1
|
Culiver AM, Grooms DR, Caccese JB, Hayes SM, Schmitt LC, Oñate JA. fMRI Activation in Sensorimotor Regions at 6 Weeks After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2025:3635465251313808. [PMID: 39905651 DOI: 10.1177/03635465251313808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
BACKGROUND Brain activity during knee movements is altered throughout the sensorimotor network after anterior cruciate ligament reconstruction (ACLR). Patients at 2 to 5 years after surgery appear to require greater neural activity to perform basic knee movement patterns, but it is unclear if brain activity differences within sensorimotor regions are present early after surgery. It is also unknown whether uninvolved knee movements elicit similar or unique activity compared with involved knee movements. PURPOSE To examine brain activity in sensorimotor regions during involved and uninvolved knee movements in patients at 6 weeks after ACLR compared with control participants. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS A total of 15 patients who underwent ACLR (mean age, 21.9 ± 4.3 years [range, 17-29 years]; 8 female) and 15 control participants performed 30-second blocks of repeated knee flexion and extension, followed by 30 seconds of rest, during functional magnetic resonance imaging. Regions of interest included the right and left primary motor cortex (M1), right and left primary somatosensory cortex (S1), supplementary motor area (SMA), precuneus, and lingual gyrus. Activity from task-relevant voxels (move > rest) was extracted, and generalized estimating equations evaluated the main effect of group and group-by-limb interaction. Effect sizes were calculated using the Cohen d. RESULTS Reduced brain activity during knee flexion and extension was observed in the ACLR group in the ipsilateral M1 and S1, contralateral S1, SMA, and precuneus during movements of the involved and uninvolved knees. There were no group-by-limb interaction effects, indicating no significant differences between the involved knee and uninvolved knee in the ACLR group. Medium to large effect sizes were identified for between-group differences in all regions. CONCLUSION At 6 weeks after ACLR, patients exhibited bilateral reductions in brain activity during knee movements in multiple sensorimotor regions. These identified regions are associated with motor planning, motor execution, somatosensory function, and sensorimotor integration. These data indicate that ACLR affected sensorimotor brain activity in both limbs during the early postoperative phase of rehabilitation.
Collapse
Affiliation(s)
- Adam M Culiver
- Sports Medicine Research Institute, Ohio State University, Columbus, Ohio, USA
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| | - Dustin R Grooms
- Department of Physical Therapy, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
- Department of Athletic Training, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, USA
| | - Jaclyn B Caccese
- Division of Athletic Training, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, Ohio State University, Columbus, Ohio, USA
| | - Scott M Hayes
- Chronic Brain Injury Program, Ohio State University, Columbus, Ohio, USA
- Department of Psychology, College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
| | - Laura C Schmitt
- Sports Medicine Research Institute, Ohio State University, Columbus, Ohio, USA
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| | - James A Oñate
- Sports Medicine Research Institute, Ohio State University, Columbus, Ohio, USA
- Division of Athletic Training, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Perkins SM, Amematsro EA, Cunningham J, Wang Q, Churchland MM. An emerging view of neural geometry in motor cortex supports high-performance decoding. eLife 2025; 12:RP89421. [PMID: 39898793 PMCID: PMC11790250 DOI: 10.7554/elife.89421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Decoders for brain-computer interfaces (BCIs) assume constraints on neural activity, chosen to reflect scientific beliefs while yielding tractable computations. Recent scientific advances suggest that the true constraints on neural activity, especially its geometry, may be quite different from those assumed by most decoders. We designed a decoder, MINT, to embrace statistical constraints that are potentially more appropriate. If those constraints are accurate, MINT should outperform standard methods that explicitly make different assumptions. Additionally, MINT should be competitive with expressive machine learning methods that can implicitly learn constraints from data. MINT performed well across tasks, suggesting its assumptions are well-matched to the data. MINT outperformed other interpretable methods in every comparison we made. MINT outperformed expressive machine learning methods in 37 of 42 comparisons. MINT's computations are simple, scale favorably with increasing neuron counts, and yield interpretable quantities such as data likelihoods. MINT's performance and simplicity suggest it may be a strong candidate for many BCI applications.
Collapse
Affiliation(s)
- Sean M Perkins
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Elom A Amematsro
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia University Medical CenterNew YorkUnited States
| | - John Cunningham
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Department of Statistics, Columbia UniversityNew YorkUnited States
- Center for Theoretical Neuroscience, Columbia University Medical CenterNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Mark M Churchland
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia University Medical CenterNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
3
|
Massai E, Bonizzato M, De Jesus I, Drainville R, Martinez M. Cortical neuroprosthesis-mediated functional ipsilateral control of locomotion in rats with spinal cord hemisection. eLife 2024; 12:RP92940. [PMID: 39585196 PMCID: PMC11588340 DOI: 10.7554/elife.92940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.
Collapse
Affiliation(s)
- Elena Massai
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
| | - Marco Bonizzato
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Isley De Jesus
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Roxanne Drainville
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Marina Martinez
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| |
Collapse
|
4
|
Park S, Lipton M, Dadarlat MC. Decoding multi-limb movements from two-photon calcium imaging of neuronal activity using deep learning. J Neural Eng 2024; 21:066006. [PMID: 39508456 DOI: 10.1088/1741-2552/ad83c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024]
Abstract
Objective.Brain-machine interfaces (BMIs) aim to restore sensorimotor function to individuals suffering from neural injury and disease. A critical step in implementing a BMI is to decode movement intention from recorded neural activity patterns in sensorimotor areas. Optical imaging, including two-photon (2p) calcium imaging, is an attractive approach for recording large-scale neural activity with high spatial resolution using a minimally-invasive technique. However, relating slow two-photon calcium imaging data to fast behaviors is challenging due to the relatively low optical imaging sampling rates. Nevertheless, neural activity recorded with 2p calcium imaging has been used to decode information about stereotyped single-limb movements and to control BMIs. Here, we expand upon prior work by applying deep learning to decode multi-limb movements of running mice from 2p calcium imaging data.Approach.We developed a recurrent encoder-decoder network (LSTM-encdec) in which the output is longer than the input.Main results.LSTM-encdec could accurately decode information about all four limbs (contralateral and ipsilateral front and hind limbs) from calcium imaging data recorded in a single cortical hemisphere.Significance.Our approach provides interpretability measures to validate decoding accuracy and expands the utility of BMIs by establishing the groundwork for control of multiple limbs. Our work contributes to the advancement of neural decoding techniques and the development of next-generation optical BMIs.
Collapse
Affiliation(s)
- Seungbin Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, United States of America
| | - Megan Lipton
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, United States of America
| | - Maria C Dadarlat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, United States of America
| |
Collapse
|
5
|
Marino PJ, Bahureksa L, Fisac CF, Oby ER, Smoulder AL, Motiwala A, Degenhart AD, Grigsby EM, Joiner WM, Chase SM, Yu BM, Batista AP. A posture subspace in primary motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607361. [PMID: 39185208 PMCID: PMC11343157 DOI: 10.1101/2024.08.12.607361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
To generate movements, the brain must combine information about movement goal and body posture. Motor cortex (M1) is a key node for the convergence of these information streams. How are posture and goal information organized within M1's activity to permit the flexible generation of movement commands? To answer this question, we recorded M1 activity while monkeys performed a variety of tasks with the forearm in a range of postures. We found that posture- and goal-related components of neural population activity were separable and resided in nearly orthogonal subspaces. The posture subspace was stable across tasks. Within each task, neural trajectories for each goal had similar shapes across postures. Our results reveal a simpler organization of posture information in M1 than previously recognized. The compartmentalization of posture and goal information might allow the two to be flexibly combined in the service of our broad repertoire of actions.
Collapse
Affiliation(s)
- Patrick J. Marino
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Lindsay Bahureksa
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carmen Fernández Fisac
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emily R. Oby
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canda
| | - Adam L. Smoulder
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Asma Motiwala
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alan D. Degenhart
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Starfish Neuroscience, Bellevue, WA 98004, USA
| | - Erinn M. Grigsby
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Wilsaan M. Joiner
- Dept. of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Steven M. Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
| | - Byron M. Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
| | - Aaron P. Batista
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
6
|
Falaki A, Quessy S, Dancause N. Differential Modulation of Local Field Potentials in the Primary and Premotor Cortices during Ipsilateral and Contralateral Reach to Grasp in Macaque Monkeys. J Neurosci 2024; 44:e1161232024. [PMID: 38589229 PMCID: PMC11112639 DOI: 10.1523/jneurosci.1161-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and β activity increased during contralateral grasp. In contrast, β oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.
Collapse
Affiliation(s)
- Ali Falaki
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Center interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
7
|
Johnston R, Smith MA. Brain-wide arousal signals are segregated from movement planning in the superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591284. [PMID: 38746466 PMCID: PMC11092505 DOI: 10.1101/2024.04.26.591284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
8
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Zimnik AJ, Cora Ames K, An X, Driscoll L, Lara AH, Russo AA, Susoy V, Cunningham JP, Paninski L, Churchland MM, Glaser JI. Identifying Interpretable Latent Factors with Sparse Component Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578988. [PMID: 38370650 PMCID: PMC10871230 DOI: 10.1101/2024.02.05.578988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In many neural populations, the computationally relevant signals are posited to be a set of 'latent factors' - signals shared across many individual neurons. Understanding the relationship between neural activity and behavior requires the identification of factors that reflect distinct computational roles. Methods for identifying such factors typically require supervision, which can be suboptimal if one is unsure how (or whether) factors can be grouped into distinct, meaningful sets. Here, we introduce Sparse Component Analysis (SCA), an unsupervised method that identifies interpretable latent factors. SCA seeks factors that are sparse in time and occupy orthogonal dimensions. With these simple constraints, SCA facilitates surprisingly clear parcellations of neural activity across a range of behaviors. We applied SCA to motor cortex activity from reaching and cycling monkeys, single-trial imaging data from C. elegans, and activity from a multitask artificial network. SCA consistently identified sets of factors that were useful in describing network computations.
Collapse
Affiliation(s)
- Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - K Cora Ames
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Xinyue An
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Laura Driscoll
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Allen Institute for Neural Dynamics, Allen Institute, Seattle, CA, USA
| | - Antonio H Lara
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Abigail A Russo
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Vladislav Susoy
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John P Cunningham
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Liam Paninski
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA
| | - Joshua I Glaser
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Cross KP, Cook DJ, Scott SH. Rapid Online Corrections for Proprioceptive and Visual Perturbations Recruit Similar Circuits in Primary Motor Cortex. eNeuro 2024; 11:ENEURO.0083-23.2024. [PMID: 38238081 PMCID: PMC10867723 DOI: 10.1523/eneuro.0083-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
An important aspect of motor function is our ability to rapidly generate goal-directed corrections for disturbances to the limb or behavioral goal. The primary motor cortex (M1) is a key region involved in processing feedback for rapid motor corrections, yet we know little about how M1 circuits are recruited by different sources of sensory feedback to make rapid corrections. We trained two male monkeys (Macaca mulatta) to make goal-directed reaches and on random trials introduced different sensory errors by either jumping the visual location of the goal (goal jump), jumping the visual location of the hand (cursor jump), or applying a mechanical load to displace the hand (proprioceptive feedback). Sensory perturbations evoked a broad response in M1 with ∼73% of neurons (n = 257) responding to at least one of the sensory perturbations. Feedback responses were also similar as response ranges between the goal and cursor jumps were highly correlated (range of r = [0.91, 0.97]) as were the response ranges between the mechanical loads and the visual perturbations (range of r = [0.68, 0.86]). Lastly, we identified the neural subspace each perturbation response resided in and found a strong overlap between the two visual perturbations (range of overlap index, 0.73-0.89) and between the mechanical loads and visual perturbations (range of overlap index, 0.36-0.47) indicating each perturbation evoked similar structure of activity at the population level. Collectively, our results indicate rapid responses to errors from different sensory sources target similar overlapping circuits in M1.
Collapse
Affiliation(s)
- Kevin P Cross
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas J Cook
- Department of Surgery, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Deo DR, Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. Brain control of bimanual movement enabled by recurrent neural networks. Sci Rep 2024; 14:1598. [PMID: 38238386 PMCID: PMC10796685 DOI: 10.1038/s41598-024-51617-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
Brain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g., bimanual movement). However, it may prove challenging to decode the simultaneous motion of multiple effectors, as we recently found that a compositional neural code links movements across all limbs and that neural tuning changes nonlinearly during dual-effector motion. Here, we demonstrate the feasibility of high-quality bimanual control of two cursors via neural network (NN) decoders. Through simulations, we show that NNs leverage a neural 'laterality' dimension to distinguish between left and right-hand movements as neural tuning to both hands become increasingly correlated. In training recurrent neural networks (RNNs) for two-cursor control, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously. Our results suggest that neural network decoders may be advantageous for multi-effector decoding, provided they are designed to transfer to the online setting.
Collapse
Affiliation(s)
- Darrel R Deo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Donald T Avansino
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Shinn M. Phantom oscillations in principal component analysis. Proc Natl Acad Sci U S A 2023; 120:e2311420120. [PMID: 37988465 PMCID: PMC10691246 DOI: 10.1073/pnas.2311420120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023] Open
Abstract
Principal component analysis (PCA) is a dimensionality reduction method that is known for being simple and easy to interpret. Principal components are often interpreted as low-dimensional patterns in high-dimensional space. However, this simple interpretation fails for timeseries, spatial maps, and other continuous data. In these cases, nonoscillatory data may have oscillatory principal components. Here, we show that two common properties of data cause oscillatory principal components: smoothness and shifts in time or space. These two properties implicate almost all neuroscience data. We show how the oscillations produced by PCA, which we call "phantom oscillations," impact data analysis. We also show that traditional cross-validation does not detect phantom oscillations, so we suggest procedures that do. Our findings are supported by a collection of mathematical proofs. Collectively, our work demonstrates that patterns which emerge from high-dimensional data analysis may not faithfully represent the underlying data.
Collapse
Affiliation(s)
- Maxwell Shinn
- University College London (UCL) Queen Square Institute of Neurology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Yang F, Wang F, Ma X, Zhou M, Jiang S, Xu W. Longitudinal optogenetic mapping reveals enhanced motor control by the contralesional cortex after traumatic brain injury in mice. Exp Neurol 2023; 369:114546. [PMID: 37751813 DOI: 10.1016/j.expneurol.2023.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Traumatic brain injury (TBI) is a significant cause of human disability, and understanding its spontaneous recovery pattern after injury is critical for potential treatments. However, studies on the function of the contralesional cortex after TBI have mostly focused on acute-phase changes, and long-term dynamic changes in the control of the affected limb by the contralesional cortex are less understood. To unravel long-term adaptations in the contralesional cortex, we developed a mouse model of TBI and used longitudinal optogenetic motor mapping to observe the function of contralesional corticospinal neurons (CSNs) projecting to the unilateral seventh cervical (C7) segment of the spinal cord. We injected a retrograde adeno-associated virus (AAV) expressing channelrhodopsin-2 to optogenetically stimulate and map the functional connections of the motor-sensory cortex. We validated the effectiveness of transcranial optogenetic stimulation for functional mapping and observed a general increase in the control of the affected limb by the contralesional cortex over time. Using retrograde labeling techniques, we showed that TBI does not affect the distribution of C7-CSNs but alters their function, and the labeled CSNs are concentrated in the caudal and rostral forelimb areas. Our findings provide new insights into harnessing contralesional cortical plasticity to improve treatment for affected limbs. This study sheds light on the long-term adaptations in the contralesional cortex after TBI, paving the way for potential clinical applications of optogenetic stimulation to improve motor control and rehabilitation outcomes.
Collapse
Affiliation(s)
- Fangjing Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Xingyi Ma
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingjie Zhou
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Su Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, China; Institutes of Brain Science, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center of Brain Science, Fudan University, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University,226000 Nantong, China; Research Unit of Synergistic Reconstruction of Upper and Lower Limbs After Brain Injury, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Shah NP, Avansino D, Kamdar F, Nicolas C, Kapitonava A, Vargas-Irwin C, Hochberg L, Pandarinath C, Shenoy K, Willett FR, Henderson J. Pseudo-linear Summation explains Neural Geometry of Multi-finger Movements in Human Premotor Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561982. [PMID: 37873182 PMCID: PMC10592742 DOI: 10.1101/2023.10.11.561982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How does the motor cortex combine simple movements (such as single finger flexion/extension) into complex movements (such hand gestures or playing piano)? Motor cortical activity was recorded using intracortical multi-electrode arrays in two people with tetraplegia as they attempted single, pairwise and higher order finger movements. Neural activity for simultaneous movements was largely aligned with linear summation of corresponding single finger movement activities, with two violations. First, the neural activity was normalized, preventing a large magnitude with an increasing number of moving fingers. Second, the neural tuning direction of weakly represented fingers (e.g. middle) changed significantly as a result of the movement of other fingers. These deviations from linearity resulted in non-linear methods outperforming linear methods for neural decoding. Overall, simultaneous finger movements are thus represented by the combination of individual finger movements by pseudo-linear summation.
Collapse
Affiliation(s)
| | - Donald Avansino
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | - Claire Nicolas
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Vargas-Irwin
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Leigh Hochberg
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Krishna Shenoy
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Jaimie Henderson
- Department of Neurosurgery, Stanford University
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Park K, Ritsma BR, Dukelow SP, Scott SH. A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke. J Neuroeng Rehabil 2023; 20:137. [PMID: 37821970 PMCID: PMC10568927 DOI: 10.1186/s12984-023-01262-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND A key motor skill is the ability to rapidly interact with our dynamic environment. Humans can generate goal-directed motor actions in response to sensory stimulus within ~ 60-200ms. This ability can be impaired after stroke, but most clinical tools lack any measures of rapid feedback processing. Reaching tasks have been used as a framework to quantify impairments in generating motor corrections for individuals with stroke. However, reaching may be inadequate as an assessment tool as repeated reaching can be fatiguing for individuals with stroke. Further, reaching requires many trials to be completed including trials with and without disturbances, and thus, exacerbate fatigue. Here, we describe a novel robotic task to quantify rapid feedback processing in healthy controls and compare this performance with individuals with stroke to (more) efficiently identify impairments in rapid feedback processing. METHODS We assessed a cohort of healthy controls (n = 135) and individuals with stroke (n = 40; Mean 41 days from stroke) in the Fast Feedback Interception Task (FFIT) using the Kinarm Exoskeleton robot. Participants were instructed to intercept a circular white target moving towards them with their hand represented as a virtual paddle. On some trials, the arm could be physically perturbed, the target or paddle could abruptly change location, or the target could change colour requiring the individual to now avoid the target. RESULTS Most participants with stroke were impaired in reaction time (85%) and end-point accuracy (83%) in at least one of the task conditions, most commonly with target or paddle shifts. Of note, this impairment was also evident in most individuals with stroke when performing the task using their unaffected arm (75%). Comparison with upper limb clinical measures identified moderate correlations with the FFIT. CONCLUSION The FFIT was able to identify a high proportion of individuals with stroke as impaired in rapid feedback processing using either the affected or unaffected arms. The task allows many different types of feedback responses to be efficiently assessed in a short amount of time.
Collapse
Affiliation(s)
- Kayne Park
- Centre for Neuroscience Studies, Queen's University, Botterell Hall, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Benjamin R Ritsma
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada
- Providence Care Hospital, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Botterell Hall, 18 Stuart St, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Providence Care Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
16
|
Ma R, Chen YF, Jiang YC, Zhang M. A New Compound-Limbs Paradigm: Integrating Upper-Limb Swing Improves Lower-Limb Stepping Intention Decoding From EEG. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3823-3834. [PMID: 37713229 DOI: 10.1109/tnsre.2023.3315717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Brain-computer interface (BCI) systems based on spontaneous electroencephalography (EEG) hold the promise to implement human voluntary control of lower-extremity powered exoskeletons. However, current EEG-BCI paradigms do not consider the cooperation of upper and lower limbs during walking, which is inconsistent with natural human stepping patterns. To deal with this problem, this study proposed a stepping-matched human EEG-BCI paradigm that involved actions of both unilateral lower and contralateral upper limbs (also referred to as compound-limbs movement). Experiments were conducted in motor execution (ME) and motor imagery (MI) conditions to validate the feasibility. Common spatial pattern (CSP) proposed subject-specific CSP (SSCSP), and filter-bank CSP (FBCSP) methods were applied for feature extraction, respectively. The best average classification results based on SSCSP indicated that the accuracies of compound-limbs paradigms in ME and MI conditions achieved 89.02% ± 12.84% and 73.70% ± 12.47%, respectively. Although they were 2.03% and 5.68% lower than those of the single-upper-limb mode that does not match human stepping patterns, they were 24.30% and 11.02% higher than those of the single-lower-limb mode. These findings indicated that the proposed compound-limbs EEG-BCI paradigm is feasible for decoding human stepping intention and thus provides a potential way for natural human control of walking assistance devices.
Collapse
|
17
|
Li JS, Sarma AA, Sejnowski TJ, Doyle JC. Internal feedback in the cortical perception-action loop enables fast and accurate behavior. Proc Natl Acad Sci U S A 2023; 120:e2300445120. [PMID: 37738297 PMCID: PMC10523540 DOI: 10.1073/pnas.2300445120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Animals move smoothly and reliably in unpredictable environments. Models of sensorimotor control, drawing on control theory, have assumed that sensory information from the environment leads to actions, which then act back on the environment, creating a single, unidirectional perception-action loop. However, the sensorimotor loop contains internal delays in sensory and motor pathways, which can lead to unstable control. We show here that these delays can be compensated by internal feedback signals that flow backward, from motor toward sensory areas. This internal feedback is ubiquitous in neural sensorimotor systems, and we show how internal feedback compensates internal delays. This is accomplished by filtering out self-generated and other predictable changes so that unpredicted, actionable information can be rapidly transmitted toward action by the fastest components, effectively compressing the sensory input to more efficiently use feedforward pathways: Tracts of fast, giant neurons necessarily convey less accurate signals than tracts with many smaller neurons, but they are crucial for fast and accurate behavior. We use a mathematically tractable control model to show that internal feedback has an indispensable role in achieving state estimation, localization of function (how different parts of the cortex control different parts of the body), and attention, all of which are crucial for effective sensorimotor control. This control model can explain anatomical, physiological, and behavioral observations, including motor signals in the visual cortex, heterogeneous kinetics of sensory receptors, and the presence of giant cells in the cortex of humans as well as internal feedback patterns and unexplained heterogeneity in neural systems.
Collapse
Affiliation(s)
- Jing Shuang Li
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Anish A. Sarma
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
- School of Medicine, Vanderbilt University, Nashville, TN37232
| | - Terrence J. Sejnowski
- Department of Neurobiology, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA92037
- Department of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - John C. Doyle
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
18
|
Kass RE, Bong H, Olarinre M, Xin Q, Urban KN. Identification of interacting neural populations: methods and statistical considerations. J Neurophysiol 2023; 130:475-496. [PMID: 37465897 PMCID: PMC10642974 DOI: 10.1152/jn.00131.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
As improved recording technologies have created new opportunities for neurophysiological investigation, emphasis has shifted from individual neurons to multiple populations that form circuits, and it has become important to provide evidence of cross-population coordinated activity. We review various methods for doing so, placing them in six major categories while avoiding technical descriptions and instead focusing on high-level motivations and concerns. Our aim is to indicate what the methods can achieve and the circumstances under which they are likely to succeed. Toward this end, we include a discussion of four cross-cutting issues: the definition of neural populations, trial-to-trial variability and Poisson-like noise, time-varying dynamics, and causality.
Collapse
Affiliation(s)
- Robert E Kass
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Heejong Bong
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Motolani Olarinre
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Qi Xin
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Konrad N Urban
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
19
|
Lin J, Lai D, Wan Z, Feng L, Zhu J, Zhang J, Wang Y, Xu K. Representation and decoding of bilateral arm motor imagery using unilateral cerebral LFP signals. Front Hum Neurosci 2023; 17:1168017. [PMID: 37388414 PMCID: PMC10304012 DOI: 10.3389/fnhum.2023.1168017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction In the field of upper limb brain computer interfaces (BCIs), the research focusing on bilateral decoding mostly based on the neural signals from two cerebral hemispheres. In addition, most studies used spikes for decoding. Here we examined the representation and decoding of different laterality and regions arm motor imagery in unilateral motor cortex based on local field potentials (LFPs). Methods The LFP signals were recorded from a 96-channel Utah microelectrode array implanted in the left primary motor cortex of a paralyzed participant. There were 7 kinds of tasks: rest, left, right and bilateral elbow and wrist flexion. We performed time-frequency analysis on the LFP signals and analyzed the representation and decoding of different tasks using the power and energy of different frequency bands. Results The frequency range of <8 Hz and >38 Hz showed power enhancement, whereas 8-38 Hz showed power suppression in spectrograms while performing motor imagery. There were significant differences in average energy between tasks. What's more, the movement region and laterality were represented in two dimensions by demixed principal component analysis. The 135-300 Hz band signal had the highest decoding accuracy among all frequency bands and the contralateral and bilateral signals had more similar single-channel power activation patterns and larger signal correlation than contralateral and ipsilateral signals, bilateral and ipsilateral signals. Discussion The results showed that unilateral LFP signals had different representations for bilateral motor imagery on the average energy of the full array and single-channel power levels, and different tasks could be decoded. These proved the feasibility of multilateral BCI based on the unilateral LFP signal to broaden the application of BCI technology. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=130829, identifier ChiCTR2100050705.
Collapse
Affiliation(s)
- Jiafan Lin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dongrong Lai
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zijun Wan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Guan C, Aflalo T, Kadlec K, Gámez de Leon J, Rosario ER, Bari A, Pouratian N, Andersen RA. Decoding and geometry of ten finger movements in human posterior parietal cortex and motor cortex. J Neural Eng 2023; 20:036020. [PMID: 37160127 PMCID: PMC10209510 DOI: 10.1088/1741-2552/acd3b1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb paralysis.Approach. Two tetraplegic participants were each implanted with a 96-channel array in the left posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural activity while the participants attempted to move individual fingers of the right hand. Offline, we classified attempted finger movements from neural firing rates using linear discriminant analysis with cross-validation. The participants then used the neural classifier online to control individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural representational geometry during individual finger movements of both hands.Main Results. The two participants achieved 86% and 92% online accuracy during BMI control of the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance = 10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of the contralateral and ipsilateral hands.Significance. This is the first study to decode both contralateral and ipsilateral finger movements from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand restoration strategy for people with tetraplegia.
Collapse
Affiliation(s)
- Charles Guan
- California Institute of Technology, Pasadena, CA, United States of America
| | - Tyson Aflalo
- California Institute of Technology, Pasadena, CA, United States of America
- T&C Chen Brain-Machine Interface Center at Caltech, Pasadena, CA, United States of America
| | - Kelly Kadlec
- California Institute of Technology, Pasadena, CA, United States of America
| | | | - Emily R Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA, United States of America
| | - Ausaf Bari
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Nader Pouratian
- University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Richard A Andersen
- California Institute of Technology, Pasadena, CA, United States of America
- T&C Chen Brain-Machine Interface Center at Caltech, Pasadena, CA, United States of America
| |
Collapse
|
21
|
Disse GD, Nandakumar B, Pauzin FP, Blumenthal GH, Kong Z, Ditterich J, Moxon KA. Neural ensemble dynamics in trunk and hindlimb sensorimotor cortex encode for the control of postural stability. Cell Rep 2023; 42:112347. [PMID: 37027302 DOI: 10.1016/j.celrep.2023.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
The cortex has a disputed role in monitoring postural equilibrium and intervening in cases of major postural disturbances. Here, we investigate the patterns of neural activity in the cortex that underlie neural dynamics during unexpected perturbations. In both the primary sensory (S1) and motor (M1) cortices of the rat, unique neuronal classes differentially covary their responses to distinguish different characteristics of applied postural perturbations; however, there is substantial information gain in M1, demonstrating a role for higher-order computations in motor control. A dynamical systems model of M1 activity and forces generated by the limbs reveals that these neuronal classes contribute to a low-dimensional manifold comprised of separate subspaces enabled by congruent and incongruent neural firing patterns that define different computations depending on the postural responses. These results inform how the cortex engages in postural control, directing work aiming to understand postural instability after neurological disease.
Collapse
Affiliation(s)
- Gregory D Disse
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA; Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | - Francois P Pauzin
- Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Gary H Blumenthal
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Zhaodan Kong
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Jochen Ditterich
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA; Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Karen A Moxon
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA; Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
DePasquale B, Sussillo D, Abbott LF, Churchland MM. The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks. Neuron 2023; 111:631-649.e10. [PMID: 36630961 PMCID: PMC10118067 DOI: 10.1016/j.neuron.2022.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023]
Abstract
Neural activity is often described in terms of population-level factors extracted from the responses of many neurons. Factors provide a lower-dimensional description with the aim of shedding light on network computations. Yet, mechanistically, computations are performed not by continuously valued factors but by interactions among neurons that spike discretely and variably. Models provide a means of bridging these levels of description. We developed a general method for training model networks of spiking neurons by leveraging factors extracted from either data or firing-rate-based networks. In addition to providing a useful model-building framework, this formalism illustrates how reliable and continuously valued factors can arise from seemingly stochastic spiking. Our framework establishes procedures for embedding this property in network models with different levels of realism. The relationship between spikes and factors in such networks provides a foundation for interpreting (and subtly redefining) commonly used quantities such as firing rates.
Collapse
Affiliation(s)
- Brian DePasquale
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
| | - David Sussillo
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - L F Abbott
- Department of Neuroscience, Columbia University, New York, NY, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Mahmood A, Steindler J, Germaine H, Miller P, Katz DB. Coupled Dynamics of Stimulus-Evoked Gustatory Cortical and Basolateral Amygdalar Activity. J Neurosci 2023; 43:386-404. [PMID: 36443002 PMCID: PMC9864615 DOI: 10.1523/jneurosci.1412-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Gustatory cortical (GC) single-neuron taste responses reflect taste quality and palatability in successive epochs. Ensemble analyses reveal epoch-to-epoch firing-rate changes in these responses to be sudden, coherent transitions. Such nonlinear dynamics suggest that GC is part of a recurrent network, producing these dynamics in concert with other structures. Basolateral amygdala (BLA), which is reciprocally connected to GC and central to hedonic processing, is a strong candidate partner for GC, in that BLA taste responses evolve on the same general clock as GC and because inhibition of activity in the BLA→GC pathway degrades the sharpness of GC transitions. These facts motivate, but do not test, our overarching hypothesis that BLA and GC act as a single, comodulated network during taste processing. Here, we provide just this test of simultaneous (BLA and GC) extracellular taste responses in female rats, probing the multiregional dynamics of activity to directly test whether BLA and GC responses contain coupled dynamics. We show that BLA and GC response magnitudes covary across trials and within single responses, and that changes in BLA-GC local field potential phase coherence are epoch specific. Such classic coherence analyses, however, obscure the most salient facet of BLA-GC coupling: sudden transitions in and out of the epoch known to be involved in driving gaping behavior happen near simultaneously in the two regions, despite huge trial-to-trial variability in transition latencies. This novel form of inter-regional coupling, which we show is easily replicated in model networks, suggests collective processing in a distributed neural network.SIGNIFICANCE STATEMENT There has been little investigation into real-time communication between brain regions during taste processing, a fact reflecting the dominant belief that taste circuitry is largely feedforward. Here, we perform an in-depth analysis of real-time interactions between GC and BLA in response to passive taste deliveries, using both conventional coherence metrics and a novel methodology that explicitly considers trial-to-trial variability and fast single-trial dynamics in evoked responses. Our results demonstrate that BLA-GC coherence changes as the taste response unfolds, and that BLA and GC specifically couple for the sudden transition into (and out of) the behaviorally relevant neural response epoch, suggesting (although not proving) that: (1) recurrent interactions subserve the function of the dyad as (2) a putative attractor network.
Collapse
Affiliation(s)
- Abuzar Mahmood
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
| | | | - Hannah Germaine
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
| | - Paul Miller
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
- Biology, Brandeis University, Waltham, Massachusetts 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Donald B Katz
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
- Departments of Psychology
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
24
|
Lai D, Wan Z, Lin J, Pan L, Ren F, Zhu J, Zhang J, Wang Y, Hao Y, Xu K. Neuronal representation of bimanual arm motor imagery in the motor cortex of a tetraplegia human, a pilot study. Front Neurosci 2023; 17:1133928. [PMID: 36937679 PMCID: PMC10014804 DOI: 10.3389/fnins.2023.1133928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction How the human brain coordinates bimanual movements is not well-established. Methods Here, we recorded neural signals from a paralyzed individual's left motor cortex during both unimanual and bimanual motor imagery tasks and quantified the representational interaction between arms by analyzing the tuning parameters of each neuron. Results We found a similar proportion of neurons preferring each arm during unimanual movements, however, when switching to bimanual movements, the proportion of contralateral preference increased to 71.8%, indicating contralateral lateralization. We also observed a decorrelation process for each arm's representation across the unimanual and bimanual tasks. We further confined that these changes in bilateral relationships are mainly caused by the alteration of tuning parameters, such as the increased bilateral preferred direction (PD) shifts and the significant suppression in bilateral modulation depths (MDs), especially the ipsilateral side. Discussion These results contribute to the knowledge of bimanual coordination and thus the design of cutting-edge bimanual brain-computer interfaces.
Collapse
Affiliation(s)
- Dongrong Lai
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Zijun Wan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Jiafan Lin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Li Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Feixiao Ren
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Yaoyao Hao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- *Correspondence: Yaoyao Hao,
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- Kedi Xu,
| |
Collapse
|
25
|
Blohm G, Cheyne DO, Crawford JD. Parietofrontal oscillations show hand-specific interactions with top-down movement plans. J Neurophysiol 2022; 128:1518-1533. [PMID: 36321728 DOI: 10.1152/jn.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To generate a hand-specific reach plan, the brain must integrate hand-specific signals with the desired movement strategy. Although various neurophysiology/imaging studies have investigated hand-target interactions in simple reach-to-target tasks, the whole brain timing and distribution of this process remain unclear, especially for more complex, instruction-dependent motor strategies. Previously, we showed that a pro/anti pointing instruction influences magnetoencephalographic (MEG) signals in frontal cortex that then propagate recurrently through parietal cortex (Blohm G, Alikhanian H, Gaetz W, Goltz HC, DeSouza JF, Cheyne DO, Crawford JD. NeuroImage 197: 306-319, 2019). Here, we contrasted left versus right hand pointing in the same task to investigate 1) which cortical regions of interest show hand specificity and 2) which of those areas interact with the instructed motor plan. Eight bilateral areas, the parietooccipital junction (POJ), superior parietooccipital cortex (SPOC), supramarginal gyrus (SMG), medial/anterior interparietal sulcus (mIPS/aIPS), primary somatosensory/motor cortex (S1/M1), and dorsal premotor cortex (PMd), showed hand-specific changes in beta band power, with four of these (M1, S1, SMG, aIPS) showing robust activation before movement onset. M1, SMG, SPOC, and aIPS showed significant interactions between contralateral hand specificity and the instructed motor plan but not with bottom-up target signals. Separate hand/motor signals emerged relatively early and lasted through execution, whereas hand-motor interactions only occurred close to movement onset. Taken together with our previous results, these findings show that instruction-dependent motor plans emerge in frontal cortex and interact recurrently with hand-specific parietofrontal signals before movement onset to produce hand-specific motor behaviors.NEW & NOTEWORTHY The brain must generate different motor signals depending on which hand is used. The distribution and timing of hand use/instructed motor plan integration are not understood at the whole brain level. Using MEG we show that different action planning subnetworks code for hand usage and integrating hand use into a hand-specific motor plan. The timing indicates that frontal cortex first creates a general motor plan and then integrates hand specificity to produce a hand-specific motor plan.
Collapse
Affiliation(s)
- Gunnar Blohm
- Centre of Neuroscience Studies, Departments of Biomedical & Molecular Sciences, Mathematics & Statistics, and Psychology and School of Computing, Queen's University, Kingston, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Barrett JM, Martin ME, Shepherd GMG. Manipulation-specific cortical activity as mice handle food. Curr Biol 2022; 32:4842-4853.e6. [PMID: 36243014 PMCID: PMC9691616 DOI: 10.1016/j.cub.2022.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Food handling offers unique yet largely unexplored opportunities to investigate how cortical activity relates to forelimb movements in a natural, ethologically essential, and kinematically rich form of manual dexterity. To determine these relationships, we recorded high-speed (1,000 fps) video and multi-channel electrophysiological cortical spiking activity while mice handled food. The high temporal resolution of the video allowed us to decompose active manipulation ("oromanual") events into characteristic submovements, enabling event-aligned analysis of cortical activity. Activity in forelimb M1 was strongly modulated during food handling, generally higher during oromanual events and lower during holding intervals. Optogenetic silencing and stimulation of forelimb M1 neurons partially affected food-handling movements, exerting suppressive and activating effects, respectively. We also extended the analysis to forelimb S1 and lateral M1, finding broadly similar oromanual-related activity across all three areas. However, each area's activity displayed a distinct timing and phasic/tonic temporal profile, which was further analyzed by non-negative matrix factorization and demonstrated to be attributable to area-specific composition of activity classes. Current or future forelimb position could be accurately predicted from activity in all three regions, indicating that the cortical activity in these areas contains high information content about forelimb movements during food handling. These results thus establish that cortical activity during food handling is manipulation specific, distributed, and broadly similar across multiple sensorimotor areas while also exhibiting area- and submovement-specific relationships with the fast kinematic hallmarks of this natural form of complex free-object-handling manual dexterity.
Collapse
Affiliation(s)
- John M Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | - Megan E Martin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Gordon M G Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
27
|
Warriner CL, Fageiry S, Saxena S, Costa RM, Miri A. Motor cortical influence relies on task-specific activity covariation. Cell Rep 2022; 40:111427. [PMID: 36170841 PMCID: PMC9536049 DOI: 10.1016/j.celrep.2022.111427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/01/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
During limb movement, spinal circuits facilitate the alternating activation of antagonistic flexor and extensor muscles. Yet antagonist cocontraction is often required to stabilize joints, like when loads are handled. Previous results suggest that these different muscle activation patterns are mediated by separate flexion- and extension-related motor cortical output populations, while others suggest recruitment of task-specific populations. To distinguish between hypotheses, we developed a paradigm in which mice toggle between forelimb tasks requiring antagonist alternation or cocontraction and measured activity in motor cortical layer 5b. Our results conform to neither hypothesis: consistent flexion- and extension-related activity is not observed across tasks, and no task-specific populations are observed. Instead, activity covariation among motor cortical neurons dramatically changes between tasks, thereby altering the relation between neural and muscle activity. This is also observed specifically for corticospinal neurons. Collectively, our findings indicate that motor cortex drives different muscle activation patterns via task-specific activity covariation.
Collapse
Affiliation(s)
- Claire L Warriner
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Samaher Fageiry
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Shreya Saxena
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Department of Statistics, Columbia University, New York, NY 10027, USA; Grossman Center for Statistics of the Mind, Columbia University, New York, NY 10027, USA
| | - Rui M Costa
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Andrew Miri
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
28
|
Zippi EL, You AK, Ganguly K, Carmena JM. Selective modulation of cortical population dynamics during neuroprosthetic skill learning. Sci Rep 2022; 12:15948. [PMID: 36153356 PMCID: PMC9509316 DOI: 10.1038/s41598-022-20218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023] Open
Abstract
Brain-machine interfaces (BMIs) provide a framework for studying how cortical population dynamics evolve over learning in a task in which the mapping between neural activity and behavior is precisely defined. Learning to control a BMI is associated with the emergence of coordinated neural dynamics in populations of neurons whose activity serves as direct input to the BMI decoder (direct subpopulation). While previous work shows differential modification of firing rate modulation in this population relative to a population whose activity was not directly input to the BMI decoder (indirect subpopulation), little is known about how learning-related changes in cortical population dynamics within these groups compare.To investigate this, we monitored both direct and indirect subpopulations as two macaque monkeys learned to control a BMI. We found that while the combined population increased coordinated neural dynamics, this increase in coordination was primarily driven by changes in the direct subpopulation. These findings suggest that motor cortex refines cortical dynamics by increasing neural variance throughout the entire population during learning, with a more pronounced coordination of firing activity in subpopulations that are causally linked to behavior.
Collapse
Affiliation(s)
- Ellen L. Zippi
- grid.47840.3f0000 0001 2181 7878Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720 USA
| | - Albert K. You
- grid.47840.3f0000 0001 2181 7878Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720 USA
| | - Karunesh Ganguly
- grid.410372.30000 0004 0419 2775Neurology and Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA 94121 USA ,grid.266102.10000 0001 2297 6811Department of Neurology, University of California, San Francisco, CA 94143 USA
| | - Jose M. Carmena
- grid.47840.3f0000 0001 2181 7878Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
29
|
Yin X, Wang Y, Li J, Guo ZV. Lateralization of short-term memory in the frontal cortex. Cell Rep 2022; 40:111190. [PMID: 35977520 DOI: 10.1016/j.celrep.2022.111190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/04/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022] Open
Abstract
Despite essentially symmetric structures in mammalian brains, the left and right hemispheres do not contribute equally to certain cognitive functions. How both hemispheres interact to cause this asymmetry remains unclear. Here, we study this question in the anterior lateral motor cortex (ALM) of mice performing five versions of a tactile-based decision-making task with a short-term memory (STM) component. Unilateral inhibition of ALM produces variable behavioral deficits across tasks, with the left, right, or both ALMs playing critical roles in STM. Neural activity and its encoding capability are similar across hemispheres, despite that only one hemisphere dominates in behavior. Inhibition of the dominant ALM disrupts encoding capability in the non-dominant ALM, but not vice versa. Variable behavioral deficits are predicted by the influence on contralateral activity across sessions, mice, and tasks. Together, these results reveal that the left and right ALM interact asymmetrically, leading to their differential contributions to STM.
Collapse
Affiliation(s)
- Xinxin Yin
- School of Medicine, Tsinghua University, 100084 Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, 100084 Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, 100084 Beijing, China; School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yu Wang
- IDG/McGovern Institute for Brain Research, Tsinghua University, 100084 Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, 100084 Beijing, China; School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jiejue Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, 100084 Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, 100084 Beijing, China; School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, 100084 Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, 100084 Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, 100084 Beijing, China.
| |
Collapse
|
30
|
Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA. The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cereb Cortex 2022; 32:3331-3346. [PMID: 34963140 PMCID: PMC9340396 DOI: 10.1093/cercor/bhab418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
Decades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. The spiking responses of neurons throughout the brain have been associated with the pupil, small fixational saccades, and vigor in eye movements, but it has been difficult to isolate how internal states affect the eyes, and vice versa. While recording from populations of neurons in the visual and prefrontal cortex (PFC), we recently identified a latent dimension of neural activity called "slow drift," which appears to reflect a shift in a global brain state. Here, we asked if slow drift is correlated with the action of the eyes in distinct behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and PFC, while they performed a memory-guided saccade task. In both tasks, slow drift was associated with the size of the pupil and the microsaccade rate, two external indicators of the internal state of the animal. These results show that metrics related to the action of the eyes are associated with a dominant and task-independent mode of neural activity that can be accessed in the population activity of neurons across the cortex.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam C Snyder
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Sanjeev B Khanna
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Deepa Issar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Matthew A Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
31
|
Compton CT, Lockyer EJ, Benson RJ, Power KE. Interhemispheric inhibition is different during arm cycling than a position- and intensity-matched tonic contraction. Exp Brain Res 2022; 240:2425-2434. [DOI: 10.1007/s00221-022-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
|
32
|
Hayashi M, Okuyama K, Mizuguchi N, Hirose R, Okamoto T, Kawakami M, Ushiba J. Spatially bivariate EEG-neurofeedback can manipulate interhemispheric inhibition. eLife 2022; 11:76411. [PMID: 35796537 PMCID: PMC9302968 DOI: 10.7554/elife.76411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Human behavior requires inter-regional crosstalk to employ the sensorimotor processes in the brain. Although external neuromodulation techniques have been used to manipulate interhemispheric sensorimotor activity, a central controversy concerns whether this activity can be volitionally controlled. Experimental tools lack the power to up- or down-regulate the state of the targeted hemisphere over a large dynamic range and, therefore, cannot evaluate the possible volitional control of the activity. We addressed this difficulty by using the recently developed method of spatially bivariate electroencephalography (EEG)-neurofeedback to systematically enable the participants to modulate their bilateral sensorimotor activities. Here, we report that participants learn to up- and down-regulate the ipsilateral excitability to the imagined hand while maintaining constant contralateral excitability; this modulates the magnitude of interhemispheric inhibition (IHI) assessed by the paired-pulse transcranial magnetic stimulation (TMS) paradigm. Further physiological analyses revealed that the manipulation capability of IHI magnitude reflected interhemispheric connectivity in EEG and TMS, which was accompanied by intrinsic bilateral cortical oscillatory activities. Our results show an interesting approach for neuromodulation, which might identify new treatment opportunities, e.g., in patients suffering from a stroke.
Collapse
Affiliation(s)
- Masaaki Hayashi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University, Tokyo, Japan
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Ryotaro Hirose
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Taisuke Okamoto
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Junichi Ushiba
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
33
|
Handelman DA, Osborn LE, Thomas TM, Badger AR, Thompson M, Nickl RW, Anaya MA, Wormley JM, Cantarero GL, McMullen D, Crone NE, Wester B, Celnik PA, Fifer MS, Tenore FV. Shared Control of Bimanual Robotic Limbs With a Brain-Machine Interface for Self-Feeding. Front Neurorobot 2022; 16:918001. [PMID: 35837250 PMCID: PMC9274256 DOI: 10.3389/fnbot.2022.918001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022] Open
Abstract
Advances in intelligent robotic systems and brain-machine interfaces (BMI) have helped restore functionality and independence to individuals living with sensorimotor deficits; however, tasks requiring bimanual coordination and fine manipulation continue to remain unsolved given the technical complexity of controlling multiple degrees of freedom (DOF) across multiple limbs in a coordinated way through a user input. To address this challenge, we implemented a collaborative shared control strategy to manipulate and coordinate two Modular Prosthetic Limbs (MPL) for performing a bimanual self-feeding task. A human participant with microelectrode arrays in sensorimotor brain regions provided commands to both MPLs to perform the self-feeding task, which included bimanual cutting. Motor commands were decoded from bilateral neural signals to control up to two DOFs on each MPL at a time. The shared control strategy enabled the participant to map his four-DOF control inputs, two per hand, to as many as 12 DOFs for specifying robot end effector position and orientation. Using neurally-driven shared control, the participant successfully and simultaneously controlled movements of both robotic limbs to cut and eat food in a complex bimanual self-feeding task. This demonstration of bimanual robotic system control via a BMI in collaboration with intelligent robot behavior has major implications for restoring complex movement behaviors for those living with sensorimotor deficits.
Collapse
Affiliation(s)
- David A. Handelman
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Luke E. Osborn
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Tessy M. Thomas
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew R. Badger
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Margaret Thompson
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Robert W. Nickl
- Department of Physical Medicine and Rehabilition, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Manuel A. Anaya
- Department of Physical Medicine and Rehabilition, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Jared M. Wormley
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Gabriela L. Cantarero
- Department of Physical Medicine and Rehabilition, Johns Hopkins Medicine, Baltimore, MD, United States
| | - David McMullen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Nathan E. Crone
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Brock Wester
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Pablo A. Celnik
- Department of Physical Medicine and Rehabilition, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Matthew S. Fifer
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Francesco V. Tenore
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
- *Correspondence: Francesco V. Tenore
| |
Collapse
|
34
|
Saxena S, Russo AA, Cunningham J, Churchland MM. Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. eLife 2022; 11:e67620. [PMID: 35621264 PMCID: PMC9197394 DOI: 10.7554/elife.67620] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Learned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling. Network solutions had a consistent form, which yielded quantitative and qualitative predictions. To evaluate predictions, we analyzed motor cortex activity recorded during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.
Collapse
Affiliation(s)
- Shreya Saxena
- Department of Electrical and Computer Engineering, University of FloridaGainesvilleUnited States
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
- Center for Theoretical Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Statistics, Columbia UniversityNew YorkUnited States
| | - Abigail A Russo
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
| | - John Cunningham
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
- Center for Theoretical Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Statistics, Columbia UniversityNew YorkUnited States
| | - Mark M Churchland
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
| |
Collapse
|
35
|
Schneider A, Zimmermann C, Alyahyay M, Steenbergen F, Brox T, Diester I. 3D pose estimation enables virtual head fixation in freely moving rats. Neuron 2022; 110:2080-2093.e10. [DOI: 10.1016/j.neuron.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
36
|
Liu Y, Caracoglia J, Sen S, Freud E, Striem-Amit E. Are reaching and grasping effector-independent? Similarities and differences in reaching and grasping kinematics between the hand and foot. Exp Brain Res 2022; 240:1833-1848. [PMID: 35426511 PMCID: PMC9142431 DOI: 10.1007/s00221-022-06359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
While reaching and grasping are highly prevalent manual actions, neuroimaging studies provide evidence that their neural representations may be shared between different body parts, i.e., effectors. If these actions are guided by effector-independent mechanisms, similar kinematics should be observed when the action is performed by the hand or by a cortically remote and less experienced effector, such as the foot. We tested this hypothesis with two characteristic components of action: the initial ballistic stage of reaching, and the preshaping of the digits during grasping based on object size. We examined if these kinematic features reflect effector-independent mechanisms by asking participants to reach toward and to grasp objects of different widths with their hand and foot. First, during both reaching and grasping, the velocity profile up to peak velocity matched between the hand and the foot, indicating a shared ballistic acceleration phase. Second, maximum grip aperture and time of maximum grip aperture of grasping increased with object size for both effectors, indicating encoding of object size during transport. Differences between the hand and foot were found in the deceleration phase and time of maximum grip aperture, likely due to biomechanical differences and the participants’ inexperience with foot actions. These findings provide evidence for effector-independent visuomotor mechanisms of reaching and grasping that generalize across body parts.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - James Caracoglia
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
- Division of Graduate Medical Sciences, Boston University Medical Center, Boston, MA, 02215, USA
| | - Sriparna Sen
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Erez Freud
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
37
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
38
|
Pimentel-Farfan AK, Báez-Cordero AS, Peña-Rangel TM, Rueda-Orozco PE. Cortico-striatal circuits for bilaterally coordinated movements. SCIENCE ADVANCES 2022; 8:eabk2241. [PMID: 35245127 PMCID: PMC8896801 DOI: 10.1126/sciadv.abk2241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/12/2022] [Indexed: 06/01/2023]
Abstract
Movement initiation and control require the orchestrated activity of sensorimotor cortical and subcortical regions. However, the exact contribution of specific pathways and interactions to the final behavioral outcome are still under debate. Here, by combining structural lesions, pathway-specific optogenetic manipulations and freely moving electrophysiological recordings in rats, we studied cortico-striatal interactions in the context of forelimb bilaterally coordinated movements. We provide evidence indicating that bilateral actions are initiated by motor cortical regions where intratelencephalic bilateral cortico-striatal (bcs-IT) projections recruit the sensorimotor striatum to provide stability and duration to already commanded bilateral movements. Furthermore, striatal spiking activity was correlated with movement duration and kinematic parameters of the execution. bcs-IT stimulation affected only the representation of movement duration but spared that of kinematics. Our findings confirm the modular organization of information processing in the striatum and its involvement in moment-to-moment movement control but not initiation or selection.
Collapse
|
39
|
Feedforward and feedback interactions between visual cortical areas use different population activity patterns. Nat Commun 2022; 13:1099. [PMID: 35232956 PMCID: PMC8888615 DOI: 10.1038/s41467-022-28552-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Brain function relies on the coordination of activity across multiple, recurrently connected brain areas. For instance, sensory information encoded in early sensory areas is relayed to, and further processed by, higher cortical areas and then fed back. However, the way in which feedforward and feedback signaling interact with one another is incompletely understood. Here we investigate this question by leveraging simultaneous neuronal population recordings in early and midlevel visual areas (V1-V2 and V1-V4). Using a dimensionality reduction approach, we find that population interactions are feedforward-dominated shortly after stimulus onset and feedback-dominated during spontaneous activity. The population activity patterns most correlated across areas were distinct during feedforward- and feedback-dominated periods. These results suggest that feedforward and feedback signaling rely on separate "channels", which allows feedback signals to not directly affect activity that is fed forward.
Collapse
|
40
|
Merrick CM, Dixon TC, Breska A, Lin J, Chang EF, King-Stephens D, Laxer KD, Weber PB, Carmena J, Thomas Knight R, Ivry RB. Left hemisphere dominance for bilateral kinematic encoding in the human brain. eLife 2022; 11:e69977. [PMID: 35227374 PMCID: PMC8887902 DOI: 10.7554/elife.69977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurophysiological studies in humans and nonhuman primates have revealed movement representations in both the contralateral and ipsilateral hemispheres. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography was recorded in human participants during an instructed-delay reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a cross-validated kinematic encoding model, we found stronger bilateral encoding in the left hemisphere, an effect that was present during preparation and was amplified during execution. Consistent with this asymmetry, we also observed better across-arm generalization in the left hemisphere, indicating similar neural representations for right and left arm movements. Notably, these left hemisphere electrodes were centered over premotor and parietal regions. The more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive neuropsychological finding that the left hemisphere plays a dominant role in praxis.
Collapse
Affiliation(s)
- Christina M Merrick
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Tanner C Dixon
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Assaf Breska
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Jack Lin
- Department of Neurology, University of California at IrvineIrvineUnited States
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Jose Carmena
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Robert Thomas Knight
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
41
|
Cyclic, Condition-Independent Activity in Primary Motor Cortex Predicts Corrective Movement Behavior. eNeuro 2022; 9:ENEURO.0354-21.2022. [PMID: 35346960 PMCID: PMC9014981 DOI: 10.1523/eneuro.0354-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Reaching movements are known to have large condition-independent (CI) neural activity and cyclic neural dynamics. A new precision center-out task was performed by rhesus macaques to test the hypothesis that cyclic, CI neural activity in the primary motor cortex (M1) occurs not only during initial reaching movements but also during subsequent corrective movements. Corrective movements were observed to be discrete with time courses and bell-shaped speed profiles similar to the initial movements. CI cyclic neural trajectories were similar and repeated for initial and each additional corrective submovement. The phase of the cyclic CI neural activity predicted the time of peak movement speed more accurately than regression of instantaneous firing rate, even when the subject made multiple corrective movements. Rather than being controlled as continuations of the initial reach, a discrete cycle of motor cortex activity encodes each corrective submovement.
Collapse
|
42
|
Schroeder KE, Perkins SM, Wang Q, Churchland MM. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces. J Neurosci 2022; 42:220-239. [PMID: 34716229 PMCID: PMC8802935 DOI: 10.1523/jneurosci.2687-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
Brain-machine interfaces (BMIs) for reaching have enjoyed continued performance improvements, yet there remains significant need for BMIs that control other movement classes. Recent scientific findings suggest that the intrinsic covariance structure of neural activity depends strongly on movement class, potentially necessitating different decode algorithms across classes. To address this possibility, we developed a self-motion BMI based on cortical activity as monkeys cycled a hand-held pedal to progress along a virtual track. Unlike during reaching, we found no high-variance dimensions that directly correlated with to-be-decoded variables. This was due to no neurons having consistent correlations between their responses and kinematic variables. Yet we could decode a single variable-self-motion-by nonlinearly leveraging structure that spanned multiple high-variance neural dimensions. Resulting online BMI-control success rates approached those during manual control. These findings make two broad points regarding how to build decode algorithms that harmonize with the empirical structure of neural activity in motor cortex. First, even when decoding from the same cortical region (e.g., arm-related motor cortex), different movement classes may need to employ very different strategies. Although correlations between neural activity and hand velocity are prominent during reaching tasks, they are not a fundamental property of motor cortex and cannot be counted on to be present in general. Second, although one generally desires a low-dimensional readout, it can be beneficial to leverage a multidimensional high-variance subspace. Fully embracing this approach requires highly nonlinear approaches tailored to the task at hand, but can produce near-native levels of performance.SIGNIFICANCE STATEMENT Many brain-machine interface decoders have been constructed for controlling movements normally performed with the arm. Yet it is unclear how these will function beyond the reach-like scenarios where they were developed. Existing decoders implicitly assume that neural covariance structure, and correlations with to-be-decoded kinematic variables, will be largely preserved across tasks. We find that the correlation between neural activity and hand kinematics, a feature typically exploited when decoding reach-like movements, is essentially absent during another task performed with the arm: cycling through a virtual environment. Nevertheless, the use of a different strategy, one focused on leveraging the highest-variance neural signals, supported high performance real-time brain-machine interface control.
Collapse
Affiliation(s)
- Karen E Schroeder
- Department of Neuroscience, Columbia University Medical Center, New York, New York
- Zuckerman Institute, Columbia University, New York, New York
| | - Sean M Perkins
- Zuckerman Institute, Columbia University, New York, New York
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Mark M Churchland
- Department of Neuroscience, Columbia University Medical Center, New York, New York
- Zuckerman Institute, Columbia University, New York, New York
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, New York
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York
| |
Collapse
|
43
|
Choi H, Lim S, Min K, Ahn KH, Lee KM, Jang DP. Non-human primate epidural ECoG analysis using explainable deep learning technology. J Neural Eng 2021; 18. [PMID: 34695809 DOI: 10.1088/1741-2552/ac3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022]
Abstract
Objective.With the development in the field of neural networks,explainable AI(XAI), is being studied to ensure that artificial intelligence models can be explained. There are some attempts to apply neural networks to neuroscientific studies to explain neurophysiological information with high machine learning performances. However, most of those studies have simply visualized features extracted from XAI and seem to lack an active neuroscientific interpretation of those features. In this study, we have tried to actively explain the high-dimensional learning features contained in the neurophysiological information extracted from XAI, compared with the previously reported neuroscientific results.Approach. We designed a deep neural network classifier using 3D information (3D DNN) and a 3D class activation map (3D CAM) to visualize high-dimensional classification features. We used those tools to classify monkey electrocorticogram (ECoG) data obtained from the unimanual and bimanual movement experiment.Main results. The 3D DNN showed better classification accuracy than other machine learning techniques, such as 2D DNN. Unexpectedly, the activation weight in the 3D CAM analysis was high in the ipsilateral motor and somatosensory cortex regions, whereas the gamma-band power was activated in the contralateral areas during unimanual movement, which suggests that the brain signal acquired from the motor cortex contains information about both contralateral movement and ipsilateral movement. Moreover, the hand-movement classification system used critical temporal information at movement onset and offset when classifying bimanual movements.Significance.As far as we know, this is the first study to use high-dimensional neurophysiological information (spatial, spectral, and temporal) with the deep learning method, reconstruct those features, and explain how the neural network works. We expect that our methods can be widely applied and used in neuroscience and electrophysiology research from the point of view of the explainability of XAI as well as its performance.
Collapse
Affiliation(s)
- Hoseok Choi
- Department of Neurology, University of California, San Francisco, CA, United States of America.,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seokbeen Lim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kyeongran Min
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.,Samsung SDS Artificial Intelligence Research Center, Seoul, Republic of Korea
| | - Kyoung-Ha Ahn
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyoung-Min Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Dixon TC, Merrick CM, Wallis JD, Ivry RB, Carmena JM. Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Comput Biol 2021; 17:e1009615. [PMID: 34807905 PMCID: PMC8648118 DOI: 10.1371/journal.pcbi.1009615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/06/2021] [Accepted: 11/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and execution of unimanual movements. The organizational principles of bi-hemispheric signals and the functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task in monkeys, we identified two components in population responses spanning PMd and M1. A “dedicated” component, which segregated activity at the level of individual units, emerged in PMd during preparation. It was most prominent following movement when M1 became strongly engaged, and principally involved the contralateral hemisphere. In contrast to recent reports, these dedicated signals solely accounted for divergence of arm-specific neural subspaces. The other “distributed” component mixed signals for each arm within units, and the subspace containing it did not discriminate between arms at any stage. The statistics of the population response suggest two functional aspects of the cortical network: one that spans both hemispheres for supporting preparatory and ongoing processes, and another that is predominantly housed in the contralateral hemisphere and specifies unilateral output. The motor cortex of the brain primarily controls the opposite side of the body, yet neural activity in this area is often observed during movements of either arm. To understand the functional significance of these signals we must first characterize how they are organized across the neural network. Are there patterns of activity that are unique to a single arm? Are there other patterns that reflect shared functions? Importantly, these features may change across time as motor plans are developed and executed. In this study, we analyzed the responses of individual neurons in the motor cortex and modeled their patterns of co-activity across the population to characterize the changes that distinguish left and right arm use. Across preparation and execution phases of the task, we found that signals became gradually more segregated. Despite many neurons modulating in association with either arm, those that were more dedicated to a single (typically contralateral) limb accounted for a disproportionately large amount of the variance. However, there were also weaker patterns of activity that did not distinguish between the two arms at any stage. These results reveal a heterogeneity in the motor cortex that highlights both independent and interactive components of reaching signals.
Collapse
Affiliation(s)
- Tanner C. Dixon
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Christina M. Merrick
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
| | - Joni D. Wallis
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Richard B. Ivry
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Jose M. Carmena
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, California, United States of America
| |
Collapse
|
45
|
Chilvers MJ, Hawe RL, Scott SH, Dukelow SP. Investigating the neuroanatomy underlying proprioception using a stroke model. J Neurol Sci 2021; 430:120029. [PMID: 34695704 DOI: 10.1016/j.jns.2021.120029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Neuroanatomical investigations have associated cortical areas, beyond Primary Somatosensory Cortex (S1), with impaired proprioception. Cortical regions have included temporoparietal (TP) regions (supramarginal gyrus, superior temporal gyrus, Heschl's gyrus) and insula. Previous approaches have struggled to account for concurrent damage across multiple brain regions. Here, we used a targeted lesion analysis approach to examine the impact of specific combinations of cortical and sub-cortical lesions and quantified the prevalence of proprioceptive impairments when different regions are damaged or spared. Seventy-seven individuals with stroke (49 male; 28 female) were identified meeting prespecified lesion criteria based on MRI/CT imaging: 1) TP lesions without S1, 2) TP lesions with S1, 3) isolated S1 lesions, 4) isolated insula lesions, and 5) lesions not impacting these regions (other regions group). Initially, participants meeting these criteria (1-4) were grouped together into right or left lesion groups and compared to each other, and the other regions group (5), on a robotic Arm Position Matching (APM) task and a Kinesthesia (KIN) task. We then examined the behaviour of individuals that met each specific criteria (groups 1-5). Proprioceptive impairments were more prevalent following right hemisphere lesions than left hemisphere lesions. The extent of damage to TP regions correlated with performance on both robotic tasks. Even without concurrent S1 lesions, TP and insular lesions were associated with impairments on the APM and KIN tasks. Finally, lesions not impacting these regions were much less likely to result in impairments. This study highlights the critical importance of TP and insular regions for accurate proprioception. SIGNIFICANCE STATEMENT: This work advances our understanding of the neuroanatomy of human proprioception. We validate the importance of regions, beyond the dorsal column medial lemniscal pathway and S1, for proprioception. Further, we provide additional evidence of the importance of the right hemisphere for human proprioception. Improved knowledge on the neuroanatomy of proprioception is crucial for advancing therapeutic approaches which target individuals with proprioceptive impairments following neurological injury or with neurological disorders.
Collapse
Affiliation(s)
- Matthew J Chilvers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Rachel L Hawe
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; School of Kinesiology, University of Minnesota, 1900 University Ave SE, Minneapolis, MN 55455, United States
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queens University, Kingston, ON K7L 3N6, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
46
|
Rapid and Bihemispheric Reorganization of Neuronal Activity in Premotor Cortex after Brain Injury. J Neurosci 2021; 41:9112-9128. [PMID: 34556488 PMCID: PMC8570830 DOI: 10.1523/jneurosci.0196-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Brain injuries cause hemodynamic changes in several distant, spared areas from the lesion. Our objective was to better understand the neuronal correlates of this reorganization in awake, behaving female monkeys. We used reversible inactivation techniques to “injure” the primary motor cortex, while continuously recording neuronal activity of the ventral premotor cortex in the two hemispheres, before and after the onset of behavioral impairments. Inactivation rapidly induced profound alterations of neuronal discharges that were heterogeneous within each and across the two hemispheres, occurred during movements of either the affected or nonaffected arm, and varied during different phases of grasping. Our results support that extensive, and much more complex than expected, neuronal reorganization takes place in spared areas of the bihemispheric cortical network involved in the control of hand movements. This broad pattern of reorganization offers potential targets that should be considered for the development of neuromodulation protocols applied early after brain injury. SIGNIFICANCE STATEMENT It is well known that brain injuries cause changes in several distant, spared areas of the network, often in the premotor cortex. This reorganization is greater early after the injury and the magnitude of early changes correlates with impairments. However, studies to date have used noninvasive brain imaging approaches or have been conducted in sedated animals. Therefore, we do not know how brain injuries specifically affect the activity of neurons during the generation of movements. Our study clearly shows how a lesion rapidly impacts neurons in the premotor cortex of both hemispheres. A better understanding of these complex changes can help formulate hypotheses for the development of new treatments that specifically target neuronal reorganization induced by lesions in the brain.
Collapse
|
47
|
Prak RF, Marsman JBC, Renken R, Tepper M, Thomas CK, Zijdewind I. Increased Ipsilateral M1 Activation after Incomplete Spinal Cord Injury Facilitates Motor Performance. J Neurotrauma 2021; 38:2988-2998. [PMID: 34491111 DOI: 10.1089/neu.2021.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Incomplete spinal cord injury (SCI) may result in muscle weakness and difficulties with force gradation. Although these impairments arise from the injury and subsequent changes at spinal levels, changes have also been demonstrated in the brain. Blood-oxygen-level dependent (BOLD) imaging was used to investigate these changes in brain activation in the context of unimanual contractions with the first dorsal interosseous muscle. BOLD- and force data were obtained in 19 individuals with SCI (AISA Impairment Scale [AIS] C/D, level C4-C8) and 24 able-bodied controls during maximal voluntary contractions (MVCs). To assess force modulation, participants performed 12 submaximal contractions with each hand (at 10, 30, 50, and 70% MVC) by matching their force level to a visual target. MVCs were weaker in the SCI group (both hands p < 0.001), but BOLD activation did not differ between SCI and control groups. For the submaximal contractions, force (as %MVC) was similar across groups. However, SCI participants showed increased activity of the ipsilateral motor cortex and contralateral cerebellum across all contractions, with no differential effect of force level. Activity of ipsilateral M1 was best explained by force of the target hand (vs. the non-target hand). In conclusion, the data suggest that after incomplete cervical SCI, individuals remain capable of producing maximal supraspinal drive and are able to modulate this drive adequately. Activity of the ipsilateral motor network appears to be task related, although it remains uncertain how this activity contributes to task performance and whether this effect could potentially be harnessed to improve motor functioning.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco Renken
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marga Tepper
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physiology and Biophysics and University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Hu D, Wang S, Li B, Liu H, He J. Spinal Cord Injury-Induced Changes in Encoding and Decoding of Bipedal Walking by Motor Cortical Ensembles. Brain Sci 2021; 11:brainsci11091193. [PMID: 34573213 PMCID: PMC8469283 DOI: 10.3390/brainsci11091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that motor recovery following spinal cord injury (SCI) is task-specific. However, most consequential conclusions about locomotor functional recovery from SCI have been derived from quadrupedal locomotion paradigms. In this study, two monkeys were trained to perform a bipedal walking task, mimicking human walking, before and after T8 spinal cord hemisection. Importantly, there is no pharmacological therapy with nerve growth factor for monkeys after SCI; thus, in this study, the changes that occurred in the brain were spontaneous. The impairment of locomotion on the ipsilateral side was more severe than that on the contralateral side. We used information theory to analyze single-cell activity from the left primary motor cortex (M1), and results show that neuronal populations in the unilateral primary motor cortex gradually conveyed more information about the bilateral hindlimb muscle activities during the training of bipedal walking after SCI. We further demonstrated that, after SCI, progressively expanded information from the neuronal population reconstructed more accurate control of muscle activity. These results suggest that, after SCI, the unilateral primary motor cortex could gradually regain control of bilateral coordination and motor recovery and in turn enhance the performance of brain–machine interfaces.
Collapse
Affiliation(s)
- Dingyin Hu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (B.L.); (H.L.); (J.H.)
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China;
- Correspondence:
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China;
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (B.L.); (H.L.); (J.H.)
| | - Honghao Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (B.L.); (H.L.); (J.H.)
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (B.L.); (H.L.); (J.H.)
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China;
- Center for Neural Interface Design, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 86287, USA
| |
Collapse
|
49
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
50
|
Umakantha A, Morina R, Cowley BR, Snyder AC, Smith MA, Yu BM. Bridging neuronal correlations and dimensionality reduction. Neuron 2021; 109:2740-2754.e12. [PMID: 34293295 PMCID: PMC8505167 DOI: 10.1016/j.neuron.2021.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Two commonly used approaches to study interactions among neurons are spike count correlation, which describes pairs of neurons, and dimensionality reduction, applied to a population of neurons. Although both approaches have been used to study trial-to-trial neuronal variability correlated among neurons, they are often used in isolation and have not been directly related. We first established concrete mathematical and empirical relationships between pairwise correlation and metrics of population-wide covariability based on dimensionality reduction. Applying these insights to macaque V4 population recordings, we found that the previously reported decrease in mean pairwise correlation associated with attention stemmed from three distinct changes in population-wide covariability. Overall, our work builds the intuition and formalism to bridge between pairwise correlation and population-wide covariability and presents a cautionary tale about the inferences one can make about population activity by using a single statistic, whether it be mean pairwise correlation or dimensionality.
Collapse
Affiliation(s)
- Akash Umakantha
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rudina Morina
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Benjamin R Cowley
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Adam C Snyder
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Matthew A Smith
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Byron M Yu
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|