1
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Hajný J, Trávníčková T, Špundová M, Roenspies M, Rony RMIK, Sacharowski S, Krzyszton M, Zalabák D, Hardtke CS, Pečinka A, Puchta H, Swiezewski S, van Norman JM, Novák O. Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA. MOLECULAR PLANT 2024; 17:1719-1732. [PMID: 39354717 DOI: 10.1016/j.molp.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA-CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology.
Collapse
Affiliation(s)
- Jakub Hajný
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic.
| | - Tereza Trávníčková
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Michelle Roenspies
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)-Molecular Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - R M Imtiaz Karim Rony
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - David Zalabák
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleš Pečinka
- Center of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)-Molecular Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jaimie M van Norman
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ondřej Novák
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Wenzel CL, Holloway DM, Mattsson J. The Effects of Auxin Transport Inhibition on the Formation of Various Leaf and Vein Patterns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2566. [PMID: 39339541 PMCID: PMC11434698 DOI: 10.3390/plants13182566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Polar auxin transport (PAT) is a known component controlling leaf complexity and venation patterns in some model plant species. Evidence indicates that PAT generates auxin converge points (CPs) that in turn lead to local leaf formation and internally into major vein formation. However, the role of PAT in more diverse leaf arrangements and vein patterns is largely unknown. We used the pharmacological inhibition of PAT in developing pinnate tomato, trifoliate clover, palmate lupin, and bipinnate carrot leaves and observed dosage-dependent reduction to simple leaves in these eudicots. Leaf venation patterns changed from craspedodromous (clover, carrot), semi-craspedodromous (tomato), and brochidodromous (lupin) to more parallel patterning with PAT inhibition. The visualization of auxin responses in transgenic tomato plants showed that discrete and separate CPs in control plants were replaced by diffuse convergence areas near the margin. These effects indicate that PAT plays a universal role in the formation of different leaf and vein patterns in eudicot species via a mechanism that depends on the generation as well as the separation of auxin CPs. Computer simulations indicate that variations in PAT can alter the number of CPs, corresponding leaf lobe formation, and the position of major leaf veins along the leaf margin in support of experimental results.
Collapse
Affiliation(s)
- Carol L Wenzel
- Biotechnology Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada
| | - David M Holloway
- Mathematics Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada
| | - Jim Mattsson
- Biology Department, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1G3, Canada
| |
Collapse
|
4
|
Scarpella E. Leaf Vein Patterning. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:377-398. [PMID: 38382907 DOI: 10.1146/annurev-arplant-062923-030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Leaves form veins whose patterns vary from a single vein running the length of the leaf to networks of staggering complexity where huge numbers of veins connect to other veins at both ends. For the longest time, vein formation was thought to be controlled only by the polar, cell-to-cell transport of the plant hormone auxin; recent evidence suggests that is not so. Instead, it turns out that vein patterning features are best accounted for by a combination of polar auxin transport, facilitated auxin diffusion through plasmodesma intercellular channels, and auxin signal transduction-though the latter's precise contribution remains unclear. Equally unclear remain the sites of auxin production during leaf development, on which that vein patterning mechanism ought to depend. Finally, whether that vein patterning mechanism can account for the variety of vein arrangements found in nature remains unknown. Addressing those questions will be the exciting challenge of future research.
Collapse
Affiliation(s)
- Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
5
|
Pérez-Henríquez P, Nagawa S, Liu Z, Pan X, Michniewicz M, Tang W, Rasmussen C, Van Norman J, Strader L, Yang Z. PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599792. [PMID: 38979163 PMCID: PMC11230289 DOI: 10.1101/2024.06.24.599792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Directional auxin transport and formation of auxin maxima are critical for embryogenesis, organogenesis, pattern formation, and growth coordination in plants, but the mechanisms underpinning the initiation and establishment of these auxin dynamics are not fully understood. Here we show that a self-initiating and -terminating transient auxin flow along the marginal cells (MCs) contributes to the formation of an auxin maximum at the tip of Arabidopsis cotyledon that globally coordinates the interdigitation of puzzle-shaped pavement cells in the cotyledon epidermis. Prior to the interdigitation, indole butyric acid (IBA) is converted to indole acetic acid (IAA) to induce PIN2 accumulation and polarization in the marginal cells, leading to auxin flow toward and accumulation at the cotyledon tip. When IAA levels at the cotyledon tip reaches a maximum, it activates pavement cell interdigitation as well as the accumulation of the IBA transporter TOB1 in MCs, which sequesters IBA to the vacuole and reduces IBA availability and IAA levels. The reduction of IAA levels results in PIN2 down-regulation and cessation of the auxin flow. Hence, our results elucidate a self-activating and self-terminating transient polar auxin transport system in cotyledons, contributing to the formation of localized auxin maxima that spatiotemporally coordinate pavement cell interdigitation.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C1A4, Canada
| | | | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Carolyn Rasmussen
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jaimie Van Norman
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
7
|
Blanco-Touriñán N, Hardtke CS. Connecting emerging with existing vasculature above and below ground. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102461. [PMID: 37774454 DOI: 10.1016/j.pbi.2023.102461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
The vascular system was essential for plants to colonize land by facilitating the transport of water, nutrients, and minerals throughout the body. Our current knowledge on the molecular-genetic control of vascular tissue specification and differentiation is mostly based on studies in the Arabidopsis primary root. To what degree these regulatory mechanisms in the root meristem can be extrapolated to vascular tissue development in other organs is a question of great interest. In this review, we discuss the most recent progress on cotyledon vein formation, with a focus on polar auxin transport-dependent and -independent mechanisms. We also provide an overview of vasculature formation in postembryonic organs, namely lateral roots, which is more complex than anticipated as several tissues of the parent root must act in a spatio-temporally coordinated manner.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Marconi M, Wabnik K. Computer models of cell polarity establishment in plants. PLANT PHYSIOLOGY 2023; 193:42-53. [PMID: 37144853 PMCID: PMC10469401 DOI: 10.1093/plphys/kiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Plant development is a complex task, and many processes involve changes in the asymmetric subcellular distribution of cell components that strongly depend on cell polarity. Cell polarity regulates anisotropic growth and polar localization of membrane proteins and helps to identify the cell's position relative to its neighbors within an organ. Cell polarity is critical in a variety of plant developmental processes, including embryogenesis, cell division, and response to external stimuli. The most conspicuous downstream effect of cell polarity is the polar transport of the phytohormone auxin, which is the only known hormone transported in a polar fashion in and out of cells by specialized exporters and importers. The biological processes behind the establishment of cell polarity are still unknown, and researchers have proposed several models that have been tested using computer simulations. The evolution of computer models has progressed in tandem with scientific discoveries, which have highlighted the importance of genetic, chemical, and mechanical input in determining cell polarity and regulating polarity-dependent processes such as anisotropic growth, protein subcellular localization, and the development of organ shapes. The purpose of this review is to provide a comprehensive overview of the current understanding of computer models of cell polarity establishment in plants, focusing on the molecular and cellular mechanisms, the proteins involved, and the current state of the field.
Collapse
Affiliation(s)
- Marco Marconi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
9
|
Scarpella E. Axes and polarities in leaf vein formation. PLANT PHYSIOLOGY 2023; 193:112-124. [PMID: 37261944 DOI: 10.1093/plphys/kiad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
For multicellular organisms to develop, cells must grow, divide, and differentiate along preferential or exclusive orientations or directions. Moreover, those orientations, or axes, and directions, or polarities, must be coordinated between cells within and between tissues. Therefore, how axes and polarities are coordinated between cells is a key question in biology. In animals, such coordination mainly depends on cell migration and direct interaction between proteins protruding from the plasma membrane. Both cell movements and direct cell-cell interactions are prevented in plants by cell walls that surround plant cells and keep them apart and in place. Therefore, plants have evolved unique mechanisms to coordinate their cell axes and polarities. Here I will discuss evidence suggesting that understanding how leaf veins form may uncover those unique mechanisms. Indeed, unlike previously thought, the cell-to-cell polar transport of the plant hormone auxin along developing veins cannot account for many features of vein patterning. Instead, those features can be accounted for by models of vein patterning that combine polar auxin transport with auxin diffusion through plasmodesmata along the axis of developing veins. Though it remains unclear whether such a combination of polar transport and axial diffusion of auxin can account for the formation of the variety of vein patterns found in plant leaves, evidence suggests that such a combined mechanism may control plant developmental processes beyond vein patterning.
Collapse
Affiliation(s)
- Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
10
|
Liu Q, Teng S, Deng C, Wu S, Li H, Wang Y, Wu J, Cui X, Zhang Z, Quick WP, Brutnell TP, Sun X, Lu T. SHORT ROOT and INDETERMINATE DOMAIN family members govern PIN-FORMED expression to regulate minor vein differentiation in rice. THE PLANT CELL 2023; 35:2848-2870. [PMID: 37154077 PMCID: PMC10396363 DOI: 10.1093/plcell/koad125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
C3 and C4 grasses directly and indirectly provide the vast majority of calories to the human diet, yet our understanding of the molecular mechanisms driving photosynthetic productivity in grasses is largely unexplored. Ground meristem cells divide to form mesophyll or vascular initial cells early in leaf development in C3 and C4 grasses. Here we define a genetic circuit composed of SHORT ROOT (SHR), INDETERMINATE DOMAIN (IDD), and PIN-FORMED (PIN) family members that specifies vascular identify and ground cell proliferation in leaves of both C3 and C4 grasses. Ectopic expression and loss-of-function mutant studies of SHR paralogs in the C3 plant Oryza sativa (rice) and the C4 plant Setaria viridis (green millet) revealed the roles of these genes in both minor vein formation and ground cell differentiation. Genetic and in vitro studies further suggested that SHR regulates this process through its interactions with IDD12 and 13. We also revealed direct interactions of these IDD proteins with a putative regulatory element within the auxin transporter gene PIN5c. Collectively, these findings indicate that a SHR-IDD regulatory circuit mediates auxin transport by negatively regulating PIN expression to modulate minor vein patterning in the grasses.
Collapse
Affiliation(s)
- Qiming Liu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Shouzhen Teng
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Chen Deng
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Suting Wu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Haoshu Li
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Yanwei Wang
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Xuean Cui
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - William Paul Quick
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
- C4 Rice Centre, International Rice Research Institute, Los Banos, Laguna 4030, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas P Brutnell
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Xuehui Sun
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| |
Collapse
|
11
|
Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil A, Lyu M, Ye L, Wang X, Siligato R, Jenness MK, Murphy AS, Mähönen AP. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. NATURE PLANTS 2023; 9:631-644. [PMID: 36997686 PMCID: PMC10119023 DOI: 10.1038/s41477-023-01360-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Vascular cambium contains bifacial stem cells, which produce secondary xylem to one side and secondary phloem to the other. However, how these fate decisions are regulated is unknown. Here we show that the positioning of an auxin signalling maximum within the cambium determines the fate of stem cell daughters. The position is modulated by gibberellin-regulated, PIN1-dependent polar auxin transport. Gibberellin treatment broadens auxin maximum from the xylem side of the cambium towards the phloem. As a result, xylem-side stem cell daughter preferentially differentiates into xylem, while phloem-side daughter retains stem cell identity. Occasionally, this broadening leads to direct specification of both daughters as xylem, and consequently, adjacent phloem-identity cell reverts to being stem cell. Conversely, reduced gibberellin levels favour specification of phloem-side stem cell daughter as phloem. Together, our data provide a mechanism by which gibberellin regulates the ratio of xylem and phloem production.
Collapse
Affiliation(s)
- Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Solé-Gil
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riccardo Siligato
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Geel, Belgium
| | - Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Modrego A, Pasternak T, Omary M, Albacete A, Cano A, Pérez-Pérez JM, Efroni I. Mapping of the Classical Mutation rosette Highlights a Role for Calcium in Wound-Induced Rooting. PLANT & CELL PHYSIOLOGY 2023; 64:152-164. [PMID: 36398993 DOI: 10.1093/pcp/pcac163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Removal of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots. ro mutants were severely inhibited in formation of wound-induced roots (WiRs) and had reduced auxin transport rates. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in regulating auxin transport and calcium homeostasis. We show that exogenous calcium inhibits WiR formation in tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin indole-3-acetic-acid but not of 2,4-dichlorophenoxyacetic acid, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN-FORMED1 (PIN1) was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that, like its mammalian ortholog, it is associated with the endoplasmic reticulum. Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintains auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.
Collapse
Affiliation(s)
- Abelardo Modrego
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202, Spain
| | - Moutasem Omary
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Murcia 30100, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia 30100, Spain
| | | | - Idan Efroni
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
14
|
Kinoshita A, Naito M, Wang Z, Inoue Y, Mochizuki A, Tsukaya H. Position of meristems and the angles of the cell division plane regulate the uniqueness of lateral organ shape. Development 2022; 149:285889. [PMID: 36373561 PMCID: PMC10112895 DOI: 10.1242/dev.199773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Leaf meristem is a cell proliferative zone present in the lateral organ primordia. In this study, we examined how cell proliferative zones in primordia of planar floral organs and polar auxin transport inhibitor (PATI)-treated leaf organs differ from those of non-treated foliage leaves of Arabidopsis thaliana, with a focus on the accumulation pattern of ANGUSTIFOLIA3 (AN3) protein, a key element for leaf meristem positioning. We found that PATI-induced leaf shape changes were correlated with cell division angle but not with meristem positioning/size or AN3 localisation. In contrast, different shapes between sepals and petals compared with foliage leaves were associated with both altered meristem position, due to altered AN3 expression patterns, and different distributions of cell division angles. A numerical simulation showed that meristem position majorly affected the final shape but biased cell division angles had a minor effect. Taken together, these results suggest that the unique shapes of different lateral organs depend on the position of the meristem in the case of floral organs and cell division angles in the case of leaf organs with different auxin flow.
Collapse
Affiliation(s)
- Ayaka Kinoshita
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Makiko Naito
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zining Wang
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhiro Inoue
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Atsushi Mochizuki
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Navarro-Quiles C, Mateo-Bonmatí E, Candela H, Robles P, Martínez-Laborda A, Fernández Y, Šimura J, Ljung K, Rubio V, Ponce MR, Micol JL. The Arabidopsis ATP-Binding Cassette E protein ABCE2 is a conserved component of the translation machinery. FRONTIERS IN PLANT SCIENCE 2022; 13:1009895. [PMID: 36325553 PMCID: PMC9618717 DOI: 10.3389/fpls.2022.1009895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Collapse
Affiliation(s)
| | | | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | | | | | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
16
|
Band LR. Plasmodesmata play a key role in leaf vein patterning. PLoS Biol 2022; 20:e3001806. [PMID: 36170211 PMCID: PMC9518881 DOI: 10.1371/journal.pbio.3001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf veins provide a vital transport route in plants, and the formation of vein patterns has fascinated many scientists over the years. This Primer explores a new PLOS Biology study which reveals how transport through plasmodesmata plays a key role in vein patterning.
Collapse
Affiliation(s)
- Leah R. Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Linh NM, Scarpella E. Leaf vein patterning is regulated by the aperture of plasmodesmata intercellular channels. PLoS Biol 2022; 20:e3001781. [PMID: 36166438 PMCID: PMC9514613 DOI: 10.1371/journal.pbio.3001781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
To form tissue networks, animal cells migrate and interact through proteins protruding from their plasma membranes. Plant cells can do neither, yet plants form vein networks. How plants do so is unclear, but veins are thought to form by the coordinated action of the polar transport and signal transduction of the plant hormone auxin. However, plants inhibited in both pathways still form veins. Patterning of vascular cells into veins is instead prevented in mutants lacking the function of the GNOM (GN) regulator of auxin transport and signaling, suggesting the existence of at least one more GN-dependent vein-patterning pathway. Here we show that in Arabidopsis such a pathway depends on the movement of auxin or an auxin-dependent signal through plasmodesmata (PDs) intercellular channels. PD permeability is high where veins are forming, lowers between veins and nonvascular tissues, but remains high between vein cells. Impaired ability to regulate PD aperture leads to defects in auxin transport and signaling, ultimately leading to vein patterning defects that are enhanced by inhibition of auxin transport or signaling. GN controls PD aperture regulation, and simultaneous inhibition of auxin signaling, auxin transport, and regulated PD aperture phenocopies null gn mutants. Therefore, veins are patterned by the coordinated action of three GN-dependent pathways: auxin signaling, polar auxin transport, and movement of auxin or an auxin-dependent signal through PDs. Such a mechanism of tissue network formation is unprecedented in multicellular organisms. How do plants form vein networks, in the absence of cellular migration or direct cell-cell interaction? This study shows that a GNOM-dependent combination of polar auxin transport, auxin signal transduction, and movement of an auxin signal through plasmodesmata patterns leaf vascular cells into veins.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
18
|
Bakker BH, Faver TE, Hupkes HJ, Merks RMH, van der Voort J. Scaling relations for auxin waves. J Math Biol 2022; 85:41. [PMID: 36163567 PMCID: PMC9512763 DOI: 10.1007/s00285-022-01793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022]
Abstract
We analyze an 'up-the-gradient' model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi-Pasta-Ulam-Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.
Collapse
Affiliation(s)
- Bente Hilde Bakker
- Mathematical Institute, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - Timothy E. Faver
- Department of Mathematics, Kennesaw State University, 850 Polytechnic Lane, MD #9085, Marietta, GA 30060 USA
| | - Hermen Jan Hupkes
- Mathematical Institute, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - Roeland M. H. Merks
- Mathematical Institute and Institute of Biology Leiden, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - Jelle van der Voort
- Mathematical Institute, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| |
Collapse
|
19
|
Varapparambath V, Mathew MM, Shanmukhan AP, Radhakrishnan D, Kareem A, Verma S, Ramalho JJ, Manoj B, Vellandath AR, Aiyaz M, Radha RK, Landge AN, Mähönen AP, Heisler MG, Weijers D, Prasad K. Mechanical conflict caused by a cell-wall-loosening enzyme activates de novo shoot regeneration. Dev Cell 2022; 57:2063-2080.e10. [PMID: 36002002 DOI: 10.1016/j.devcel.2022.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 01/02/2023]
Abstract
Cellular heterogeneity is a hallmark of multicellular organisms. During shoot regeneration from undifferentiated callus, only a select few cells, called progenitors, develop into shoot. How these cells are selected and what governs their subsequent progression to a patterned organ system is unknown. Using Arabidopsis thaliana, we show that it is not just the abundance of stem cell regulators but rather the localization pattern of polarity proteins that predicts the progenitor's fate. A shoot-promoting factor, CUC2, activated the expression of the cell-wall-loosening enzyme, XTH9, solely in a shell of cells surrounding the progenitor, causing different mechanical stresses in these cells. This mechanical conflict then activates cell polarity in progenitors to promote meristem formation. Interestingly, genetic or physical perturbations to cells surrounding the progenitor impaired the progenitor and vice versa. These suggest a feedback loop between progenitors and their neighbors for shoot regeneration in the absence of tissue-patterning cues.
Collapse
Affiliation(s)
- Vijina Varapparambath
- Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, India; IISER-Thiruvananthapuram, Thiruvananthapuram, India
| | - Mabel Maria Mathew
- Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, India; IISER-Thiruvananthapuram, Thiruvananthapuram, India.
| | - Anju Pallipurath Shanmukhan
- Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, India; IISER-Thiruvananthapuram, Thiruvananthapuram, India
| | | | - Abdul Kareem
- IISER-Thiruvananthapuram, Thiruvananthapuram, India
| | - Shubham Verma
- Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, India
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Bejoy Manoj
- IISER-Thiruvananthapuram, Thiruvananthapuram, India
| | | | - Mohammed Aiyaz
- Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, India; IISER-Thiruvananthapuram, Thiruvananthapuram, India
| | | | | | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Marcus G Heisler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Kalika Prasad
- Indian Institute of Science Education and Research (IISER)-Pune, Pune 411008, India; IISER-Thiruvananthapuram, Thiruvananthapuram, India.
| |
Collapse
|
20
|
Kastanaki E, Blanco-Touriñán N, Sarazin A, Sturchler A, Gujas B, Vera-Sirera F, Agustí J, Rodriguez-Villalon A. A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo. Development 2022; 149:275816. [PMID: 35723181 PMCID: PMC9270971 DOI: 10.1242/dev.200403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.
Collapse
Affiliation(s)
- Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Noel Blanco-Touriñán
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland,Authors for correspondence (; )
| | - Alexis Sarazin
- Group of RNA Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Alessandra Sturchler
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Bojan Gujas
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland,Authors for correspondence (; )
| |
Collapse
|
21
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 DOI: 10.1101/2021.10.14.464408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
22
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 PMCID: PMC9157071 DOI: 10.1093/plphys/kiac115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
23
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
24
|
Lacalli TC. Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations. Front Cell Dev Biol 2022; 10:871950. [PMID: 35592249 PMCID: PMC9111979 DOI: 10.3389/fcell.2022.871950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
This is a brief account of Turing's ideas on biological pattern and the events that led to their wider acceptance by biologists as a valid way to investigate developmental pattern, and of the value of theory more generally in biology. Periodic patterns have played a key role in this process, especially 2D arrays of oriented stripes, which proved a disappointment in theoretical terms in the case of Drosophila segmentation, but a boost to theory as applied to skin patterns in fish and model chemical reactions. The concept of "order from fluctuations" is a key component of Turing's theory, wherein pattern arises by selective amplification of spatial components concealed in the random disorder of molecular and/or cellular processes. For biological examples, a crucial point from an analytical standpoint is knowing the nature of the fluctuations, where the amplifier resides, and the timescale over which selective amplification occurs. The answer clarifies the difference between "inelegant" examples such as Drosophila segmentation, which is perhaps better understood as a programmatic assembly process, and "elegant" ones expressible in equations like Turing's: that the fluctuations and selection process occur predominantly in evolutionary time for the former, but in real time for the latter, and likewise for error suppression, which for Drosophila is historical, in being lodged firmly in past evolutionary events. The prospects for a further extension of Turing's ideas to the complexities of brain development and consciousness is discussed, where a case can be made that it could well be in neuroscience that his ideas find their most important application.
Collapse
|
25
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
26
|
Cieslak M, Owens A, Prusinkiewicz P. Computational Models of Auxin-Driven Patterning in Shoots. Cold Spring Harb Perspect Biol 2022; 14:a040097. [PMID: 34001531 PMCID: PMC8886983 DOI: 10.1101/cshperspect.a040097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently.
Collapse
Affiliation(s)
- Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
27
|
Hajný J, Tan S, Friml J. Auxin canalization: From speculative models toward molecular players. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102174. [PMID: 35123880 DOI: 10.1016/j.pbi.2022.102174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Among the most fascinated properties of the plant hormone auxin is its ability to promote formation of its own directional transport routes. These gradually narrowing auxin channels form from the auxin source toward the sink and involve coordinated, collective polarization of individual cells. Once established, the channels provide positional information, along which new vascular strands form, for example, during organogenesis, regeneration, or leave venation. The main prerequisite of this still mysterious auxin canalization mechanism is a feedback between auxin signaling and its directional transport. This is manifested by auxin-induced re-arrangements of polar, subcellular localization of PIN-FORMED (PIN) auxin exporters. Immanent open questions relate to how position of auxin source and sink as well as tissue context are sensed and translated into tissue polarization and how cells communicate to polarize coordinately. Recently, identification of the first molecular players opens new avenues into molecular studies of this intriguing example of self-organizing plant development.
Collapse
Affiliation(s)
- Jakub Hajný
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria; Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Shutang Tan
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
28
|
Linh NM, Scarpella E. Confocal Imaging of Developing Leaves. Curr Protoc 2022; 2:e349. [PMID: 35072973 DOI: 10.1002/cpz1.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Questions in developmental biology are most frequently addressed by using fluorescent markers of otherwise invisible cell states. In plants, such questions can be addressed most conveniently in leaves. Indeed, from the formation of stomata and trichomes within the leaf epidermis to that of vein networks deep into the leaf inner tissue, leaf cells and tissues differentiate anew during the development of each leaf. Moreover, leaves are produced in abundance and are easily accessible to visualization and perturbation. Yet a detailed procedure for the perturbation, dissection, mounting, and imaging of developing leaves has not been described. Here we address this limitation (1) by providing robust, step-by-step protocols for the local application of the plant hormone auxin to developing leaves and for the routine dissection and mounting of leaves and leaf primordia, and (2) by offering practical guidelines for the optimization of imaging parameters for confocal microscopy. We describe the procedure for the first leaves of Arabidopsis, but the same approach can be easily applied to other leaves of Arabidopsis or to leaves of other plants. © 2022 Wiley Periodicals LLC. Support Protocol 1: Preparation of plant growth medium Support Protocol 2: Preparation of growth medium plates Basic Protocol 1: Seed sterilization, sowing, and germination, and seedling growth Support Protocol 3: Preparation of IAA-lanolin paste Basic Protocol 2: Application of IAA-lanolin paste to 3.5-DAG first leaves Basic Protocol 3: Dissection of 3- to 6-DAG first leaves and leaf primordia Basic Protocol 4: Dissection of 1- and 2-DAG first-leaf primordia Basic Protocol 5: Mounting of dissected leaves and leaf primordia Support Protocol 4: Quality check of mounted leaves and leaf primordia by fluorescence microscopy Basic Protocol 6: Imaging of mounted leaves and leaf primordia by confocal microscopy.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Control of vein-forming, striped gene expression by auxin signaling. BMC Biol 2021; 19:213. [PMID: 34556094 PMCID: PMC8461865 DOI: 10.1186/s12915-021-01143-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Activation of gene expression in striped domains is a key building block of biological patterning, from the recursive formation of veins in plant leaves to that of ribs and vertebrae in our bodies. In animals, gene expression is activated in striped domains by the differential affinity of broadly expressed transcription factors for their target genes and the combinatorial interaction between such target genes. In plants, how gene expression is activated in striped domains is instead unknown. We address this question for the broadly expressed MONOPTEROS (MP) transcription factor and its target gene ARABIDOPSIS THALIANA HOMEOBOX FACTOR8 (ATHB8). Results We find that ATHB8 promotes vein formation and that such vein-forming function depends on both levels of ATHB8 expression and width of ATHB8 expression domains. We further find that ATHB8 expression is activated in striped domains by a combination of (1) activation of ATHB8 expression through binding of peak levels of MP to a low-affinity MP-binding site in the ATHB8 promoter and (2) repression of ATHB8 expression by MP target genes of the AUXIN/INDOLE-3-ACETIC-ACID-INDUCIBLE family. Conclusions Our findings suggest that a common regulatory logic controls activation of gene expression in striped domains in both plants and animals despite the independent evolution of their multicellularity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01143-9.
Collapse
|
30
|
Lavania D, Linh NM, Scarpella E. Of Cells, Strands, and Networks: Auxin and the Patterned Formation of the Vascular System. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039958. [PMID: 33431582 DOI: 10.1101/cshperspect.a039958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Throughout plant development, vascular cells continually form from within a population of seemingly equivalent cells. Vascular cells connect end to end to form continuous strands, and vascular strands connect at both or either end to form networks of exquisite complexity and mesmerizing beauty. Here we argue that experimental evidence gained over the past few decades implicates the plant hormone auxin-its production, transport, perception, and response-in all the steps that lead to the patterned formation of the plant vascular system, from the formation of vascular cells to their connection into vascular networks. We emphasize the organizing principles of the cell- and tissue-patterning process, rather than its molecular subtleties. In the picture that emerges, cells compete for an auxin-dependent, cell-polarizing signal; positive feedback between cell polarization and cell-to-cell movement of the polarizing signal leads to gradual selection of cell files; and selected cell files differentiate into vascular strands that drain the polarizing signal from the neighboring cells. Although the logic of the patterning process has become increasingly clear, the molecular details remain blurry; the future challenge will be to bring them into razor-sharp focus.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
31
|
Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao Y, Johnston IG, Kwiatkowska D, Lim BL, Mahönen AP, Morris RJ, Mulder BM, Nakayama N, Sozzani R, Strader LC, ten Tusscher K, Ueda M, Wolf S. What is quantitative plant biology? QUANTITATIVE PLANT BIOLOGY 2021; 2:e10. [PMID: 37077212 PMCID: PMC10095877 DOI: 10.1017/qpb.2021.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
Collapse
Affiliation(s)
- Daphné Autran
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - George W. Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daphne Ezer
- The Alan Turing Institute, London, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Breisgau, Germany
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Lyon, France
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, Université de Lyon, Lyon, France
| | | | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dorota Kwiatkowska
- Institute of Biology, Biotechnology and Environment Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Boon L. Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Ari Pekka Mahönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Bela M. Mulder
- Department of Living Matter, Institute AMOLF, Amsterdam, The Netherlands
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ross Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North CarolinaUSA
| | - Lucia C. Strader
- Department of Biology, Duke University, Durham, North Carolina, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MissouriUSA
| | - Kirsten ten Tusscher
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
32
|
Verma S, Attuluri VPS, Robert HS. An Essential Function for Auxin in Embryo Development. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039966. [PMID: 33431580 DOI: 10.1101/cshperspect.a039966] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryogenesis in seed plants is the process during which a single cell develops into a mature multicellular embryo that encloses all the modules and primary patterns necessary to build the architecture of the new plant after germination. This process involves a series of cell divisions and coordinated cell fate determinations resulting in the formation of an embryonic pattern with a shoot-root axis and cotyledon(s). The phytohormone auxin profoundly controls pattern formation during embryogenesis. Auxin functions in the embryo through its maxima/minima distribution, which acts as an instructive signal for tissue specification and organ initiation. In this review, we describe how disruptions of auxin biosynthesis, transport, and response severely affect embryo development. Also, the mechanism of auxin action in the development of the shoot-root axis and the three-tissue system is discussed with recent findings. Biological tools that can be implemented to study the auxin function during embryo development are presented, as they may be of interest to the reader.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
33
|
Kneuper I, Teale W, Dawson JE, Tsugeki R, Katifori E, Palme K, Ditengou FA. Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1151-1165. [PMID: 33263754 DOI: 10.1093/jxb/eraa501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Our current understanding of vein development in leaves is based on canalization of the plant hormone auxin into self-reinforcing streams which determine the sites of vascular cell differentiation. By comparison, how auxin biosynthesis affects leaf vein patterning is less well understood. Here, after observing that inhibiting polar auxin transport rescues the sparse leaf vein phenotype in auxin biosynthesis mutants, we propose that the processes of auxin biosynthesis and cellular auxin efflux work in concert during vein development. By using computational modeling, we show that localized auxin maxima are able to interact with mechanical forces generated by the morphological constraints which are imposed during early primordium development. This interaction is able to explain four fundamental characteristics of midvein morphology in a growing leaf: (i) distal cell division; (ii) coordinated cell elongation; (iii) a midvein positioned in the center of the primordium; and (iv) a midvein which is distally branched. Domains of auxin biosynthetic enzyme expression are not positioned by auxin canalization, as they are observed before auxin efflux proteins polarize. This suggests that the site-specific accumulation of auxin, as regulated by the balanced action of cellular auxin efflux and local auxin biosynthesis, is crucial for leaf vein formation.
Collapse
Affiliation(s)
- Irina Kneuper
- Institute of Biology II, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - William Teale
- Institute of Biology II, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Jonathan Edward Dawson
- Physics of Biological Organization, Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Str. 2, D-18059 Rostock, Germany
| | - Ryuji Tsugeki
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
| | - Eleni Katifori
- Physics of Biological Organization, Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus Palme
- Institute of Biology II, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany
- Sino German Joint Research Center for Agricultural Biology, and State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, D-79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- Institute of Biology II, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
34
|
Burian A, Raczyńska-Szajgin M, Pałubicki W. Shaping leaf vein pattern by auxin and mechanical feedback. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:964-967. [PMID: 33626151 PMCID: PMC7904149 DOI: 10.1093/jxb/eraa499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Kneuper I, Teale W, Dawson JE, Tsugeki R, Katifori E, Palme K, Ditengou FA. 2021. Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. Journal of Experimental Botany 72, 1151–1165.
Collapse
Affiliation(s)
- Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Raczyńska-Szajgin
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Wojtek Pałubicki
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
35
|
Heyduk K. The genetic control of succulent leaf development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101978. [PMID: 33454545 DOI: 10.1016/j.pbi.2020.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 05/25/2023]
Abstract
Succulent leaves have long intrigued biologists; much research has been done to define succulence, understand the evolutionary trajectory and implications of leaf succulence, and contextualize the ecological importance of water storage for plants inhabiting dry habitats, particularly those using CAM photosynthesis. Surprisingly little is understood about the molecular regulation of leaf succulence, despite advances in our understanding of the molecular foundation of leaf architecture in model systems. Moreover, leaf succulence is a drought avoidance trait, one that has yet to be fully used for crop improvement. Here, connections between disparate literatures are highlighted: research on the regulation of cell size, the determination of vascular patterning, and water transport between cells have direct implications for our understanding of leaf succulence. Connecting functional genomics of leaf patterning with knowledge of the evolution and ecology of succulent species will guide future research on the determination and maintenance of leaf succulence.
Collapse
Affiliation(s)
- Karolina Heyduk
- University of Hawai'i at Mānoa, 1800 East West Rd., Honolulu, HI 96822, USA.
| |
Collapse
|
36
|
Gelová Z, Gallei M, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovičová Z, Verstraeten I, Han H, Hajný J, Hauschild R, Čovanová M, Zwiewka M, Hoermayer L, Fendrych M, Xu T, Vernoux T, Friml J. Developmental roles of Auxin Binding Protein 1 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110750. [PMID: 33487339 DOI: 10.1016/j.plantsci.2020.110750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.
Collapse
Affiliation(s)
- Zuzana Gelová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France; Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Géraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Xixi Zhang
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Matouš Glanc
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Lanxin Li
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jaroslav Michalko
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zlata Pavlovičová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jakub Hajný
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Milada Čovanová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukas Hoermayer
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tongda Xu
- FAFU-Joint Centre, Horticulture and Metabolic Biology Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, People's Republic of China
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Jiří Friml
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
37
|
Lv S, Wang L, Zhang X, Li X, Fan L, Xu Y, Zhao Y, Xie H, Sawchuk MG, Scarpella E, Qiu QS. Arabidopsis NHX5 and NHX6 regulate PIN6-mediated auxin homeostasis and growth. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153305. [PMID: 33129075 DOI: 10.1016/j.jplph.2020.153305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
NHX5 and NHX6, endosomal Na+,K+/H+ antiporters in Arabidopsis thaliana, play a vital role in growth and development. Our previous study has shown that NHX5 and NHX6 function as H+ leak to regulate auxin-mediated growth in Arabidopsis. In this report, we investigated the function of NHX5 and NHX6 in controlling PIN6-mediated auxin homeostasis and growth in Arabidopsis. Phenotypic analyses found that NHX5 and NHX6 were critical for the function of PIN6, an auxin transporter. We further showed that PIN6 depended on NHX5 and NHX6 in regulating auxin homeostasis. NHX5 and NHX6 were colocalized with PIN6, but they did not interact physically. The conserved acidic residues that are vital for the activity of NHX5 and NHX6 were critical for PIN6 function. Together, NHX5 and NHX6 may regulate PIN6 function by their transport activity.
Collapse
Affiliation(s)
- Shasha Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yanli Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yingjia Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| |
Collapse
|
38
|
A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form. Curr Biol 2020; 30:4857-4868.e6. [DOI: 10.1016/j.cub.2020.09.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
39
|
Abstract
Auxin is an endogenous small molecule with an incredibly large impact on growth and development in plants. Movement of auxin between cells, due to its negative charge at most physiological pHs, strongly relies on families of active transporters. These proteins import auxin from the extracellular space or export it into the same. Mutations in these components have profound impacts on biological processes. Another transport route available to auxin, once the substance is inside the cell, are plasmodesmata connections. These small channels connect the cytoplasms of neighbouring plant cells and enable flow between them. Interestingly, the biological significance of this latter mode of transport is only recently starting to emerge with examples from roots, hypocotyls and leaves. The existence of two transport systems provides opportunities for reciprocal cross-regulation. Indeed, auxin levels influence proteins controlling plasmodesmata permeability, while cell-cell communication affects auxin biosynthesis and transport. In an evolutionary context, transporter driven cell-cell auxin movement and plasmodesmata seem to have evolved around the same time in the green lineage. This highlights a co-existence from early on and a likely functional specificity of the systems. Exploring more situations where auxin movement via plasmodesmata has relevance for plant growth and development, and clarifying the regulation of such transport, will be key aspects in coming years.This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Andrea Paterlini
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1 LR, UK
| |
Collapse
|
40
|
Jenness MK, Tayengwa R, Murphy AS. An ATP-Binding Cassette Transporter, ABCB19, Regulates Leaf Position and Morphology during Phototropin1-Mediated Blue Light Responses. PLANT PHYSIOLOGY 2020; 184:1601-1612. [PMID: 32855213 PMCID: PMC7608178 DOI: 10.1104/pp.20.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Blue light regulates multiple processes that optimize light capture and gas exchange in plants, including chloroplast movement, changes in stomatal conductance, and altered organ positioning. In Arabidopsis (Arabidopsis thaliana), these processes are primarily modulated by the blue light phototropin photoreceptors phot1 and phot2. Changes in leaf positioning and shape involve several signaling components that include NON-PHOTOTROPIC HYPOCOTYL3, PHYTOCHROME KINASE SUBSTRATE, ROOT PHOTOTROPISM2, and alterations in localized auxin streams. Direct phosphorylation of the auxin transporter ATP-BINDING CASSETTE subfamily B19 (ABCB19) by phot1 in phototropic seedlings suggests that phot1 may directly regulate ABCB19 to adjust auxin-dependent leaf responses. Here, abcb19 mutants were analyzed for fluence and blue light-dependent changes in leaf positioning and morphology. abcb19 displays upright petiole angles that remain unchanged in response to red and blue light. Similarly, abcb19 mutants develop irregularly wavy rosette leaves that are less sensitive to blue light-mediated leaf flattening. Visualization of auxin distribution, measurement of auxin transport in protoplasts, and direct quantification of free auxin levels suggest these irregularities are caused by misregulation of ABCB19-mediated auxin distribution in addition to light-dependent auxin biosynthesis.
Collapse
Affiliation(s)
- Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| |
Collapse
|
41
|
Ravichandran SJ, Linh NM, Scarpella E. The canalization hypothesis - challenges and alternatives. THE NEW PHYTOLOGIST 2020; 227:1051-1059. [PMID: 32285457 DOI: 10.1111/nph.16605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 05/14/2023]
Abstract
The 'canalization hypothesis' was suggested 50 years ago by Tsvi Sachs to account for the formation of vascular strands in response to wounding or auxin application. The hypothesis proposes that positive feedback between auxin movement through a cell and the cell's auxin conductivity leads to the gradual selection of narrow 'canals' of polar auxin transport that will differentiate into vascular strands. Though the hypothesis has provided an invaluable conceptual framework to understand the patterned formation of vascular strands, evidence has been accumulating that seems to be incompatible with the hypothesis. We suggest that the challenging evidence is incompatible with current interpretations of the hypothesis but not with the concept at the core of the hypothesis' original formulation.
Collapse
Affiliation(s)
- Sree Janani Ravichandran
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
42
|
Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Friedlander-Shani L, Verna C, Scarpella E, Efroni I. Local auxin biosynthesis is required for root regeneration after wounding. NATURE PLANTS 2020; 6:1020-1030. [PMID: 32747761 DOI: 10.1038/s41477-020-0737-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
The root meristem can regenerate following removal of its stem-cell niche by recruitment of remnant cells from the stump. Regeneration is initiated by rapid accumulation of auxin near the injury site but the source of this auxin is unknown. Here, we show that auxin accumulation arises from the activity of multiple auxin biosynthetic sources that are newly specified near the cut site and that their continuous activity is required for the regeneration process. Auxin synthesis is highly localized while PIN-mediated transport is dispensable for auxin accumulation and tip regeneration. Roots lacking the activity of the regeneration competence factor ERF115, or that are dissected at a zone of low regeneration potential, fail to activate local auxin sources. Remarkably, restoring auxin supply is sufficient to confer regeneration capacity to these recalcitrant tissues. We suggest that regeneration competence relies on the ability to specify new local auxin sources in a precise temporal pattern.
Collapse
Affiliation(s)
- Rotem Matosevich
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itay Cohen
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Abelardo Modrego
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- California Institute of Technology, Pasadena, CA, USA
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Idan Efroni
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
43
|
Govindaraju P, Verna C, Zhu T, Scarpella E. Vein patterning by tissue-specific auxin transport. Development 2020; 147:dev.187666. [PMID: 32493758 DOI: 10.1242/dev.187666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/27/2020] [Indexed: 11/20/2022]
Abstract
Unlike in animals, in plants, vein patterning does not rely on direct cell-cell interaction and cell migration; instead, it depends on the transport of the plant hormone auxin, which in turn depends on the activity of the PIN-FORMED1 (PIN1) auxin transporter. The current hypotheses of vein patterning by auxin transport propose that, in the epidermis of the developing leaf, PIN1-mediated auxin transport converges to peaks of auxin level. From those convergence points of epidermal PIN1 polarity, auxin would be transported in the inner tissues where it would give rise to major veins. Here, we have tested predictions of this hypothesis and have found them unsupported: epidermal PIN1 expression is neither required nor sufficient for auxin transport-dependent vein patterning, whereas inner-tissue PIN1 expression turns out to be both required and sufficient for auxin transport-dependent vein patterning. Our results refute all vein patterning hypotheses based on auxin transport from the epidermis and suggest alternatives for future tests.
Collapse
Affiliation(s)
- Priyanka Govindaraju
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Carla Verna
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Tongbo Zhu
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| |
Collapse
|
44
|
Amalraj B, Govindaraju P, Krishna A, Lavania D, Linh NM, Ravichandran SJ, Scarpella E. GAL4
/
GFP enhancer‐trap
lines for identification and manipulation of cells and tissues in developing Arabidopsis leaves. Dev Dyn 2020; 249:1127-1146. [DOI: 10.1002/dvdy.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Brindhi Amalraj
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | | | - Anmol Krishna
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Dhruv Lavania
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Nguyen M. Linh
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | | | - Enrico Scarpella
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
45
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
46
|
Shanmukhan AP, Mathew MM, Radhakrishnan D, Aiyaz M, Prasad K. Regrowing the damaged or lost body parts. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:117-127. [PMID: 31962252 DOI: 10.1016/j.pbi.2019.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 05/24/2023]
Abstract
Plants display extraordinary ability to revive tissues and organs lost or damaged in injury. This is evident from the root tip restoration and classical experiments in stem demonstrating re-establishment of vascular continuity. While recent studies have begun to unravel the mechanistic understanding of tissue restoration in response to injury in underground plant organs, the molecular mechanisms of the same in aerial organs remain to be ventured deeper. Here, we discuss the possibility of unearthing the regulatory mechanism that can confer universal regeneration potential to plant body and further provide a comprehensive understanding of how tissue and organ regeneration gets triggered in response to mechanical injury and later gets terminated after re-patterning and regaining the appropriate size.
Collapse
Affiliation(s)
| | - Mabel Maria Mathew
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| | - Dhanya Radhakrishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| | - Mohammed Aiyaz
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| | - Kalika Prasad
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India.
| |
Collapse
|
47
|
Yang K, Wang L, Le J, Dong J. Cell polarity: Regulators and mechanisms in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:132-147. [PMID: 31889400 PMCID: PMC7196246 DOI: 10.1111/jipb.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 05/18/2023]
Abstract
Cell polarity plays an important role in a wide range of biological processes in plant growth and development. Cell polarity is manifested as the asymmetric distribution of molecules, for example, proteins and lipids, at the plasma membrane and/or inside of a cell. Here, we summarize a few polarized proteins that have been characterized in plants and we review recent advances towards understanding the molecular mechanism for them to polarize at the plasma membrane. Multiple mechanisms, including membrane trafficking, cytoskeletal activities, and protein phosphorylation, and so forth define the polarized plasma membrane domains. Recent discoveries suggest that the polar positioning of the proteo-lipid membrane domain may instruct the formation of polarity complexes in plants. In this review, we highlight the factors and regulators for their functions in establishing the membrane asymmetries in plant development. Furthermore, we discuss a few outstanding questions to be addressed to better understand the mechanisms by which cell polarity is regulated in plants.
Collapse
Affiliation(s)
- Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondences: Kezhen Yang (); Juan Dong (, Dr. Dong is fully responsible for the distributions of all materials associated with this article)
| | - Lu Wang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
- Correspondences: Kezhen Yang (); Juan Dong (, Dr. Dong is fully responsible for the distributions of all materials associated with this article)
| |
Collapse
|