1
|
Schmid P, Reichert C, Knight RT, Dürschmid S. Differential contributions of the C1 ERP and broadband high-frequency activity to visual processing. J Neurophysiol 2025; 133:78-84. [PMID: 39589840 DOI: 10.1152/jn.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The high-frequency activity (HFA; 80-150 Hz) in human intracranial recordings shows a differential modulation to different degrees in contrast when stimuli are behaviorally relevant, indicating a feedforward process. However, the HFA is also significantly dominated by superficial layers and exhibits a peak before 200 ms, suggesting that it is more likely a feedback signal. Magnetoencephalographic (MEG) recordings are suited to reveal an HFA modulation similar to its modulation in intracranial recordings. This allows for noninvasive, direct comparison of HFA with the C1, an established measure for feedforward input to V1, to test whether HFA represents feedforward or rather feedback. In simultaneous recordings, we used the EEG-C1 event-related potential (ERP) component and MEG-HFA to define feedforward processing in visual cortices. C1 latency preceded the HFA peak modulation, which had a more sustained response. Furthermore, modulation parameters like onset, peak time, and peak amplitude were uncorrelated. Most importantly, the C1 but not HFA distinguished small task-irrelevant contrast differences in visual stimulation. These results highlight the differential roles for the C1 and HFA in visual processing with the C1 measuring feedforward discrimination ability and HFA indexing feedforward and feedback processing.NEW & NOTEWORTHY Whether the broadband high-frequency activity (HFA) represents exclusively feedforward or feedback processing remains unclear. In this study, we compared the response characteristics of the HFA-magnetoencephalographic (MEG) and the C1-EEG component to systematic contrast modulations of task-irrelevant visual stimulation. Our findings reveal that the more sustained HFA follows the C1 component and, unlike the C1, is not modulated by task-irrelevant contrast differences. This timing of the HFA modulation suggests that HFA encompasses both feedforward and feedback processing.
Collapse
Affiliation(s)
- Paul Schmid
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States
| | - Stefan Dürschmid
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States
| |
Collapse
|
2
|
Bonnefond M, Jensen O. The role of alpha oscillations in resisting distraction. Trends Cogn Sci 2024:S1364-6613(24)00295-X. [PMID: 39668059 DOI: 10.1016/j.tics.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in suppressing distractors is extensively debated. One debate concerns whether alpha oscillations suppress anticipated visual distractors through increased power. Whereas some studies suggest that alpha oscillations support distractor suppression, others do not. We identify methodological differences that may explain these discrepancies. A second debate concerns the mechanistic role of alpha oscillations. We and others previously proposed that alpha oscillations implement gain reduction in early visual regions when target load or distractor interference is high. Here, we suggest that parietal alpha oscillations support gating or stabilization of attentional focus and that alpha oscillations in ventral attention network (VAN) support resistance to attention capture. We outline future studies needed to uncover the precise mechanistic role of alpha oscillations.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France.
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
3
|
Gundlach C, Müller MM. Increased visual alpha-band activity during self-paced finger tapping does not affect early visual stimulus processing. Psychophysiology 2024; 61:e14707. [PMID: 39380314 PMCID: PMC11579237 DOI: 10.1111/psyp.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Alpha-band activity is thought to be involved in orchestrating neural processing within and across brain regions relevant to various functions such as perception, cognition, and motor activity. Across different studies, attenuated alpha-band activity has been linked to increased neural excitability. Yet, there have been conflicting results concerning the consequences of alpha-band modulations for early sensory processing. We here examined whether movement-related alterations in visual alpha-band activity affected the early sensory processing of visual stimuli. For this purpose, in an EEG experiment, participants were engaged in a voluntary finger-tapping task while passively viewing flickering dots. We found extensive and expected movement-related amplitude modulations of motor alpha- and beta-band activity with event-related-desynchronization (ERD) before and during, and event-related-synchronization (ERS) after single voluntary finger taps. Crucially, while a visual alpha-band ERS accompanied the motor alpha-ERD before and during each finger tap, flicker-evoked Steady-State-Visually-Evoked-Potentials (SSVEPs), as a marker of early visual sensory gain, were not modulated in amplitude. As early sensory stimulus processing was unaffected by amplitude-modulated visual alpha-band activity, this argues against the idea that alpha-band activity represents a mechanism by which early sensory gain modulation is implemented. The distinct neural dynamics of visual alpha-band activity and early sensory processing may point to distinct and multiplexed neural selection processes in visual processing.
Collapse
Affiliation(s)
- C. Gundlach
- Wilhelm Wundt Institute for Psychology, Experimental Psychology and MethodsUniversität LeipzigLeipzigGermany
| | - M. M. Müller
- Wilhelm Wundt Institute for Psychology, Experimental Psychology and MethodsUniversität LeipzigLeipzigGermany
| |
Collapse
|
4
|
Morrow A, Pilipenko A, Turkovich E, Sankaran S, Samaha J. Endogenous Attention Affects Decision-related Neural Activity but Not Afferent Visual Responses. J Cogn Neurosci 2024; 36:2481-2494. [PMID: 39145755 DOI: 10.1162/jocn_a_02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Endogenous shifts of spatial attention toward an upcoming stimulus are associated with improvements in behavioral responses to the stimulus, preparatory retinotopic shifts in alpha power, and changes in ERPs. Although attentional modulation of several early sensory ERPs is well established, there is still debate about under what circumstances attention affects the earliest cortical visual evoked response-the C1 ERP component-which is putatively generated from afferent input into primary visual cortex. Moreover, the effects of spatial attention on the recently discovered ERP signature of evidence accumulation-the central parietal positivity (CPP)-have not been fully characterized. The present study assessed the effect of spatial attention on the C1 and CPP components through a spatially cued contrast discrimination task using stimuli that were specifically designed to produce large-amplitude C1 responses and that varied in sensory evidence strength to characterize the CPP. Participants responded according to which of two checkerboard stimuli had greater contrast following an 80% valid cue toward the upper or lower visual field. Prestimulus alpha power changed topographically based on the cue, suggesting participants shifted attention to prepare for the upcoming stimuli. Despite these attentional shifts in alpha power and the fact that the stimuli reliably elicited C1 responses several times greater than many prior studies, there was no evidence of an attention effect on the C1. The CPP, however, showed a clear increase in build-up rate on valid trials. Our findings suggest that endogenous attention may not affect the early C1 ERP component but may improve behavior at a decision stage, as reflected in brain signals related to evidence accumulation (the CPP).
Collapse
|
5
|
Lago S, Zago S, Bambini V, Arcara G. Pre-Stimulus Activity of Left and Right TPJ in Linguistic Predictive Processing: A MEG Study. Brain Sci 2024; 14:1014. [PMID: 39452027 PMCID: PMC11505736 DOI: 10.3390/brainsci14101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The left and right temporoparietal junctions (TPJs) are two brain areas involved in several brain networks, largely studied for their diverse roles, from attentional orientation to theory of mind and, recently, predictive processing. In predictive processing, one crucial concept is prior precision, that is, the reliability of the predictions of incoming stimuli. This has been linked with modulations of alpha power as measured with electrophysiological techniques, but TPJs have seldom been studied in this framework. METHODS The present article investigates, using magnetoencephalography, whether spontaneous oscillations in pre-stimulus alpha power in the left and right TPJs can modulate brain responses during a linguistic task that requires predictive processing in literal and non-literal sentences. RESULTS Overall, results show that pre-stimulus alpha power in the rTPJ was associated with post-stimulus responses only in the left superior temporal gyrus, while lTPJ pre-stimulus alpha power was associated with post-stimulus activity in Broca's area, left middle temporal gyrus, and left superior temporal gyrus. CONCLUSIONS We conclude that both the right and left TPJs have a role in linguistic prediction, involving a network of core language regions, with differences across brain areas and linguistic conditions that can be parsimoniously explained in the context of predictive processing.
Collapse
Affiliation(s)
- Sara Lago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| | - Sara Zago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
| | - Valentina Bambini
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy;
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| |
Collapse
|
6
|
Krasich K, Woldorff MG, De Brigard F, Sinnott-Armstrong W, Mudrik L. Prestimulus alpha phase, not only power, modulates conscious perception. Comment on "Beyond task response-Pre-stimulus activity modulates contents of consciousness" by G. Northoff, F. Zilio & J. Zhang. Phys Life Rev 2024; 50:123-125. [PMID: 39068900 DOI: 10.1016/j.plrev.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Kristina Krasich
- Department of Psychology, Elon University, Elon, NC, United States
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychiatry, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Neurobiology, Duke University, Durham, NC, United States
| | - Felipe De Brigard
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Philosophy, Duke University, Durham, NC, United States
| | - Walter Sinnott-Armstrong
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Philosophy, Duke University, Durham, NC, United States
| | - Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Canadian Institute for Advanced Research, (CIFAR), Brain, Mind, and Consciousness, Program, Toronto, ON, Canada.
| |
Collapse
|
7
|
Sihn D, Chae S, Kim SP. A method to find temporal structure of neuronal coactivity patterns with across-trial correlations. J Neurosci Methods 2024; 408:110172. [PMID: 38782124 DOI: 10.1016/j.jneumeth.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The across-trial correlation of neurons' coactivity patterns emerges to be important for information coding, but methods for finding their temporal structures remain largely unexplored. NEW METHOD In the present study, we propose a method to find time clusters in which coactivity patterns of neurons are correlated across trials. We transform the multidimensional neural activity at each timing into a coactivity pattern of binary states, and predict the coactivity patterns at different timings. We devise a method suitable for these coactivity pattern predictions, call general event prediction. Cross-temporal prediction accuracy is then used to estimate across-trial correlations between coactivity patterns at two timings. We extract time clusters from the cross-temporal prediction accuracy by a modified k-means algorithm. RESULTS The feasibility of the proposed method is verified through simulations based on ground truth. We apply the proposed method to a calcium imaging dataset recorded from the motor cortex of mice, and demonstrate time clusters of motor cortical coactivity patterns during a motor task. COMPARISON WITH EXISTING METHODS While the existing cosine similarity method, which does not account for across-trial correlation, shows temporal structures only for contralateral neural responses, the proposed method reveals those for both contralateral and ipsilateral neural responses, demonstrating the effect of across-trial correlations. CONCLUSIONS This study introduces a novel method for measuring the temporal structure of neuronal ensemble activity.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea.
| |
Collapse
|
8
|
Montemurro S, Borek D, Marinazzo D, Zago S, Masina F, Napoli E, Filippini N, Arcara G. Aperiodic component of EEG power spectrum and cognitive performance are modulated by education in aging. Sci Rep 2024; 14:15111. [PMID: 38956186 PMCID: PMC11220063 DOI: 10.1038/s41598-024-66049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Recent studies have shown a growing interest in the so-called "aperiodic" component of the EEG power spectrum, which describes the overall trend of the whole spectrum with a linear or exponential function. In the field of brain aging, this aperiodic component is associated both with age-related changes and performance on cognitive tasks. This study aims to elucidate the potential role of education in moderating the relationship between resting-state EEG features (including aperiodic component) and cognitive performance in aging. N = 179 healthy participants of the "Leipzig Study for Mind-Body-Emotion Interactions" (LEMON) dataset were divided into three groups based on age and education. Older adults exhibited lower exponent, offset (i.e. measures of aperiodic component), and Individual Alpha Peak Frequency (IAPF) as compared to younger adults. Moreover, visual attention and working memory were differently associated with the aperiodic component depending on education: in older adults with high education, higher exponent predicted slower processing speed and less working memory capacity, while an opposite trend was found in those with low education. While further investigation is needed, this study shows the potential modulatory role of education in the relationship between the aperiodic component of the EEG power spectrum and aging cognition.
Collapse
Affiliation(s)
- Sonia Montemurro
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, FISPPA, University of Padova, Padua, Italy.
| | - Daniel Borek
- Department of Data-Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Daniele Marinazzo
- Department of Data-Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Sara Zago
- IRCCS San Camillo Hospital, Venice, Italy
| | | | | | | | | |
Collapse
|
9
|
Song Y, Shahdadian S, Armstrong E, Brock E, Conrad SE, Acord S, Johnson YR, Marks W, Papadelis C. Spatiotemporal dynamics of cortical somatosensory network in typically developing children. Cereb Cortex 2024; 34:bhae230. [PMID: 38836408 PMCID: PMC11151116 DOI: 10.1093/cercor/bhae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.
Collapse
Affiliation(s)
- Yanlong Song
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
- Departments of Physical Medicine and Rehabilitation and Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Sadra Shahdadian
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
| | - Eryn Armstrong
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Emily Brock
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Shannon E Conrad
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Stephanie Acord
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Yvette R Johnson
- NEST Developmental Follow-up Center, Neonatology, Cook Children’s Health Care System, 1521 Cooper St., Fort Worth, TX 76104, United States
- Department of Pediatrics, Burnett School of Medicine, Texas Christian University, TCU Box 297085, Fort Worth, TX 76129, United States
| | - Warren Marks
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Christos Papadelis
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
- Department of Pediatrics, Burnett School of Medicine, Texas Christian University, TCU Box 297085, Fort Worth, TX 76129, United States
| |
Collapse
|
10
|
Harlow TJ, Marquez SM, Bressler S, Read HL. Individualized Closed-Loop Acoustic Stimulation Suggests an Alpha Phase Dependence of Sound Evoked and Induced Brain Activity Measured with EEG Recordings. eNeuro 2024; 11:ENEURO.0511-23.2024. [PMID: 38834300 PMCID: PMC11181104 DOI: 10.1523/eneuro.0511-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Following repetitive visual stimulation, post hoc phase analysis finds that visually evoked response magnitudes vary with the cortical alpha oscillation phase that temporally coincides with sensory stimulus. This approach has not successfully revealed an alpha phase dependence for auditory evoked or induced responses. Here, we test the feasibility of tracking alpha with scalp electroencephalogram (EEG) recordings and play sounds phase-locked to individualized alpha phases in real-time using a novel end-point corrected Hilbert transform (ecHT) algorithm implemented on a research device. Based on prior work, we hypothesize that sound-evoked and induced responses vary with the alpha phase at sound onset and the alpha phase that coincides with the early sound-evoked response potential (ERP) measured with EEG. Thus, we use each subject's individualized alpha frequency (IAF) and individual auditory ERP latency to define target trough and peak alpha phases that allow an early component of the auditory ERP to align to the estimated poststimulus peak and trough phases, respectively. With this closed-loop and individualized approach, we find opposing alpha phase-dependent effects on the auditory ERP and alpha oscillations that follow stimulus onset. Trough and peak phase-locked sounds result in distinct evoked and induced post-stimulus alpha level and frequency modulations. Though additional studies are needed to localize the sources underlying these phase-dependent effects, these results suggest a general principle for alpha phase-dependence of sensory processing that includes the auditory system. Moreover, this study demonstrates the feasibility of using individualized neurophysiological indices to deliver automated, closed-loop, phase-locked auditory stimulation.
Collapse
Affiliation(s)
- Tylor J Harlow
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
| | - Samantha M Marquez
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Scott Bressler
- Elemind Technologies, Inc., Cambridge, Massachusetts 02139
| | - Heather L Read
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
11
|
Hebron H, Lugli B, Dimitrova R, Jaramillo V, Yeh LR, Rhodes E, Grossman N, Dijk DJ, Violante IR. A closed-loop auditory stimulation approach selectively modulates alpha oscillations and sleep onset dynamics in humans. PLoS Biol 2024; 22:e3002651. [PMID: 38889194 PMCID: PMC11185466 DOI: 10.1371/journal.pbio.3002651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024] Open
Abstract
Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.
Collapse
Affiliation(s)
- Henry Hebron
- School of Psychology, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Beatrice Lugli
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Radost Dimitrova
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Valeria Jaramillo
- School of Psychology, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Lisa R. Yeh
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Edward Rhodes
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Imperial College London, United Kingdom
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Imperial College London, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Ines R. Violante
- School of Psychology, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Jensen O. Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information. COMMUNICATIONS PSYCHOLOGY 2024; 2:36. [PMID: 38665356 PMCID: PMC11041682 DOI: 10.1038/s44271-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in cognition is intensively investigated. While intracranial animal recordings demonstrate that alpha oscillations are associated with decreased neuronal excitability, it is been questioned whether alpha oscillations are under direct control from frontoparietal areas to suppress visual distractors. We here point to a revised mechanism in which alpha oscillations are controlled by an indirect mechanism governed by the load of goal-relevant information - a view compatible with perceptual load theory. We will outline how this framework can be further tested and discuss the consequences for network dynamics and resource allocation in the working brain.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B152TT UK
| |
Collapse
|
13
|
Williams JG, Harrison WJ, Beale HA, Mattingley JB, Harris AM. Effects of neural oscillation power and phase on discrimination performance in a visual tilt illusion. Curr Biol 2024; 34:1801-1809.e4. [PMID: 38569544 DOI: 10.1016/j.cub.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1,2,3,4,5 and are theorized to play a critical role in canonical neural computations6,7,8,9 and cognitive processes.10,11,12,13,14 These theories have been supported by findings that detection of visual stimuli fluctuates with the phase of oscillations prior to stimulus onset.15,16,17,18,19,20,21,22,23 However, null results have emerged in studies seeking to demonstrate these effects in visual discrimination tasks,24,25,26,27 raising questions about the generalizability of these phenomena to wider neural processes. Recently, we suggested that methodological limitations may mask effects of phase in higher-level sensory processing.28 To test the generality of phasic influences on perception requires a task that involves stimulus discrimination while also depending on early sensory processing. Here, we examined the influence of oscillation phase on the visual tilt illusion, in which a center grating has its perceived orientation biased away from the orientation of a surround grating29 due to lateral inhibitory interactions in early visual processing.30,31,32 We presented center gratings at participants' subjective vertical angle and had participants report whether the grating appeared tilted clockwise or counterclockwise from vertical on each trial while measuring their brain activity with electroencephalography (EEG). In addition to effects of alpha power and aperiodic slope, we observed robust associations between orientation perception and alpha and theta phase, consistent with fluctuating illusion magnitude across the oscillatory cycle. These results confirm that oscillation phase affects the complex processing involved in stimulus discrimination, consistent with its purported role in canonical computations that underpin cognition.
Collapse
Affiliation(s)
- Jessica G Williams
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia
| | - William J Harrison
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Henry A Beale
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada
| | - Anthony M Harris
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Abstract
Neural oscillations in the 8-12 Hz alpha band are thought to represent top-down inhibitory control and to influence temporal resolution: Individuals with faster peak frequencies segregate stimuli appearing closer in time. Recently, this theory has been challenged. Here, we investigate a special case in which alpha does not correlate with temporal resolution: when stimuli are presented amidst strong visual drive. Based on findings regarding alpha rhythmogenesis and wave spatial propagation, we suggest that stimulus-induced, bottom-up alpha oscillations play a role in temporal integration. We propose a theoretical model, informed by visual persistence, lateral inhibition, and network refractory periods, and simulate physiologically plausible scenarios of the interaction between bottom-up alpha and the temporal segregation. Our simulations reveal that different features of oscillations, including frequency, phase, and power, can influence temporal perception and provide a theoretically informed starting point for future empirical studies.
Collapse
|
15
|
Samaha J, Romei V. Alpha-band Brain Dynamics and Temporal Processing: An Introduction to the Special Focus. J Cogn Neurosci 2024; 36:567-571. [PMID: 38261401 DOI: 10.1162/jocn_a_02105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
For decades, the intriguing connection between the human alpha rhythm (an 8- to 13-Hz oscillation maximal over posterior cortex) and temporal processes in perception has furnished a rich landscape of proposals. The past decade, however, has seen a surge in interest in the topic, bringing new theoretical, analytic, and methodological developments alongside fresh controversies. This Special Focus on alpha-band dynamics and temporal processing provides an up-to-date snapshot of the playing field, with contributions from leading researchers in the field spanning original perspectives, new evidence, comprehensive reviews and meta-analyses, as well as discussion of ongoing controversies and paths forward. We hope that the perspectives captured here will help catalyze future research and shape the pathways toward a theoretically grounded and mechanistic account of the link between alpha dynamics and temporal properties of perception.
Collapse
Affiliation(s)
| | - Vincenzo Romei
- Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Centro Studi e Ricerche in Neuroscienze Cognitive, Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, Spain
| |
Collapse
|
16
|
Trajkovic J, Di Gregorio F, Thut G, Romei V. Transcranial magnetic stimulation effects support an oscillatory model of ERP genesis. Curr Biol 2024; 34:1048-1058.e4. [PMID: 38377998 DOI: 10.1016/j.cub.2024.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Francesco Di Gregorio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, MVLS, University of Glasgow, Glasgow G128QB, UK
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid 28015, Spain.
| |
Collapse
|
17
|
Balestrieri E, Michel R, Busch NA. Alpha-Band Lateralization and Microsaccades Elicited by Exogenous Cues Do Not Track Attentional Orienting. eNeuro 2024; 11:ENEURO.0076-23.2023. [PMID: 38164570 PMCID: PMC10866192 DOI: 10.1523/eneuro.0076-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
We explore the world by constantly shifting our focus of attention toward salient stimuli and then disengaging from them in search of new ones. The alpha rhythm (8-13 Hz) has been suggested as a pivotal neural substrate of these attentional shifts, due to its local synchronization and desynchronization that suppress irrelevant cortical areas and facilitate relevant areas, a phenomenon called alpha lateralization. Whether alpha lateralization tracks the focus of attention from orienting toward a salient stimulus to disengaging from it is still an open question. We addressed it by leveraging the phenomenon of inhibition of return (IOR), consisting of an initial facilitation in response times (RTs) for stimuli appearing at an exogenously cued location, followed by a suppression of that location. Our behavioral data from human participants showed a typical IOR effect with both early facilitation and subsequent inhibition. In contrast, alpha lateralized in the cued direction after the behavioral facilitation effect and never re-lateralized compatibly with the behavioral inhibition. Furthermore, we analyzed the interaction between alpha lateralization and microsaccades: while alpha was lateralized toward the cued location, microsaccades were mostly oriented away from it. Crucially, the two phenomena showed a significant positive correlation. These results indicate that alpha lateralization reflects primarily the processing of salient stimuli, challenging the view that alpha lateralization is directly involved in exogenous attentional orienting per se. We discuss the relevance of the present findings for an oculomotor account of alpha lateralization as a modulator of cortical excitability in preparation of a saccade.
Collapse
Affiliation(s)
- Elio Balestrieri
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster 48149, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - René Michel
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
- Institute of Psychology, University of Münster, Münster 48149, Germany
| | - Niko A Busch
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
- Institute of Psychology, University of Münster, Münster 48149, Germany
| |
Collapse
|
18
|
Luo X, Dang C, Guo J, Li D, Wang E, Zhu Y, Liu L, Wang Y, Song Y, Sun L. Overactivated contextual visual perception and response to a single dose of methylphenidate in children with ADHD. Eur Arch Psychiatry Clin Neurosci 2024; 274:35-44. [PMID: 36725736 DOI: 10.1007/s00406-023-01559-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
The pathogenesis of overactivated visual perception in attention-deficit hyperactivity disorder (ADHD) remains unclear, which is interpreted as a cognitive compensation. The existing studies have proposed that perceptual abnormalities in neurodevelopmental disorders are associated with dysfunction of the contextual knowledge system, which influences the development and formation of perception. We hypothesized that alterations in contextual states may also be responsible for inducing perceptual abnormalities in ADHD. Therefore, the present study evaluated the characteristics of pre-stimulus alpha and its response to a single dose of methylphenidate (MPH). A total of 135 Chinese children participated in the first study, including 70 children with ADHD (age = 10.61 ± 1.93 years, female = 17) and 65 age- and sex-matched control children (age = 10.73 ± 1.93 years, female = 20). The second clinical trial included 19 Chinese children with ADHD (age = 11.85 ± 1.72 years, female = 4), with an identical visual spatial search task. Pre-stimulus alpha oscillations and P1 activity were significantly greater in children with ADHD than in the controls. Overactivated pre-stimulus alpha positively predicted P1. Both pre-stimulus alpha and P1 overactivation have beneficial effects on cognitive performance in children with ADHD. No intervening effect of a single dose of MPH on the compensatory activation of pre-stimulus alpha and P1 were observed. Our findings extended the perceptual activation to the contextual knowledge system, suggesting that compensatory perception in children with ADHD is more likely to be a top-down regulated cognitive operational process.
Collapse
Affiliation(s)
- Xiangsheng Luo
- Peking University Sixth Hospital & Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) & National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Chen Dang
- Peking University Sixth Hospital & Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) & National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Encong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yu Zhu
- Peking University Sixth Hospital & Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) & National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital & Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) & National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital & Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) & National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| | - Li Sun
- Peking University Sixth Hospital & Peking University Institute of Mental Health, Beijing, China.
- NHC Key Laboratory of Mental Health (Peking University) & National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
19
|
Studenova A, Forster C, Engemann DA, Hensch T, Sanders C, Mauche N, Hegerl U, Loffler M, Villringer A, Nikulin V. Event-related modulation of alpha rhythm explains the auditory P300-evoked response in EEG. eLife 2023; 12:RP88367. [PMID: 38038725 PMCID: PMC10691803 DOI: 10.7554/elife.88367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Evoked responses and oscillations represent two major electrophysiological phenomena in the human brain yet the link between them remains rather obscure. Here we show how most frequently studied EEG signals: the P300-evoked response and alpha oscillations (8-12 Hz) can be linked with the baseline-shift mechanism. This mechanism states that oscillations generate evoked responses if oscillations have a non-zero mean and their amplitude is modulated by the stimulus. Therefore, the following predictions should hold: (1) the temporal evolution of P300 and alpha amplitude is similar, (2) spatial localisations of the P300 and alpha amplitude modulation overlap, (3) oscillations are non-zero mean, (4) P300 and alpha amplitude correlate with cognitive scores in a similar fashion. To validate these predictions, we analysed the data set of elderly participants (N=2230, 60-82 years old), using (a) resting-state EEG recordings to quantify the mean of oscillations, (b) the event-related data, to extract parameters of P300 and alpha rhythm amplitude envelope. We showed that P300 is indeed linked to alpha rhythm, according to all four predictions. Our results provide an unifying view on the interdependency of evoked responses and neuronal oscillations and suggest that P300, at least partly, is generated by the modulation of alpha oscillations.
Collapse
Affiliation(s)
- Alina Studenova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Max Planck School of CognitionLeipzigGermany
| | - Carina Forster
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Bernstein Center for Computational Neuroscience, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Denis Alexander Engemann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd.BaselSwitzerland
| | - Tilman Hensch
- LIFE – Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzigGermany
- Department of Psychology, IU International University of Applied SciencesErfurtGermany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical CenterLeipzigGermany
| | - Christian Sanders
- LIFE – Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzigGermany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical CenterLeipzigGermany
| | - Nicole Mauche
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical CenterLeipzigGermany
| | - Ulrich Hegerl
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University FrankfurtFrankfurtGermany
| | - Markus Loffler
- LIFE – Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzigGermany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of LeipzigLeipzigGermany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic for Cognitive Neurology, University Hospital LeipzigLeipzigGermany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
20
|
Gundlach C, Wehle S, Müller MM. Early sensory gain control is dominated by obligatory and global feature-based attention in top-down shifts of combined spatial and feature-based attention. Cereb Cortex 2023; 33:10286-10302. [PMID: 37536059 DOI: 10.1093/cercor/bhad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
What are the dynamics of global feature-based and spatial attention, when deployed together? In an attentional shifting experiment, flanked by three control experiments, we investigated neural temporal dynamics of combined attentional shifts. For this purpose, orange- and blue-frequency-tagged spatially overlapping Random Dot Kinematograms were presented in the left and right visual hemifield to elicit continuous steady-state-visual-evoked-potentials. After being initially engaged in a fixation cross task, participants were at some point in time cued to shift attention to one of the Random Dot Kinematograms, to detect and respond to brief coherent motion events, while ignoring all such events in other Random Dot Kinematograms. The analysis of steady-state visual-evoked potentials allowed us to map time courses and dynamics of early sensory-gain modulations by attention. This revealed a time-invariant amplification of the to-be attended color both at the attended and the unattended side, followed by suppression for the to-be-ignored color at attended and unattended sides. Across all experiments, global and obligatory feature-based selection dominated early sensory gain modulations, whereas spatial attention played a minor modulatory role. However, analyses of behavior and neural markers such as alpha-band activity and event-related potentials to target- and distractor-event processing, revealed clear modulations by spatial attention.
Collapse
Affiliation(s)
- Christopher Gundlach
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| | - Sebastian Wehle
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| | - Matthias M Müller
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| |
Collapse
|
21
|
Cunningham E, Zimnicki C, Beck DM. The Influence of Prestimulus 1/f-Like versus Alpha-Band Activity on Subjective Awareness of Auditory and Visual Stimuli. J Neurosci 2023; 43:6447-6459. [PMID: 37591739 PMCID: PMC10500988 DOI: 10.1523/jneurosci.0238-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Alpha rhythmic activity is often suggested to exert an inhibitory influence on information processing. However, relatively little is known about how reported alpha-related effects are influenced by a potential confounding element of the neural signal, power-law scaling. In the current study, we systematically examine the effect of accounting for 1/f activity on the relation between prestimulus alpha power and human behavior during both auditory and visual detection (N = 27; 19 female, 6 male, 2 nonbinary). The results suggest that, at least in the scalp-recorded EEG signal, the difference in alpha power often reported before visual hits versus misses is probably best thought of as a combination of narrowband alpha and broadband shifts. That is, changes in broadband parameters (exponent and offset of 1/f-like activity) also appear to be strong predictors of the subsequent awareness of visual stimuli. Neither changes in posterior alpha power nor changes in 1/f-like activity reliably predicted detection of auditory stimuli. These results appear consistent with suggestions that broadband changes in the scalp-recorded EEG signal may account for a portion of prior results linking alpha band dynamics to visuospatial attention and behavior, and suggest that systematic re-examination of existing data may be warranted.Significance Statement Fluctuations in alpha band (∼8-12 Hz) activity systematically follow the allocation of attention across space and sensory modality. Increases in alpha amplitude, which often precede failures to report awareness of threshold visual stimuli, are suggested to exert an inhibitory influence on information processing. However, fluctuations in alpha activity are often confounded with changes in the broadband 1/f-like pattern of the neural signal. When both factors are considered, we find that changes in broadband activity are as effective as narrowband alpha activity as predictors of subsequent visual detection. These results are consistent with emerging understanding of the potential functional importance of broadband changes in the neural signal and may have significant consequences for our understanding of alpha rhythmic activity.
Collapse
Affiliation(s)
- Emily Cunningham
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Clementine Zimnicki
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
| | - Diane M Beck
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
22
|
Vigué-Guix I, Soto-Faraco S. Using occipital ⍺-bursts to modulate behavior in real-time. Cereb Cortex 2023; 33:9465-9477. [PMID: 37365814 DOI: 10.1093/cercor/bhad217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.
Collapse
Affiliation(s)
- Irene Vigué-Guix
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
23
|
Patel SP, Winston M, Guilfoyle J, Nicol T, Martin GE, Nayar K, Kraus N, Losh M. Neural Processing of Speech Sounds in ASD and First-Degree Relatives. J Autism Dev Disord 2023; 53:3257-3271. [PMID: 35672616 PMCID: PMC10019095 DOI: 10.1007/s10803-022-05562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 10/18/2022]
Abstract
Efficient neural encoding of sound plays a critical role in speech and language, and when impaired, may have reverberating effects on communication skills. This study investigated disruptions to neural processing of temporal and spectral properties of speech in individuals with ASD and their parents and found evidence of inefficient temporal encoding of speech sounds in both groups. The ASD group further demonstrated less robust neural representation of spectral properties of speech sounds. Associations between neural processing of speech sounds and language-related abilities were evident in both groups. Parent-child associations were also detected in neural pitch processing. Together, results suggest that atypical neural processing of speech sounds is a heritable ingredient contributing to the ASD language phenotype.
Collapse
Affiliation(s)
- Shivani P Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA
| | - Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA
| | - Trent Nicol
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA
| | - Gary E Martin
- Department of Communication Sciences and Disorders, St. John's University, Staten Island, NY, USA
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA
| | - Nina Kraus
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL, 60208, USA.
| |
Collapse
|
24
|
Naik S, Adibpour P, Dubois J, Dehaene-Lambertz G, Battaglia D. Event-related variability is modulated by task and development. Neuroimage 2023; 276:120208. [PMID: 37268095 DOI: 10.1016/j.neuroimage.2023.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials (ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which in infants, was modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in human infants.
Collapse
Affiliation(s)
- Shruti Naik
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France
| | - Parvaneh Adibpour
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France
| | - Jessica Dubois
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | | - Demian Battaglia
- Institute for System Neuroscience U1106, Aix-Marseille Université, F-13005 Marseille, France; University of Strasbourg Institute for Advanced Studies (USIAS), F-67000 Strasbourg, France.
| |
Collapse
|
25
|
Zhang C, Wang Y, Jing X, Yan JH. Brain mechanisms of mental processing: from evoked and spontaneous brain activities to enactive brain activity. PSYCHORADIOLOGY 2023; 3:kkad010. [PMID: 38666106 PMCID: PMC10917368 DOI: 10.1093/psyrad/kkad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 04/28/2024]
Abstract
Within the context of the computer metaphor, evoked brain activity acts as a primary carrier for the brain mechanisms of mental processing. However, many studies have found that evoked brain activity is not the major part of brain activity. Instead, spontaneous brain activity exhibits greater intensity and coevolves with evoked brain activity through continuous interaction. Spontaneous and evoked brain activities are similar but not identical. They are not separate parts, but always dynamically interact with each other. Therefore, the enactive cognition theory further states that the brain is characterized by unified and active patterns of activity. The brain adjusts its activity pattern by minimizing the error between expectation and stimulation, adapting to the ever-changing environment. Therefore, the dynamic regulation of brain activity in response to task situations is the core brain mechanism of mental processing. Beyond the evoked brain activity and spontaneous brain activity, the enactive brain activity provides a novel framework to completely describe brain activities during mental processing. It is necessary for upcoming researchers to introduce innovative indicators and paradigms for investigating enactive brain activity during mental processing.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Jin H Yan
- Sports Psychology Department, China Institute of Sport Science, Beijing 100061, China
| |
Collapse
|
26
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
27
|
Trajkovic J, Di Gregorio F, Avenanti A, Thut G, Romei V. Two Oscillatory Correlates of Attention Control in the Alpha-Band with Distinct Consequences on Perceptual Gain and Metacognition. J Neurosci 2023; 43:3548-3556. [PMID: 37019621 PMCID: PMC10184728 DOI: 10.1523/jneurosci.1827-22.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Behavioral consequences and neural underpinnings of visuospatial attention have long been investigated. Classical studies using the Posner paradigm have found that visual perception systematically benefits from the use of a spatially informative cue pointing to the to-be-attended spatial location, compared with a noninformative cue. Lateralized α amplitude modulation during visuospatial attention shifts has been suggested to account for such perceptual gain. However, recent studies on spontaneous fluctuations of prestimulus α amplitude have challenged this notion. These studies showed that spontaneous fluctuations of prestimulus α amplitude were associated with the subjective appreciation of stimulus occurrence, while objective accuracy was instead best predicted by the frequency of α oscillations, with faster prestimulus α frequency accounting for better perceptual performance. Here, in male and female humans, by using an informative cue in anticipation of lateralized stimulus presentation, we found that the predictive cue not only modulates preparatory α amplitude but also α frequency in a retinotopic manner. Behaviorally, the cue significantly impacted subjective performance measures (metacognitive abilities [meta-d']) and objective performance gain (d'). Importantly, α amplitude directly accounted for confidence levels, with ipsilateral synchronization and contralateral desynchronization coding for high-confidence responses. Crucially, the contralateral α amplitude selectively predicted interindividual differences in metacognitive abilities (meta-d'), thus anticipating decision strategy and not perceptual sensitivity, probably via excitability modulations. Instead, higher perceptual accuracy both within and across participants (d') was associated with faster contralateral α frequency, likely by implementing higher sampling at the attended location. These findings provide critical new insights into the neural mechanisms of attention control and its perceptual consequences.SIGNIFICANCE STATEMENT Prior knowledge serves the anticipation of sensory input to reduce sensory ambiguity. The growing interest in the neural mechanisms governing the integration of sensory input into our internal representations has highlighted a pivotal role of brain oscillations. Here we show that distinct but interacting oscillatory mechanisms are engaged during attentional deployment: one relying on α amplitude modulations and reflecting internal decision processes, associated with subjective perceptual experience and metacognitive abilities; the other relying on α frequency modulations and enabling mechanistic sampling of the sensory input at the attended location to influence objective performance. These insights are crucial for understanding how we reduce sensory ambiguity to maximize the efficiency of our conscious experience, but also in interpreting the mechanisms of atypical perceptual experiences.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
| | - Francesco Di Gregorio
- Azienda Unità Sanitaria Locale, UOC Medicina riabilitativa e neuroriabilitazione, Bologna, 40124, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, 346000, Chile
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, MVLS, University of Glasgow, Glasgow, G12 8QB, United Kingdom
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Roma, 00179, Italy
| |
Collapse
|
28
|
He BJ. Towards a pluralistic neurobiological understanding of consciousness. Trends Cogn Sci 2023; 27:420-432. [PMID: 36842851 PMCID: PMC10101889 DOI: 10.1016/j.tics.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Theories of consciousness are often based on the assumption that a single, unified neurobiological account will explain different types of conscious awareness. However, recent findings show that, even within a single modality such as conscious visual perception, the anatomical location, timing, and information flow of neural activity related to conscious awareness vary depending on both external and internal factors. This suggests that the search for generic neural correlates of consciousness may not be fruitful. I argue that consciousness science requires a more pluralistic approach and propose a new framework: joint determinant theory (JDT). This theory may be capable of accommodating different brain circuit mechanisms for conscious contents as varied as percepts, wills, memories, emotions, and thoughts, as well as their integrated experience.
Collapse
Affiliation(s)
- Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience and Physiology, Radiology, New York University Grossman School of Medicine, New York, NY 10016.
| |
Collapse
|
29
|
Di Gregorio F, Petrone V, Casanova E, Lullini G, Romei V, Piperno R, La Porta F. Hierarchical psychophysiological pathways subtend perceptual asymmetries in Neglect. Neuroimage 2023; 270:119942. [PMID: 36796529 DOI: 10.1016/j.neuroimage.2023.119942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Stroke patients with left Hemispatial Neglect (LHN) show deficits in perceiving left contralesional stimuli with biased visuospatial perception towards the right hemifield. However, very little is known about the functional organization of the visuospatial perceptual neural network and how this can account for the profound reorganization of space representation in LHN. In the present work, we aimed at (1) identifying EEG measures that discriminate LHN patients against controls and (2) devise a causative neurophysiological model between the discriminative EEG measures. To these aims, EEG was recorded during exposure to lateralized visual stimuli which allowed for pre-and post-stimulus activity investigation across three groups: LHN patients, lesioned controls, and healthy individuals. Moreover, all participants performed a standard behavioral test assessing the perceptual asymmetry index in detecting lateralized stimuli. The between-groups discriminative EEG patterns were entered into a Structural Equation Model for the identification of causative hierarchical associations (i.e., pathways) between EEG measures and the perceptual asymmetry index. The model identified two pathways. A first pathway showed that the combined contribution of pre-stimulus frontoparietal connectivity and individual-alpha-frequency predicts post-stimulus processing, as measured by visual-evoked N100, which, in turn, predicts the perceptual asymmetry index. A second pathway directly links the inter-hemispheric distribution of alpha-amplitude with the perceptual asymmetry index. The two pathways can collectively explain 83.1% of the variance in the perceptual asymmetry index. Using causative modeling, the present study identified how psychophysiological correlates of visuospatial perception are organized and predict the degree of behavioral asymmetry in LHN patients and controls.
Collapse
Affiliation(s)
- Francesco Di Gregorio
- UOC Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, Bologna 40133, Italy
| | - Valeria Petrone
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Emanuela Casanova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giada Lullini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Romei
- Dipartimento di Psicologia, Centro Studi E Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy
| | - Roberto Piperno
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio La Porta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
30
|
Foerster FR, Chidharom M, Giersch A. Enhanced temporal resolution of vision in action video game players. Neuroimage 2023; 269:119906. [PMID: 36739103 DOI: 10.1016/j.neuroimage.2023.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Video game play has been suggested to improve visual and attention processing. Nevertheless, while action video game play is highly dynamic, there is scarce research on how information is temporally discriminated at the millisecond level. This cross-sectional study investigates whether temporal discrimination at the millisecond level in vision varies across action video game players (VGPs; N = 23) and non-video game players (NVGPs; N = 23). Participants discriminated synchronous from asynchronous onsets of two visual targets in virtual reality, while their EEG and oculomotor movements were recorded. Results show an increased sensitivity to short asynchronies (11, 33 and 66 ms) in VGPs compared with NVGPs, which was especially marked at the start of the task, suggesting better temporal discrimination abilities. Pre-targets oculomotor freezing - the inhibition of small fixational saccades - was associated with correct temporal discrimination, probably revealing attentional preparation. However, this parameter did not differ between groups. EEG and reconstruction analyses suggest that the enhancement of temporal discrimination in VGPs during temporal discrimination is related to parieto-occipital processing, and a reduction of alpha-band (8-14 Hz) power and inter-trial phase coherence. Overall, the study reveals an enhanced ability in action video game players to discriminate in time visual events in close temporal proximity combined with reduced alpha-band oscillatory activities. Consequently, playing action video games is associated with an improved temporal resolution of vision.
Collapse
Affiliation(s)
- Francois R Foerster
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, France.
| | - Matthieu Chidharom
- Department of Psychology, Lehigh University, Bethlehem, PA, United States
| | - Anne Giersch
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, France
| |
Collapse
|
31
|
Cesnaite E, Steinfath P, Jamshidi Idaji M, Stephani T, Kumral D, Haufe S, Sander C, Hensch T, Hegerl U, Riedel-Heller S, Röhr S, Schroeter ML, Witte AV, Villringer A, Nikulin VV. Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age. Neuroimage 2023; 268:119810. [PMID: 36587708 DOI: 10.1016/j.neuroimage.2022.119810] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
While many structural and biochemical changes in the brain have previously been associated with older age, findings concerning functional properties of neuronal networks, as reflected in their electrophysiological signatures, remain rather controversial. These discrepancies might arise due to several reasons, including diverse factors determining general spectral slowing in the alpha frequency range as well as amplitude mixing between the rhythmic and non-rhythmic parameters. We used a large dataset (N = 1703, mean age 70) to comprehensively investigate age-related alterations in multiple EEG biomarkers taking into account rhythmic and non-rhythmic activity and their individual contributions to cognitive performance. While we found strong evidence for an individual alpha peak frequency (IAF) decline in older age, we did not observe a significant relationship between theta power and age while controlling for IAF. Not only did IAF decline with age, but it was also positively associated with interference resolution in a working memory task primarily in the right and left temporal lobes suggesting its functional role in information sampling. Critically, we did not detect a significant relationship between alpha power and age when controlling for the 1/f spectral slope, while the latter one showed age-related alterations. These findings thus suggest that the entanglement of IAF slowing and power in the theta frequency range, as well as 1/f slope and alpha power measures, might explain inconsistencies reported previously in the literature. Finally, despite the absence of age-related alterations, alpha power was negatively associated with the speed of processing in the right frontal lobe while 1/f slope showed no consistent relationship to cognitive performance. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered for the comprehensive assessment of association between age, neuronal activity, and cognitive performance.
Collapse
Affiliation(s)
- Elena Cesnaite
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Paul Steinfath
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Mina Jamshidi Idaji
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany; Machine Learning Group, Technical University Berlin, Berlin, Germany
| | - Tilman Stephani
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Deniz Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg im Breisgau, Germany; Institute of Psychology, Clinical Psychology and Psychotherapy Unit, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Haufe
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; IUBH International University, Erfurt, Germany
| | - Ulrich Hegerl
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Steffi Riedel-Heller
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Susanne Röhr
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
32
|
Jun S, Kim JS, Chung CK. Hippocampal Neuronal Activity Preceding Stimulus Predicts Later Memory Success. eNeuro 2023; 10:ENEURO.0252-22.2023. [PMID: 36720645 PMCID: PMC9933931 DOI: 10.1523/eneuro.0252-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Hippocampal neuronal activity at a time preceding stimulus onset affects episodic memory performance. We hypothesized that neuronal activity preceding an event supports successful memory formation; therefore, we explored whether a characterized encoding-associated brain activity, viz. the neuronal activity preceding a stimulus, predicts subsequent memory formation. To address this issue, we assessed the activity of single neurons recorded from the hippocampus in humans, while participants performed word memory tasks. Human hippocampal single-unit activity elicited by a fixation cue preceding words increased the firing rates (FRs) and predicted whether the words are recalled in a subsequent memory test; this indicated that successful memory formation in humans can be predicted by a preceding stimulus activity during encoding. However, the predictive effect of preceding stimulus activity did not occur during retrieval. These findings suggest that the preparative arrangement of brain activity before stimulus encoding improves subsequent memory performance.
Collapse
Affiliation(s)
- Soyeon Jun
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea, 03080
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea, 03080
| | - June Sic Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea, 03080
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea, 08826
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea, 03080
| |
Collapse
|
33
|
Morrow A, Dou W, Samaha J. Individual alpha frequency appears unrelated to the latency of early visual responses. Front Neurosci 2023; 17:1118910. [PMID: 37113149 PMCID: PMC10126513 DOI: 10.3389/fnins.2023.1118910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
A large body of work has linked neural oscillations in the alpha-band (8-13 Hz) to visual perceptual outcomes. In particular, studies have found that alpha phase prior to stimulus onset predicts stimulus detection, and sensory responses and that the frequency of alpha can predict temporal properties of perception. These findings have bolstered the idea that alpha-band oscillations reflect rhythmic sampling of visual information, however the mechanisms of this are unclear. Recently two contrasting hypotheses have been proposed. According to the rhythmic perception account, alpha oscillations impose phasic inhibition on perceptual processing and primarily modulate the amplitude or strength of visual responses and thus the likelihood of stimulus detection. On the other hand, the discrete perception account proposes that alpha activity discretizes perceptual inputs thereby reorganizing the timing (not only the strength) of perceptual and neural processes. In this paper, we sought neural evidence for the discrete perception account by assessing the correlation between individual alpha frequencies (IAF) and the latency of early visual evoked event-related potential (ERP) components. If alpha cycles were responsible for shifting neural events in time, then we may expect higher alpha frequencies to be associated with earlier afferent visual ERPs. Participants viewed large checkerboard stimuli presented to either the upper or lower visual field that were designed to elicit a large C1 ERP response (thought to index feedforward primary visual cortex activation). We found no reliable correlation between IAF and the C1 latency, or subsequent ERP component latencies, suggesting that the timing of these visual-evoked potentials was not modulated by alpha frequency. Our results thus fail to find evidence for discrete perception at the level of early visual responses but leave open the possibility of rhythmic perception.
Collapse
|
34
|
Frequency modulation of cortical rhythmicity governs behavioral variability, excitability and synchrony of neurons in the visual cortex. Sci Rep 2022; 12:20914. [PMID: 36463385 PMCID: PMC9719482 DOI: 10.1038/s41598-022-25264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research in cognitive neuroscience has renewed the idea that brain oscillations are a core organization implicated in fundamental brain functions. Growing evidence reveals that the characteristic features of these oscillations, including power, phase and frequency, are highly non-stationary, fluctuating alongside alternations in sensation, cognition and behavior. However, there is little consensus on the functional implications of the instantaneous frequency variation in cortical excitability and concomitant behavior. Here, we capitalized on intracortical electrophysiology in the macaque monkey's visual area MT performing a visuospatial discrimination task with visual cues. We observed that the instantaneous frequency of the theta-alpha oscillations (4-13 Hz) is modulated among specific neurons whose RFs overlap with the cued stimulus location. Interestingly, we found that such frequency modulation is causally correlated with MT excitability at both scales of individual and ensemble of neurons. Moreover, studying the functional relevance of frequency variations indicated that the average theta-alpha frequencies foreshadow the monkey's reaction time. Our results also revealed that the neural synchronization strength alters with the average frequency shift in theta-alpha oscillations, suggesting frequency modulation is critical for mutually adjusting MTs' rhythms. Overall, our findings propose that theta-alpha frequency variations modulate MT's excitability, regulate mutual neurons' rhythmicity and indicate variability in behavior.
Collapse
|
35
|
Tarasi L, di Pellegrino G, Romei V. Are you an empiricist or a believer? Neural signatures of predictive strategies in humans. Prog Neurobiol 2022; 219:102367. [DOI: 10.1016/j.pneurobio.2022.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
|
36
|
Human visual processing during walking: Dissociable pre- and post-stimulus influences. Neuroimage 2022; 264:119757. [PMID: 36414209 PMCID: PMC9771827 DOI: 10.1016/j.neuroimage.2022.119757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Walking influences visual processing but the underlying mechanism remains poorly understood. In this study, we investigated the influence of walking on pre-stimulus and stimulus-induced visual neural activity and behavioural performance in a discrimination task while participants were standing or freely walking. The results showed dissociable pre- and post-stimulus influences by the movement state. Walking was associated with a reduced pre-stimulus alpha power, which predicted enhanced N1 and decreased P3 components during walking. This pre-stimulus alpha activity was additionally modulated by time on the task, which was paralleled by a similar behavioural modulation. In contrast, the post-stimulus alpha power was reduced in its modulation due to stimulus onset during walking but showed no evidence of modulation by time on the task. Additionally, stimulus parameters (eccentricity, laterality, distractor presence significantly influenced post-stimulus alpha power, whereas the visually evoked components showed no evidence of such an influence. There was further no evidence of a correlation between pre-stimulus and post stimulus alpha power. We conclude that walking has two dissociable influences on visual processing: while the walking induced reduction in alpha power suggests an attentional state change that relates to visual awareness, the post-stimulus influence on alpha power modulation indicates changed spatial visual processing during walking.
Collapse
|
37
|
Davidson MJ, Macdonald JSP, Yeung N. Alpha oscillations and stimulus-evoked activity dissociate metacognitive reports of attention, visibility, and confidence in a rapid visual detection task. J Vis 2022; 22:20. [PMID: 36166234 PMCID: PMC9531462 DOI: 10.1167/jov.22.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Variability in the detection and discrimination of weak visual stimuli has been linked to oscillatory neural activity. In particular, the amplitude of activity in the alpha-band (8–12 Hz) has been shown to impact the objective likelihood of stimulus detection, as well as measures of subjective visibility, attention, and decision confidence. Here we investigate how preparatory alpha in a cued pretarget interval influences performance and phenomenology, by recording simultaneous subjective measures of attention and confidence (experiment 1) or attention and visibility (experiment 2) on a trial-by-trial basis in a visual detection task. Across both experiments, alpha amplitude was negatively and linearly correlated with the intensity of subjective attention. In contrast with this linear relationship, we observed a quadratic relationship between the strength of alpha oscillations and subjective ratings of confidence and visibility. We find that this same quadratic relationship links alpha amplitude with the strength of stimulus-evoked responses. Visibility and confidence judgments also corresponded with the strength of evoked responses, but confidence, uniquely, incorporated information about attentional state. As such, our findings reveal distinct psychological and neural correlates of metacognitive judgments of attentional state, stimulus visibility, and decision confidence when these judgments are preceded by a cued target interval.
Collapse
Affiliation(s)
- Matthew J Davidson
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,School of Psychology, University of Sydney, Sydney, Australia.,
| | | | - Nick Yeung
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,
| |
Collapse
|
38
|
Studenova AA, Villringer A, Nikulin VV. Non-zero mean alpha oscillations revealed with computational model and empirical data. PLoS Comput Biol 2022; 18:e1010272. [PMID: 35802619 PMCID: PMC9269450 DOI: 10.1371/journal.pcbi.1010272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Ongoing oscillations and evoked responses are two main types of neuronal activity obtained with diverse electrophysiological recordings (EEG/MEG/iEEG/LFP). Although typically studied separately, they might in fact be closely related. One possibility to unite them is to demonstrate that neuronal oscillations have non-zero mean which predicts that stimulus- or task-triggered amplitude modulation of oscillations can contribute to the generation of evoked responses. We validated this mechanism using computational modelling and analysis of a large EEG data set. With a biophysical model, we indeed demonstrated that intracellular currents in the neuron are asymmetric and, consequently, the mean of alpha oscillations is non-zero. To understand the effect that neuronal currents exert on oscillatory mean, we varied several biophysical and morphological properties of neurons in the network, such as voltage-gated channel densities, length of dendrites, and intensity of incoming stimuli. For a very large range of model parameters, we observed evidence for non-zero mean of oscillations. Complimentary, we analysed empirical rest EEG recordings of 90 participants (50 young, 40 elderly) and, with spatio-spectral decomposition, detected at least one spatially-filtred oscillatory component of non-zero mean alpha oscillations in 93% of participants. In order to explain a complex relationship between the dynamics of amplitude-envelope and corresponding baseline shifts, we performed additional simulations with simple oscillators coupled with different time delays. We demonstrated that the extent of spatial synchronisation may obscure macroscopic estimation of alpha rhythm modulation while leaving baseline shifts unchanged. Overall, our results predict that amplitude modulation of neural oscillations should at least partially explain the generation of evoked responses. Therefore, inference about changes in evoked responses with respect to cognitive conditions, age or neuropathologies should be constructed while taking into account oscillatory neuronal dynamics.
Collapse
Affiliation(s)
- Alina A. Studenova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- * E-mail:
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
39
|
Meyer-Baese L, Watters H, Keilholz S. Spatiotemporal patterns of spontaneous brain activity: a mini-review. NEUROPHOTONICS 2022; 9:032209. [PMID: 35434180 PMCID: PMC9005199 DOI: 10.1117/1.nph.9.3.032209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The brain exists in a state of constant activity in the absence of any external sensory input. The spatiotemporal patterns of this spontaneous brain activity have been studied using various recording and imaging techniques. This has enabled considerable progress to be made in elucidating the cellular and network mechanisms that are involved in the observed spatiotemporal dynamics. This mini-review outlines different spatiotemporal dynamic patterns that have been identified in four commonly used modalities: electrophysiological recordings, optical imaging, functional magnetic resonance imaging, and electroencephalography. Signal sources for each modality, possible sources of the observed dynamics, and future directions are also discussed.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | | - Shella Keilholz
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
40
|
Samaha J, LaRocque JJ, Postle BR. Spontaneous alpha-band amplitude predicts subjective visibility but not discrimination accuracy during high-level perception. Conscious Cogn 2022; 102:103337. [PMID: 35525224 DOI: 10.1016/j.concog.2022.103337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Near-threshold perception is a paradigm case of awareness diverging from reality - the perception of an unchanging stimulus can vacillate from undetected to clearly perceived. The amplitude of low-frequency brain oscillations - particularly in the alpha-band (8-13 Hz) - has emerged as a reliable predictor of trial-to-trial variability in perceptual decisions based on simple, low-level stimuli. Here, we addressed the question of how spontaneous oscillatory amplitude impacts subjective and objective aspects of perception using high-level visual stimuli. Human observers completed a near-threshold face/house discrimination task with subjective visibility ratings while electroencephalograms (EEG) were recorded. Using single-trial multiple regression analysis, we found that spontaneous fluctuations in prestimulus alpha-band amplitude were negatively related to visibility judgments but did not predict trial-by-trial accuracy. These results extend previous findings that indicate that strong prestimulus alpha diminishes subjective perception without affecting the accuracy or sensitivity (d') of perceptual decisions into the domain of high-level perception.
Collapse
Affiliation(s)
- Jason Samaha
- Department of Psychology, University of California, Santa Cruz, USA.
| | - Joshua J LaRocque
- Department of Neurology, New York University School of Medicine, USA
| | - Bradley R Postle
- Department of Psychiatry, University of Wisconsin-Madison, USA; Department of Psychology, University of Wisconsin-Madison, USA
| |
Collapse
|
41
|
Dehaghani NS, Maess B, Khosrowabadi R, Lashgari R, Braeutigam S, Zarei M. Pre-stimulus Alpha Activity Modulates Face and Object Processing in the Intra-Parietal Sulcus, a MEG Study. Front Hum Neurosci 2022; 16:831781. [PMID: 35585993 PMCID: PMC9108229 DOI: 10.3389/fnhum.2022.831781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Face perception is crucial in all social animals. Recent studies have shown that pre-stimulus oscillations of brain activity modulate the perceptual performance of face vs. non-face stimuli, specifically under challenging conditions. However, it is unclear if this effect also occurs during simple tasks, and if so in which brain regions. Here we used magnetoencephalography (MEG) and a 1-back task in which participants decided if the two sequentially presented stimuli were the same or not in each trial. The aim of the study was to explore the effect of pre-stimulus alpha oscillation on the perception of face (human and monkey) and non-face stimuli. Our results showed that pre-stimulus activity in the left occipital face area (OFA) modulated responses in the intra-parietal sulcus (IPS) at around 170 ms after the presentation of human face stimuli. This effect was also found after participants were shown images of motorcycles. In this case, the IPS was modulated by pre-stimulus activity in the right OFA and the right fusiform face area (FFA). We conclude that pre-stimulus modulation of post-stimulus response also occurs during simple tasks and is therefore independent of behavioral responses.
Collapse
Affiliation(s)
- Narjes Soltani Dehaghani
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- *Correspondence: Mojtaba Zarei
| |
Collapse
|
42
|
Johnston R, Snyder AC, Schibler RS, Smith MA. EEG Signals Index a Global Signature of Arousal Embedded in Neuronal Population Recordings. eNeuro 2022; 9:ENEURO.0012-22.2022. [PMID: 35606150 PMCID: PMC9186107 DOI: 10.1523/eneuro.0012-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Electroencephalography (EEG) has long been used to index brain states, from early studies describing activity in the presence and absence of visual stimulation to modern work employing complex perceptual tasks. These studies have shed light on brain-wide signals but often lack explanatory power at the single neuron level. Similarly, single neuron recordings can suffer from an inability to measure brain-wide signals accessible using EEG. Here, we combined these techniques while monkeys performed a change detection task and discovered a novel link between spontaneous EEG activity and a neural signal embedded in the spiking responses of neuronal populations. This "slow drift" was associated with fluctuations in the subjects' arousal levels over time: decreases in prestimulus α power were accompanied by increases in pupil size and decreases in microsaccade rate. These results show that brain-wide EEG signals can be used to index modes of activity present in single neuron recordings, that in turn reflect global changes in brain state that influence perception and behavior.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam C Snyder
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, PA 14627
- Department of Neuroscience, University of Rochester, Rochester, NY 14642
- Center for Visual Science, University of Rochester, Rochester, NY 14627
| | | | - Matthew A Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
43
|
Woolnough O, Forseth KJ, Rollo PS, Roccaforte ZJ, Tandon N. Event-Related Phase Synchronization Propagates Rapidly across Human Ventral Visual Cortex. Neuroimage 2022; 256:119262. [PMID: 35504563 PMCID: PMC9382906 DOI: 10.1016/j.neuroimage.2022.119262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 11/01/2022] Open
Abstract
Visual inputs to early visual cortex integrate with semantic, linguistic and memory inputs in higher visual cortex, in a manner that is rapid and accurate, and enables complex computations such as face recognition and word reading. This implies the existence of fundamental organizational principles that enable such efficiency. To elaborate on this, we performed intracranial recordings in 82 individuals while they performed tasks of varying visual and cognitive complexity. We discovered that visual inputs induce highly organized posterior-to-anterior propagating patterns of phase modulation across the ventral occipitotemporal cortex. At individual electrodes there was a stereotyped temporal pattern of phase progression following both stimulus onset and offset, consistent across trials and tasks. The phase of low frequency activity in anterior regions was predicted by the prior phase in posterior cortical regions. This spatiotemporal propagation of phase likely serves as a feed-forward organizational influence enabling the integration of information across the ventral visual stream. This phase modulation manifests as the early components of the event related potential; one of the most commonly used measures in human electrophysiology. These findings illuminate fundamental organizational principles of the higher order visual system that enable the rapid recognition and characterization of a variety of inputs.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Zachary J Roccaforte
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America; Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, United States of America.
| |
Collapse
|
44
|
Tuning alpha rhythms to shape conscious visual perception. Curr Biol 2022; 32:988-998.e6. [PMID: 35090592 DOI: 10.1016/j.cub.2022.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/31/2023]
Abstract
It is commonly held that what we see and what we believe we see are overlapping phenomena. However, dissociations between sensory events and their subjective interpretation occur in the general population and in clinical disorders, raising the question as to whether perceptual accuracy and its subjective interpretation represent mechanistically dissociable events. Here, we uncover the role that alpha oscillations play in shaping these two indices of human conscious experience. We used electroencephalography (EEG) to measure occipital alpha oscillations during a visual detection task, which were then entrained using rhythmic-TMS. We found that controlling prestimulus alpha frequency by rhythmic-TMS modulated perceptual accuracy, but not subjective confidence in it, whereas controlling poststimulus (but not prestimulus) alpha amplitude modulated how well subjective confidence judgments can distinguish between correct and incorrect decision, but not accuracy. These findings provide the first causal evidence of a double dissociation between alpha speed and alpha amplitude, linking alpha frequency to spatiotemporal sampling resources and alpha amplitude to the internal, subjective representation and interpretation of sensory events.
Collapse
|
45
|
Pre-Stimulus Alpha-Band Phase Gates Early Visual Cortex Responses. Neuroimage 2022; 253:119060. [PMID: 35283286 DOI: 10.1016/j.neuroimage.2022.119060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Alpha-band (8-13 Hz) oscillations have been shown to phasically inhibit perceptual reports in human observers, yet the underlying physiological mechanism of this effect is debated. According to contrasting models, based primarily on animal experiments, alpha activity is thought to either originate from specialized cells in the visual thalamus and periodically inhibit the relay of visual information to the primary visual cortex (V1) in a feedforward manner, or to propagate from higher visual areas back to V1 in a feedback manner. Human neurophysiological evidence in favor of either hypothesis, both, or neither, has been limited. To help address this issue, we explored the link between pre-stimulus alpha phase and visual electroencephalography (EEG) responses thought to arise from afferent input onto human V1. Specially-designed visual stimuli were used to elicit large amplitude C1 event-related potentials (ERP), with polarity, topography, and timing indicative of striate genesis. Single-trial circular-linear associations between pre-stimulus phase and post-stimulus global field power (GFP) during the C1 time window revealed significant effects peaking in the alpha frequency band. Control analyses ruling out the potential confound of post-stimulus data bleeding into the pre-stimulus window demonstrated that GFP amplitude decreases as pre-stimulus alpha phase deviates from an individual's preferred phase. These findings demonstrate an early locus - suggesting that the phase of pre-stimulus alpha oscillations could modulate visual processing by gating the feedforward flow of sensory input between the thalamus and V1, although other models are potentially compatible.
Collapse
|
46
|
Sadaghiani S, Brookes MJ, Baillet S. Connectomics of human electrophysiology. Neuroimage 2022; 247:118788. [PMID: 34906715 PMCID: PMC8943906 DOI: 10.1016/j.neuroimage.2021.118788] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
We present both a scientific overview and conceptual positions concerning the challenges and assets of electrophysiological measurements in the search for the nature and functions of the human connectome. We discuss how the field has been inspired by findings and approaches from functional magnetic resonance imaging (fMRI) and informed by a small number of significant multimodal empirical studies, which show that the canonical networks that are commonplace in fMRI are in fact rooted in electrophysiological processes. This review is also an opportunity to produce a brief, up-to-date critical survey of current data modalities and analytical methods available for deriving both static and dynamic connectomes from electrophysiology. We review hurdles that challenge the significance and impact of current electrophysiology connectome research. We then encourage the field to take a leap of faith and embrace the wealth of electrophysiological signals, despite their apparent, disconcerting complexity. Our position is that electrophysiology connectomics is poised to inform testable mechanistic models of information integration in hierarchical brain networks, constructed from observable oscillatory and aperiodic signal components and their polyrhythmic interactions.
Collapse
Affiliation(s)
- Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, United States
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Law RG, Pugliese S, Shin H, Sliva DD, Lee S, Neymotin S, Moore C, Jones SR. Thalamocortical Mechanisms Regulating the Relationship between Transient Beta Events and Human Tactile Perception. Cereb Cortex 2022; 32:668-688. [PMID: 34401898 PMCID: PMC8841599 DOI: 10.1093/cercor/bhab221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Transient neocortical events with high spectral power in the 15-29 Hz beta band are among the most reliable predictors of sensory perception. Prestimulus beta event rates in primary somatosensory cortex correlate with sensory suppression, most effectively 100-300 ms before stimulus onset. However, the neural mechanisms underlying this perceptual association are unknown. We combined human magnetoencephalography (MEG) measurements with biophysical neural modeling to test potential cellular and circuit mechanisms that underlie observed correlations between prestimulus beta events and tactile detection. Extending prior studies, we found that simulated bursts from higher-order, nonlemniscal thalamus were sufficient to drive beta event generation and to recruit slow supragranular inhibition acting on a 300 ms timescale to suppress sensory information. Further analysis showed that the same beta-generating mechanism can lead to facilitated perception for a brief period when beta events occur simultaneously with tactile stimulation before inhibition is recruited. These findings were supported by close agreement between model-derived predictions and empirical MEG data. The postevent suppressive mechanism explains an array of studies that associate beta with decreased processing, whereas the during-event facilitatory mechanism may demand a reinterpretation of the role of beta events in the context of coincident timing.
Collapse
Affiliation(s)
- Robert G Law
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA 02215, USA
| | - Sarah Pugliese
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Hyeyoung Shin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle D Sliva
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Shane Lee
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI 02903, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI 02903, USA
| | - Samuel Neymotin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA
| |
Collapse
|
48
|
Lack of neural load modulation explains attention and working memory deficits in first-episode schizophrenia. Clin Neurophysiol 2022; 136:206-218. [DOI: 10.1016/j.clinph.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
49
|
Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations. Neuroinformatics 2022; 20:991-1012. [PMID: 35389160 PMCID: PMC9588478 DOI: 10.1007/s12021-022-09581-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 12/31/2022]
Abstract
Electrophysiological power spectra typically consist of two components: An aperiodic part usually following an 1/f power law [Formula: see text] and periodic components appearing as spectral peaks. While the investigation of the periodic parts, commonly referred to as neural oscillations, has received considerable attention, the study of the aperiodic part has only recently gained more interest. The periodic part is usually quantified by center frequencies, powers, and bandwidths, while the aperiodic part is parameterized by the y-intercept and the 1/f exponent [Formula: see text]. For investigation of either part, however, it is essential to separate the two components. In this article, we scrutinize two frequently used methods, FOOOF (Fitting Oscillations & One-Over-F) and IRASA (Irregular Resampling Auto-Spectral Analysis), that are commonly used to separate the periodic from the aperiodic component. We evaluate these methods using diverse spectra obtained with electroencephalography (EEG), magnetoencephalography (MEG), and local field potential (LFP) recordings relating to three independent research datasets. Each method and each dataset poses distinct challenges for the extraction of both spectral parts. The specific spectral features hindering the periodic and aperiodic separation are highlighted by simulations of power spectra emphasizing these features. Through comparison with the simulation parameters defined a priori, the parameterization error of each method is quantified. Based on the real and simulated power spectra, we evaluate the advantages of both methods, discuss common challenges, note which spectral features impede the separation, assess the computational costs, and propose recommendations on how to use them.
Collapse
|
50
|
Kluger DS, Balestrieri E, Busch NA, Gross J. Respiration aligns perception with neural excitability. eLife 2021; 10:e70907. [PMID: 34904567 PMCID: PMC8763394 DOI: 10.7554/elife.70907] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behavior. We acquired respiration and human magnetoencephalography data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8-13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected versus undetected targets underscored the behavioral benefits of heightened excitability. Notably, respiration-locked excitability changes were maximized at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Elio Balestrieri
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute of Psychology, University of MünsterMünsterGermany
| | - Niko A Busch
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute of Psychology, University of MünsterMünsterGermany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|