1
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2024:S1534-5807(24)00545-8. [PMID: 39413783 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Abraham E, Volmert B, Roule T, Huang L, Yu J, Williams AE, Cohen HM, Douglas A, Megill E, Morris A, Stronati E, Fueyo R, Zubillaga M, Elrod JW, Akizu N, Aguirre A, Estaras C. A Retinoic Acid:YAP1 signaling axis controls atrial lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602981. [PMID: 39026825 PMCID: PMC11257518 DOI: 10.1101/2024.07.11.602981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Vitamin A/Retinoic Acid (Vit A/RA) signaling is essential for heart development. In cardiac progenitor cells (CPCs), RA signaling induces the expression of atrial lineage genes while repressing ventricular genes, thereby promoting the acquisition of an atrial cardiomyocyte cell fate. To achieve this, RA coordinates a complex regulatory network of downstream effectors that is not fully identified. To address this gap, we applied a functional genomics approach (i.e scRNAseq and snATACseq) to untreated and RA-treated human embryonic stem cells (hESCs)-derived CPCs. Unbiased analysis revealed that the Hippo effectors YAP1 and TEAD4 are integrated with the atrial transcription factor enhancer network, and that YAP1 is necessary for activation of RA-enhancers in CPCs. Furthermore, in vivo analysis of control and conditionally YAP1 KO mouse embryos (Sox2-cre) revealed that the expression of atrial lineage genes, such as NR2F2, is compromised by YAP1 deletion in the CPCs of the second heart field. Accordingly, we found that YAP1 is required for the formation of an atrial chamber but is dispensable for the formation of a ventricle, in hESC-derived patterned cardiac organoids. Overall, our findings revealed that YAP1 is a non-canonical effector of RA signaling essential for the acquisition of atrial lineages during cardiogenesis.
Collapse
Affiliation(s)
- Elizabeth Abraham
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry M Cohen
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Aidan Douglas
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Alex Morris
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Eleonora Stronati
- Department of Child and Adolescence Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mikel Zubillaga
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - John W Elrod
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
| | - Conchi Estaras
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Guijarro C, Kelly RG. On the involvement of the second heart field in congenital heart defects. C R Biol 2024; 347:9-18. [PMID: 38488639 DOI: 10.5802/crbiol.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.
Collapse
|
4
|
Long X, Wei J, Fang Q, Yuan X, Du J. Single-cell RNA sequencing reveals the transcriptional heterogeneity of Tbx18-positive cardiac cells during heart development. Funct Integr Genomics 2024; 24:18. [PMID: 38265516 DOI: 10.1007/s10142-024-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The T-box family transcription factor 18 (Tbx18) has been found to play a critical role in regulating the development of the mammalian heart during the primary stages of embryonic development while the cellular heterogeneity and landscape of Tbx18-positive (Tbx18+) cardiac cells remain incompletely characterized. Here, we analyzed prior published single-cell RNA sequencing (scRNA-seq) mouse heart data to explore the heterogeneity of Tbx18+ cardiac cell subpopulations and provide a comprehensive transcriptional landscape of Tbx18+ cardiac cells during their development. Bioinformatic analysis methods were utilized to identify the heterogeneity between cell groups. Based on the gene expression characteristics, Tbx18+ cardiac cells can be classified into a minimum of two distinct cell populations, namely fibroblast-like cells and cardiomyocytes. In terms of temporal heterogeneity, these cells exhibit three developmental stages, namely the MEM stage, ML_P0 stage, and P stage Tbx18+ cardiac cells. Furthermore, Tbx18+ cardiac cells encompass several cell types, including cardiac progenitor-like cells, cardiomyocytes, and epicardial/stromal cells, as determined by specific transcriptional regulatory networks. The scRNA-seq results revealed the involvement of extracellular matrix (ECM) signals and epicardial epithelial-to-mesenchymal transition (EMT) in the development of Tbx18+ cardiac cells. The utilization of a lineage-tracing model served to validate the crucial function of Tbx18 in the differentiation of cardiac cells. Consequently, these findings offer a comprehensive depiction of the cellular heterogeneity within Tbx18+ cardiac cells.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiangjun Wei
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Buckingham M, Kelly RG. Cardiac Progenitor Cells of the First and Second Heart Fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:103-124. [PMID: 38884707 DOI: 10.1007/978-3-031-44087-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| | - Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
6
|
Yang J, Hu W, Zhao J. Overexpression of Homeobox A1 Relieves Ovalbumin-Induced Asthma in Mice and Is Associated with Blocking of the NF-κB Signaling Pathway. Crit Rev Immunol 2024; 44:25-35. [PMID: 38421703 DOI: 10.1615/critrevimmunol.2023050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Homeobox A1 (HOXA1) is a protein coding gene involved in regulating immunity signaling. This study aims to explore the function and mechanism of HOXA1 in asthma. An asthma mouse model was established via ovalbumin (OVA) induction. Airway hyperresponsiveness was evaluated by the value of pause enhancement (Penh). Inflammatory cells in bronchoalveolar lavage fluid (BALF) were detected by Trypan blue and Wright staining. The pathological morphology of lung tissues was assessed by H&E staining. The IgE and inflammatory biomarkers (IL-1β, IL-6, IL-17, and TNF-α) in BALF and lung tissues were measured by ELISA. Western blot was performed to detect the expression of NF-κB pathway-related proteins. HOXA1 was down-regulated in OVA-induced asthmatic mice. Overexpression of HOXA1 decreased Penh and relieved pathological injury of lung tissues in OVA-induced mice. Overexpression of HOXA1 also reduced the numbers of total cells, leukocytes, eosinophils, neutrophils, macrophages, and lymphocytes, as well as the levels of IgE, IL-1β, IL-6, IL-17, and TNF-α in BALF of OVA-induced mice. The inflammatory biomarkers were also decreased in lung tissues by HOXA1 overexpression. In addition, HOXA1 overexpression blocked the NF-κB signaling pathway in OVA-induced mice. Overexpression of HOXA1 relieved OVA-induced asthma in female mice, which is associated with the blocking of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jianye Yang
- Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital)
| | - Wenbin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing 312000, China
| | - Jiaming Zhao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing 312000, China
| |
Collapse
|
7
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
8
|
Nishino T, Ranade SS, Pelonero A, van Soldt BJ, Ye L, Alexanian M, Koback F, Huang Y, Sadagopan N, Lam A, Zholudeva LV, Li F, Padmanabhan A, Thomas R, van Bemmel JG, Gifford CA, Costa MW, Srivastava D. Single Cell Multimodal Analyses Reveal Epigenomic and Transcriptomic Basis for Birth Defects in Maternal Diabetes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1190-1203. [PMID: 39183978 PMCID: PMC11343316 DOI: 10.1038/s44161-023-00367-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2023] [Indexed: 08/27/2024]
Abstract
Maternal diabetes mellitus is among the most frequent environmental contributors to congenital birth defects, including heart defects and craniofacial anomalies, yet the cell types affected and mechanisms of disruption are largely unknown. Using multi-modal single cell analyses, here we show that maternal diabetes affects the epigenomic landscape of specific subsets of cardiac and craniofacial progenitors during embryogenesis. A previously unrecognized cardiac progenitor subpopulation expressing the homeodomain-containing protein ALX3 showed prominent chromatin accessibility changes and acquired a more posterior identity. Similarly, a subpopulation of neural crest-derived cells in the second pharyngeal arch, which contributes to craniofacial structures, displayed abnormalities in the epigenetic landscape and axial patterning defects. Chromatin accessibility changes in both populations were associated with increased retinoic acid signaling, known to establish anterior-posterior identity. This work highlights how an environmental insult can have highly selective epigenomic consequences on discrete cell types leading to developmental patterning defects.
Collapse
Affiliation(s)
- Tomohiro Nishino
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Sanjeev S. Ranade
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Benjamin J. van Soldt
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Lin Ye
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Michael Alexanian
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Frances Koback
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
- Division of Cardiology, Department of Medicine, University of California, San Francisco; San Francisco, CA, USA
| | - Adrienne Lam
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Lyandysha V. Zholudeva
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Feiya Li
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
- Division of Cardiology, Department of Medicine, University of California, San Francisco; San Francisco, CA, USA
| | | | - Joke G. van Bemmel
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Casey A. Gifford
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Mauro W. Costa
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
- Division of Cardiology, Department of Pediatrics, University of California, San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
9
|
Steimle JD, Martin JF. Sweet and sour story of maternal diabetes and birth defects. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1107-1108. [PMID: 39196143 DOI: 10.1038/s44161-023-00380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA.
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA.
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
11
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Watanabe Y, Wang Y, Tanaka Y, Iwase A, Kawamura T, Saga Y, Yashiro K, Kurihara H, Nakagawa O. Hey2 enhancer activity defines unipotent progenitors for left ventricular cardiomyocytes in juxta-cardiac field of early mouse embryo. Proc Natl Acad Sci U S A 2023; 120:e2307658120. [PMID: 37669370 PMCID: PMC10500178 DOI: 10.1073/pnas.2307658120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The cardiac crescent is the first structure of the heart and contains progenitor cells of the first heart field, which primarily differentiate into left ventricular cardiomyocytes. The interface between the forming cardiac crescent and extraembryonic tissue is known as the juxta-cardiac field (JCF), and progenitor cells in this heart field contribute to the myocardium of the left ventricle and atrioventricular canal as well as the epicardium. However, it is unclear whether there are progenitor cells that differentiate specifically into left ventricular cardiomyocytes. We have previously demonstrated that an enhancer of the gene encoding the Hey2 bHLH transcriptional repressor is activated in the ventricular myocardium during mouse embryonic development. In this study, we aimed to investigate the characteristics of cardiomyocyte progenitor cells and their cell lineages by analyzing Hey2 enhancer activity at the earliest stages of heart formation. We found that the Hey2 enhancer initiated its activity prior to cardiomyocyte differentiation within the JCF. Hey2 enhancer-active cells were present rostrally to the Tbx5-expressing region at the early phase of cardiac crescent formation and differentiated exclusively into left ventricular cardiomyocytes in a lineage distinct from the Tbx5-positive lineage. By the late phase of cardiac crescent formation, Hey2 enhancer activity became significantly overlapped with Tbx5 expression in cells that contribute to the left ventricular myocardium. Our study reveals that a population of unipotent progenitor cells for left ventricular cardiomyocytes emerge in the JCF, providing further insight into the mode of cell type diversification during early cardiac development.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yunce Wang
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Yuki Tanaka
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Akiyasu Iwase
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka411-8582, Japan
| | - Kenta Yashiro
- Division of Anatomy and Developmental Biology, Department of Anatomy, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto602-8566, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| |
Collapse
|
13
|
Zhu JY, Liu C, Huang X, van de Leemput J, Lee H, Han Z. H3K36 Di-Methylation Marks, Mediated by Ash1 in Complex with Caf1-55 and MRG15, Are Required during Drosophila Heart Development. J Cardiovasc Dev Dis 2023; 10:307. [PMID: 37504562 PMCID: PMC10380788 DOI: 10.3390/jcdd10070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chen Liu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Wang H, He J, Han X, Wu X, Ye X, Lv W, Zu Y. hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley-Salih-Alorainy Syndrome. BIOLOGY 2023; 12:899. [PMID: 37508332 PMCID: PMC10376578 DOI: 10.3390/biology12070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/30/2023]
Abstract
Mutations in HOXA1 can lead to diseases such as Bosley-Salih-Alorainy syndrome, involving severe cardiovascular malformations. However, the role of HOXA1 in cardiac morphogenesis remains unclear. hoxa1a is a homologous gene to human HOXA1 in zebrafish. We used CRISPR to make hoxa1a-null zebrafish that exhibited multiple heart malformations. In situ hybridization and sections revealed the morphological changes in mutants: enlarged ventricle with thickened myocardium and increased trabeculae, intensified OFT and inadequate heart looping, with electrocardiography supporting these pathological changes. High-speed photography captured cardiac pumping and revealed a significant decrease in cardiac output. Furthermore, lacking hoxa1a led to posterior body abnormality that affected movement ability, corresponding with the motor development delay in patients. Upregulation of hox paralogues in hoxa1a-null fish implied a compensatory mechanism between hox genes. Accordingly, we successfully constructed a hoxa1a-null model with a cardiac disease pattern which occurred in human HOXA1-associated heart malformation. The study of hoxa1a in zebrafish can further promote the understanding of hox genes and related diseases.
Collapse
Affiliation(s)
- Hongjie Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwei He
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Han
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiuzhi Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuebin Ye
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Wenchao Lv
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| |
Collapse
|
15
|
Tyser RCV. Formation of the Heart: Defining Cardiomyocyte Progenitors at Single-Cell Resolution. Curr Cardiol Rep 2023; 25:495-503. [PMID: 37119451 PMCID: PMC10188409 DOI: 10.1007/s11886-023-01880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE OF REVIEW Formation of the heart requires the coordinated addition of multiple progenitor sources which have undergone different pathways of specification and differentiation. In this review, I aim to put into context how recent studies defining cardiac progenitor heterogeneity build on our understanding of early heart development and also discuss the questions raised by this new insight. RECENT FINDINGS With the development of sequencing technologies and imaging approaches, it has been possible to define, at high temporal resolution, the molecular profile and anatomical location of cardiac progenitors at the single-cell level, during the formation of the mammalian heart. Given the recent progress in our understanding of early heart development and technical advances in high-resolution time-lapse imaging and lineage analysis, we are now in a position of great potential, allowing us to resolve heart formation at previously impossible levels of detail. Understanding how this essential organ forms not only addresses questions of fundamental biological significance but also provides a blueprint for strategies to both treat and model heart disease.
Collapse
Affiliation(s)
- Richard C V Tyser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| |
Collapse
|
16
|
Krup AL, Winchester SAB, Ranade SS, Agrawal A, Devine WP, Sinha T, Choudhary K, Dominguez MH, Thomas R, Black BL, Srivastava D, Bruneau BG. A Mesp1-dependent developmental breakpoint in transcriptional and epigenomic specification of early cardiac precursors. Development 2023; 150:dev201229. [PMID: 36994838 PMCID: PMC10259516 DOI: 10.1242/dev.201229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood owing, in part, to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single-cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1, a transiently expressed mesodermal transcription factor, is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mislocalized, prompting us to investigate the scope of the role of Mesp1 in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and crucial cardiac transcription factors, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single-cell chromatin accessibility analysis defined a Mesp1-dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1-independent aspects of early CPC specification and underscore a Mesp1-dependent regulatory landscape required for progression through cardiogenesis.
Collapse
Affiliation(s)
- Alexis Leigh Krup
- Biomedical Sciences Program, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sarah A. B. Winchester
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sanjeev S. Ranade
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ayushi Agrawal
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - W. Patrick Devine
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Krishna Choudhary
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Martin H. Dominguez
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94158, USA
- Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reuben Thomas
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA
- Institute of Human Genetics, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
18
|
Kelly RG. The heart field transcriptional landscape at single-cell resolution. Dev Cell 2023; 58:257-266. [PMID: 36809764 DOI: 10.1016/j.devcel.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
Organogenesis requires the orchestrated development of multiple cell lineages that converge, interact, and specialize to generate coherent functional structures, exemplified by transformation of the cardiac crescent into a four-chambered heart. Cardiomyocytes originate from the first and second heart fields, which make different regional contributions to the definitive heart. In this review, a series of recent single-cell transcriptomic analyses, together with genetic tracing experiments, are discussed, providing a detailed panorama of the cardiac progenitor cell landscape. These studies reveal that first heart field cells originate in a juxtacardiac field adjacent to extraembryonic mesoderm and contribute to the ventrolateral side of the cardiac primordium. In contrast, second heart field cells are deployed dorsomedially from a multilineage-primed progenitor population via arterial and venous pole pathways. Refining our knowledge of the origin and developmental trajectories of cells that build the heart is essential to address outstanding challenges in cardiac biology and disease.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
19
|
Rammah M, Théveniau-Ruissy M, Sturny R, Rochais F, Kelly RG. PPARγ and NOTCH Regulate Regional Identity in the Murine Cardiac Outflow Tract. Circ Res 2022; 131:842-858. [PMID: 36205127 DOI: 10.1161/circresaha.122.320766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The arterial pole of the heart is a hotspot for life-threatening forms of congenital heart defects (CHDs). Development of this cardiac region occurs by addition of Second Heart Field (SHF) progenitor cells to the embryonic outflow tract (OFT) and subsequently the base of the ascending aorta and pulmonary trunk. Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is essential to provide further insights into the cause of CHDs. METHODS A synergistic combination of bioinformatic analysis and mouse genetics as well as embryo and explant culture experiments were used to dissect the cross-regulatory transcriptional circuitry operating in future subaortic and subpulmonary OFT myocardium. RESULTS Here, we show that the lipid sensor PPARγ (peroxisome proliferator-activated receptor gamma) is expressed in future subpulmonary myocardium in the inferior wall of the OFT and that PPARγ signaling-related genes display regionalized OFT expression regulated by the transcription factor TBX1 (T-box transcription factor 1). Modulating PPARγ activity in ex vivo cultured embryos treated with a PPARγ agonist or antagonist or deleting Pparγ in cardiac progenitor cells using Mesp1-Cre reveals that Pparγ is required for addition of future subpulmonary myocardium and normal arterial pole development. Additionally, the non-canonical DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH (Notch receptor 1)/HES1 (Hes family bHLH transcription factor 1) pathway negatively regulates Pparγ in future subaortic myocardium in the superior OFT wall. CONCLUSIONS Together these results identify Pparγ as a regulator of regional transcriptional identity in the developing heart, providing new insights into gene interactions involved in congenital heart defects.
Collapse
Affiliation(s)
- Mayyasa Rammah
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
| | - Magali Théveniau-Ruissy
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
- Aix Marseille Univ, INSERM, MMG, Marseille, France (M.T.R., F.R.)
| | - Rachel Sturny
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
| | - Francesca Rochais
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
- Aix Marseille Univ, INSERM, MMG, Marseille, France (M.T.R., F.R.)
| | - Robert G Kelly
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
| |
Collapse
|
20
|
Schroeder AM, Nielsen T, Lynott M, Vogler G, Colas AR, Bodmer R. Nascent polypeptide-Associated Complex and Signal Recognition Particle have cardiac-specific roles in heart development and remodeling. PLoS Genet 2022; 18:e1010448. [PMID: 36240221 PMCID: PMC9604979 DOI: 10.1371/journal.pgen.1010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Establishing a catalog of Congenital Heart Disease (CHD) genes and identifying functional networks would improve our understanding of its oligogenic underpinnings. Our studies identified protein biogenesis cofactors Nascent polypeptide-Associated Complex (NAC) and Signal-Recognition-Particle (SRP) as disease candidates and novel regulators of cardiac differentiation and morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta-subunit (bicaudal, bic) of NAC in the developing Drosophila heart disrupted cardiac developmental remodeling resulting in a fly with no heart. Heart loss was rescued by combined KD of Nacα with the posterior patterning Hox gene Abd-B. Consistent with a central role for this interaction in cardiogenesis, KD of Nacα in cardiac progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with human HOXC12 and HOXD12 rescued this phenotype. Our data suggest that Nacα KD preprograms cardioblasts in the embryo for abortive remodeling later during metamorphosis, as Nacα KD during translation-intensive larval growth or pupal remodeling only causes moderate heart defects. KD of SRP subunits in the developing fly heart produced phenotypes that targeted specific segments and cell types, again suggesting cardiac-specific and spatially regulated activities. Together, we demonstrated directed function for NAC and SRP in heart development, and that regulation of NAC function depends on Hox genes.
Collapse
Affiliation(s)
- Analyne M. Schroeder
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Alexandre R. Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| |
Collapse
|
21
|
Wiesinger A, Li J, Fokkert L, Bakker P, Verkerk AO, Christoffels VM, Boink GJJ, Devalla HD. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife 2022; 11:76781. [PMID: 36217819 PMCID: PMC9553210 DOI: 10.7554/elife.76781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Each heartbeat is triggered by the sinoatrial node (SAN), the primary pacemaker of the heart. Studies in animal models have revealed that pacemaker cells share a common progenitor with the (pro)epicardium, and that the pacemaker cardiomyocytes further diversify into ‘transitional’, ‘tail’, and ‘head’ subtypes. However, the underlying molecular mechanisms, especially of human pacemaker cell development, are poorly understood. Here, we performed single cell RNA sequencing (scRNA-seq) and trajectory inference on human induced pluripotent stem cells (hiPSCs) differentiating to SAN-like cardiomyocytes (SANCMs) to construct a roadmap of transcriptional changes and lineage decisions. In differentiated SANCM, we identified distinct clusters that closely resemble different subpopulations of the in vivo SAN. Moreover, the presence of a side population of proepicardial cells suggested their shared ontogeny with SANCM, as also reported in vivo. Our results demonstrate that the divergence of SANCM and proepicardial lineages is determined by WNT signaling. Furthermore, we uncovered roles for TGFβ and WNT signaling in the branching of transitional and head SANCM subtypes, respectively. These findings provide new insights into the molecular processes involved in human pacemaker cell differentiation, opening new avenues for complex disease modeling in vitro and inform approaches for cell therapy-based regeneration of the SAN.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jiuru Li
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Priscilla Bakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Gonzalez DM, Schrode N, Ebrahim TAM, Broguiere N, Rossi G, Drakhlis L, Zweigerdt R, Lutolf MP, Beaumont KG, Sebra R, Dubois NC. Dissecting mechanisms of chamber-specific cardiac differentiation and its perturbation following retinoic acid exposure. Development 2022; 149:275658. [DOI: 10.1242/dev.200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.
Collapse
Affiliation(s)
- David M. Gonzalez
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| | - Nadine Schrode
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
| | - Tasneem A. M. Ebrahim
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| | - Nicolas Broguiere
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
| | - Giuliana Rossi
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
| | - Lika Drakhlis
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Robert Zweigerdt
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Matthias P. Lutolf
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Kristin G. Beaumont
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) 8 , Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG) , , Hannover , Germany
- REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School 8 , Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG) , , Hannover , Germany
| | - Robert Sebra
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
- Sema4, a Mount Sinai venture 9 , Stamford, CT 06902 , USA
| | - Nicole C. Dubois
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| |
Collapse
|
23
|
Zhao F, Tian H, Liu X, Guan Y, Zhu Y, Ren P, Zhang J, Dong Y, Fu L. Homeobox A1 Facilitates Immune Escape and Alleviates Oxidative Stress in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4102666. [PMID: 35633885 PMCID: PMC9136634 DOI: 10.1155/2022/4102666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Objective Recent studies have demonstrated that homeobox A1 (HOXA1) is upregulated in lung cancer due to RNA modifications (N6-methyladenosine), but the specific function of HOXA1 in lung adenocarcinoma (LUAD) remains indistinct. Herein, we investigated the role of HOXA1 in LUAD biology. Methods This study presented pancancer analysis of associations of HOXA1 with prognosis, TMB, and immune checkpoints. The expression of HOXA1 was detected in LUAD and normal tissues with immunohistochemistry and western blot. Through least absolute shrinkage and selection operator (LASSO) analysis, HOXA1-derived gene model was conducted in LUAD. Correlations of HOXA1 with immune cell infiltrations, immune checkpoints, HLAs, and chemotherapeutic sensitivity were evaluated. Colony formation, proliferation, and migration of LUAD cells with si-HOXA1 transfection were investigated, and the effects of HOXA1 on T cell exhaustion were assessed in vitro. Results HOXA1 expression was a risk factor of overall survival, disease-specific survival, and progression-free interval of LUAD. HOXA1 exhibited prominent associations with immune cell infiltration, immune checkpoints, and HLAs. HOXA1-derived gene signature reliably and independently predicted LUAD outcomes. Also, high-risk cases presented increased sensitivity to cisplatin, paclitaxel, docetaxel, vinorelbine, and etoposide. HOXA1 knockdown exhibited an inhibitory effect on proliferation and migration abilities of LUAD cells. Silencing HOXA1 weakened the expression of antioxidative stress markers Nrf2/HO-1 and T cell exhaustion marker CD155 in LUAD cells. Moreover, LUAD cells with HOXA1 knockdown enhanced the CD8+ T cell response. Conclusion Our data support the oncogenic function and prognostic significance of HOXA1 that facilitates immune escape and alleviates oxidative stress of LUAD.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117 Shandong, China
| | - Hui Tian
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Xinchao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong, China
| | - Yuanxiazi Guan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Ying Zhu
- Affiliated Hospital of Heze Medical College, Heze, 274008 Shandong, China
| | - Peng Ren
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Jianbo Zhang
- Departments of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Yinjun Dong
- Department of Thoracic surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Lei Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| |
Collapse
|
24
|
Garcia-Padilla C, Dueñas A, Franco D, Garcia-Lopez V, Aranega A, Garcia-Martinez V, Lopez-Sanchez C. Dynamic MicroRNA Expression Profiles During Embryonic Development Provide Novel Insights Into Cardiac Sinus Venosus/Inflow Tract Differentiation. Front Cell Dev Biol 2022; 9:767954. [PMID: 35087828 PMCID: PMC8787322 DOI: 10.3389/fcell.2021.767954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs have been explored in different organisms and are involved as molecular switches modulating cellular specification and differentiation during the embryonic development, including the cardiovascular system. In this study, we analyze the expression profiles of different microRNAs during early cardiac development. By using whole mount in situ hybridization in developing chick embryos, with microRNA-specific LNA probes, we carried out a detailed study of miR-23b, miR-130a, miR-106a, and miR-100 expression during early stages of embryogenesis (HH3 to HH17). We also correlated those findings with putative microRNA target genes by means of mirWalk and TargetScan analyses. Our results demonstrate a dynamic expression pattern in cardiac precursor cells from the primitive streak to the cardiac looping stages for miR-23b, miR-130a, and miR-106a. Additionally, miR-100 is later detectable during cardiac looping stages (HH15-17). Interestingly, the sinus venosus/inflow tract was shown to be the most representative cardiac area for the convergent expression of the four microRNAs. Through in silico analysis we revealed that distinct Hox family members are predicted to be targeted by the above microRNAs. We also identified expression of several Hox genes in the sinus venosus at stages HH11 and HH15. In addition, by means of gain-of-function experiments both in cardiomyoblasts and sinus venosus explants, we demonstrated the modulation of the different Hox clusters, Hoxa, Hoxb, Hoxc, and Hoxd genes, by these microRNAs. Furthermore, we correlated the negative modulation of several Hox genes, such as Hoxa3, Hoxa4, Hoxa5, Hoxc6, or Hoxd4. Finally, we demonstrated through a dual luciferase assay that Hoxa1 is targeted by miR-130a and Hoxa4 is targeted by both miR-23b and miR-106a, supporting a possible role of these microRNAs in Hox gene modulation during differentiation and compartmentalization of the posterior structures of the developing venous pole of the heart.
Collapse
Affiliation(s)
- Carlos Garcia-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.,Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Angel Dueñas
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.,Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain.,Fundación Medina, Granada, Spain
| | - Virginio Garcia-Lopez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, Jaen, Spain.,Fundación Medina, Granada, Spain
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Carmen Lopez-Sanchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| |
Collapse
|
25
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases’ morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
26
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
27
|
OUP accepted manuscript. Stem Cells 2022; 40:175-189. [DOI: 10.1093/stmcls/sxab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022]
|
28
|
Single cell multi-omic analysis identifies a Tbx1-dependent multilineage primed population in murine cardiopharyngeal mesoderm. Nat Commun 2021; 12:6645. [PMID: 34789765 PMCID: PMC8599455 DOI: 10.1038/s41467-021-26966-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The poles of the heart and branchiomeric muscles of the face and neck are formed from the cardiopharyngeal mesoderm within the pharyngeal apparatus. They are disrupted in patients with 22q11.2 deletion syndrome, due to haploinsufficiency of TBX1, encoding a T-box transcription factor. Here, using single cell RNA-sequencing, we now identify a multilineage primed population within the cardiopharyngeal mesoderm, marked by Tbx1, which has bipotent properties to form cardiac and branchiomeric muscle cells. The multilineage primed cells are localized within the nascent mesoderm of the caudal lateral pharyngeal apparatus and provide a continuous source of cardiopharyngeal mesoderm progenitors. Tbx1 regulates the maturation of multilineage primed progenitor cells to cardiopharyngeal mesoderm derivatives while restricting ectopic non-mesodermal gene expression. We further show that TBX1 confers this balance of gene expression by direct and indirect regulation of enriched genes in multilineage primed progenitors and downstream pathways, partly through altering chromatin accessibility, the perturbation of which can lead to congenital defects in individuals with 22q11.2 deletion syndrome.
Collapse
|
29
|
Wiesinger A, Boink GJJ, Christoffels VM, Devalla HD. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports 2021; 16:2589-2606. [PMID: 34653403 PMCID: PMC8581056 DOI: 10.1016/j.stemcr.2021.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Cardiology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
31
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Rankin SA, Steimle JD, Yang XH, Rydeen AB, Agarwal K, Chaturvedi P, Ikegami K, Herriges MJ, Moskowitz IP, Zorn AM. Tbx5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development. eLife 2021; 10:69288. [PMID: 34643182 PMCID: PMC8555986 DOI: 10.7554/elife.69288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using Xenopus and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA) signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary (CP) development. We demonstrate that Tbx5 directly maintains expression of aldh1a2, the RA-synthesizing enzyme, in the foregut lateral plate mesoderm via an evolutionarily conserved intronic enhancer. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module to restrict FGF activity to the anterior. We find that Tbx5/Aldh1a2-dependent RA signaling directly activates shh transcription in the adjacent foregut endoderm through a conserved MACS1 enhancer. Hedgehog signaling coordinates with Tbx5 in the mesoderm to activate expression of wnt2/2b, which induces pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing CP evolution and birth defects.
Collapse
Affiliation(s)
- Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeffrey D Steimle
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Xinan H Yang
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Ariel B Rydeen
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Kunal Agarwal
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Kohta Ikegami
- Department of Pediatrics, University of Chicago, Chicago, United States
| | | | - Ivan P Moskowitz
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Chicago, United States
| |
Collapse
|
33
|
Delgado I, Giovinazzo G, Temiño S, Gauthier Y, Balsalobre A, Drouin J, Torres M. Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors. Nat Commun 2021; 12:3086. [PMID: 34035267 PMCID: PMC8149412 DOI: 10.1038/s41467-021-23373-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Meis1 and Meis2 are homeodomain transcription factors that regulate organogenesis through cooperation with Hox proteins. Elimination of Meis genes after limb induction has shown their role in limb proximo-distal patterning; however, limb development in the complete absence of Meis function has not been studied. Here, we report that Meis1/2 inactivation in the lateral plate mesoderm of mouse embryos leads to limb agenesis. Meis and Tbx factors converge in this function, extensively co-binding with Tbx to genomic sites and co-regulating enhancers of Fgf10, a critical factor in limb initiation. Limbs with three deleted Meis alleles show proximal-specific skeletal hypoplasia and agenesis of posterior skeletal elements. This failure in posterior specification results from an early role of Meis factors in establishing the limb antero-posterior prepattern required for Shh activation. Our results demonstrate roles for Meis transcription factors in early limb development and identify their involvement in previously undescribed interaction networks that regulate organogenesis.
Collapse
Affiliation(s)
- Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Giovanna Giovinazzo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yves Gauthier
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Aurelio Balsalobre
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
34
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
35
|
Deepe R, Fitzgerald E, Wolters R, Drummond J, Guzman KD, van den Hoff MJ, Wessels A. The Mesenchymal Cap of the Atrial Septum and Atrial and Atrioventricular Septation. J Cardiovasc Dev Dis 2020; 7:jcdd7040050. [PMID: 33158164 PMCID: PMC7712865 DOI: 10.3390/jcdd7040050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
In this publication, dedicated to Professor Robert H. Anderson and his contributions to the field of cardiac development, anatomy, and congenital heart disease, we will review some of our earlier collaborative studies. The focus of this paper is on our work on the development of the atrioventricular mesenchymal complex, studies in which Professor Anderson has played a significant role. We will revisit a number of events relevant to atrial and atrioventricular septation and present new data on the development of the mesenchymal cap of the atrial septum, a component of the atrioventricular mesenchymal complex which, thus far, has received only moderate attention.
Collapse
Affiliation(s)
- Ray Deepe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Emily Fitzgerald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Renélyn Wolters
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Jenna Drummond
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Karen De Guzman
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Maurice J.B. van den Hoff
- Amsterdam UMC, Academic Medical Center, Department of Medical Biology, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands;
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
- Correspondence: ; Tel.: +1-843-792-8183
| |
Collapse
|
36
|
Bernheim S, Meilhac SM. Mesoderm patterning by a dynamic gradient of retinoic acid signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190556. [PMID: 32829679 PMCID: PMC7482219 DOI: 10.1098/rstb.2019.0556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid (RA), derived from vitamin A, is a major teratogen, clinically recognized in 1983. Identification of its natural presence in the embryo and dissection of its molecular mechanism of action became possible in the animal model with the advent of molecular biology, starting with the cloning of its nuclear receptor. In normal development, the dose of RA is tightly controlled to regulate organ formation. Its production depends on enzymes, which have a dynamic expression profile during embryonic development. As a small molecule, it diffuses rapidly and acts as a morphogen. Here, we review advances in deciphering how endogenously produced RA provides positional information to cells. We compare three mesodermal tissues, the limb, the somites and the heart, and discuss how RA signalling regulates antero-posterior and left-right patterning. A common principle is the establishment of its spatio-temporal dynamics by positive and negative feedback mechanisms and by antagonistic signalling by FGF. However, the response is cell-specific, pointing to the existence of cofactors and effectors, which are as yet incompletely characterized. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| | - Sigolène M. Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| |
Collapse
|