1
|
Zuckerman JB, Hinton AC, Lahiri T, Teneback CC, Jia S, Mermis J, Polineni D, Dasenbrook E, Sadeghi H, DiMango E, Dezube R, West NE, Zemanick ET, Samya ZN, Gifford AH. C-Reactive Protein Changes in Adult and Pediatric People With Cystic Fibrosis During Treatment of Pulmonary Exacerbations. Pediatr Pulmonol 2025; 60:e27487. [PMID: 39835779 DOI: 10.1002/ppul.27487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Although studies have examined changes in C-reactive protein (CRP) during pulmonary exacerbations (PEX) in people with cystic fibrosis (PwCF), few have evaluated CRP profiles across age groups. Here, we characterize age-related CRP responses to PEX treatment. METHODS We measured CRP concentrations at the beginning and end of intravenous (IV) antibiotic therapy for PEX in 100 pediatric and 147 adult PwCF at 10 US CF Centers. We examined relationships between CRP and age, lung function, severity of PEX symptoms, and time to next PEX. RESULTS CRP measured at initiation of IV antibiotic treatment for PEX was higher in adults than children, median 8 mg/L (IQR 4, 32) versus 5 mg/L (IQR 2, 10), respectively (p < 0.001). There was a significant correlation between the initial CRP and drop in lung from baseline to the beginning of IV antibiotics in adults and children. Adjusted CRP dropped in response to PEX treatment more commonly in adults than in children (70% vs. 48%, respectively). The range of treatment responses was greater in adults, in those with higher symptom scores, and in those with more advanced lung disease. In adults elevated CRP at the end of treatment was also associated with incomplete recovery of lung function. CRP at the start of IV antibiotics was inversely related to time until the next PEX. CONCLUSION In children and adults with CF, CRP is increased at the initiation of IV antibiotic therapy for PEX and declines with treatment. The response is more pronounced in highly symptomatic adults with advanced lung disease.
Collapse
Affiliation(s)
- Jonathan B Zuckerman
- Maine Medical Center, Division of Pulmonary and Critical Care, Portland, Maine, USA
| | - Alexandra C Hinton
- Center for Outcomes and Research Evaluation, Maine Medical Center, Portland, Maine, USA
| | - Thomas Lahiri
- Division of Pediatric Pulmonology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Charlotte C Teneback
- Division of Pulmonary and Critical Care, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Shijing Jia
- Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel Mermis
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Deepika Polineni
- Division of Allergy and Pulmonary Medicine, Washington University, St. Louis, Missouri, USA
| | | | - Hossein Sadeghi
- Columbia University Medical Center, Division of Pediatric Pulmonology, New York, New York, USA
| | - Emily DiMango
- Columbia University Medical Center, Division of Pulmonary and Critical Care, New York, New York, USA
| | - Rebecca Dezube
- Johns Hopkins Medical Center, Division of Pulmonary and Critical Care, Baltimore, Maryland, USA
| | - Natalie E West
- Johns Hopkins Medical Center, Division of Pulmonary and Critical Care, Baltimore, Maryland, USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Z Nasr Samya
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alex H Gifford
- University Hospitals Cleveland Medical Center, Division of Pulmonary, Critical Care and Sleep Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Ma J, Kummarapurugu AB, Zheng S, Ghio AJ, Deshpande LS, Voynow JA. Neutrophil elastase activates macrophage calpain as a mechanism for phagocytic failure. Am J Physiol Lung Cell Mol Physiol 2025; 328:L93-L104. [PMID: 39499256 DOI: 10.1152/ajplung.00132.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
Neutrophil elastase (NE), elevated in the cystic fibrosis (CF) airway, causes macrophage phagocytic failure. We previously reported that NE increases the release of protease calcium ion-dependent papain-like cysteine protease-2 (Calpain-2) in macrophages. We hypothesized that NE mediates macrophage failure through activation of Calpains. We demonstrate that Calpain inhibition rescued NE-induced macrophage phagocytic failure in murine alveolar macrophages in both cftr-null and wild-type genotypes. We then sought to determine how NE regulates Calpain-2. Human monocyte-derived macrophages (hMDMs) from persons with CF (PwCF) and non-CF subjects were treated with NE or control vehicle, and cell lysates were prepared to evaluate Calpain-2 protein abundance by Western and Calpain activity by a specific activity kit. Calpain is activated by intracellular calcium and inactivated by an endogenous inhibitor, Calpastatin. hMDMs were thus treated with NE or control vehicle and cell lysates were analyzed for increased intracellular calcium by Fluo-4 assay and for Calpastatin protein abundance by Western. NE increased Calpain-2 protein and activity, degraded Calpastatin, and increased intracellular calcium in macrophages. At baseline, there are no differences in Calpain activity, Calpain-2 and Calpastatin expression, and intracellular calcium between CF and non-CF macrophages. NE increased macrophage Calpain-2 protein and Calpain activity by two potential mechanisms: degradation of Calpastatin and/or increased intracellular calcium. In summary, Calpain inhibition restored NE-induced macrophage phagocytic failure suggesting a potential CFTR-independent target for phagocytic failure in the CF airway.NEW & NOTEWORTHY Neutrophil elastase, a cystic fibrosis airway inflammation biomarker, increases macrophage Calpain activity, and Calpain inhibition partially restores the decreased phagocytosis in neutrophil elastase-challenged macrophages. Neutrophil elastase increases Calpain-2 protein, degrades the Calpain inhibitor, Calpastatin, and increases intracellular calcium as potential mechanisms of Calpain activation. This presents a novel mechanism for macrophage dysfunction relevant to cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan Ma
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
| | - Apparao B Kummarapurugu
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
| | - Shuo Zheng
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
| | - Andrew J Ghio
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, Chapel Hill, North Carolina, United States
| | - Laxmikant S Deshpande
- Division of Neuroscience Research, Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Judith A Voynow
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
3
|
Bani Melhim S, Douglas LE, Reihill JA, Downey DG, Martin SL. The effect of triple CFTR modulator therapy and azithromycin on ion channels and inflammation in cystic fibrosis. ERJ Open Res 2024; 10:00502-2024. [PMID: 39687397 PMCID: PMC11647873 DOI: 10.1183/23120541.00502-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background Inflammation in cystic fibrosis (CF) airways is difficult to treat with well-established regimens often including azithromycin (AZ) as an immunomodulatory drug. As AZ has been reported to require CF transmembrane conductance regulator (CFTR) to be able to reduce interleukin (IL)-8 and given the emergence of highly effective CFTR "triple" modulator therapy (elexacaftor/tezacaftor/ivacaftor; ETI), the aim of this study was to investigate the effect of AZ and ETI, singly and in combination, on ion channel activity and to assess the potential anti-inflammatory effects. Methods Electrophysiological assessment of ETI and AZ was performed on three-dimensional cultures of primary CF human bronchial epithelial (HBE) cells using a Multi Trans-Epithelial Current Clamp. IL-8 from NuLi-1 (non-CF) and CuFi-1 (CF) cells treated with AZ was measured by ELISA. Inflammatory mediators from primary CF HBE cells exposed to tumour necrosis factor-α in the presence of AZ, ETI and their combination, were screened using the Proteome Profiler™ Human Cytokine Array Kit, with selected targets validated by ELISA. Results AZ did not alter CFTR chloride efflux, nor did it have any synergistic/antagonistic effect in combination with ETI. AZ reduced IL-8 in NuLi-1 but not CuFi-1 cells. The Proteome Profiler™ screen identified several disease-relevant cytokines that were modulated by treatment. Subsequent analysis by ELISA showed IL-8, IL-6, CXCL1 and granulocyte-macrophage colony-stimulating factor to be significantly reduced by treatment with ETI, but not by AZ. Conclusions Incorporating ETI into the standard of CF care provides an opportunity to re-evaluate therapeutic regimens to reduce treatment burden and safely discontinue chronic treatments such as AZ, without loss of clinical benefit. Identification of redundant treatments in the era of CFTR modulation may improve medication adherence and overcome potential adverse effects associated with the chronic use AZ and other drugs.
Collapse
Affiliation(s)
- Suhad Bani Melhim
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | | | | | - Damian G. Downey
- Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | | |
Collapse
|
4
|
Jarosz-Griffiths H, Caley L, Lara-Reyna S, Savic S, Clifton I, McDermott M, Peckham D. Heightened mitochondrial respiration in CF cells is normalised by triple CFTR modulator therapy through mechanisms involving calcium. Heliyon 2024; 10:e39244. [PMID: 39498005 PMCID: PMC11532250 DOI: 10.1016/j.heliyon.2024.e39244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Background Cystic fibrosis (CF) is associated with increased resting energy expenditure. However, the introduction of elexacaftor/tezacaftor/ivacaftor (ETI) has resulted in a paradigm shift in nutritional status for many people with CF, with increase body mass index and reduction in the need for nutritional support. While these changes are likely to reflect improved clinical status and an associated downregulation of energy expenditure, they may also reflect drug-induced alterations in metabolic perturbations within CF cells. We hypothesise that some of these changes relate to normalisation of mitochondrial respiration in CF. Methods Using wild-type (WT) and F508del/F508del CFTR human bronchial epithelial cell lines (HBE cell lines) and baby hamster kidney (BHK) cells we examined the impact of ETI on cellular metabolism. We monitored mitochondrial respiration, using Seahorse extracellular flux assays and monitored mitochondrial reactive oxygen species (mROS) and intracellular calcium levels by flow cytometry. Results Increased mitochondrial respiration was found in HBE cell lines and BHK cells expressing CFTR F508del/F508del when assessing basal, maximal, spare respiratory capacities and ATP production, as well as increased mitochondrial ROS generated via forward electron transport. ETI significantly decreased basal, maximal, spare respiratory capacity and ATP production to WT levels or below. Calcium blocker, BAPTA-AM normalised mitochondrial respiration, suggesting a calcium-mediated mechanism. ETI decreased intracellular calcium levels in CF cells to the same extent as BAPTA-AM, highlighting the importance of calcium and chloride in mitochondrial respiration in CF. Conclusions CF cell lines exhibit increased mitochondrial respiration, which can be downregulated by ETI therapy through mechanisms involving calcium.
Collapse
Affiliation(s)
| | - L.R. Caley
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - S. Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, United Kingdom
| | - S. Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, United Kingdom
- Department of Clinical Immunology and Allergy, St James's University Hospital, United Kingdom
| | - I.J. Clifton
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - M.F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, United Kingdom
| | - D.G. Peckham
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
5
|
Felipe Montiel A, Fernández AÁ, Amigo MC, Traversi L, Clofent Alarcón D, Reyes KL, Polverino E. The ageing of people living with cystic fibrosis: what to expect now? Eur Respir Rev 2024; 33:240071. [PMID: 39477350 PMCID: PMC11522972 DOI: 10.1183/16000617.0071-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
The prognosis of people with cystic fibrosis (pwCF) has improved dramatically with the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators (CFTRm). The ageing of the cystic fibrosis (CF) population is changing the disease landscape with the emergence of different needs and increasing comorbidities related to both age and long-term exposure to multiple treatments including CFTRm. Although the number of pwCF eligible for this treatment is expected to increase, major disparities in care and outcomes still exist in this population. Moreover, the long-term impact of the use of CFTRm is still partly unknown due to the current short follow-up and experience with their use, thus generating some uncertainties. The future spread and initiation of these drugs at an earlier stage of the disease is expected to reduce the systemic burden of systemic inflammation and its consequences on health. However, the prolonged life expectancy is accompanied by an increasing burden of age-related comorbidities, especially in the context of chronic disease. The clinical manifestations of the comorbidities directly or indirectly associated with CFTR dysfunction are changing, along with the disease dynamics and outcomes. Current protocols used to monitor slow disease progression will need continuous updates, including the composition of the multidisciplinary team for CF care, with a greater focus on the needs of the adult population.
Collapse
Affiliation(s)
- Almudena Felipe Montiel
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Antonio Álvarez Fernández
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Culebras Amigo
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Letizia Traversi
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - David Clofent Alarcón
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karina Loor Reyes
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Eva Polverino
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
7
|
Smith AD, Schwartzman G, Lyons CE, Flowers H, Albon D, Greer K, Lonabaugh K, Zlotoff BJ. Cutaneous manifestations of cystic fibrosis. J Am Acad Dermatol 2024; 91:490-498. [PMID: 38697219 DOI: 10.1016/j.jaad.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Cystic fibrosis (CF) is caused by a mutation in the Cystic fibrosis transmembrane conductance regulator (CFTR) gene, and features recurrent sinus and pulmonary infections, steatorrhea, and malnutrition. CF is associated with diverse cutaneous manifestations, including transient reactive papulotranslucent acrokeratoderma of the palms, nutrient deficiency dermatoses, and vasculitis. Rarely these are presenting symptoms of CF, prior to pulmonary or gastrointestinal sequelae. Cutaneous drug eruptions are also highly common in patients with CF (PwCF) given frequent antibiotic exposure. Finally, CFTR modulating therapy, which has revolutionized CF management, is associated with cutaneous side effects ranging from acute urticaria to toxic epidermal necrolysis. Recognition of dermatologic clinical manifestations of CF is important to appropriately care for PwCF. Dermatologists may play a significant role in the diagnosis and management of CF and associated skin complications.
Collapse
Affiliation(s)
- Aaron D Smith
- University of Virginia School of Medicine, Charlottesville, Virginia.
| | | | - Catherine E Lyons
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Hal Flowers
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| | - Dana Albon
- Department of Pulmonology and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Kenneth Greer
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| | - Kevin Lonabaugh
- Department of Pulmonology and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Barrett J Zlotoff
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
8
|
Perea L, Bottier M, Cant E, Richardson H, Dicker AJ, Shuttleworth M, Giam YH, Abo-Leyah H, Finch S, Huang JTJ, Shteinberg M, Goeminne PC, Polverino E, Altenburg J, Blasi F, Welte T, Aliberti S, Sibila O, Chalmers JD, Shoemark A. Airway IL-1β is related to disease severity and mucociliary function in bronchiectasis. Eur Respir J 2024; 64:2301966. [PMID: 38811046 DOI: 10.1183/13993003.01966-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE The inflammasome is a key regulatory complex of the inflammatory response leading to interleukin-1β (IL-1β) release and activation. IL-1β amplifies inflammatory responses and induces mucus secretion and hyperconcentration in other diseases. The role of IL-1β in bronchiectasis has not been investigated. OBJECTIVES To characterise the role of airway IL-1β in bronchiectasis, including the association with mucus properties, ciliary function, airway inflammation, microbiome and disease severity. METHODS Stable bronchiectasis patients were enrolled in an international cohort study (n=269). IL-1β was measured in sputum supernatant. A validation cohort also had sputum rheology and hydration measured (n=53). For analysis, patients were stratified according to the median value of IL-1β in the population (high versus low) to compare disease severity, airway infection, microbiome (16S rRNA sequencing), inflammation and caspase-1 activity. Primary human nasal epithelial cells grown in air-liquid interface culture were used to study the effect of IL-1β on cilia function. RESULTS Patients with high sputum IL-1β had more severe disease, increased caspase-1 activity and an increased T-helper type 1, T-helper type 2 and neutrophil inflammatory response compared with patients with low IL-1β. The active-dominant form of IL-1β was associated with increased disease severity. High IL-1β was related to higher relative abundance of Proteobacteria in the microbiome and increased mucus solid content and viscoelastic properties. Chronic IL-1β treatment reduced the functionality of cilia and tight junctions of epithelial cells in vitro. CONCLUSIONS A subset of stable bronchiectasis patients show increased airway IL-1β, suggesting pulmonary inflammasome activation is linked with more severe disease, airway infection, mucus dehydration and epithelial dysfunction.
Collapse
Affiliation(s)
- Lidia Perea
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mathieu Bottier
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Erin Cant
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Morven Shuttleworth
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jeffrey T-J Huang
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
| | | | | | | | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- Department of Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Tobias Welte
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Senior authors contributed equally to this manuscript
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Senior authors contributed equally to this manuscript
| |
Collapse
|
9
|
Jarosz-Griffiths HH, Gillgrass L, Caley LR, Spoletini G, Clifton IJ, Etherington C, Savic S, McDermott MF, Peckham D. Anti-inflammatory effects of elexacaftor/tezacaftor/ivacaftor in adults with cystic fibrosis heterozygous for F508del. PLoS One 2024; 19:e0304555. [PMID: 38820269 PMCID: PMC11142445 DOI: 10.1371/journal.pone.0304555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Inflammation is a key driver in the pathogenesis of cystic fibrosis (CF). We assessed the effectiveness of elexacaftor/tezacaftor/ivacaftor (ETI) therapy on downregulating systemic and immune cell-derived inflammatory cytokines. We also monitored the impact of ETI therapy on clinical outcome. Adults with CF, heterozygous for F508del (n = 19), were assessed at baseline, one month and three months following ETI therapy, and clinical outcomes were measured, including sweat chloride, lung function, weight, neutrophil count and C-reactive protein (CRP). Cytokine quantifications were measured in serum and following stimulation of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) and adenosine triphosphate and analysed using LEGEND plex™ Human Inflammation Panel 1 by flow cytometry (n = 19). ASC specks were measured in serum and caspase-1 activity and mRNA levels determined from stimulated PBMCs were determined. Patients remained stable over the study period. ETI therapy resulted in decreased sweat chloride concentrations (p < 0.0001), CRP (p = 0.0112) and neutrophil count (p = 0.0216) and increased percent predicted forced expiratory volume (ppFEV1) (p = 0.0399) from baseline to three months, alongside a trend increase in weight. Three months of ETI significantly decreased IL-18 (p< 0.0011, p < 0.0001), IL-1β (p<0.0013, p = 0.0476), IL-6 (p = 0.0109, p = 0.0216) and TNF (p = 0.0028, p = 0.0033) levels in CF serum and following PBMCs stimulation respectively. The corresponding mRNA levels were also found to be reduced in stimulated PBMCs, as well as reduced ASC specks and caspase-1 levels, indicative of NLRP3-mediated production of pro-inflammatory cytokines, IL-1β and IL-18. While ETI therapy is highly effective at reducing sweat chloride and improving lung function, it also displays potent anti-inflammatory properties, which are likely to contribute to improved long-term clinical outcomes.
Collapse
Affiliation(s)
| | - Lindsey Gillgrass
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | - Laura R. Caley
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Giulia Spoletini
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | - Ian J. Clifton
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | | | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
10
|
Horati H, Margaroli C, Chandler JD, Kilgore MB, Manai B, Andrinopoulou ER, Peng L, Guglani L, Tiddens HAMW, Caudri D, Scholte BJ, Tirouvanziam R, Janssens HM. Key inflammatory markers in bronchoalveolar lavage predict bronchiectasis progression in young children with CF. J Cyst Fibros 2024; 23:450-456. [PMID: 38246828 DOI: 10.1016/j.jcf.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Inflammation appears early in cystic fibrosis (CF) pathogenesis, with specific elevated inflammatory markers in bronchoalveolar lavage fluid (BALF) correlating with structural lung disease. Our aim was to identify markers of airway inflammation able to predict bronchiectasis progression over two years with high sensitivity and specificity. METHODS Children with CF with two chest computed tomography (CT) scans and bronchoscopies at a two-year interval were included (n= 10 at 1 and 3 years and n= 27 at 3 and 5 years). Chest CTs were scored for increase in bronchiectasis (Δ%Bx), using the PRAGMA-CF score. BALF collected with the first CT scan were analyzed for neutrophil% (n= 36), myeloperoxidase (MPO) (n= 25), neutrophil elastase (NE) (n= 26), and with a protein array for inflammatory and fibrotic markers (n= 26). RESULTS MPO, neutrophil%, and inducible T-cell costimulator ligand (ICOSLG), but not clinical characteristics, correlated significantly with Δ%Bx. Evaluation of neutrophil%, NE, MPO, interleukin-8 (IL-8), ICOSLG, and hepatocyte growth factor (HGF), for predicting an increase of > 0.5% of Δ%Bx in two years, showed that IL-8 had the best sensitivity (82%) and specificity (73%). Neutrophil%, ICOSLG and HGF had sensitivities of 85, 82, and 82% and specificities of 59, 67 and 60%, respectively. The odds ratio for risk of >0.5% Δ%Bx was higher for IL-8 (12.4) than for neutrophil%, ICOSLG, and HGF (5.9, 5.3, and 6.7, respectively). Sensitivity and specificity were lower for NE and MPO). CONCLUSIONS High levels of IL-8, neutrophil%, ICOSGL and HGF in BALF may be good predictors for progression of bronchiectasis in young children with CF.
Collapse
Affiliation(s)
- Hamed Horati
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Badies Manai
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics and Bioinformatics, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Harm A M W Tiddens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of radiology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands; Thirona, Nijmegen, The Netherlands
| | - Daan Caudri
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Bob J Scholte
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of Cell Biology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hettie M Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands.
| |
Collapse
|
11
|
McDonald CM, Reid EK, Pohl JF, Yuzyuk TK, Padula LM, Vavrina K, Altman K. Cystic fibrosis and fat malabsorption: Pathophysiology of the cystic fibrosis gastrointestinal tract and the impact of highly effective CFTR modulator therapy. Nutr Clin Pract 2024; 39 Suppl 1:S57-S77. [PMID: 38429959 DOI: 10.1002/ncp.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 03/03/2024] Open
Abstract
Cystic fibrosis (CF) is a progressive, genetic, multi-organ disease affecting the respiratory, digestive, endocrine, and reproductive systems. CF can affect any aspect of the gastrointestinal (GI) tract, including the esophagus, stomach, small intestine, colon, pancreas, liver, and gall bladder. GI pathophysiology associated with CF results from CF membrane conductance regulator (CFTR) dysfunction. The majority of people with CF (pwCF) experience exocrine pancreatic insufficiency resulting in malabsorption of nutrients and malnutrition. Additionally, other factors can cause or worsen fat malabsorption, including the potential for short gut syndrome with a history of meconium ileus, hepatobiliary diseases, and disrupted intraluminal factors, such as inadequate bile salts, abnormal pH, intestinal microbiome changes, and small intestinal bacterial overgrowth. Signs and symptoms associated with fat malabsorption, such as abdominal pain, bloating, malodorous flatus, gastroesophageal reflux, nausea, anorexia, steatorrhea, constipation, and distal intestinal obstruction syndrome, are seen in pwCF despite the use of pancreatic enzyme replacement therapy. Given the association of poor nutrition status with lung function decline and increased mortality, aggressive nutrition support is essential in CF care to optimize growth in children and to achieve and maintain a healthy body mass index in adults. The introduction of highly effective CFTR modulator therapy and other advances in CF care have profoundly changed the course of CF management. However, GI symptoms in some pwCF may persist. The use of current knowledge of the pathophysiology of the CF GI tract as well as appropriate, individualized management of GI symptoms continue to be integral components of care for pwCF.
Collapse
Affiliation(s)
| | - Elizabeth K Reid
- Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John F Pohl
- Pediatric Gastroenterology, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Tatiana K Yuzyuk
- Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- ARUP Institute for Clinical & Experimental Pathology, Salt Lake City, Utah, USA
| | - Laura M Padula
- Pediatric Specialty, University Health, San Antonio, Texas, USA
| | - Kay Vavrina
- Pediatric Specialty, University Health, San Antonio, Texas, USA
| | - Kimberly Altman
- Gunnar Esiason Adult Cystic Fibrosis and Lung Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Corrao F, Kelly-Aubert M, Sermet-Gaudelus I, Semeraro M. Unmet challenges in cystic fibrosis treatment with modulators. Expert Rev Respir Med 2024; 18:145-157. [PMID: 38755109 DOI: 10.1080/17476348.2024.2357210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION 'Highly effective' modulator therapies (HEMTs) have radically changed the Cystic Fibrosis (CF) therapeutic landscape. AREAS COVERED A comprehensive search strategy was undertaken to assess impact of HEMT in life of pwCF, treatment challenges in specific populations such as very young children, and current knowledge gaps. EXPERT OPINION HEMTs are prescribed for pwCF with definite genotypes. The heterogeneity of variants complicates treatment possibilities and around 10% of pwCF worldwide remains ineligible. Genotype-specific treatments are prompting theratyping and personalized medicine strategies. Improvement in lung function and quality of life increase survival rates, shifting CF from a pediatric to an adult disease. This implies new studies addressing long-term efficacy, side effects, emergence of adult co-morbidities and possible drug-drug interactions. More sensitive and predictive biomarkers for both efficacy and toxicity are warranted. As HEMTs cross the placenta and are found in breast milk, studies addressing the potential consequences of treatment during pregnancy and breastfeeding are urgently needed. Finally, although the treatment and expected outcomes of CF have improved dramatically in high- and middle-income countries, lack of access in low-income countries to these life-changing medicines highlights inequity of care worldwide.
Collapse
Affiliation(s)
- Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- INSERM, Institut Necker Enfants Malades, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM, Institut Necker Enfants Malades, Paris, France
- Centre de Référence Maladies Rares Mucoviscidose et maladies apparentées. Site constitutif, Université de Paris, Paris, France
- European Reference Lung Center, Frankfurt, Germany
- Université Paris Cité, Paris, France
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre Investigation Clinique, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
13
|
Das Gupta K, Curson JEB, Tarique AA, Kapetanovic R, Schembri MA, Fantino E, Sly PD, Sweet MJ. CFTR is required for zinc-mediated antibacterial defense in human macrophages. Proc Natl Acad Sci U S A 2024; 121:e2315190121. [PMID: 38363865 PMCID: PMC10895263 DOI: 10.1073/pnas.2315190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion transporter required for epithelial homeostasis in the lung and other organs, with CFTR mutations leading to the autosomal recessive genetic disease CF. Apart from excessive mucus accumulation and dysregulated inflammation in the airways, people with CF (pwCF) exhibit defective innate immune responses and are susceptible to bacterial respiratory pathogens such as Pseudomonas aeruginosa. Here, we investigated the role of CFTR in macrophage antimicrobial responses, including the zinc toxicity response that is used by these innate immune cells against intracellular bacteria. Using both pharmacological approaches, as well as cells derived from pwCF, we show that CFTR is required for uptake and clearance of pathogenic Escherichia coli by CSF-1-derived primary human macrophages. CFTR was also required for E. coli-induced zinc accumulation and zinc vesicle formation in these cells, and E. coli residing in macrophages exhibited reduced zinc stress in the absence of CFTR function. Accordingly, CFTR was essential for reducing the intramacrophage survival of a zinc-sensitive E. coli mutant compared to wild-type E. coli. Ectopic expression of the zinc transporter SLC30A1 or treatment with exogenous zinc was sufficient to restore antimicrobial responses against E. coli in human macrophages. Zinc supplementation also restored bacterial killing in GM-CSF-derived primary human macrophages responding to P. aeruginosa, used as an in vitro macrophage model relevant to CF. Thus, restoration of the zinc toxicity response could be pursued as a therapeutic strategy to restore innate immune function and effective host defense in pwCF.
Collapse
Affiliation(s)
- Kaustav Das Gupta
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - James E. B. Curson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Abdullah A. Tarique
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, Basel, BS4058, Switzerland
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly37380, France
| | - Mark A. Schembri
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Emmanuelle Fantino
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Peter D. Sly
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
14
|
Westhölter D, Pipping J, Raspe J, Schmitz M, Sutharsan S, Straßburg S, Welsner M, Taube C, Reuter S. Plasma levels of chemokines decrease during elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. Heliyon 2024; 10:e23428. [PMID: 38173511 PMCID: PMC10761561 DOI: 10.1016/j.heliyon.2023.e23428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Cystic fibrosis (CF) is associated with dysregulated immune responses, exaggerated inflammation and chronic infection. CF transmembrane conductance regulator (CFTR) modulator therapies directly target the underlying protein defects and resulted in significant clinical benefits for people with CF (pwCF). This study analysed the effects of triple CFTR modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) on CF-associated inflammation, especially systemic chemokines. Methods A bead-based immunoassay was used to quantify proinflammatory chemokines (IL-8, IP-10, Eotaxin, TARC, RANTES, MIP-1α, MIP-1β, MIP-3α, MIG, ENA-78, GROα, I-TAC) in plasma samples from pwCF collected before, at three, and at six months after starting ETI therapy. Results Fifty-one pwCF (47 % female; mean age 32 ± 10.4 years) were included. At baseline, 67 % were already receiving CFTR modulator therapy with tezacaftor/ivacaftor or lumacaftor/ivacaftor. After initiation of ETI therapy there was a significant improvement in percent predicted forced expiratory volume in 1 s (+12.7 points, p < 0.001) and a significant decrease in sweat chloride levels (-53.6 %, p < 0.001). After 6 months' treatment with ETI therapy there were significant decreases in plasma levels of MIP-3α (-68.2 %, p = 0.018), GROα (-17.7 %, p = 0.013), ENA-78 (-16.3 %, p = 0.034) and I-TAC (-3.4 %, p = 0.032). IL-8 exhibited a reduction that did not reach statistical significance (-17.8 %, p = 0.057); levels of other assessed cytokines did not change significantly from baseline. Conclusions ETI appears to affect a distinct group of chemokines that are predominately associated with neutrophilic inflammation, demonstrating the anti-inflammatory properties of ETI therapy.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
15
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
16
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
17
|
Arslan M, Bahadir Z, Basiaga ML, Chalmers SJ, Demirel N. A pediatric cystic fibrosis arthropathy case who responded to Elexacaftor/Tezacaftor/Ivacaftor therapy. J Cyst Fibros 2023; 22:1120-1122. [PMID: 37709627 DOI: 10.1016/j.jcf.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Cystic fibrosis arthropathy (CFA) is a transient, intermittent form of arthritis that cannot be associated with any other disease other than CF thus making CFA a diagnosis of exclusion. NSAIDs, short-term intermittent splinting, glucocorticoids, and disease-modifying anti-rheumatic drugs are treatment options for CFA. Currently, there is no consensus on how to best treat CFA. Diagnosis and treatment of CFA remain a challenge for physicians and people with CF. The newest CFTR modulator therapy, elexacaftor/tezacaftor/ivacaftor (ETI), was approved by the FDA recently for children over the age of 6 with at least one Phe508del allele in the CFTR gene. Multiple clinical benefits of ETI in pulmonary functions and overall disease burden have been reported since its approval, however, the data on the musculoskeletal therapeutic benefits of ETI has been limited. In this report, we present a 7-year-old female with CF whose CFA symptoms resolved after starting ETI therapy.
Collapse
Affiliation(s)
| | - Zeynep Bahadir
- Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Matthew L Basiaga
- Mayo Clinic, Department of Pediatric and Adolescent Medicine, Division of Pediatric Rheumatology, Rochester, MN, United States of America
| | - Sarah J Chalmers
- Mayo Clinic, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Rochester, MN, United States of America
| | - Nadir Demirel
- Mayo Clinic, Department of Pediatric and Adolescent Medicine, Division of Pediatric Pulmonology, Rochester, MN, United States of America
| |
Collapse
|
18
|
Pócsi M, Fejes Z, Bene Z, Nagy A, Balogh I, Amaral MD, Macek M, Nagy B. Human epididymis protein 4 (HE4) plasma concentration inversely correlates with the improvement of cystic fibrosis lung disease in p.Phe508del-CFTR homozygous cases treated with the CFTR modulator lumacaftor/ivacaftor combination. J Cyst Fibros 2023; 22:1085-1092. [PMID: 37087300 DOI: 10.1016/j.jcf.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND We previously documented that elevated HE4 plasma concentration decreased in people with CF (pwCF) bearing the p.Gly551Asp-CFTR variant in response to CFTR modulator (CFTRm) ivacaftor (IVA), and this level was inversely correlated with the FEV1% predicted values (ppFEV1). Although the effectiveness of lumacaftor (LUM)/IVA in pwCF homozygous for the p.Phe508del-CFTR variant has been evaluated, plasma biomarkers were not used to monitor treatment efficacy thus far. METHODS Plasma HE4 concentration was examined in 68 pwCF drawn from the PROSPECT study who were homozygous for the p.Phe508del-CFTR variant before treatment and at 1, 3, 6 and 12 months after administration of LUM/IVA therapy. Plasma HE4 was correlated with ppFEV1 using their absolute and delta values. The discriminatory power of delta HE4 was evaluated for the detection of lung function improvements based on ROC-AUC analysis and multiple regression test. RESULTS HE4 plasma concentration was significantly reduced below baseline following LUM/IVA administration during the entire study period. The mean change of ppFEV1 was 2.6% (95% CI, 0.6 to 4.5) by 6 months of therapy in this sub-cohort. A significant inverse correlation between delta values of HE4 and ppFEV1 was observed especially in children with CF (r=-0.7053; p<0.0001). Delta HE4 predicted a 2.6% mean change in ppFEV1 (AUC: 0.7898 [95% CI 0.6823-0.8972]; P < 0.0001) at a cut-off value of -10.7 pmol/L. Moreover, delta HE4 independently represented the likelihood of being a responder with ≥ 5% delta ppFEV1 at 6 months (OR: 0.89, 95% CI: 0.82-0.95; P = 0.001). CONCLUSIONS Plasma HE4 level negatively correlates with lung function improvement assessed by ppFEV1 in pwCF undergoing LUM/IVA CFTRm treatment.
Collapse
Affiliation(s)
- Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Laki Kálmán Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bene
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Nagy
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - István Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
19
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
20
|
Hisert KB, Birket SE, Clancy JP, Downey DG, Engelhardt JF, Fajac I, Gray RD, Lachowicz-Scroggins ME, Mayer-Hamblett N, Thibodeau P, Tuggle KL, Wainwright CE, De Boeck K. Understanding and addressing the needs of people with cystic fibrosis in the era of CFTR modulator therapy. THE LANCET. RESPIRATORY MEDICINE 2023; 11:916-931. [PMID: 37699420 DOI: 10.1016/s2213-2600(23)00324-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis is a multiorgan disease caused by impaired function of the cystic fibrosis transmembrane conductance regulator (CFTR). Since the introduction of the CFTR modulator combination elexacaftor-tezacaftor-ivacaftor (ETI), which acts directly on mutant CFTR to enhance its activity, most people with cystic fibrosis (pwCF) have seen pronounced reductions in symptoms, and studies project marked increases in life expectancy for pwCF who are eligible for ETI. However, modulator therapy has not cured cystic fibrosis and the success of CFTR modulators has resulted in immediate questions about the new state of cystic fibrosis disease and clinical challenges in the care of pwCF. In this Series paper, we summarise key questions about cystic fibrosis disease in the era of modulator therapy, highlighting state-of-the-art research and clinical practices, knowledge gaps, new challenges faced by pwCF and the potential for future health-care challenges, and the pressing need for additional therapies to treat the underlying genetic or molecular causes of cystic fibrosis.
Collapse
Affiliation(s)
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Isabelle Fajac
- Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Robert D Gray
- Institution of Regeneration and Repair, Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | | - Nicole Mayer-Hamblett
- Department of Pediatrics, Department of Biostatistics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
21
|
Aridgides DS, Mellinger DL, Gwilt LL, Hampton TH, Mould DL, Hogan DA, Ashare A. Comparative effects of CFTR modulators on phagocytic, metabolic and inflammatory profiles of CF and nonCF macrophages. Sci Rep 2023; 13:11995. [PMID: 37491532 PMCID: PMC10368712 DOI: 10.1038/s41598-023-38300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophage dysfunction has been well-described in Cystic Fibrosis (CF) and may contribute to bacterial persistence in the lung. Whether CF macrophage dysfunction is related directly to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in macrophages or an indirect consequence of chronic inflammation and mucostasis is a subject of ongoing debate. CFTR modulators that restore CFTR function in epithelial cells improve global CF monocyte inflammatory responses but their direct effects on macrophages are less well understood. To address this knowledge gap, we measured phagocytosis, metabolism, and cytokine expression in response to a classical CF pathogen, Pseudomonas aeruginosa in monocyte-derived macrophages (MDM) isolated from CF F508del homozygous subjects and nonCF controls. Unexpectedly, we found that CFTR modulators enhanced phagocytosis in both CF and nonCF cohorts. CFTR triple modulators also inhibited MDM mitochondrial function, consistent with MDM activation. In contrast to studies in humans where CFTR modulators decreased serum inflammatory cytokine levels, modulators did not alter cytokine secretion in our system. Our studies therefore suggest modulator induced metabolic effects may promote bacterial clearance in both CF and nonCF monocyte-derived macrophages.
Collapse
Affiliation(s)
- Daniel S Aridgides
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Diane L Mellinger
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lorraine L Gwilt
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
22
|
Sapru K, Barry P, Jones A, Walmsley J, Iqbal J, Vasant DH. Identifying the need for a UK colorectal cancer screening programme for patients with cystic fibrosis (CF): 10-year retrospective review of colonoscopy and colorectal cancer outcomes at a single CF centre. BMJ Open Gastroenterol 2023; 10:e001178. [PMID: 37524505 PMCID: PMC10391801 DOI: 10.1136/bmjgast-2023-001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/18/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE Patients with cystic fibrosis (pwCF) have a high incidence of early colorectal cancer (CRC). In the absence of a UK CRC screening programme for pwCF, we evaluated the utility and outcomes of colonoscopy and CRC at a large UK CF centre. DESIGN In a retrospective study of colonoscopy and CRC outcomes between 2010 and 2020 in pwCF aged≥30 years at a large CF centre, data were collected on colonoscopy indications and findings, polyp detection rates, bowel preparation regimens and outcomes, colonoscopy completion rates, and patient outcomes. RESULTS We identified 361 pwCF aged ≥30 years, of whom 135 were ≥40 years old. In the absence of a UK CRC screening guideline only 33 (9%)/361 pwCF aged ≥30 years (mean age: 44.8±11.0 years) had a colonoscopy between 2010 and 2020. Colonoscopy completion rate was 94.9%, with a 33% polyp detection rate, 93.8% of the polyps retrieved were premalignant. During the study period no patients developed postcolonoscopy CRC. However, of the patients aged ≥40 years who did not have a colonoscopy (111/135, 82.2%), four (3.6%) patients developed CRC and three pwCF died from complications of CRC. CONCLUSION In this 10-year experience from a large CF centre, colonoscopy uptake for symptomatic indications was low, yet of high yield for premalignant lesions in pwCF >40 years. These data highlight the risk of potentially preventable, early CRC, and therefore support the need for prospective, large-scale nationwide studies which may inform the need for UK CRC screening guidelines for pwCF.
Collapse
Affiliation(s)
- Karuna Sapru
- Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Immunology, Immunity to Infection & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Peter Barry
- Division of Immunology, Immunity to Infection & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Andrew Jones
- Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Immunology, Immunity to Infection & Respiratory Medicine, University of Manchester, Manchester, UK
| | - John Walmsley
- Gastroenterology Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Javaid Iqbal
- Gastroenterology Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Dipesh H Vasant
- Gastroenterology Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Schmidt H, Höpfer LM, Wohlgemuth L, Knapp CL, Mohamed AOK, Stukan L, Münnich F, Hüsken D, Koller AS, Stratmann AEP, Müller P, Braun CK, Fabricius D, Bode SFN, Huber-Lang M, Messerer DAC. Multimodal analysis of granulocytes, monocytes, and platelets in patients with cystic fibrosis before and after Elexacaftor-Tezacaftor-Ivacaftor treatment. Front Immunol 2023; 14:1180282. [PMID: 37457734 PMCID: PMC10347380 DOI: 10.3389/fimmu.2023.1180282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenetic disease caused by an impairment of the cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple organs and is associated with acute and chronic inflammation. In 2020, Elexacaftor-Tezacaftor-Ivacaftor (ETI) was approved to enhance and restore the remaining CFTR functionality. This study investigates cellular innate immunity, with a focus on neutrophil activation and phenotype, comparing healthy volunteers with patients with CF before (T1, n = 13) and after six months (T2, n = 11) of ETI treatment. ETI treatment reduced sweat chloride (T1: 95 mmol/l (83|108) vs. T2: 32 mmol/l (25|62), p < 0.01, median, first|third quartile) and significantly improved pulmonal function (FEV1 T1: 2.66 l (1.92|3.04) vs. T2: 3.69 l (3.00|4.03), p < 0.01). Moreover, there was a significant decrease in the biomarker human epididymis protein 4 (T1: 6.2 ng/ml (4.6|6.3) vs. T2: 3.0 ng/ml (2.2|3.7), p < 0.01) and a small but significant decrease in matrix metallopeptidase 9 (T1: 45.5 ng/ml (32.5|140.1) vs. T2: 28.2 ng/ml (18.2|33.6), p < 0.05). Neutrophil phenotype (CD10, CD11b, CD62L, and CD66b) and function (radical oxygen species generation, chemotactic and phagocytic activity) remained largely unaffected by ETI treatment. Likewise, monocyte phenotype and markers of platelet activation were similar at T1 and T2. In summary, the present study confirmed a positive impact on patients with CF after ETI treatment. However, neither beneficial nor harmful effects of ETI treatment on cellular innate immunity could be detected, possibly due to the study population consisting of patients with well-controlled CF.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Larissa Melina Höpfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christiane Leonie Knapp
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | - Laura Stukan
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frederik Münnich
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Dominik Hüsken
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | | | - Paul Müller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christian Karl Braun
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Birch RJ, Peckham D, Wood HM, Quirke P, Konstant-Hambling R, Brownlee K, Cosgriff R, Consortium GER, Burr N, Downing A. The risk of colorectal cancer in individuals with mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene: An English population-based study. J Cyst Fibros 2023; 22:499-504. [PMID: 36253274 DOI: 10.1016/j.jcf.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/21/2022] [Accepted: 10/03/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND Studies have demonstrated a higher risk of developing colorectal cancer (CRC) in individuals with Cystic Fibrosis (CF), and also a potentially increased risk in carriers of cystic fibrosis transmembrane conductance regulator (CFTR) mutations. Life expectancy for those with CF is rising, increasing the number at risk of developing CRC. METHODS The incidence of CRC amongst individuals with CF was calculated using data from CORECT-R and linked UK CF Registry and Secondary User Services (SUS) data. Crude, age-specific and age-standardised rates were compared to those without CF. The presence of CFTR mutations in individuals with CRC was assessed using 100,000 Genomes Project data. FINDINGS The crude incidence rate of CRC in the CF population was 0.29 per 1,000 person-years (28 cases). The CF population were significantly younger than those without (median age at CRC diagnosis 52 years versus 73 years; p<0·01). When age-adjusted, there was a 5-fold increased CRC incidence amongst individuals with CF compared to those without (SIR 5.0 95%CI 3.2-6.9). When compared to other population studies the overall prevalence of CFTR mutations in the CRC population was significantly higher than expected (p<0·01). INTERPRETATION CF is linked to an increased risk of CRC. The incidence of CFTR mutations in the CRC population is higher than would be expected, suggesting an association between CFTR function and CRC risk. Further research is needed to develop effective screening strategies for these populations. FUNDING Cancer Research UK (grants C23434/A23706 & C10674/A27140).
Collapse
Affiliation(s)
- Rebecca J Birch
- Leeds Institute of Medical Research at St James's, University of Leeds; Leeds Institute for Data Analytics, University of Leeds.
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds; Leeds Teaching Hospitals NHS Trust
| | - Henry M Wood
- Leeds Institute of Medical Research at St James's, University of Leeds
| | - Philip Quirke
- Leeds Institute of Medical Research at St James's, University of Leeds
| | | | | | | | | | | | - Amy Downing
- Leeds Institute of Medical Research at St James's, University of Leeds; Leeds Institute for Data Analytics, University of Leeds
| |
Collapse
|
25
|
Arooj P, Morrissy DV, McCarthy Y, Vagg T, McCarthy M, Fleming C, Daly M, Eustace JA, Murphy DM, Plant BJ. ROCK STUDY in CF: sustained anti-inflammatory effects of lumacaftor-ivacaftor in sputum and peripheral blood samples of adult patients with cystic fibrosis-an observational study. BMJ Open Respir Res 2023; 10:10/1/e001590. [PMID: 37130650 PMCID: PMC10163494 DOI: 10.1136/bmjresp-2022-001590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Previous studies showed that the combination of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) corrector and potentiator, lumacaftor-ivacaftor (LUMA-IVA) provides meaningful clinical benefits in patients with cystic fibrosis who are homozygous for the Phe508del CFTR mutation. However, little is known about the effect of LUMA-IVA on Proinflammatory Cytokines (PICs). OBJECTIVES To investigate the impact of LUMA-IVA CFTR modulation on circulatory and airway cytokines before and after 12 months of LUMA-IVA treatment in a real-world setting. METHODS We assessed both plasma and sputum PICs, as well as standard clinical outcomes including Forced Expiratory Volume in one second (FEV1) %predicted, Body Mass Index (BMI), sweat chloride and pulmonary exacerbations at baseline and prospectively for one year post commencement of LUMA-IVA in 44 patients with cystic fibrosis aged 16 years and older homozygous for the Phe508del CFTR mutation. RESULTS Significant reduction in plasma cytokines including interleukin (IL)-8 (p<0.05), tumour necrosis factor (TNF)-α (p<0.001), IL-1ß (p<0.001) levels were observed while plasma IL-6 showed no significant change (p=0.599) post-LUMA-IVA therapy. Significant reduction in sputum IL-6 (p<0.05), IL-8 (p<0.01), IL-1ß (p<0.001) and TNF-α (p<0.001) levels were observed after LUMA-IVA therapy. No significant change was noted in anti-inflammatory cytokine IL-10 levels in both plasma and sputum (p=0.305) and (p=0.585) respectively. Clinically significant improvements in FEV1 %predicted (mean+3.38%, p=0.002), BMI (mean+0.8 kg/m2, p<0.001), sweat chloride (mean -19 mmol/L, p<0.001), as well as reduction in intravenous antibiotics usage (mean -0.73, p<0.001) and hospitalisation (mean -0.38, p=0.002) were observed after initiation of LUMA-IVA therapy. CONCLUSION This real-world study demonstrates that LUMA-IVA has significant and sustained beneficial effects on both circulatory and airway inflammation. Our findings suggest that LUMA-IVA may improve inflammatory responses, which could potentially contribute to improved standard clinical outcomes.
Collapse
Affiliation(s)
- Parniya Arooj
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - David V Morrissy
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Yvonne McCarthy
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Tamara Vagg
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Mairead McCarthy
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
| | - Claire Fleming
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
| | - Mary Daly
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Joseph A Eustace
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Desmond M Murphy
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - B J Plant
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| |
Collapse
|
26
|
Honrubia JM, Gutierrez-Álvarez J, Sanz-Bravo A, González-Miranda E, Muñoz-Santos D, Castaño-Rodriguez C, Wang L, Villarejo-Torres M, Ripoll-Gómez J, Esteban A, Fernandez-Delgado R, Sánchez-Cordón PJ, Oliveros JC, Perlman S, McCray PB, Sola I, Enjuanes L. SARS-CoV-2-Mediated Lung Edema and Replication Are Diminished by Cystic Fibrosis Transmembrane Conductance Regulator Modulators. mBio 2023; 14:e0313622. [PMID: 36625656 PMCID: PMC9973274 DOI: 10.1128/mbio.03136-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) of genera α, β, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Javier Gutierrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Infectious Diseases and Global Health, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, CNB-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
- Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
27
|
Fonseca Ó, Gomes MS, Amorim MA, Gomes AC. Cystic Fibrosis Bone Disease: The Interplay between CFTR Dysfunction and Chronic Inflammation. Biomolecules 2023; 13:425. [PMID: 36979360 PMCID: PMC10046889 DOI: 10.3390/biom13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from predisposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown. Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating consequences in the patients' quality of life and longevity. Here, we will review the existing evidence linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection impairs the maintenance of an adequate bone mass in CF patients.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instuto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4030-313 Porto, Portugal
| | | | - Ana Cordeiro Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
28
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
29
|
Westhölter D, Raspe J, Uebner H, Pipping J, Schmitz M, Straßburg S, Sutharsan S, Welsner M, Taube C, Reuter S. Regulatory T cell enhancement in adults with cystic fibrosis receiving Elexacaftor/Tezacaftor/Ivacaftor therapy. Front Immunol 2023; 14:1107437. [PMID: 36875141 PMCID: PMC9978140 DOI: 10.3389/fimmu.2023.1107437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Cystic fibrosis (CF), especially CF lung disease, is characterized by chronic infection, immune dysfunction including impairment of regulatory T cells (Tregs) and an exaggerated inflammatory response. CF transmembrane conductance regulator (CFTR) modulators have shown to improve clinical outcomes in people with CF (PwCF) with a wide range of CFTR mutations. However, it remains unclear whether CFTR modulator therapy also affects CF-associated inflammation. We aimed to examine the effect of elexacaftor/tezacaftor/ivacaftor therapy on lymphocyte subsets and systemic cytokines in PwCF. Methods Peripheral blood mononuclear cells and plasma were collected before and at three and six months after the initiation of elexacaftor/tezacaftor/ivacaftor therapy; lymphocyte subsets and systemic cytokines were determined using flow cytometry. Results Elexacaftor/tezacaftor/ivacaftor treatment was initiated in 77 PwCF and improved percent predicted FEV1 by 12.5 points (p<0.001) at 3 months. During elexacaftor/tezacaftor/ivacaftor therapy, percentages of Tregs were enhanced (+18.7%, p<0.001), with an increased proportion of Tregs expressing CD39 as a marker of stability (+14.4%, p<0.001). Treg enhancement was more pronounced in PwCF clearing Pseudomonas aeruginosa infection. Only minor, non-significant shifts were observed among Th1-, Th2- and Th17-expressing effector T helper cells. These results were stable at 3- and 6-month follow-up. Cytokine measurements showed a significant decrease in interleukin-6 levels during treatment with elexacaftor/tezacaftor/ivacaftor (-50.2%, p<0.001). Conclusion Treatment with elexacaftor/tezacaftor/ivacaftor was associated with an increased percentage of Tregs, especially in PwCF clearing Pseudomonas aeruginosa infection. Targeting Treg homeostasis is a therapeutic option for PwCF with persistent Treg impairment.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
30
|
Öz HH, Cheng EC, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang PX, Huang PH, Esquibies SS, Britto CJ, Schupp JC, Murray TS, Halene S, Krause DS, Egan ME, Bruscia EM. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Rep 2022; 41:111797. [PMID: 36516754 PMCID: PMC9833830 DOI: 10.1016/j.celrep.2022.111797] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor β (TGF-β) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-β signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.
Collapse
Affiliation(s)
- Hasan H Öz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | | | - Toma Tebaldi
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Giulia Biancon
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sofia S Esquibies
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
32
|
Britto CJ, Taylor-Cousar JL. Cystic Fibrosis in the Era of Highly Effective CFTR Modulators. Clin Chest Med 2022; 43:xiii-xvi. [PMID: 36344084 DOI: 10.1016/j.ccm.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clemente J Britto
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, TAC-S419, New Haven, CT 06520, USA.
| | - Jennifer L Taylor-Cousar
- Departments of Medicine and Pediatrics, Divisions of Pulmonary Sciences and Critical Care Medicine and Pediatric Pulmonology, University of Colorado, Anschutz Medical Campus, 1400 Jackson Street, J318, Denver, CO 80206, USA.
| |
Collapse
|
33
|
Caverly LJ, Riquelme SA, Hisert KB. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clin Chest Med 2022; 43:647-665. [PMID: 36344072 PMCID: PMC10224747 DOI: 10.1016/j.ccm.2022.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapy (HEMT) corrects the underlying molecular defect causing CF disease. HEMT decreases symptom burden and improves clinical metrics and quality of life for most people with CF (PwCF) and eligible cftr mutations. Improvements in measures of pulmonary health suggest that restoration of function of defective CFTR anion channels by HEMT not only enhances airway mucociliary clearance, but also reduces chronic pulmonary infection and inflammation. This article reviews the evidence for how HEMT influences the dynamic and interdependent processes of infection and inflammation in the CF airway, and what questions remain unanswered.
Collapse
Affiliation(s)
- Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, L2221 UH South, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5212, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, Columbia University Medical Center, 650West 168th Street, New York, NY 10032, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Smith A550, 1400 Jackson Street, Denver, CO 80205, USA.
| |
Collapse
|
34
|
Mitropoulou G, Balmpouzis Z, Plojoux J, Dotta-Celio J, Sauty A, Koutsokera A. Effects of elexacaftor–tezacaftor–ivacaftor discontinuation in cystic fibrosis. Respir Med Res 2022; 82:100972. [DOI: 10.1016/j.resmer.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
|
35
|
Wilschanski M, Peckham D. Nutritional and metabolic management for cystic fibrosis in a post-cystic fibrosis transmembrane conductance modulator era. Curr Opin Pulm Med 2022; 28:577-583. [PMID: 36102602 DOI: 10.1097/mcp.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The introduction of highly effective cystic fibrosis transmembrane conductance regulator modulators has resulted in a paradigm shift towards treating underlying cause of cystic fibrosis (CF) rather than the ensuing complications. In this review, we will describe the impact of these small molecules on growth, nutrition, and metabolic status in people with CF (pwCF). RECENT FINDING Results of clinical trials and real world data demonstrate that these small molecules are having a significant impact of on augmenting body weight, improving nutritional status and reducing gastrointestinal symptom burden. Early treatment can also positively impact on pancreatic endocrine and exocrine function. SUMMARY Nutritional and metabolic management of pwCF needs to change in order to maximize long term health and avoid future complications relating to obesity and increased cardiovascular risk. Longitudinal registry studies will be key to improve our understanding of the longer-term outcome of these new therapies.
Collapse
Affiliation(s)
- Michael Wilschanski
- Pediatric Gastroenterology Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
36
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
37
|
Maher RE, Barrett E, Beynon RJ, Harman VM, Jones AM, McNamara PS, Smith JA, Lord RW. The relationship between lung disease severity and the sputum proteome in cystic fibrosis. Respir Med 2022; 204:107002. [DOI: 10.1016/j.rmed.2022.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
|
38
|
Caley L, Peckham D. Time to change course and tackle CF related obesity. J Cyst Fibros 2022; 21:732-734. [PMID: 35970693 DOI: 10.1016/j.jcf.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Laura Caley
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom; Leeds Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, United Kingdom.
| |
Collapse
|
39
|
Current state of CFTR modulators for treatment of Cystic Fibrosis. Curr Opin Pharmacol 2022; 65:102239. [DOI: 10.1016/j.coph.2022.102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022]
|
40
|
Uhl FE, Vanherle L, Meissner A. Cystic fibrosis transmembrane regulator correction attenuates heart failure-induced lung inflammation. Front Immunol 2022; 13:928300. [PMID: 35967318 PMCID: PMC9365932 DOI: 10.3389/fimmu.2022.928300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) affects 64 million people worldwide. Despite advancements in prevention and therapy, quality of life remains poor for many HF patients due to associated target organ damage. Pulmonary manifestations of HF are well-established. However, difficulties in the treatment of HF patients with chronic lung phenotypes remain as the underlying patho-mechanistic links are still incompletely understood. Here, we aim to investigate the cystic fibrosis transmembrane regulator (CFTR) involvement in lung inflammation during HF, a concept that may provide new mechanism-based therapies for HF patients with pulmonary complications. In a mouse model of HF, pharmacological CFTR corrector therapy (Lumacaftor (Lum)) was applied systemically or lung-specifically for 2 weeks, and the lungs were analyzed using histology, flow cytometry, western blotting, and qPCR. Experimental HF associated with an apparent lung phenotype characterized by vascular inflammation and remodeling, pronounced tissue inflammation as evidenced by infiltration of pro-inflammatory monocytes, and a reduction of pulmonary CFTR+ cells. Moreover, the elevation of a classically-activated phenotype of non-alveolar macrophages coincided with a cell-specific reduction of CFTR expression. Pharmacological correction of CFTR with Lum mitigated the HF-induced downregulation of pulmonary CFTR expression and increased the proportion of CFTR+ cells in the lung. Lum treatment diminished the HF-associated elevation of classically-activated non-alveolar macrophages, while promoting an alternatively-activated macrophage phenotype within the lungs. Collectively, our data suggest that downregulation of CFTR in the HF lung extends to non-alveolar macrophages with consequences for tissue inflammation and vascular structure. Pharmacological CFTR correction possesses the capacity to alleviate HF-associated lung inflammation.
Collapse
Affiliation(s)
- Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- *Correspondence: Anja Meissner,
| |
Collapse
|
41
|
Roda J, Pinto-Silva C, Silva IA, Maia C, Almeida S, Ferreira R, Oliveira G. New drugs in cystic fibrosis: what has changed in the last decade? Ther Adv Chronic Dis 2022; 13:20406223221098136. [PMID: 35620188 PMCID: PMC9128052 DOI: 10.1177/20406223221098136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF), a life-limiting chronic disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, affects more than 90,000 people worldwide. Until recently, the only available treatments were directed to symptom control, but they failed to change the course of the disease. New drugs developed in the last decade have the potential to change the expression, function, and stability of CFTR protein, targeting the basic molecular defect. The authors seek to provide an update on the new drugs, with a special focus on the most promising clinical trials that have been carried out to date. These newly approved drugs that target specific CFTR mutations are mainly divided into two main groups of CFTR modulators: potentiators and correctors. New therapies have opened the door for potentially disease-modifying, personalized treatments for patients with CF.
Collapse
Affiliation(s)
- Juliana Roda
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitario de Coimbra EPE Hospital Pediátrico de Coimbra, Avenida Afonso Romão 3000-602 Coimbra, Portugal
| | - Catarina Pinto-Silva
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Iris A.I. Silva
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Maia
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Susana Almeida
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Ricardo Ferreira
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Guiomar Oliveira
- Centro de Desenvolvimento da Criança e Centro de Investigação e Formação Clínica, Centro Hospitalar e Universitario de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| |
Collapse
|
42
|
Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang R, Yang Z, Tian Y, Zhu Y, Wang C, Deng C, Zhang S, Yang Y. The NLRP3 inflammasome in fibrosis and aging: The known unknowns. Ageing Res Rev 2022; 79:101638. [PMID: 35525426 DOI: 10.1016/j.arr.2022.101638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/27/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Aging-related diseases such as cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases are often accompanied by fibrosis. The NLRP3 inflammasome triggers the inflammatory response and subsequently promotes fibrosis through pathogen-associated molecular patterns (PAMPs). In this review, we first introduce the general background and specific mechanism of NLRP3 in fibrosis. Second, we investigate the role of NLRP3 in fibrosis in different organs/tissues. Third, we discuss the relationship between NLRP3 and fibrosis during aging. In summary, this review describes the latest progress on the roles of NLRP3 in fibrosis and aging and reveals the possibility of NLRP3 as an antifibrotic and anti-aging treatment target.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuxuan Hou
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanli Zhu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
43
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
44
|
FitzMaurice TS, Nazareth D, Iyer K, Walshaw M, Al-Aloul M. Elexacaftor/Tezacaftor/Ivacaftor as a Bridge to Lung Retransplant in a Recipient With Cystic Fibrosis. EXP CLIN TRANSPLANT 2022; 20:433-435. [PMID: 35297329 DOI: 10.6002/ect.2021.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The triple-combination cystic fibrosis transmembrane conductance regulator modulator elexacaftor/- tezacaftor/ivacaftor is known to improve lung function and have extrapulmonary benefits in people with cystic fibrosis. However, there is limited evidence for its use in patients with cystic fibrosis after lung transplant, where the donor lung expresses normal levels of the cystic fibrosis transmembrane conductance regulator. We describe the use of elexacaftor/tezacaftor/ivacaftor as a bridge to potential lung retransplant in a 37-year-old man with cystic fibrosis and chronic lung allograft dysfunction. Although forced expiratory volume in 1 second did not improve, the patient had decreased sputum volume, no pulmonary exacerbations of cystic fibrosis, and no longer required continuous antibiotic therapy. Pancreatic function, revised Cystic Fibrosis Questionnaire scores, sinus symptoms, weight, and corticosteroid dependence significantly improved. There were no reported side effects attributable to elexacaftor/tezacaftor/ivacaftor. However, the patient exhibited declined renal function, which had been initially attributed to lability in cyclosporin levels but which were corrected after lithotripsy for renal calculi. Triple-combination modulators of the cystic fibrosis transmembrane conductance regulator may offer benefits to carefully selected individuals awaiting retransplant, balanced against the risk of worsened immunosuppressant level control.
Collapse
Affiliation(s)
- Thomas Simon FitzMaurice
- From the Adult CF Unit, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.,From the Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Westhölter D, Schumacher F, Wülfinghoff N, Sutharsan S, Strassburg S, Kleuser B, Horn PA, Reuter S, Gulbins E, Taube C, Welsner M. CFTR modulator therapy alters plasma sphingolipid profiles in people with cystic fibrosis. J Cyst Fibros 2022; 21:713-720. [DOI: 10.1016/j.jcf.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
|
46
|
Gabillard-Lefort C, Casey M, Glasgow AMA, Boland F, Kerr O, Marron E, Lyons AM, Gunaratnam C, McElvaney NG, Reeves EP. Trikafta Rescues CFTR and Lowers Monocyte P2X7R-Induced Inflammasome Activation in Cystic Fibrosis. Am J Respir Crit Care Med 2022; 205:783-794. [PMID: 35021019 DOI: 10.1164/rccm.202106-1426oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Cystic Fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene and is characterized by sustained inflammation. Adenosine-5'-Triphosphate (ATP) triggers interleukin (IL)-1β secretion via the P2X7 receptor (P2X7R) and activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome. OBJECTIVES To explore the effect of the CFTR modulator Trikafta (Elexacaftor/Tezacaftor/Ivacaftor) on CFTR expression and the ATP/P2X7R signaling axis in monocytes and on circulating pro-inflammatory markers. METHODS Inflammatory mediators were detected in blood from 42 patients with CF (PWCF) before and after 3 months of Trikafta therapy. Markers of inflammasome activation and IL-1β secretion were measured in monocytes, and following stimulation with ATP and lipopolysaccharides (LPS) in the presence or absence of the P2X7R inhibitor, A438079. MEASUREMENTS AND MAIN RESULTS P2X7R is overexpressed in CF monocytes and receptor inhibition decreased NLRP3 expression, caspase-1 activation, and IL-1β secretion. In vitro and in vivo, P2X7R expression is regulated by CFTR function and intracellular chloride (Cl-) levels. Trikafta therapy restored CFTR expression yet decreased P2X7R in CF monocytes, resulting in normalized Cl- and potassium efflux, and reduced intracellular calcium levels. CFTR modulator therapy decreased circulating levels of ATP and LPS and reduced inflammasome activation and IL-1β secretion. CONCLUSIONS P2X7R expression is regulated by intracellular Cl- levels, and in CF monocytes promotes inflammasome activation. Trikafta therapy significantly increased CFTR protein expression and reduced ATP/P2X7R -induced inflammasome activation. P2X7R may therefore be a promising target to reduce inflammation in PWCF non-eligible for Trikafta or other CFTR modulator therapy.
Collapse
Affiliation(s)
- Claudie Gabillard-Lefort
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Arlene M A Glasgow
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Fiona Boland
- Royal College of Surgeons in Ireland, 8863, Population Health Sciences, Dublin, Ireland
| | - Orla Kerr
- Beaumont Hospital, 57978, Dublin, Ireland
| | | | | | - Cedric Gunaratnam
- Royal College of Surgeons in Ireland, Beaumont Hospital, Respiratory Research Division, Department of Medicine, Dublin, Ireland
| | | | - Emer P Reeves
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland;
| |
Collapse
|
47
|
Zhang Q, Lv X, Wang Y, Wang B, He Y, Chen C, Shi G, Li Y. Expression of CFTR, a hallmark gene of ionocytes, is downregulated in salivary glands of Sjögren's syndrome patients. Arthritis Res Ther 2022; 24:263. [PMID: 36476557 PMCID: PMC9727938 DOI: 10.1186/s13075-022-02959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The autoimmune exocrinopathy, Sjögren's syndrome (SjS), is associated with secretory defects in salivary glands. The cystic fibrosis transmembrane conductance regulator (CFTR) of the chloride channel is a master regulator of fluid secretion, but its role in SjS has not been investigated. Our research found a link between CFTR and SjS at the genetic and protein levels, as well as through clinical data. METHODS We used single-cell RNA sequencing to identify the presence of CFTR in glandular epithelial cells of the human salivary gland (scRNA-seq) and confirmed the difference using immunofluorescence tests in labial glands and clinical data statistics from 44 non-SjS and 36 SjS patients. RESULTS The changes of CFTR expression in salivary glands of SjS patients was assessed at both mRNA and protein levels. According to the scRNA-seq analyses, CFTR was the hallmark gene of ionocytes. We firstly identified that SjS had a lower level of CFTR expression in the labial glands than non-SjS at mRNA level. Using immunofluorescence assays, we also found that CFTR expression was decreased in SjS patients compared to non-SjS. The results of the clinical statistics revealed that CFTR expression was adversely correlated with feelings of dry mouth, lymphocyte infiltration in the labial glands, and certain autoantibodies in serum (antinuclear antibody, anti-Ro/SSA, and anti-La/SSB antibodies). CONCLUSION Those findings above proved an obviously downregulated expression of CFTR in salivary glands of SjS patients and its clinical significance. Dysfunction in CFTR or ionocytes may contribute to SjS pathogenesis and represents a promising therapeutic target.
Collapse
Affiliation(s)
- Qi Zhang
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Xiuying Lv
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Ying Wang
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Bin Wang
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Yan He
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Chubing Chen
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Guixiu Shi
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Yan Li
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| |
Collapse
|
48
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
49
|
Averna M, Melotti P, Sorio C. Revisiting the Role of Leukocytes in Cystic Fibrosis. Cells 2021; 10:cells10123380. [PMID: 34943888 PMCID: PMC8699441 DOI: 10.3390/cells10123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis in characterized by pulmonary bacterial colonization and hyperinflammation. Lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells of patients with CF express functional CFTR and are directly affected by altered CFTR expression/function, impairing their ability to resolve infections and inflammation. However, the mechanism behind and the contribution of leukocytes in the pathogenesis of CF are still poorly characterized. The recent clinical introduction of specific CFTR modulators added an important tool not only for the clinical management of the disease but also to the investigation of the pathophysiological mechanisms related to CFTR dysfunction and dysregulated immunity. These drugs treat the basic defect in cystic fibrosis (CF) by increasing CFTR function with improvement of lung function and quality of life, and may improve clinical outcomes also by correcting the dysregulated immune function that characterizes CF. Measure of CFTR function, protein expression profiling and several omics methods were used to identify molecular changes in freshly isolated leukocytes of CF patients, highlighting two roles of leukocytes in CF: one more generally related to the mechanism(s) causing immune dysregulation in CF and unresolved inflammation, and another more applicative role, which identifies in myeloid cells, an important tool predictive of the therapeutic response of CF patients. In this review we will summarize available data on CFTR expression and function in leukocyte populations and will discuss potential clinical applications based on available data.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7688
| |
Collapse
|
50
|
Williamson M, Casey M, Gabillard-Lefort C, Alharbi A, Teo YQJ, McElvaney NG, Reeves EP. Current evidence on the effect of highly effective CFTR modulation on interleukin-8 in cystic fibrosis. Expert Rev Respir Med 2021; 16:43-56. [PMID: 34726115 DOI: 10.1080/17476348.2021.2001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetically inherited disease, with mortality and morbidity associated with respiratory disease. The inflammatory response in CF is characterized by excessive neutrophil influx to the airways, mainly due to the increased local production and retention of interleukin-8 (IL-8), a potent neutrophil chemoattractant. AREAS COVERED We discuss how the chemokine IL-8 dominates the inflammatory profile of the airways in CF lung disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are designed to correct the malfunctioning protein resulting from specific CFTR mutations. This review covers current evidence on the impact of CFTR impairment on levels of IL-8 and outlines the influence of effective CFTR modulation on inflammation in CF with a focus on cytokine production. Review of the literature was carried out using the PUBMED database, Google Scholar, and The Cochrane Library databases, using several appropriate generic terms. EXPERT OPINION Therapeutic interventions specifically targeting the defective CFTR protein have improved the outlook for CF. Accumulating studies on the effect of highly effective CFTR modulation on inflammation indicate an impact on IL-8 levels. Further studies are required to increase our knowledge of early onset innate inflammatory dysregulation and on anti-inflammatory mechanisms of CFTR modulators.
Collapse
Affiliation(s)
- Michael Williamson
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Aram Alharbi
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Yu Qing Jolene Teo
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|