1
|
Jiang L, Cai S, Weng Z, Zhang S, Jiang SH. Peripheral, central, and chemotherapy-induced neuropathic changes in pancreatic cancer. Trends Neurosci 2024:S0166-2236(24)00242-X. [PMID: 39730257 DOI: 10.1016/j.tins.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
In pancreatic cancer, significant alterations occur in the local nervous system, including axonogenesis, neural remodeling, perineural invasion, and perineural neuritis. Pancreatic cancer can impact the central nervous system (CNS) through cancer cell-intrinsic factors or systemic factors, particularly in the context of cancer cachexia. These peripheral and central neuropathic changes exert substantial influence on cancer initiation and progression. Moreover, chemotherapy-induced neuropathy is common in pancreatic cancer, causing peripheral nerve damage and cognitive dysfunction. Targeting the crosstalk between pancreatic cancer and the nervous system, either peripherally or centrally, holds promise in cancer treatment, pain relief, and improved quality of life. Here, we summarize recent findings on the molecular mechanisms behind these neuropathic changes in pancreatic cancer and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Luju Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuqi Cai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zheqi Weng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Penna F, Rubini G, Costelli P. Immunomodulation: A new approach to cancer cachexia, potentially suitable for aging. Mol Aspects Med 2024; 100:101318. [PMID: 39260232 DOI: 10.1016/j.mam.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Cancer cachexia is the prototypical example of comorbidity, occurring in most of cancer patients. It is a direct consequence of tumor growth and of the associated inflammatory/immune response. Cachexia can be exacerbated by anti-cancer therapies, frequently resulting in dose limitation and/or treatment delay or discontinuation. The pathogenesis of cancer cachexia is still unclear and includes nutritional, metabolic, hormonal and immunological components. Tumor ability to shape the immune response to its own advantage is now well accepted, while the possibility that such an altered immune response could play a role in the onset of cachexia is still an undefined issue. Indeed, most of the immune-related research on cachexia mainly focused on pro-inflammatory mediators, almost totally disregarding the interactions among immune cells and the homeostasis of peripheral tissues. The present review provides an overview of the immune system dysregulations occurring in cancer cachexia, focusing on the possibility that immunomodulating strategies, mainly developed to stimulate the anti-cancer immune response, could be useful to counteract cachexia as well. Cancer and cachexia are frequent comorbidities of aging. Along this line, cancer- and aging-associated muscle wasting likely coexist in the same patients. Since both conditions share some of the underlying mechanisms, the potential effectiveness of immunomodulation on sarcopenia of aging is discussed.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Giacomo Rubini
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
3
|
Zhu X, Olson B, Keith D, Norgard MA, Levasseur PR, Diba P, Protzek S, Li J, Li X, Korzun T, Sattler AL, Buenafe AC, Grossberg AJ, Marks DL. GDF15 and LCN2 for early detection and prognosis of pancreatic cancer. Transl Oncol 2024; 50:102129. [PMID: 39353236 PMCID: PMC11474189 DOI: 10.1016/j.tranon.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The prognosis of pancreatic ductal adenocarcinomas (PDAC) remains very poor, emphasizing the critical importance of early detection, where biomarkers offer unique potential. Although growth differentiation factor 15 (GDF15) and Lipocalin 2 (LCN2) have been linked to PDAC, their precise roles as biomarkers are uncertain. METHODS Circulating levels of GDF15 and LCN2 were examined in human PDAC patients, heathy controls, and individuals with benign pancreatic diseases. Circulating levels of IL-6, CA19-9, and neutrophil-to-lymphocyte ratio (NLR) were measured for comparisons. Correlations between PDAC progression and overall survival were assessed. A mouse PDAC model was employed for comprehensive analyses, complementing the human studies by exploring associations with various metabolic and inflammatory parameters. Sensitivity and specificity of the biomarkers were evaluated. FINDINGS Our results demonstrated elevated levels of circulating GDF15 and LCN2 in PDAC patients compared to both healthy controls and individuals with benign pancreatic diseases, with higher GDF15 levels associated with disease progression and increased mortality. In PDAC mice, circulating GDF15 and LCN2 progressively increased, correlating with tumor growth, behavioral manifestations, tissue and molecular pathology, and cachexia development. GDF15 exhibited highly sensitive and specific for PDAC patients compared to CA19-9, IL-6, or NLR, while LCN2 showed even greater sensitivity and specificity in PDAC mice. Combining GDF15 and LCN2, or GDF15 and CA19-9, enhanced sensitivity and specificity. INTERPRETATION Our findings indicate that GDF15 holds promise as a biomarker for early detection and prognosis of PDAC, while LCN2 could strengthen diagnostic panels.
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Medical Scientist Training program, Oregon Health & Science University, Portland, Oregon, USA; Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Medical Scientist Training program, Oregon Health & Science University, Portland, Oregon, USA
| | - Sara Protzek
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Ju Li
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Xiaolin Li
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Tetiana Korzun
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Medical Scientist Training program, Oregon Health & Science University, Portland, Oregon, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Abigail C Buenafe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA; Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
4
|
Pryce BR, Oles A, Talbert EE, Romeo MJ, Vaena S, Sharma S, Spadafora V, Tolliver L, Mahvi DA, Morgan KA, Lancaster WP, Beal E, Koren N, Watts B, Overstreet M, Berto S, Subramanian S, Calisir K, Crawford A, Neelon B, Ostrowski MC, Zimmers TA, Tidball JG, Wang DJ, Guttridge DC. Muscle inflammation is regulated by NF-κB from multiple cells to control distinct states of wasting in cancer cachexia. Cell Rep 2024; 43:114925. [PMID: 39475511 DOI: 10.1016/j.celrep.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024] Open
Abstract
Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity. Nuclear factor κB (NF-κB) activity in multiple cells, including satellite cells, myofibers, and fibro-adipogenic progenitors, promotes macrophage expansion equally derived from infiltrating monocytes and resident cells. Moreover, NF-κB-activated cells and macrophages undergo crosstalk; NF-κB+ cells recruit macrophages to inhibit regeneration and promote atrophy but, interestingly, also protect myofibers, while macrophages stimulate NF-κB+ cells to sustain an inflammatory feedforward loop. Together, we propose that NF-κB functions in multiple cells in the muscle microenvironment to stimulate macrophages that both promote and protect against muscle wasting in cancer.
Collapse
Affiliation(s)
- Benjamin R Pryce
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Oles
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erin E Talbert
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sudarshana Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Victoria Spadafora
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren Tolliver
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David A Mahvi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - William P Lancaster
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Eryn Beal
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Natlie Koren
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Bailey Watts
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Morgan Overstreet
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Suganya Subramanian
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kubra Calisir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna Crawford
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Neelon
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Teresa A Zimmers
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Portland, Oregon Health Science University, Portland, OR 97239, USA
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Wang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Gu Q, Wang L, King TZ, Chen H, Zhang L, Ni J, Mao H. Seeing through "brain fog": neuroimaging assessment and imaging biomarkers for cancer-related cognitive impairments. Cancer Imaging 2024; 24:158. [PMID: 39558401 PMCID: PMC11572057 DOI: 10.1186/s40644-024-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Advances in cancer diagnosis and treatment have substantially improved patient outcomes and survival in recent years. However, up to 75% of cancer patients and survivors, including those with non-central nervous system (non-CNS) cancers, suffer from "brain fog" or impairments in cognitive functions such as attention, memory, learning, and decision-making. While we recognize the impact of cancer-related cognitive impairment (CRCI), we have not fully investigated and understood the causes, mechanisms and interplays of various involving factors. Consequently, there are unmet needs in clinical oncology in assessing the risk of CRCI and managing patients and survivors with this condition in order to make informed treatment decisions and ensure the quality of life for cancer survivors. The state-of-the-art neuroimaging technologies, particularly clinical imaging modalities like magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used to study neuroscience questions, including CRCI. However, in-depth applications of these functional and molecular imaging methods in CRCI and their clinical implementation for CRCI management are largely limited. This scoping review provides the current understanding of contributing neurological factors to CRCI and applications of the state-of-the-art multi-modal neuroimaging methods in investigating the functional and structural alterations related to CRCI. Findings from these studies and potential imaging-biomarkers of CRCI that can be used to improve the assessment and characterization of CRCI as well as to predict the risk of CRCI are also highlighted. Emerging issues and perspectives on future development and applications of neuroimaging tools to better understand CRCI and incorporate neuroimaging-based approaches to treatment decisions and patient management are discussed.
Collapse
Affiliation(s)
- Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
- Department of Radiology, Shenzhen Hyzen Hospital, Shenzhen, 518109, Guangdong, People's Republic of China
| | - Tricia Z King
- School of Nursing, Emory University, Atlanta, Georgia, 30322, USA
| | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People's Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jianming Ni
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, 214042, People's Republic of China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
6
|
Suda Y, Nakamura K, Matsuyama F, Hamada Y, Makabe H, Narita M, Nagumo Y, Mori T, Kuzumaki N, Narita M. Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. Mol Brain 2024; 17:20. [PMID: 38685046 PMCID: PMC11059753 DOI: 10.1186/s13041-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.
Collapse
Affiliation(s)
- Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Keiko Nakamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Department of Pharmacy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fukiko Matsuyama
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Japan Small Animal Medical Center, 1-10-4 Higashitokorozawawada, Tokorozawa-Shi, Saitama, 359-0023, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hitoshi Makabe
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
7
|
Zhang L, Bonomi PD. Immune System Disorder and Cancer-Associated Cachexia. Cancers (Basel) 2024; 16:1709. [PMID: 38730660 PMCID: PMC11083538 DOI: 10.3390/cancers16091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer-associated cachexia (CAC) is a debilitating condition marked by muscle and fat loss, that is unresponsive to nutritional support and contributes significantly to morbidity and mortality in patients with cancer. Immune dysfunction, driven by cytokine imbalance, contributes to CAC progression. This review explores the potential relationship between CAC and anti-cancer immune response in pre-clinical and clinical studies. Pre-clinical studies showcase the involvement of cytokines like IL-1β, IL-6, IL-8, IFN-γ, TNF-α, and TGF-β, in CAC. IL-6 and TNF-α, interacting with muscle and adipose tissues, induce wasting through JAK/STAT and NF-κB pathways. Myeloid-derived suppressor cells (MDSCs) exacerbate CAC by promoting inflammation. Clinical studies confirm elevated pro-inflammatory cytokines (IL-6, IL-8, TNFα) and immune markers like the neutrophil-to-lymphocyte ratio (NLR) in patients with CAC. Thus, immunomodulatory mechanisms involved in CAC may impact the anti-neoplastic immune response. Inhibiting CAC mechanisms could enhance anti-cancer therapies, notably immunotherapy. R-ketorolac, a new immunomodulator, reversed the weight loss and increased survival in mice. Combining these agents with immunotherapy may benefit patients with cancer experiencing CAC. Further research is vital to understand the complex interplay between tumor-induced immune dysregulation and CAC during immunotherapy.
Collapse
Affiliation(s)
| | - Philip D. Bonomi
- Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL 60612, USA;
| |
Collapse
|
8
|
Spadafora V, Pryce BR, Oles A, Talbert EE, Romeo M, Vaena S, Berto S, Ostrowski MC, Wang DJ, Guttridge DC. Optimization of a mouse model of pancreatic cancer to simulate the human phenotypes of metastasis and cachexia. BMC Cancer 2024; 24:414. [PMID: 38570770 PMCID: PMC10993462 DOI: 10.1186/s12885-024-12104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) presents with a high mortality rate. Two important features of PDAC contribute to this poor outcome. The first is metastasis which occurs in ~ 80% of PDAC patients. The second is cachexia, which compromises treatment tolerance for patients and reduces their quality of life. Although various mouse models of PDAC exist, recapitulating both metastatic and cachectic features have been challenging. METHODS Here, we optimize an orthotopic mouse model of PDAC by altering several conditions, including the subcloning of parental murine PDAC cells, implantation site, number of transplanted cells, and age of recipient mice. We perform spatial profiling to compare primary and metastatic immune microenvironments and RNA sequencing to gain insight into the mechanisms of muscle wasting in PDAC-induced cachexia, comparing non-metastatic to metastatic conditions. RESULTS These modifications extend the time course of the disease and concurrently increase the rate of metastasis to approximately 70%. Furthermore, reliable cachexia endpoints are achieved in both PDAC mice with and without metastases, which is reminiscent of patients. We also find that cachectic muscles from PDAC mice with metastasis exhibit a similar transcriptional profile to muscles derived from mice and patients without metastasis. CONCLUSION Together, this model is likely to be advantageous in both advancing our understanding of the mechanism of PDAC cachexia, as well as in the evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Victoria Spadafora
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Benjamin R Pryce
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Alexander Oles
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Erin E Talbert
- Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa, 52242, USA
| | - Martin Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Stefano Berto
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David J Wang
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
10
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
11
|
Zhou D, Guo S, Wang Y, Zhao J, Liu H, Zhou F, Huang Y, Gu Y, Jin G, Zhang Y. Functional characteristics of DNA N6-methyladenine modification based on long-read sequencing in pancreatic cancer. Brief Funct Genomics 2024; 23:150-162. [PMID: 37279592 DOI: 10.1093/bfgp/elad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Abnormalities of DNA modifications are closely related to the pathogenesis and prognosis of pancreatic cancer. The development of third-generation sequencing technology has brought opportunities for the study of new epigenetic modification in cancer. Here, we screened the N6-methyladenine (6mA) and 5-methylcytosine (5mC) modification in pancreatic cancer based on Oxford Nanopore Technologies sequencing. The 6mA levels were lower compared with 5mC and upregulated in pancreatic cancer. We developed a novel method to define differentially methylated deficient region (DMDR), which overlapped 1319 protein-coding genes in pancreatic cancer. Genes screened by DMDRs were more significantly enriched in the cancer genes compared with the traditional differential methylation method (P < 0.001 versus P = 0.21, hypergeometric test). We then identified a survival-related signature based on DMDRs (DMDRSig) that stratified patients into high- and low-risk groups. Functional enrichment analysis indicated that 891 genes were closely related to alternative splicing. Multi-omics data from the cancer genome atlas showed that these genes were frequently altered in cancer samples. Survival analysis indicated that seven genes with high expression (ADAM9, ADAM10, EPS8, FAM83A, FAM111B, LAMA3 and TES) were significantly associated with poor prognosis. In addition, the distinction for pancreatic cancer subtypes was determined using 46 subtype-specific genes and unsupervised clustering. Overall, our study is the first to explore the molecular characteristics of 6mA modifications in pancreatic cancer, indicating that 6mA has the potential to be a target for future clinical treatment.
Collapse
Affiliation(s)
- Dianshuang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yangyang Wang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Jiyun Zhao
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Honghao Liu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Feiyang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Yan Huang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Yue Gu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- College of Pathology, Qiqihar Medical University, Qiqihar 161042, China
| |
Collapse
|
12
|
Willbanks A, Seals M, Karmali R, Roy I. Harnessing the Systemic Biology of Functional Decline and Cachexia to Inform more Holistic Therapies for Incurable Cancers. Cancers (Basel) 2024; 16:360. [PMID: 38254849 PMCID: PMC10814065 DOI: 10.3390/cancers16020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Options for treatment of incurable cancer remain scarce and are largely focused on limited therapeutic mechanisms. A new approach specific to advanced cancers is needed to identify new and effective treatments. Morbidity in advanced cancer is driven by functional decline and a number of systemic conditions, including cachexia and fatigue. This review will focus on these clinical concepts, describe our current understanding of their underlying biology, and then propose how future therapeutic strategies, including pharmaceuticals, exercise, and rehabilitation, could target these mechanisms as an alternative route to addressing incurable cancer.
Collapse
Affiliation(s)
| | - Mina Seals
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Reem Karmali
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ishan Roy
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
14
|
Xu W, Liu J, Zhang J, Lu J, Guo J. Tumor microenvironment crosstalk between tumors and the nervous system in pancreatic cancer: Molecular mechanisms and clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189032. [PMID: 38036106 DOI: 10.1016/j.bbcan.2023.189032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits the highest incidence of perineural invasion among all solid tumors. The intricate interplay between tumors and the nervous system plays an important role in PDAC tumorigenesis, progression, recurrence, and metastasis. Various clinical symptoms of PDAC, including anorexia and cancer pain, have been linked to aberrant neural activity, while the presence of perineural invasion is a significant prognostic indicator. The use of conventional neuroactive drugs and neurosurgical interventions for PDAC patients is on the rise. An in-depth exploration of tumor-nervous system crosstalk has revealed novel therapeutic strategies for mitigating PDAC progression and effectively relieving symptoms. In this comprehensive review, we elucidate the regulatory functions of tumor-nervous system crosstalk, provide a succinct overview of the relationship between tumor-nervous system dialogue and clinical symptomatology, and deliberate the current research progress and forthcoming avenues of neural therapy for PDAC.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jun Lu
- Department of General Surgery, Peking University Third Hospital, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
15
|
Agulló-Ortuño MT, Mancebo E, Grau M, Núñez Sobrino JA, Paz-Ares L, López-Martín JA, Flández M. Tryptophan Modulation in Cancer-Associated Cachexia Mouse Models. Int J Mol Sci 2023; 24:13005. [PMID: 37629186 PMCID: PMC10455959 DOI: 10.3390/ijms241613005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that interferes with treatment and reduces the quality of life and survival of patients. Currently, there is no effective treatment or biomarkers, and pathophysiology is not clear. Our group reported alterations on tryptophan metabolites in cachectic patients, so we aim to investigate the role of tryptophan using two cancer-associated cachexia syngeneic murine models, melanoma B16F10, and pancreatic adenocarcinoma that is KPC-based. Injected mice showed signs of cancer-associated cachexia as reduction in body weight and raised spleen weight, MCP1, and carbonilated proteins in plasma. CRP and Myostatin also increased in B16F10 mice. Skeletal muscle showed a decrease in quadriceps weight and cross-sectional area (especially in B16F10). Higher expression of atrophy genes, mainly Atrogin1, was also observed. Plasmatic tryptophan levels in B16F10 tumor-bearing mice decreased even at early steps of tumorigenesis. In KPC-injected mice, tryptophan fluctuated but were also reduced and in cachectic patients were significantly lower. Treatment with 1-methyl-tryptophan, an inhibitor of tryptophan degradation, in the murine models resulted in the restoration of plasmatic tryptophan levels and an improvement on splenomegaly and carbonilated proteins levels, while changes in plasmatic inflammatory markers were mild. After the treatment, CCR2 expression in monocytes diminished and lymphocytes, Tregs, and CD8+, were activated (seen by increased in CD127 and CD25 expression, respectively). These immune cell changes pointed to an improvement in systemic inflammation. While treatment with 1-MT did not show benefits in terms of muscle wasting and atrophy in our experimental setting, muscle functionality was not affected and central nuclei fibers appeared, being a feature of regeneration. Therefore, tryptophan metabolism pathway is a promising target for inflammation modulation in cancer-associated cachexia.
Collapse
Affiliation(s)
- M. Teresa Agulló-Ortuño
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain; (M.T.A.-O.); (L.P.-A.)
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
- Biomedical Research Networking Centre on Oncology—CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nursing, Facultad de Fisioterapia y Enfermería, Universidad de Castilla La-Mancha (UCLM), 45071 Toledo, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Montserrat Grau
- Animal Facility, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Juan Antonio Núñez Sobrino
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Luis Paz-Ares
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain; (M.T.A.-O.); (L.P.-A.)
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
- Biomedical Research Networking Centre on Oncology—CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
- Medicine Department, Facultad de Medicina y Cirugía, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - José A. López-Martín
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Marta Flández
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain; (M.T.A.-O.); (L.P.-A.)
- Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
16
|
Chaklai A, Canaday P, O’Niel A, Cucinotta FA, Sloop A, Gladstone D, Pogue B, Zhang R, Sunnerberg J, Kheirollah A, Thomas CR, Hoopes PJ, Raber J. Effects of UHDR and Conventional Irradiation on Behavioral and Cognitive Performance and the Percentage of Ly6G+ CD45+ Cells in the Hippocampus. Int J Mol Sci 2023; 24:12497. [PMID: 37569869 PMCID: PMC10419899 DOI: 10.3390/ijms241512497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We assessed the effects of conventional and ultra-high dose rate (UHDR) electron irradiation on behavioral and cognitive performance one month following exposure and assessed whether these effects were associated with alterations in the number of immune cells in the hippocampus using flow cytometry. Two-month-old female and male C57BL/6J mice received whole-brain conventional or UHDR irradiation. UHDR mice were irradiated with 9 MeV electrons, delivered by the Linac-based/modified beam control. The mice were irradiated or sham-irradiated at Dartmouth, the following week shipped to OHSU, and behaviorally and cognitively tested between 27 and 41 days after exposure. Conventional- and UHDR-irradiated mice showed impaired novel object recognition. During fear learning, conventional- and UHDR-irradiated mice moved less during the inter-stimulus interval (ISI) and UHDR-irradiated mice also moved less during the baseline period (prior to the first tone). In irradiated mice, reduced activity levels were also seen in the home cage: conventional- and UHDR-irradiated mice moved less during the light period and UHDR-irradiated mice moved less during the dark period. Following behavioral and cognitive testing, infiltrating immune cells in the hippocampus were analyzed by flow cytometry. The percentage of Ly6G+ CD45+ cells in the hippocampus was lower in conventional- and UHDR-irradiated than sham-irradiated mice, suggesting that neutrophils might be particularly sensitive to radiation. The percentage of Ly6G+ CD45+ cells in the hippocampus was positively correlated with the time spent exploring the novel object in the object recognition test. Under the experimental conditions used, cognitive injury was comparable in conventional and UHDR mice. However, the percentage of CD45+ CD11b+ Ly6+ and CD45+ CD11b+ Ly6G- cells in the hippocampus cells in the hippocampus was altered in conventional- but not UHDR-irradiated mice and the reduced percentage of Ly6G+ CD45+ cells in the hippocampus might mediate some of the detrimental radiation-induced cognitive effects.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Pamela Canaday
- Knight Flow Cytometry Core OHSU, Portland, OR 97239, USA;
| | - Abigail O’Niel
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Austin Sloop
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - David Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Brian Pogue
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA;
| | - Rongxiao Zhang
- Department of Radiation Medicine, New York Medical College, Westchester Medical Center, Valhalla, NY 10595, USA;
| | - Jacob Sunnerberg
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Alireza Kheirollah
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Charles R. Thomas
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - P. Jack Hoopes
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
17
|
Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, Heymsfield SB, Hui S, Jamal-Hanjani M, Lam JM, Lewis DY, McCandlish D, Mustian KM, O'Rahilly S, Perrimon N, White EP, Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023; 186:1824-1845. [PMID: 37116469 PMCID: PMC11059056 DOI: 10.1016/j.cell.2023.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Janelle S Ayres
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bette J Caan
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA
| | | | - Anthony P Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard F Dunne
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonas Grethlein
- Ruprecht Karl University of Heidelberg, Heidelberg 69117, Germany
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Sheng Hui
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Mariam Jamal-Hanjani
- Department of Medical Oncology, University College London Hospitals, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jie Min Lam
- Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - David Y Lewis
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK
| | - David McCandlish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Karen M Mustian
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen P White
- Rutgers Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
18
|
Progressive development of melanoma-induced cachexia differentially impacts organ systems in mice. Cell Rep 2023; 42:111934. [PMID: 36640353 PMCID: PMC9983329 DOI: 10.1016/j.celrep.2022.111934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.
Collapse
|
19
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
20
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
21
|
Hebert JF, Burfeind KG, Malinoski D, Hutchens MP. Molecular Mechanisms of Rhabdomyolysis-Induced Kidney Injury: From Bench to Bedside. Kidney Int Rep 2022; 8:17-29. [PMID: 36644345 PMCID: PMC9831947 DOI: 10.1016/j.ekir.2022.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Rhabdomyolysis-induced acute kidney injury (RIAKI) occurs following damage to the muscular sarcolemma sheath, resulting in the leakage of myoglobin and other metabolites that cause kidney damage. Currently, the sole recommended clinical treatment for RIAKI is aggressive fluid resuscitation, but other potential therapies, including pretreatments for those at risk for developing RIAKI, are under investigation. This review outlines the mechanisms and clinical significance of RIAKI, investigational treatments and their specific targets, and the status of ongoing research trials.
Collapse
Affiliation(s)
- Jessica F. Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA,Correspondence: Jessica F. Hebert, Oregon Health and Science University, Department of Anesthesiology and Perioperative Medicine, Portland, Oregon, USA.
| | - Kevin G. Burfeind
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Darren Malinoski
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA,Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| | - Michael P. Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA,Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| |
Collapse
|
22
|
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol 2022; 10:960341. [PMID: 36158184 PMCID: PMC9493094 DOI: 10.3389/fcell.2022.960341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cachexia is a devastating syndrome associated with the end-stage of several diseases, including cancer, and characterized by body weight loss and severe muscle and adipose tissue wasting. Although different cancer types are affected to diverse extents by cachexia, about 80% of all cancer patients experience this comorbidity, which highly reduces quality of life and response to therapy, and worsens prognosis, accounting for more than 25% of all cancer deaths. Cachexia represents an urgent medical need because, despite several molecular mechanisms have been identified, no effective therapy is currently available for this devastating syndrome. Most studies focus on skeletal muscle, which is indeed the main affected and clinically relevant organ, but cancer cachexia is characterized by a multiorgan failure. In this review, we focus on the current knowledge on the multiple tissues affected by cachexia and on the biomarkers with the attempt to define a chronological pathway, which might be useful for the early identification of patients who will undergo cachexia. Indeed, it is likely that the inefficiency of current therapies might be attributed, at least in part, to their administration in patients at the late stages of cachexia.
Collapse
Affiliation(s)
- Michele Ferrara
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Samaden
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Ruggieri
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Deyhle MR, Callaway CS, Neyroud D, D’Lugos AC, Judge SM, Judge AR. Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy. Cells 2022; 11:1893. [PMID: 35741022 PMCID: PMC9221479 DOI: 10.3390/cells11121893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022] Open
Abstract
Immune cells can mount desirable anti-cancer immunity. However, some immune cells can support cancer disease progression. The presence of cancer can lead to production of immature myeloid cells from the bone marrow known as myeloid-derived suppressor cells (MDSCs). The immunosuppressive and pro-tumorigenic effects of MDSCs are well understood. Whether MDSCs are involved in promoting cancer cachexia is not well understood. We orthotopically injected the pancreas of mice with KPC cells or PBS. One group of tumor-bearing mice was treated with an anti-Ly6G antibody that depletes granulocytic MDSCs and neutrophils; the other received a control antibody. Anti-Ly6G treatment delayed body mass loss, reduced tibialis anterior (TA) muscle wasting, abolished TA muscle fiber atrophy, reduced diaphragm muscle fiber atrophy of type IIb and IIx fibers, and reduced atrophic gene expression in the TA muscles. Anti-ly6G treatment resulted in greater than 50% Ly6G+ cell depletion efficiency in the tumors and TA muscles. These data show that, in the orthotopic KPC model, anti-Ly6G treatment reduces the number of Ly6G+ cells in the tumor and skeletal muscle and reduces skeletal muscle atrophy. These data implicate Ly6G+ cells, including granulocytic MDSCs and neutrophils, as possible contributors to the development of pancreatic cancer-induced skeletal muscle wasting.
Collapse
Affiliation(s)
- Michael R. Deyhle
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chandler S. Callaway
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Building Synathlon, 1015 Lausanne, Switzerland
| | - Andrew C. D’Lugos
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| |
Collapse
|
24
|
Kadiyala P, Elhossiny AM, Carpenter ES. Using Single Cell Transcriptomics to Elucidate the Myeloid Compartment in Pancreatic Cancer. Front Oncol 2022; 12:881871. [PMID: 35664793 PMCID: PMC9161632 DOI: 10.3389/fonc.2022.881871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate of 10%. A hallmark feature of this disease is its abundant microenvironment which creates a highly immunosuppressive milieu. This is, in large part, mediated by an abundant infiltration of myeloid cells in the PDAC tumor microenvironment. Consequently, therapies that modulate myeloid function may augment the efficacy of standard of care for PDAC. Unfortunately, there is limited understanding about the various subsets of myeloid cells in PDAC, particularly in human studies. This review highlights the application of single-cell RNA sequencing to define the myeloid compartment in human PDAC and elucidate the crosstalk between myeloid cells and the other components of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Padma Kadiyala
- Department of Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Eileen S. Carpenter
- Department of Intenal Medicine, Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Eileen S. Carpenter,
| |
Collapse
|
25
|
Petruzzelli M, Ferrer M, Schuijs MJ, Kleeman SO, Mourikis N, Hall Z, Perera D, Raghunathan S, Vacca M, Gaude E, Lukey MJ, Jodrell DI, Frezza C, Wagner EF, Venkitaraman AR, Halim TYF, Janowitz T. Early Neutrophilia Marked by Aerobic Glycolysis Sustains Host Metabolism and Delays Cancer Cachexia. Cancers (Basel) 2022; 14:963. [PMID: 35205709 PMCID: PMC8870098 DOI: 10.3390/cancers14040963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.
Collapse
Affiliation(s)
- Michele Petruzzelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Miriam Ferrer
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Martijn J. Schuijs
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Nicholas Mourikis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - David Perera
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Shwethaa Raghunathan
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Michele Vacca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK;
| | - Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Michael J. Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Duncan I. Jodrell
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine Department of Dermatology, Medical University of Vienna (MUV), 1090 Vienna, Austria;
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), 1090 Vienna, Austria
| | - Ashok R. Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Timotheus Y. F. Halim
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
- Northwell Health Cancer Institute, New Hyde Park, NY 11042, USA
| |
Collapse
|
26
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
27
|
Borniger JC. Cancer as a tool for preclinical psychoneuroimmunology. Brain Behav Immun Health 2021; 18:100351. [PMID: 34988496 PMCID: PMC8710415 DOI: 10.1016/j.bbih.2021.100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer represents a novel homeostatic challenge to the host system. How the brain senses and responds to changes in peripheral physiology elicited by tumor growth is a largely untapped area of research. This is especially relevant given the widespread prevalence of systemic problems that people with various types of cancer experience. These include disruptions in sleep/wake cycles, cognitive function, depression, and changes in appetite/food intake, among others. Critically, many of these problems are evident prior to diagnosis, indicating that their etiology is potentially distinct from the effects of cancer treatment or the stress of a cancer diagnosis. Psychoneuroimmunology (PNI) is well equipped to tackle these types of problems, as it uses approaches from multiple disciplines to understand how specific stimuli (endogenous and environmental) are transduced into neural, endocrine, and immune signals that ultimately regulate health and behavior. In this article, I first provide a brief historical perspective of cancer and PNI, introduce the idea of cancer as a systemic homeostatic challenge, and provide examples from preclinical literature supporting this hypothesis. Given the rise of advanced tools in neuroscience (e.g., calcium imaging), we can now monitor and manipulate genetically defined neural circuits over the extended time scales necessary to disentangle distal communication between peripheral tumors and the brain.
Collapse
|
28
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Olson B, Norgard MA, Levasseur PR, Zhu X, Marks DL. Physiologic and molecular characterization of a novel murine model of metastatic head and neck cancer cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1312-1332. [PMID: 34231343 PMCID: PMC8517353 DOI: 10.1002/jcsm.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer cachexia is a metabolic disorder characterized by the progressive loss of fat and lean mass that results in significant wasting, ultimately leading to reduced quality of life and increased mortality. Effective therapies for cachexia are lacking, potentially owing to the mismatch in clinically relevant models of cachexia. Specifically, cachexia observed in a clinical setting is commonly associated with advanced or late-stage cancers that are metastatic, yet pre-clinical metastatic models of cachexia are limited. Furthermore, the prevalence of cachexia in head and neck cancer patients is high, yet few pre-clinical models of head and neck cancer cachexia exist. In addition to these shortcomings, cachexia is also heterogeneous among any given cancer, whereas patients with similar disease burden may experience significantly different degrees of cachexia symptoms. In order to address these issues, we characterize a metastatic model of human papilloma virus (HPV) positive head and neck squamous cell carcinoma that recapitulates the cardinal clinical and molecular features of cancer cachexia. METHODS Male and female C57BL/6 mice were implanted subcutaneously with oropharyngeal squamous cell carcinoma cells stably transformed with HPV16 E6 and E7 together with hRas and luciferase (mEERL) that metastasizes to the lungs (MLM). We then robustly characterize the physiologic, behavioural, and molecular signatures during tumour development in two MLM subclones. RESULTS Mice injected with MLM tumour cells rapidly developed primary tumours and eventual metastatic lesions to the lungs. MLM3, but not MLM5, engrafted mice progressively lost fat and lean mass during tumour development despite the absence of anorexia (P < 0.05). Behaviourally, MLM3-implanted mice displayed decreased locomotor behaviours and impaired nest building (P < 0.05). Muscle catabolism programmes associated with cachexia, including E3 ubiquitin ligase and autophagy up-regulation, along with progressive adipose wasting and accompanying browning gene signatures, were observed. Tumour progression also corresponded with hypothalamic and peripheral organ inflammation, as well as an elevation in neutrophil-to-lymphocyte ratio (P < 0.05). Finally, we characterize the fat and lean mass sparing effects of voluntary wheel running on MLM3 cachexia (P < 0.05). CONCLUSIONS This syngeneic MLM3 allograft model of metastatic cancer cachexia is reliable, consistent, and readily recapitulates key clinical and molecular features and heterogeneity of cancer cachexia. Because few metastatic models of cachexia exist-even though cachexia often accompanies metastatic progression-we believe this model more accurately captures cancer cachexia observed in a clinical setting and thus is well suited for future mechanistic studies and pre-clinical therapy development for this crippling metabolic disorder.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
| | - Mason A. Norgard
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Peter R. Levasseur
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Xinxia Zhu
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health and & Science University PortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
30
|
Wang J, Chen Y, Li X, Zou X. Perineural Invasion and Associated Pain Transmission in Pancreatic Cancer. Cancers (Basel) 2021; 13:4594. [PMID: 34572820 PMCID: PMC8467801 DOI: 10.3390/cancers13184594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the cancers with the highest incidence of perineural invasion (PNI), which often indicates a poor prognosis. Aggressive tumor cells invade nerves, causing neurogenic inflammation; the tumor microenvironment also induces nerves to undergo a series of structural and functional reprogramming. In turn, neurons and the surrounding glial cells promote the development of pancreatic cancer through autocrine and/or paracrine signaling. In addition, hyperalgesia in PDAC patients implies alterations of pain transmission in the peripheral and central nervous systems. Currently, the studies on this topic are relatively limited. This review will elaborate on the mechanisms of tumor-neural interactions and its possible relationship with pain from several aspects that have been focused on in recent years.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (J.W.); (Y.C.); (X.L.)
| |
Collapse
|
31
|
Olson B, Diba P, Korzun T, Marks DL. Neural Mechanisms of Cancer Cachexia. Cancers (Basel) 2021; 13:cancers13163990. [PMID: 34439145 PMCID: PMC8391721 DOI: 10.3390/cancers13163990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer cachexia is a devastating wasting syndrome that occurs in many illnesses, with signs and symptoms including anorexia, weight loss, cognitive impairment and fatigue. The brain is capable of exerting overarching homeostatic control of whole-body metabolism and is increasingly being recognized as an important mediator of cancer cachexia. Given the increased recognition and discovery of neural mechanisms of cancer cachexia, we sought to provide an in-depth review and update of mechanisms by which the brain initiates and propagates cancer cachexia programs. Furthermore, recent work has identified new molecular mediators of cachexia that exert their effects through their direct interaction with the brain. Therefore, this review will summarize neural mechanisms of cachexia and discuss recently identified neural mediators of cancer cachexia. Abstract Nearly half of cancer patients suffer from cachexia, a metabolic syndrome characterized by progressive atrophy of fat and lean body mass. This state of excess catabolism decreases quality of life, ability to tolerate treatment and eventual survival, yet no effective therapies exist. Although the central nervous system (CNS) orchestrates several manifestations of cachexia, the precise mechanisms of neural dysfunction during cachexia are still being unveiled. Herein, we summarize the cellular and molecular mechanisms of CNS dysfunction during cancer cachexia with a focus on inflammatory, autonomic and neuroendocrine processes and end with a discussion of recently identified CNS mediators of cachexia, including GDF15, LCN2 and INSL3.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Tetiana Korzun
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
32
|
Mampay M, Flint MS, Sheridan GK. Tumour brain: Pretreatment cognitive and affective disorders caused by peripheral cancers. Br J Pharmacol 2021; 178:3977-3996. [PMID: 34029379 DOI: 10.1111/bph.15571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
People that develop extracranial cancers often display co-morbid neurological disorders, such as anxiety, depression and cognitive impairment, even before commencement of chemotherapy. This suggests bidirectional crosstalk between non-CNS tumours and the brain, which can regulate peripheral tumour growth. However, the reciprocal neurological effects of tumour progression on brain homeostasis are not well understood. Here, we review brain regions involved in regulating peripheral tumour development and how they, in turn, are adversely affected by advancing tumour burden. Tumour-induced activation of the immune system, blood-brain barrier breakdown and chronic neuroinflammation can lead to circadian rhythm dysfunction, sleep disturbances, aberrant glucocorticoid production, decreased hippocampal neurogenesis and dysregulation of neural network activity, resulting in depression and memory impairments. Given that cancer-related cognitive impairment diminishes patient quality of life, reduces adherence to chemotherapy and worsens cancer prognosis, it is essential that more research is focused at understanding how peripheral tumours affect brain homeostasis.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Graham K Sheridan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
33
|
Gorchs L, Kaipe H. Interactions between Cancer-Associated Fibroblasts and T Cells in the Pancreatic Tumor Microenvironment and the Role of Chemokines. Cancers (Basel) 2021; 13:2995. [PMID: 34203869 PMCID: PMC8232575 DOI: 10.3390/cancers13122995] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF-T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 14152 Stockholm, Sweden
| |
Collapse
|
34
|
Lenehan PJ, Cirella A, Uchida AM, Crowley SJ, Sharova T, Boland G, Dougan M, Dougan SK, Heckler M. Type 2 immunity is maintained during cancer-associated adipose tissue wasting. IMMUNOTHERAPY ADVANCES 2021; 1:ltab011. [PMID: 34291232 PMCID: PMC8286632 DOI: 10.1093/immadv/ltab011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cachexia is a systemic metabolic disorder characterized by loss of fat and muscle mass, which disproportionately impacts patients with gastrointestinal malignancies such as pancreatic cancer. While the immunologic shifts contributing to the development of other adipose tissue (AT) pathologies such as obesity have been well described, the immune microenvironment has not been studied in the context of cachexia. METHODS We performed bulk RNA-sequencing, cytokine arrays, and flow cytometry to characterize the immune landscape of visceral AT (VAT) in the setting of pancreatic and colorectal cancers. RESULTS The cachexia inducing factor IL-6 is strongly elevated in the wasting VAT of cancer bearing mice, but the regulatory type 2 immune landscape which characterizes healthy VAT is maintained. Pathologic skewing toward Th1 and Th17 inflammation is absent. Similarly, the VAT of patients with colorectal cancer is characterized by a Th2 signature with abundant IL-33 and eotaxin-2, albeit also with high levels of IL-6. CONCLUSIONS Wasting AT during the development of cachexia may not undergo drastic changes in immune composition like those seen in obese AT. Our approach provides a framework for future immunologic analyses of cancer associated cachexia.
Collapse
Affiliation(s)
- Patrick J Lenehan
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Assunta Cirella
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amiko M Uchida
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie J Crowley
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Identification of Potential Serum Protein Biomarkers and Pathways for Pancreatic Cancer Cachexia Using an Aptamer-Based Discovery Platform. Cancers (Basel) 2020; 12:cancers12123787. [PMID: 33334063 PMCID: PMC7765482 DOI: 10.3390/cancers12123787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Patients with pancreatic cancer and other advanced cancers suffer from progressive weight loss that reduces treatment response and quality of life and increases treatment toxicity and mortality. Effective interventions to prevent such weight loss, known as cachexia, require molecular markers to diagnose, stage, and monitor cachexia. No such markers are currently validated or in clinical use. This study used a discovery platform to measure changes in plasma proteins in patients with pancreatic cancer compared with normal controls. We found proteins specific to pancreatic cancer and cancer stage, as well as proteins that correlate with cachexia. These include some previously known proteins along with novel ones and implicates both well-known and new molecular mechanisms. Thus, this study provides novel insights into the molecular processes underpinning cancer and cachexia and affords a basis for future validation studies in larger numbers of patients with pancreatic cancer and cachexia. Abstract Patients with pancreatic ductal adenocarcinoma (PDAC) suffer debilitating and deadly weight loss, known as cachexia. Development of therapies requires biomarkers to diagnose, and monitor cachexia; however, no such markers are in use. Via Somascan, we measured ~1300 plasma proteins in 30 patients with PDAC vs. 11 controls. We found 60 proteins specific to local PDAC, 46 to metastatic, and 67 to presence of >5% cancer weight loss (FC ≥ |1.5|, p ≤ 0.05). Six were common for cancer stage (Up: GDF15, TIMP1, IL1RL1; Down: CCL22, APP, CLEC1B). Four were common for local/cachexia (C1R, PRKCG, ELANE, SOST: all oppositely regulated) and four for metastatic/cachexia (SERPINA6, PDGFRA, PRSS2, PRSS1: all consistently changed), suggesting that stage and cachexia status might be molecularly separable. We found 71 proteins that correlated with cachexia severity via weight loss grade, weight loss, skeletal muscle index and radiodensity (r ≥ |0.50|, p ≤ 0.05), including some known cachexia mediators/markers (LEP, MSTN, ALB) as well as novel proteins (e.g., LYVE1, C7, F2). Pathway, correlation, and upstream regulator analyses identified known (e.g., IL6, proteosome, mitochondrial dysfunction) and novel (e.g., Wnt signaling, NK cells) mechanisms. Overall, this study affords a basis for validation and provides insights into the processes underpinning cancer cachexia.
Collapse
|
36
|
Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines 2020; 8:biomedicines8110526. [PMID: 33266387 PMCID: PMC7700424 DOI: 10.3390/biomedicines8110526] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are of great relevance to health, and their dysregulation is associated with major chronic diseases. Research on mitochondria-156 brand new publications from 2019 and 2020-have contributed to this review. Mitochondria have been fundamental for the evolution of complex organisms. As important and semi-autonomous organelles in cells, they can adapt their function to the needs of the respective organ. They can program their function to energy supply (e.g., to keep heart muscle cells going, life-long) or to metabolism (e.g., to support hepatocytes and liver function). The capacity of mitochondria to re-program between different options is important for all cell types that are capable of changing between a resting state and cell proliferation, such as stem cells and immune cells. Major chronic diseases are characterized by mitochondrial dysregulation. This will be exemplified by cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, immune system disorders, and cancer. New strategies for intervention in chronic diseases will be presented. The tumor microenvironment can be considered a battlefield between cancer and immune defense, competing for energy supply and metabolism. Cancer cachexia is considered as a final stage of cancer progression. Nevertheless, the review will present an example of complete remission of cachexia via immune cell transfer. These findings should encourage studies along the lines of mitochondria, energy supply, and metabolism.
Collapse
|
37
|
Wyart E, Bindels LB, Mina E, Menga A, Stanga S, Porporato PE. Cachexia, a Systemic Disease beyond Muscle Atrophy. Int J Mol Sci 2020; 21:E8592. [PMID: 33202621 PMCID: PMC7696729 DOI: 10.3390/ijms21228592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Orbassano (TO), Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
| | - Paolo E. Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| |
Collapse
|
38
|
Farhang-Sardroodi S, Wilkie KP. Mathematical Model of Muscle Wasting in Cancer Cachexia. J Clin Med 2020; 9:jcm9072029. [PMID: 32605273 PMCID: PMC7409297 DOI: 10.3390/jcm9072029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass, which negatively impacts patients' quality of life, reduces their ability to sustain anti-cancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin A/ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has been shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachectic factors. The model formulation tracks the intercellular interactions between cancer cell, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and the analysis provides insight into tissue growth in healthy, cancerous, and post-cachexia treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that after blocking the myostatin/activin A pathway, partial recovery of cancer-induced muscle loss requires the activation and proliferation of the satellite cell compartment with a functional differentiation program.
Collapse
|