1
|
Cui A, Patel R, Bosco P, Akcan U, Richters E, Delgado PB, Agalliu D, Sproul AA. Generation of hiPSC-derived brain microvascular endothelial cells using a combination of directed differentiation and transcriptional reprogramming strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588012. [PMID: 38903080 PMCID: PMC11188081 DOI: 10.1101/2024.04.03.588012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. In vitro modeling of the human BBB is limited by the lack of robust hiPSC protocols to generate BMECs. Here, we report generation, transcriptomic and functional characterization of reprogrammed BMECs (rBMECs) by combining hiPSC differentiation into BBB-primed endothelial cells and reprogramming with two BBB transcription factors FOXF2 and ZIC3. rBMECs express a subset of the BBB gene repertoire including tight junctions and transporters, exhibit stronger paracellular barrier properties, lower caveolar-mediated transcytosis, and similar p-Glycoprotein activity compared to primary HBMECs. They can acquire an inflammatory phenotype when treated with oligomeric Aβ42. rBMECs integrate with hiPSC-derived pericytes and astrocytes to form a 3D neurovascular system using the MIMETAS microfluidics platform. This novel 3D system resembles the in vivo BBB at structural and functional levels to enable investigation of pathogenic mechanisms of neurological diseases.
Collapse
|
2
|
Yin P, Wang X. Progresses in the establishment, evaluation, and application of in vitro blood-brain barrier models. J Neurosci Res 2024; 102:e25359. [PMID: 38859680 DOI: 10.1002/jnr.25359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The blood-brain barrier (BBB) is a barrier between the circulatory system and the central nervous system (CNS), contributing to CNS protection and maintaining the brain homeostasis. Establishment of in vitro BBB models that are closer to the microenvironment of the human brain is helpful for evaluating the potential and efficiency of a drug penetrating BBB and thus the clinical application value of the drug. The in vitro BBB models not only provide great convenience for screening new drugs that can access to CNS but also help people to have a deeper study on the mechanism of substances entering and leaving the brain, which makes people have greater opportunities in the treatment of CNS diseases. Up to now, although much effort has been paid to the researches on the in vitro BBB models and many progresses have been achieved, no unified method has been described for establishing a BBB model and there is much work to do and many challenges to be faced with in the future. This review summarizes the research progresses in the establishment, evaluation, and application of in vitro BBB models.
Collapse
Affiliation(s)
- Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
3
|
Eltanameli B, Piñeiro-Llanes J, Cristofoletti R. Recent advances in cell-based in vitro models for predicting drug permeability across brain, intestinal, and pulmonary barriers. Expert Opin Drug Metab Toxicol 2024; 20:439-458. [PMID: 38850058 DOI: 10.1080/17425255.2024.2366390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium. AREA COVERED This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability. Furthermore, this review delves into emerging technologies, particularly microphysiological systems (MPS), encompassing static platforms such as organoids and dynamic platforms like microfluidic devices. Literature searches were performed using PubMed and Google Scholar. We focus on key terms such as in vitro permeability models, MPS, organoids, intestine, BBB, and lungs. EXPERT OPINION The potential of these MPS to mimic physiological conditions more closely offers promising avenues for drug permeability assessment. However, transitioning these advanced models from bench to industry requires rigorous validation against regulatory standards. Thus, there is a pressing need to validate MPS to industry and regulatory agency standards to exploit their potential in drug permeability prediction fully. This review underscores the importance of such validation processes to facilitate the translation of these innovative technologies into routine pharmaceutical practice.
Collapse
Affiliation(s)
- Bassma Eltanameli
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Janny Piñeiro-Llanes
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Cater RJ, Mukherjee D, Gil-Iturbe E, Erramilli SK, Chen T, Koo K, Santander N, Reckers A, Kloss B, Gawda T, Choy BC, Zhang Z, Katewa A, Larpthaveesarp A, Huang EJ, Mooney SWJ, Clarke OB, Yee SW, Giacomini KM, Kossiakoff AA, Quick M, Arnold T, Mancia F. Structural and molecular basis of choline uptake into the brain by FLVCR2. Nature 2024; 629:704-709. [PMID: 38693257 PMCID: PMC11168207 DOI: 10.1038/s41586-024-07326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024]
Abstract
Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.
Collapse
Affiliation(s)
- Rosemary J Cater
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
| | - Dibyanti Mukherjee
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ting Chen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Katie Koo
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Andrew Reckers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Brendon C Choy
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Zhening Zhang
- Cryo-Electron Microscopy Center, Columbia University, New York, NY, USA
| | - Aditya Katewa
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Amara Larpthaveesarp
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service, San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Area Neuroscience-Molecular Therapeutics, New York, NY, USA
| | - Thomas Arnold
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
7
|
Arribas V, Onetti Y, Ramiro-Pareta M, Villacampa P, Beck H, Alberola M, Esteve-Codina A, Merkel A, Sperandio M, Martínez-Estrada OM, Schmid B, Montanez E. Endothelial TDP-43 controls sprouting angiogenesis and vascular barrier integrity, and its deletion triggers neuroinflammation. JCI Insight 2024; 9:e177819. [PMID: 38300714 PMCID: PMC11143933 DOI: 10.1172/jci.insight.177819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that regulates gene expression, and its malfunction in neurons has been causally associated with multiple neurodegenerative disorders. Although progress has been made in understanding the functions of TDP-43 in neurons, little is known about its roles in endothelial cells (ECs), angiogenesis, and vascular function. Using inducible EC-specific TDP-43-KO mice, we showed that TDP-43 is required for sprouting angiogenesis, vascular barrier integrity, and blood vessel stability. Postnatal EC-specific deletion of TDP-43 led to retinal hypovascularization due to defects in vessel sprouting associated with reduced EC proliferation and migration. In mature blood vessels, loss of TDP-43 disrupted the blood-brain barrier and triggered vascular degeneration. These vascular defects were associated with an inflammatory response in the CNS with activation of microglia and astrocytes. Mechanistically, deletion of TDP-43 disrupted the fibronectin matrix around sprouting vessels and reduced β-catenin signaling in ECs. Together, our results indicate that TDP-43 is essential for the formation of a stable and mature vasculature.
Collapse
Affiliation(s)
- Víctor Arribas
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Yara Onetti
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Mariona Alberola
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angelika Merkel
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| |
Collapse
|
8
|
Yu M, Nie Y, Yang J, Yang S, Li R, Rao V, Hu X, Fang C, Li S, Song D, Guo F, Snyder MP, Chang HY, Kuo CJ, Xu J, Chang J. Integrative multi-omic profiling of adult mouse brain endothelial cells and potential implications in Alzheimer's disease. Cell Rep 2023; 42:113392. [PMID: 37925638 PMCID: PMC10843806 DOI: 10.1016/j.celrep.2023.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.
Collapse
Affiliation(s)
- Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Varsha Rao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Simeng Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Afshar Y, Ma F, Quach A, Jeong A, Sunshine HL, Freitas V, Jami-Alahmadi Y, Helaers R, Li X, Pellegrini M, Wohlschlegel JA, Romanoski CE, Vikkula M, Iruela-Arispe ML. Transcriptional drifts associated with environmental changes in endothelial cells. eLife 2023; 12:e81370. [PMID: 36971339 PMCID: PMC10168696 DOI: 10.7554/elife.81370] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| | - Feyiang Ma
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Austin Quach
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Anhyo Jeong
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
| | - Hannah L Sunshine
- Department of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Vanessa Freitas
- Departament of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao PauloLos AngelesUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
- WELBIO department, WEL Research InstituteWavreBelgium
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
10
|
Bi W, Cai S, Lei T, Wang L. Implementation of blood-brain barrier on microfluidic chip: recent advance and future prospects. Ageing Res Rev 2023; 87:101921. [PMID: 37004842 DOI: 10.1016/j.arr.2023.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The complex structure of the blood-brain barrier (BBB) hinders its modeling and the treatment of brain diseases. The microfluidic technology promotes the development of BBB-on-a-chip platforms, which can be used to reproduce the complex brain microenvironment and physiological reactions. Compared with traditional transwell technology, microfluidic BBB-on-a-chip shows great technical advantages in terms of flexible control of fluid shear stress in the chip and fabrication efficiency of the chip system, which can be enhanced by the development of lithography and three-dimensional (3D) printing. It is convenient to accurately monitor the dynamic changes of biochemical parameters of individual cells in the model by integrating an automatic super-resolution imaging sensing platform. In addition, biomaterials, especially hydrogels and conductive polymers, solve the limitations of microfluidic BBB-on-a-chip by compounding onto microfluidic chip to provide a 3D space and special performance on the microfluidic chip. The microfluidic BBB-on-a-chip promotes the development of basic research, including cell migration, mechanism exploration of neurodegenerative diseases, drug barrier permeability, SARS-CoV-2 pathology. This study summarizes the recent advances, challenges and future prospects of microfluidic BBB-on-a-chip, which can help to promote the development of personalized medicine and drug discovery.
Collapse
|
11
|
Girard SD, Julien-Gau I, Molino Y, Combes BF, Greetham L, Khrestchatisky M, Nivet E. High and low permeability of human pluripotent stem cell-derived blood-brain barrier models depend on epithelial or endothelial features. FASEB J 2023; 37:e22770. [PMID: 36688807 DOI: 10.1096/fj.202201422r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023]
Abstract
The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.
Collapse
Affiliation(s)
- Stéphane D Girard
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Yves Molino
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Louise Greetham
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Michel Khrestchatisky
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Emmanuel Nivet
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Foreman KL, Shusta EV, Palecek SP. Defined Differentiation of Human Pluripotent Stem Cells to Brain Microvascular Endothelial-Like Cells for Modeling the Blood-Brain Barrier. Methods Mol Biol 2023; 2683:113-133. [PMID: 37300771 PMCID: PMC10389759 DOI: 10.1007/978-1-0716-3287-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The blood-brain barrier (BBB) comprises brain microvascular endothelial cells (BMECs) that form a high-resistance cellular interface that separates the blood compartment from the brain parenchyma. An intact BBB is pivotal to maintaining brain homeostasis but also impedes the entry of neurotherapeutics. There are limited options for human-specific BBB permeability testing, however. Human pluripotent stem cell models offer a powerful tool for dissecting components of this barrier in vitro, including understanding mechanisms of BBB function, and developing strategies to improve the permeability of molecular and cellular therapeutics targeting the brain. Here, we provide a detailed, step-by-step protocol for differentiation of human pluripotent stem cells (hPSCs) to cells exhibiting key characteristics of BMECs, including paracellular and transcellular transport resistance and transporter function that enable modeling the human BBB.
Collapse
Affiliation(s)
- Koji L Foreman
- Department of Chemical and Biological Engineering, Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Linville RM, Sklar MB, Grifno GN, Nerenberg RF, Zhou J, Ye R, DeStefano JG, Guo Z, Jha R, Jamieson JJ, Zhao N, Searson PC. Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels. Fluids Barriers CNS 2022; 19:87. [PMID: 36333694 PMCID: PMC9636829 DOI: 10.1186/s12987-022-00377-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Matthew B Sklar
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielle N Grifno
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renée F Nerenberg
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Ye
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ria Jha
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Sundaram SM, Arrulo Pereira A, Müller-Fielitz H, Köpke H, De Angelis M, Müller TD, Heuer H, Körbelin J, Krohn M, Mittag J, Nogueiras R, Prevot V, Schwaninger M. Gene therapy targeting the blood-brain barrier improves neurological symptoms in a model of genetic MCT8 deficiency. Brain 2022; 145:4264-4274. [PMID: 35929549 DOI: 10.1093/brain/awac243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022] Open
Abstract
A genetic deficiency of the solute carrier monocarboxylate transporter 8 (MCT8), termed Allan-Herndon-Dudley syndrome, is an important cause of X-linked intellectual and motor disability. MCT8 transports thyroid hormones across cell membranes. While thyroid hormone analogues improve peripheral changes of MCT8 deficiency, no treatment of the neurological symptoms is available so far. Therefore, we tested a gene replacement therapy in Mct8- and Oatp1c1-deficient mice as a well-established model of the disease. Here, we report that targeting brain endothelial cells for Mct8 expression by intravenously injecting the vector AAV-BR1-Mct8 increased tri-iodothyronine (T3) levels in the brain and ameliorated morphological and functional parameters associated with the disease. Importantly, the therapy resulted in a long-lasting improvement in motor coordination. Thus, the data support the concept that MCT8 mediates the transport of thyroid hormones into the brain and indicate that a readily accessible vascular target can help overcome the consequences of the severe disability associated with MCT8 deficiency.
Collapse
Affiliation(s)
- Sivaraj M Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Adriana Arrulo Pereira
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Hannes Köpke
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Meri De Angelis
- Institute for Diabetes and Obesity, Helmholtz Zentrum Munich, Munich, and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Munich, Munich, and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Jakob Körbelin
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Krohn
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- Université Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), 59045 Lille Cedex, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| |
Collapse
|
15
|
Zhao N, Guo Z, Kulkarni S, Norman D, Zhang S, Chung TD, Nerenberg RF, Linville R, Searson P. Engineering the human blood-brain barrier at the capillary scale using a double-templating technique. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2110289. [PMID: 36312050 PMCID: PMC9610437 DOI: 10.1002/adfm.202110289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 05/15/2023]
Abstract
In vitro blood-brain barrier (BBB) models have played an important role in studying processes such as immune cell trafficking and drug delivery, as well as contributing to the understanding of mechanisms of disease progression. Many biological and pathological processes in the cerebrovasculature occur in capillaries and hence the lack of robust hierarchical models at the capillary scale is a major roadblock in BBB research. Here we report on a double-templating technique for engineering hierarchical BBB models with physiological barrier function at the capillary scale. We first demonstrate the formation of hierarchical vascular networks using human umbilical vein endothelial cells. We then characterize barrier function in a BBB model using brain microvascular endothelial-like cells (iBMECs) differentiated from induced pluripotent stem cells (iPSCs). Finally, we characterize immune cell adhesion and transmigration in response to perfusion with the inflammatory cytokine tumor necrosis factor-alpha, and show that we can recapitulate capillary-scale effects, such as leukocyte plugging, observed in mouse models. Our double-templated hierarchical model enables the study of a wide range of biological and pathological processes related to the human BBB.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D. Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Renée F. Nerenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
16
|
Rattner A, Wang Y, Nathans J. Signaling Pathways in Neurovascular Development. Annu Rev Neurosci 2022; 45:87-108. [PMID: 35803586 DOI: 10.1146/annurev-neuro-111020-102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties-collectively referred to as the blood-brain barrier-that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States;
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med 2022; 292:31-46. [PMID: 33665890 DOI: 10.1111/joim.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier (BBB) is essential for creating and maintaining tissue homeostasis in the central nervous system (CNS), which is key for proper neuronal function. In most vertebrates, the BBB is localized to microvascular endothelial cells that acquire barrier properties during angiogenesis of the neuroectoderm. Complex and continuous tight junctions, and the lack of fenestrae combined with low pinocytotic activity render the BBB endothelium a tight barrier for water-soluble molecules that may only enter the CNS via specific transporters. The differentiation of these unique endothelial properties during embryonic development is initiated by endothelial-specific flavours of the Wnt/β-catenin pathway in a precise spatiotemporal manner. In this review, we summarize the currently known cellular (neural precursor and endothelial cells) and molecular (VEGF and Wnt/β-catenin) mechanisms mediating brain angiogenesis and barrier formation. Moreover, we introduce more recently discovered crosstalk with cellular and acellular elements within the developing CNS such as the extracellular matrix. We discuss recent insights into the downstream molecular mechanisms of Wnt/β-catenin in particular, the recently identified target genes like Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, Zic3, Sox17, Apcdd1 and Fgfbp1 that are involved in refining and maintaining barrier characteristics in the mature BBB endothelium. Additionally, we elute to recent insight into barrier heterogeneity and differential endothelial barrier properties within the CNS, focussing on the circumventricular organs as well as on the neurogenic niches in the subventricular zone and the hippocampus. Finally, open questions and future BBB research directions are highlighted in the context of taking benefit from understanding BBB development for strategies to modulate BBB function under pathological conditions.
Collapse
Affiliation(s)
- A Ben-Zvi
- From the, The Department of Developmental Biology and Cancer Research, Institute for Medical Research IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner Site Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
19
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Bats ML, Peghaire C, Delobel V, Dufourcq P, Couffinhal T, Duplàa C. Wnt/frizzled Signaling in Endothelium: A Major Player in Blood-Retinal- and Blood-Brain-Barrier Integrity. Cold Spring Harb Perspect Med 2022; 12:a041219. [PMID: 35074794 PMCID: PMC9121893 DOI: 10.1101/cshperspect.a041219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Wnt/frizzled signaling pathway is one of the major regulators of endothelial biology, controlling key cellular activities. Many secreted Wnt ligands have been identified and can initiate diverse signaling via binding to a complex set of Frizzled (Fzd) transmembrane receptors and coreceptors. Roughly, Wnt signaling is subdivided into two pathways: the canonical Wnt/β-catenin signaling pathway whose main downstream effector is the transcriptional coactivator β-catenin, and the noncanonical Wnt signaling pathway, which is subdivided into the Wnt/Ca2+ pathway and the planar cell polarity pathway. Here, we will focus on its cross talk with other angiogenic pathways and on its role in blood-retinal- and blood-brain-barrier formation and its maintenance in a differentiated state. We will unravel how retinal vascular pathologies and neurovascular degenerative diseases result from disruption of the Wnt pathway related to vascular instability, and highlight current research into therapeutic options.
Collapse
Affiliation(s)
- Marie-Lise Bats
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
- Department of Biochemistry, Pellegrin Hospital, University Hospital of Bordeaux, 33076 Bordeaux Cedex, France
| | - Claire Peghaire
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Valentin Delobel
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Pascale Dufourcq
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France
| | - Cécile Duplàa
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| |
Collapse
|
21
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
22
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|
23
|
Park TIH, Smyth LCD, Aalderink M, Woolf ZR, Rustenhoven J, Lee K, Jansson D, Smith A, Feng S, Correia J, Heppner P, Schweder P, Mee E, Dragunow M. Routine culture and study of adult human brain cells from neurosurgical specimens. Nat Protoc 2022; 17:190-221. [PMID: 35022619 DOI: 10.1038/s41596-021-00637-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
When modeling disease in the laboratory, it is important to use clinically relevant models. Patient-derived human brain cells grown in vitro to study and test potential treatments provide such a model. Here, we present simple, highly reproducible coordinated procedures that can be used to routinely culture most cell types found in the human brain from single neurosurgically excised brain specimens. The cell types that can be cultured include dissociated cultures of neurons, astrocytes, microglia, pericytes and brain endothelial and neural precursor cells, as well as explant cultures of the leptomeninges, cortical slice cultures and brain tumor cells. The initial setup of cultures takes ~2 h, and the cells are ready for further experiments within days to weeks. The resulting cells can be studied as purified or mixed population cultures, slice cultures and explant-derived cultures. This protocol therefore enables the investigation of human brain cells to facilitate translation of neuroscience research to the clinic.
Collapse
Affiliation(s)
- Thomas I-H Park
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon C D Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Miranda Aalderink
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe R Woolf
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University, St. Louis, MO, USA
| | - Kevin Lee
- Department of Physiology, Faculty of Medical Science and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Deidre Jansson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine VISN 20 Mental Illness Research, Education and Clinical Centre (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Amy Smith
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sheryl Feng
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jason Correia
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Mike Dragunow
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
25
|
Graßhoff H, Müller-Fielitz H, Dogbevia GK, Körbelin J, Bannach J, Vahldieck CM, Kusche-Vihrog K, Jöhren O, Müller OJ, Nogueiras R, Prevot V, Schwaninger M. Short regulatory DNA sequences to target brain endothelial cells for gene therapy. J Cereb Blood Flow Metab 2022; 42:104-120. [PMID: 34427142 PMCID: PMC8721777 DOI: 10.1177/0271678x211039617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gene vectors targeting CNS endothelial cells allow to manipulate the blood-brain barrier and to correct genetic defects in the CNS. Because vectors based on the adeno-associated virus (AAV) have a limited capacity, it is essential that the DNA sequence controlling gene expression is short. In addition, it must be specific for endothelial cells to avoid off-target effects. To develop improved regulatory sequences with selectivity for brain endothelial cells, we tested the transcriptional activity of truncated promoters of eleven (brain) endothelial-specific genes in combination with short regulatory elements, i.e., the woodchuck post-transcriptional regulatory element (W), the CMV enhancer element (C), and a fragment of the first intron of the Tie2 gene (S), by transfecting brain endothelial cells of three species. Four combinations of regulatory elements and short promoters (Cdh5, Ocln, Slc2a1, and Slco1c1) progressed through this in-vitro pipeline displaying suitable activity. When tested in mice, the regulatory sequences C-Ocln-W and C-Slc2a1-S-W enabled a stronger and more specific gene expression in brain endothelial cells than the frequently used CAG promoter. In summary, the new regulatory elements efficiently control gene expression in brain endothelial cells and may help to specifically target the blood-brain barrier with gene therapy vectors.
Collapse
Affiliation(s)
- Hanna Graßhoff
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Godwin K Dogbevia
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jacqueline Bannach
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | | | | | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver J Müller
- Department of Internal Medicine III (Cardiology, Angiology and Internal Intensive Care Medicine), University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Vincent Prevot
- Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
26
|
Linville RM, Searson PC. Next-generation in vitro blood-brain barrier models: benchmarking and improving model accuracy. Fluids Barriers CNS 2021; 18:56. [PMID: 34876171 PMCID: PMC8650371 DOI: 10.1186/s12987-021-00291-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 01/25/2023] Open
Abstract
With the limitations associated with post-mortem tissue and animal models, In vitro BBB models enable precise control of independent variables and microenvironmental cues, and hence play an important role in studying the BBB. Advances in stem cell technology and tissue engineering provide the tools to create next-generation in vitro BBB models with spatial organization of different cell types in 3D microenvironments that more closely match the human brain. These models will be capable of assessing the physiological and pathological responses to different perturbations relevant to health and disease. Here, we review the factors that determine the accuracy of in vitro BBB models, and describe how these factors will guide the development of next-generation models. Improving the accuracy of cell sources and microenvironmental cues will enable in vitro BBB models with improved accuracy and specificity to study processes and phenomena associated with zonation, brain region, age, sex, ethnicity, and disease state.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
27
|
Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP, Shusta EV. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. eLife 2021; 10:70992. [PMID: 34755601 PMCID: PMC8664294 DOI: 10.7554/elife.70992] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.
Collapse
Affiliation(s)
- Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Sean P Palecek
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Eric V Shusta
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
28
|
Gastfriend BD, Foreman KL, Katt ME, Palecek SP, Shusta EV. Integrative analysis of the human brain mural cell transcriptome. J Cereb Blood Flow Metab 2021; 41:3052-3068. [PMID: 34027687 PMCID: PMC8756477 DOI: 10.1177/0271678x211013700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain mural cells, including pericytes and vascular smooth muscle cells, are important for vascular development, blood-brain barrier function, and neurovascular coupling, but the molecular characteristics of human brain mural cells are incompletely characterized. Single cell RNA-sequencing (scRNA-seq) is increasingly being applied to assess cellular diversity in the human brain, but the scarcity of mural cells in whole brain samples has limited their molecular profiling. Here, we leverage the combined power of multiple independent human brain scRNA-seq datasets to build a transcriptomic database of human brain mural cells. We use this combined dataset to determine human-mouse species differences in mural cell transcriptomes, culture-induced dedifferentiation of human brain pericytes, and human mural cell organotypicity, with several key findings validated by RNA fluorescence in situ hybridization. Together, this work improves knowledge regarding the molecular constituents of human brain mural cells, serves as a resource for hypothesis generation in understanding brain mural cell function, and will facilitate comparative evaluation of animal and in vitro models.
Collapse
Affiliation(s)
- Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Moriah E Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Influence of Substrate Stiffness on Barrier Function in an iPSC-Derived In Vitro Blood-Brain Barrier Model. Cell Mol Bioeng 2021; 15:31-42. [DOI: 10.1007/s12195-021-00706-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
|
30
|
Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circ Res 2021; 129:240-258. [PMID: 34024118 PMCID: PMC8260472 DOI: 10.1161/circresaha.121.318971] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation.
Collapse
Affiliation(s)
- Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
| | - Valtteri Nurminen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland (T.L.)
| | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Mete Civelek
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| |
Collapse
|
31
|
Keep RF, Jones HC, Drewes LR. Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood-brain barrier and neurovascular unit. Fluids Barriers CNS 2021; 18:24. [PMID: 34020685 PMCID: PMC8138848 DOI: 10.1186/s12987-021-00258-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothelium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the recently completed Fluids Barriers CNS thematic series entitled, Advances in in vitro modeling of the bloodbrain barrier and neurovascular unit. Such in vitro modeling is progressing rapidly.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA. .,Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, R5018 BSRB, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
32
|
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. MICROMACHINES 2021; 12:441. [PMID: 33921018 PMCID: PMC8071412 DOI: 10.3390/mi12040441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.
Collapse
Affiliation(s)
- Tiffany Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
33
|
Cardiac glycosides target barrier inflammation of the vasculature, meninges and choroid plexus. Commun Biol 2021; 4:260. [PMID: 33637884 PMCID: PMC7910294 DOI: 10.1038/s42003-021-01787-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Neuroinflammation is a key component of virtually all neurodegenerative diseases, preceding neuronal loss and associating directly with cognitive impairment. Neuroinflammatory signals can originate and be amplified at barrier tissues such as brain vasculature, surrounding meninges and the choroid plexus. We designed a high content screening system to target inflammation in human brain-derived cells of the blood-brain barrier (pericytes and endothelial cells) to identify inflammatory modifiers. Screening an FDA-approved drug library we identify digoxin and lanatoside C, members of the cardiac glycoside family, as inflammatory-modulating drugs that work in blood-brain barrier cells. An ex vivo assay of leptomeningeal and choroid plexus explants confirm that these drugs maintain their function in 3D cultures of brain border tissues. These results suggest that cardiac glycosides may be useful in targeting inflammation at border regions of the brain and offer new options for drug discovery approaches for neuroinflammatory driven degeneration.
Collapse
|
34
|
Lu TM, Houghton S, Magdeldin T, Durán JGB, Minotti AP, Snead A, Sproul A, Nguyen DHT, Xiang J, Fine HA, Rosenwaks Z, Studer L, Rafii S, Agalliu D, Redmond D, Lis R. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc Natl Acad Sci U S A 2021; 118:e2016950118. [PMID: 33542154 PMCID: PMC7923590 DOI: 10.1073/pnas.2016950118] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood-brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases. However, the precise cellular identity of these induced brain microvascular endothelial cells (iBMECs) has not been well described. Employing a comprehensive transcriptomic metaanalysis of previously published hPSC-derived cells validated by physiological assays, we demonstrate that iBMECs lack functional attributes of ECs since they are deficient in vascular lineage genes while expressing clusters of genes related to the neuroectodermal epithelial lineage (Epi-iBMEC). Overexpression of key endothelial ETS transcription factors (ETV2, ERG, and FLI1) reprograms Epi-iBMECs into authentic endothelial cells that are congruent with bona fide endothelium at both transcriptomic as well as some functional levels. This approach could eventually be used to develop a robust human BBB model in vitro that resembles the human brain EC in vivo for functional studies and drug discovery.
Collapse
Affiliation(s)
- Tyler M Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Sean Houghton
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Tarig Magdeldin
- Department of Neurology and the Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065
| | - José Gabriel Barcia Durán
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Andrew P Minotti
- Developmental Biology, the Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- The Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Amanda Snead
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Duc-Huy T Nguyen
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065
| | - Howard A Fine
- Department of Neurology and the Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Lorenz Studer
- The Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - David Redmond
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065;
| | - Raphaël Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065;
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
35
|
Engelbrecht E, MacRae CA, Hla T. Lysolipids in Vascular Development, Biology, and Disease. Arterioscler Thromb Vasc Biol 2020; 41:564-584. [PMID: 33327749 DOI: 10.1161/atvbaha.120.305565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases. This review summarizes the role of lysophosphatidic acid and S1P in vascular developmental processes, endothelial cell biology, and their roles in cardiovascular disease processes. In addition, we also point out the apparent connections between lysophospholipid biology and the Wnt (int/wingless family) pathway, an evolutionarily conserved fundamental developmental signaling system. The discovery that components of the lysophospholipid signaling system are key genetic determinants of cardiovascular disease has warranted current and future research in this field. As pharmacological approaches to modulate lysophospholipid signaling have entered the clinical sphere, new findings in this field promise to influence novel therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Department of Medicine (C.A.M.), Harvard Medical School, Boston, MA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Tacconi C, He Y, Ducoli L, Detmar M. Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis 2020; 24:67-82. [PMID: 32918672 PMCID: PMC7921079 DOI: 10.1007/s10456-020-09743-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
Lymphatic and blood vascular endothelial cells (ECs) share several molecular and developmental features. However, these two cell types possess distinct phenotypic signatures, reflecting their different biological functions. Despite significant advances in elucidating how the specification of lymphatic and blood vascular ECs is regulated at the transcriptional level during development, the key molecular mechanisms governing their lineage identity under physiological or pathological conditions remain poorly understood. To explore the epigenomic signatures in the maintenance of EC lineage specificity, we compared the transcriptomic landscapes, histone composition (H3K4me3 and H3K27me3) and DNA methylomes of cultured matched human primary dermal lymphatic and blood vascular ECs. Our findings reveal that blood vascular lineage genes manifest a more ‘repressed’ histone composition in lymphatic ECs, whereas DNA methylation at promoters is less linked to the differential transcriptomes of lymphatic versus blood vascular ECs. Meta-analyses identified two transcriptional regulators, BCL6 and MEF2C, which potentially govern endothelial lineage specificity. Notably, the blood vascular endothelial lineage markers CD34, ESAM and FLT1 and the lymphatic endothelial lineage markers PROX1, PDPN and FLT4 exhibited highly differential epigenetic profiles and responded in distinct manners to epigenetic drug treatments. The perturbation of histone and DNA methylation selectively promoted the expression of blood vascular endothelial markers in lymphatic endothelial cells, but not vice versa. Overall, our study reveals that the fine regulation of lymphatic and blood vascular endothelial transcriptomes is maintained via several epigenetic mechanisms, which are crucial to the maintenance of endothelial cell identity.
Collapse
Affiliation(s)
- Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland.
| |
Collapse
|
37
|
Targeting nanoparticles to the brain by exploiting the blood-brain barrier impermeability to selectively label the brain endothelium. Proc Natl Acad Sci U S A 2020; 117:19141-19150. [PMID: 32703811 DOI: 10.1073/pnas.2002016117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current strategies to direct therapy-loaded nanoparticles to the brain rely on functionalizing nanoparticles with ligands which bind target proteins associated with the blood-brain barrier (BBB). However, such strategies have significant brain-specificity limitations, as target proteins are not exclusively expressed at the brain microvasculature. Therefore, novel strategies which exploit alternative characteristics of the BBB are required to overcome nonspecific nanoparticle targeting to the periphery, thereby increasing drug efficacy and reducing detrimental peripheral side effects. Here, we present a simple, yet counterintuitive, brain-targeting strategy which exploits the higher impermeability of the BBB to selectively label the brain endothelium. This is achieved by harnessing the lower endocytic rate of brain endothelial cells (a key feature of the high BBB impermeability) to promote selective retention of free, unconjugated protein-binding ligands on the surface of brain endothelial cells compared to peripheral endothelial cells. Nanoparticles capable of efficiently binding to the displayed ligands (i.e., labeled endothelium) are consequently targeted specifically to the brain microvasculature with minimal "off-target" accumulation in peripheral organs. This approach therefore revolutionizes brain-targeting strategies by implementing a two-step targeting method which exploits the physiology of the BBB to generate the required brain specificity for nanoparticle delivery, paving the way to overcome targeting limitations and achieve clinical translation of neurological therapies. In addition, this work demonstrates that protein targets for brain delivery may be identified based not on differential tissue expression, but on differential endocytic rates between the brain and periphery.
Collapse
|
38
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Linville RM, Arevalo D, Maressa JC, Zhao N, Searson PC. Three-dimensional induced pluripotent stem-cell models of human brain angiogenesis. Microvasc Res 2020; 132:104042. [PMID: 32673611 DOI: 10.1016/j.mvr.2020.104042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
During brain development, chemical cues released by developing neurons, cellular signaling with pericytes, and mechanical cues within the brain extracellular matrix (ECM) promote angiogenesis of brain microvascular endothelial cells (BMECs). Angiogenesis is also associated with diseases of the brain due to pathological chemical, cellular, and mechanical signaling. Existing in vitro and in vivo models of brain angiogenesis have key limitations. Here, we develop a high-throughput in vitro blood-brain barrier (BBB) bead assay of brain angiogenesis utilizing 150 μm diameter beads coated with induced pluripotent stem-cell (iPSC)-derived human BMECs (dhBMECs). After embedding the beads within a 3D matrix, we introduce various chemical cues and extracellular matrix components to explore their effects on angiogenic behavior. Based on the results from the bead assay, we generate a multi-scale model of the human cerebrovasculature within perfusable three-dimensional tissue-engineered blood-brain barrier microvessels. A sprouting phenotype is optimized in confluent monolayers of dhBMECs using chemical treatment with vascular endothelial growth factor (VEGF) and wnt ligands, and the inclusion of pro-angiogenic ECM components. As a proof-of-principle that the bead angiogenesis assay can be applied to study pathological angiogenesis, we show that oxidative stress can exert concentration-dependent effects on angiogenesis. Finally, we demonstrate the formation of a hierarchical microvascular model of the human blood-brain barrier displaying key structural hallmarks. We develop two in vitro models of brain angiogenesis: the BBB bead assay and the tissue-engineered BBB microvessel model. These platforms provide a tool kit for studies of physiological and pathological brain angiogenesis, with key advantages over existing two-dimensional models.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Diego Arevalo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Joanna C Maressa
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
| |
Collapse
|
40
|
Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 2020; 21:416-432. [PMID: 32636528 DOI: 10.1038/s41583-020-0322-2] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood-blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.
Collapse
|
41
|
Comparison of the rate of dedifferentiation with increasing passages among cell sources for an in vitro model of the blood–brain barrier. J Neural Transm (Vienna) 2020; 127:1117-1124. [DOI: 10.1007/s00702-020-02202-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023]
|