M, Ealand C, Matlhabe O, Lala R, Kana BD. Peptidoglycan biosynthesis and remodeling revisited. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:67-103. [PMID: 32762868 DOI: 10.1016/bs.aambs.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bacterial peptidoglycan layer forms a complex mesh-like structure that surrounds the cell, imparting rigidity to withstand cytoplasmic turgor and the ability to tolerate stress. As peptidoglycan has been the target of numerous clinically successful antimicrobials such as penicillin, the biosynthesis, remodeling and recycling of this polymer has been the subject of much interest. Herein, we review recent advances in the understanding of peptidoglycan biosynthesis and remodeling in a variety of different organisms. In order for bacterial cells to grow and divide, remodeling of cross-linked peptidoglycan is essential hence, we also summarize the activity of important peptidoglycan hydrolases and how their functions differ in various species. There is a growing body of evidence highlighting complex regulatory mechanisms for peptidoglycan metabolism including protein interactions, phosphorylation and protein degradation and we summarize key recent findings in this regard. Finally, we provide an overview of peptidoglycan recycling and how components of this pathway mediate resistance to drugs. In the face of growing antimicrobial resistance, these recent advances are expected to uncover new drug targets in peptidoglycan metabolism, which can be used to develop novel therapies.
Collapse
Affiliation(s)
- Moagi Shaku
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Ofentse Matlhabe
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Rushil Lala
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
43
|
Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci Rep 2020; 10:4112. [PMID: 32139776 PMCID: PMC7057955 DOI: 10.1038/s41598-020-60952-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/19/2020] [Indexed: 01/19/2023] Open
Abstract
The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.
Collapse
|
44
|
Syeda AH, Wollman AJM, Hargreaves AL, Howard JAL, Brüning JG, McGlynn P, Leake MC. Single-molecule live cell imaging of Rep reveals the dynamic interplay between an accessory replicative helicase and the replisome. Nucleic Acids Res 2020; 47:6287-6298. [PMID: 31028385 PMCID: PMC6614839 DOI: 10.1093/nar/gkz298] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication must cope with nucleoprotein barriers that impair efficient replisome translocation. Biochemical and genetic studies indicate accessory helicases play essential roles in replication in the presence of nucleoprotein barriers, but how they operate inside the cell is unclear. With high-speed single-molecule microscopy we observed genomically-encoded fluorescent constructs of the accessory helicase Rep and core replisome protein DnaQ in live Escherichia coli cells. We demonstrate that Rep colocalizes with 70% of replication forks, with a hexameric stoichiometry, indicating maximal occupancy of the single DnaB hexamer. Rep associates dynamically with the replisome with an average dwell time of 6.5 ms dependent on ATP hydrolysis, indicating rapid binding then translocation away from the fork. We also imaged PriC replication restart factor and observe Rep-replisome association is also dependent on PriC. Our findings suggest two Rep-replisome populations in vivo: one continually associating with DnaB then translocating away to aid nucleoprotein barrier removal ahead of the fork, another assisting PriC-dependent reloading of DnaB if replisome progression fails. These findings reveal how a single helicase at the replisome provides two independent ways of underpinning replication of protein-bound DNA, a problem all organisms face as they replicate their genomes.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Adam J M Wollman
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Alex L Hargreaves
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Jamieson A L Howard
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | | | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
45
|
Liao X, Liu D, Ding T. Nonthermal Plasma Induces the Viable-but-Nonculturable State in Staphylococcus aureus via Metabolic Suppression and the Oxidative Stress Response. Appl Environ Microbiol 2020; 86:e02216-19. [PMID: 31836577 PMCID: PMC7028965 DOI: 10.1128/aem.02216-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
As a novel nonthermal technology, nonthermal plasma (NTP) has attracted a lot of attention. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, the molecular mechanisms of VBNC Staphylococcus aureus induced by NTP were investigated. With the use of a propidium monoazide quantitative PCR (PMA-qPCR) technique combined with a plate count method, we confirmed that 8.1 to 24.3 kJ NTP induced S. aureus into a VBNC state at a level of 7.4 to 7.6 log10 CFU/ml. The transcriptomic analysis was conducted and revealed that most energy-dependent physiological activities (e.g., metabolism) were arrested in VBNC S. aureus, while the oxidative stress response-related genes (katA, dps, msrB, msrA, and trxA) were significantly upregulated. In addition, this study showed that the ATP depletion by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) pretreatment could accelerate the formation of VBNC S. aureus The NTP-generated oxidative stress triggers the staphylococcal oxidative stress response, which consumes part of cellular energy (e.g., ATP). The energy allocation is therefore changed, and the energy assigned for other energy-dependent physiological activities (cell growth and division, etc.) is reduced, subsequently forcing S. aureus into a VBNC state. Therefore, the alterations of energy allocation should be some of the major contributors to the induction of VBNC S. aureus with NTP exposure. This study provides valuable knowledge for controlling the formation of VBNC S. aureus during NTP treatment.IMPORTANCE In recent years, nonthermal plasma (NTP) technology has received a lot of attention as a promising alternative to thermal pasteurization in the food industry. However, little is known about the microbial stress response toward NTP, which could be a potential risk to food safety and impede the development of NTP. A viable but nonculturable (VBNC) state is one of the most common survival strategies employed by microorganisms against external stress. This study investigated the mechanisms of the formation of VBNC Staphylococcus aureus by NTP in a more comprehensive and systematic aspect than had been done before. Our work confirmed that the NTP-generated oxidative stress induced changes in energy allocation as a driving force for the formation of VBNC S. aureus This study could provide better knowledge for controlling the occurrence of VBNC S. aureus induced by NTP, which could lead to more rational design and ensure the development of safe foods.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 2020; 5:291-303. [PMID: 31932712 PMCID: PMC7046134 DOI: 10.1038/s41564-019-0632-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Bacteria are protected by a polymer of peptidoglycan that serves as an exoskeleton1. In Staphylococcus aureus, the peptidoglycan assembly enzymes relocate during the cell cycle from the periphery, where they are active during growth, to the division site where they build the partition between daughter cells2-4. But how peptidoglycan synthesis is regulated throughout the cell cycle is poorly understood5,6. Here, we used a transposon screen to identify a membrane protein complex that spatially regulates S. aureus peptidoglycan synthesis. This complex consists of an amidase that removes stem peptides from uncrosslinked peptidoglycan and a partner protein that controls its activity. Amidases typically hydrolyse crosslinked peptidoglycan between daughter cells so that they can separate7. However, this amidase controls cell growth. In its absence, peptidoglycan synthesis becomes spatially dysregulated, which causes cells to grow so large that cell division is defective. We show that the cell growth and division defects due to loss of this amidase can be mitigated by attenuating the polymerase activity of the major S. aureus peptidoglycan synthase. Our findings lead to a model wherein the amidase complex regulates the density of peptidoglycan assembly sites to control peptidoglycan synthase activity at a given subcellular location. Removal of stem peptides from peptidoglycan at the cell periphery promotes peptidoglycan synthase relocation to midcell during cell division. This mechanism ensures that cell expansion is properly coordinated with cell division.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Kathryn A Coe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pedro B Fernandes
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Chan H, Söderström B, Skoglund U. Spo0J and SMC are required for normal chromosome segregation in Staphylococcus aureus. Microbiologyopen 2020; 9:e999. [PMID: 31990138 PMCID: PMC7142367 DOI: 10.1002/mbo3.999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial chromosome segregation is an essential cellular process that is particularly elusive in spherical bacteria such as the opportunistic human pathogen Staphylococcus aureus. In this study, we examined the functional significance of a ParB homologue, Spo0J, in staphylococcal chromosome segregation and investigated the role of the structural maintenance of chromosomes (SMC) bacterial condensin in this process. We show that neither spo0J nor smc is essential in S. aureus; however, their absence causes abnormal chromosome segregation. We demonstrate that formation of complexes containing Spo0J and SMC is required for efficient S. aureus chromosome segregation and that SMC localization is dependent on Spo0J. Furthermore, we found that cell division and cell cycle progression are unaffected by the absence of spo0J or smc. Our results verify the role of Spo0J and SMC in ensuring accurate staphylococcal chromosome segregation and also imply functional redundancy or the involvement of additional mechanisms that might contribute to faithful chromosome inheritance.
Collapse
Affiliation(s)
- Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
48
|
Jensen C, Bæk KT, Gallay C, Thalsø-Madsen I, Xu L, Jousselin A, Ruiz Torrubia F, Paulander W, Pereira AR, Veening JW, Pinho MG, Frees D. The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathog 2019; 15:e1008044. [PMID: 31518377 PMCID: PMC6760813 DOI: 10.1371/journal.ppat.1008044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 08/26/2019] [Indexed: 12/02/2022] Open
Abstract
β-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of β-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of β-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with β-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by β-lactams or by inhibiting an early step in WTA biosynthesis. The finding that β-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that β-lactams do not kill S. aureus simply by weakening the cell wall. The bacterium Staphylococcus aureus is a major cause of human disease, and the rapid spread of S. aureus strains that are resistant to almost all β-lactam antibiotics has made treatment increasingly difficult. β-lactams interfere with cross-linking of the bacterial cell wall but the killing mechanism of this important class of antibiotics is not fully understood. Here we provide novel insight into this topic by examining a defined S. aureus mutant that has the unusual property of growing markedly better in the presence of β-lactams. Without β-lactams this mutant dies spontaneously at a high frequency due to premature separation of daughter cells during cell division. Cell death of the mutant can, however, be prevented either by exposure to β-lactam antibiotics or by inhibiting synthesis of wall teichoic acid, a major component of the cell wall in Gram-positive bacteria with a conserved role in activation of autolytic splitting of daughter cells. The finding that β-lactam antibiotics can prevent lysis of a mutant with deregulated activity of autolytic enzymes involved in daughter cell splitting, emphasizes the idea that β-lactams interfere with the coordination between cell division and daughter cell splitting, and do not kill S. aureus simply by weakening the cell wall.
Collapse
Affiliation(s)
- Camilla Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer T. Bæk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clement Gallay
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ida Thalsø-Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lijuan Xu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ambre Jousselin
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Fernando Ruiz Torrubia
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wilhelm Paulander
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana R. Pereira
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mariana G. Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
49
|
Bojer MS, Wacnik K, Kjelgaard P, Gallay C, Bottomley AL, Cohn MT, Lindahl G, Frees D, Veening JW, Foster SJ, Ingmer H. SosA inhibits cell division in Staphylococcus aureus in response to DNA damage. Mol Microbiol 2019; 112:1116-1130. [PMID: 31290194 PMCID: PMC6851548 DOI: 10.1111/mmi.14350] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of cell division is critical for viability under DNA‐damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS‐induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C‐terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild‐type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C‐terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.
Collapse
Affiliation(s)
- Martin S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Katarzyna Wacnik
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, UK
| | - Peter Kjelgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amy L Bottomley
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, UK
| | - Marianne T Cohn
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Lindahl
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, UK
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Sun Y, Wollman AJM, Huang F, Leake MC, Liu LN. Single-Organelle Quantification Reveals Stoichiometric and Structural Variability of Carboxysomes Dependent on the Environment. THE PLANT CELL 2019; 31:1648-1664. [PMID: 31048338 PMCID: PMC6635877 DOI: 10.1105/tpc.18.00787] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/02/2019] [Indexed: 05/25/2023]
Abstract
The carboxysome is a complex, proteinaceous organelle that plays essential roles in carbon assimilation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble in space to form an icosahedral structure. Despite its significance in enhancing CO2 fixation and potentials in bioengineering applications, the formation of carboxysomes and their structural composition, stoichiometry, and adaptation to cope with environmental changes remain unclear. Here we use live-cell single-molecule fluorescence microscopy, coupled with confocal and electron microscopy, to decipher the absolute protein stoichiometry and organizational variability of single β-carboxysomes in the model cyanobacterium Synechococcus elongatus PCC7942. We determine the physiological abundance of individual building blocks within the icosahedral carboxysome. We further find that the protein stoichiometry, diameter, localization, and mobility patterns of carboxysomes in cells depend sensitively on the microenvironmental levels of CO2 and light intensity during cell growth, revealing cellular strategies of dynamic regulation. These findings, also applicable to other bacterial microcompartments and macromolecular self-assembling systems, advance our knowledge of the principles that mediate carboxysome formation and structural modulation. It will empower rational design and construction of entire functional metabolic factories in heterologous organisms, for example crop plants, to boost photosynthesis and agricultural productivity.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J M Wollman
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, YO10 5DD, United Kingdom
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, YO10 5DD, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|