1
|
Pagnotta MF, Riddle J, D'Esposito M. Multimodal neuroimaging of hierarchical cognitive control. Biol Psychol 2024:108896. [PMID: 39488242 DOI: 10.1016/j.biopsycho.2024.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cognitive control enables us to translate our knowledge into actions, allowing us to flexibly adjust our behavior, according to environmental contexts, our internal goals, and future plans. Multimodal neuroimaging and neurostimulation techniques have proven essential for advancing our understanding of how cognitive control emerges from the coordination of distributed neuronal activities in the brain. In this review, we examine the literature on multimodal studies of cognitive control. We explore how these studies provide converging evidence for a novel, multiplexed model of cognitive control, in which neural oscillations support different levels of control processing along a functionally hierarchical organization of distinct frontoparietal networks.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Justin Riddle
- Department of Psychology, Florida State University, FL, USA; Program in Neuroscience, Florida State University, FL, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Huang H, Chen Z, Fan B, Huang D, Qiu Z, Luo C, Zheng J. Abnormal global and local connectivity in patients with anti-N-methyl-D-aspartate receptor encephalitis: A resting-state functional MRI study. Brain Res 2024; 1837:148985. [PMID: 38714228 DOI: 10.1016/j.brainres.2024.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE We decided to investigate the changes of global and local connectivity in anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis patients based on eigenvector centrality (EC) and regional homogeneity (ReHo). We sought new biomarkers to identify the patients based on multivariate pattern analysis (MVPA). METHODS Functional MRI (fMRI) was performed on all participants. EC, ReHo and MVPA were used to analyze the fMRI images. The correlation between the global or local connectivity and neuropsychology tests was detected. RESULTS The MoCA scores of the patients were lower than those of the healthy controls (HCs), while the HAMD24 and HAMA scores of the patients were higher than those of the HCs. Increased EC values in the right calcarine (CAL.R) and decreased EC values in the right putamen (PUT.R) distinguished these subjects with anti-NMDAR encephalitis from HCs. The higher ReHo values in the left postcentral gyrus (PoCG.L) were detected in the patients. The correlation analysis showed that the EC values in the PUT.R were negatively correlated with HAMD24 and HAMA scores, while the ReHo values in the PoCG.L were negatively correlated with MoCA scores. Better classification performance was reached in the EC-based classifier (AUC = 0.80), while weaker classification performance was achieved in the ReHo-based classifier (AUC = 0.74) or the classifier based on EC and ReHo (AUC = 0.74). The brain areas with large weights were located in the frontal lobe, parietal lobe, cerebellum and basal ganglia. CONCLUSION Our findings suggest that abnormal global and local connectivity may play an important part in the pathophysiological mechanism of neuropsychiatric symptoms in the anti-NMDAR encephalitis patients. The EC-based classifier may be better than the ReHo-based classifier in identifying anti-NMDAR encephalitis patients.
Collapse
Affiliation(s)
- Huachun Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zexiang Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binglin Fan
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhuoyan Qiu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cuimi Luo
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Lapate RC, Heckner MK, Phan AT, Tambini A, D'Esposito M. Information-based TMS to mid-lateral prefrontal cortex disrupts action goals during emotional processing. Nat Commun 2024; 15:4294. [PMID: 38769359 PMCID: PMC11106324 DOI: 10.1038/s41467-024-48015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The ability to respond to emotional events in a context-sensitive and goal-oriented manner is essential for adaptive functioning. In models of behavioral and emotion regulation, the lateral prefrontal cortex (LPFC) is postulated to maintain goal-relevant representations that promote cognitive control, an idea rarely tested with causal inference. Here, we altered mid-LPFC function in healthy individuals using a putatively inhibitory brain stimulation protocol (continuous theta burst; cTBS), followed by fMRI scanning. Participants performed the Affective Go/No-Go task, which requires goal-oriented action during affective processing. We targeted mid-LPFC (vs. a Control site) based on the individualized location of action-goal representations observed during the task. cTBS to mid-LPFC reduced action-goal representations in mid-LPFC and impaired goal-oriented action, particularly during processing of negative emotional cues. During negative-cue processing, cTBS to mid-LPFC reduced functional coupling between mid-LPFC and nodes of the default mode network, including frontopolar cortex-a region thought to modulate LPFC control signals according to internal states. Collectively, these results indicate that mid-LPFC goal-relevant representations play a causal role in governing context-sensitive cognitive control during emotional processing.
Collapse
Affiliation(s)
- R C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - M K Heckner
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
| | - A T Phan
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - A Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - M D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Pagnotta MF, Riddle J, D’Esposito M. Multiplexed Levels of Cognitive Control through Delta and Theta Neural Oscillations. J Cogn Neurosci 2024; 36:916-935. [PMID: 38319885 PMCID: PMC11284805 DOI: 10.1162/jocn_a_02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cognitive control allows behavior to be guided according to environmental contexts and internal goals. During cognitive control tasks, fMRI analyses typically reveal increased activation in frontal and parietal networks, and EEG analyses reveal increased amplitude of neural oscillations in the delta/theta band (2-3, 4-7 Hz) in frontal electrodes. Previous studies proposed that theta-band activity reflects the maintenance of rules associating stimuli to appropriate actions (i.e., the rule set), whereas delta synchrony is specifically associated with the control over the context for when to apply a set of rules (i.e., the rule abstraction). We tested these predictions using EEG and fMRI data collected during the performance of a hierarchical cognitive control task that manipulated the level of abstraction of task rules and their set-size. Our results show a clear separation of delta and theta oscillations in the control of rule abstraction and of stimulus-action associations, respectively, in distinct frontoparietal association networks. These findings support a model by which frontoparietal networks operate through dynamic, multiplexed neural processes.
Collapse
|
5
|
Liu J, Wang C, Zhang Y, Guo J, Miao P, Wei Y. Cortical structure reorganization and correlation with attention deficit in subcortical stroke: An underlying pattern analysis. Neuroimage Clin 2024; 42:103612. [PMID: 38692208 PMCID: PMC11067530 DOI: 10.1016/j.nicl.2024.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Subcortical stroke may significantly alter the cerebral cortical structure and affect attention function, but the details of this process remain unclear. The study aimed to investigate the neural substrates underlying attention impairment in patients with subcortical stroke. MATERIALS AND METHODS In this prospective observational study, two distinct datasets were acquired to identify imaging biomarkers underlying attention deficit. The first dataset consisted of 86 patients with subcortical stroke, providing a cross-sectional perspective, whereas the second comprised 108 patients with stroke, offering longitudinal insights. All statistical analyses were subjected to false discovery rate correction upon P < 0.05. RESULTS In the chronic-stage data, the stroke group exhibited significantly poorer attention function compared with that of the control group. The cortical structure analysis showed that patients with stroke exhibited decreased cortical thickness of the precentral gyrus and surface area of the cuneus, along with an increase in various frontal, occipital, and parietal cortices regions. The declined attention function positively correlated with the superior frontal gyrus cortical thickness and supramarginal gyrus surface area. In the longitudinal dataset, patients with stroke showed gradually increasing cortical thickness and surface area within regions of obvious structural reorganization. Furthermore, deficient attention positively correlated with supramarginal gyrus surface area both at the subacute and chronic stages post-stroke. CONCLUSIONS Subcortical stroke can elicit dynamic reorganization of cortical areas associated with attention impairment. Moreover, the altered surface area of the supramarginal gyrus is a potential neuroimaging biomarker for attention deficits.
Collapse
Affiliation(s)
- Jingchun Liu
- Departments of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Caihong Wang
- Departments of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Yujie Zhang
- Departments of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Guo
- Department of Radiology, Tianjin University Huanhu Hospital & Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Peifang Miao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Ying Wei
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| |
Collapse
|
6
|
Alonso MA, Díez E, Díez-Álamo AM, Fernandez A, Gómez-Ariza CJ. Transcranial direct current stimulation over the left posterior temporal lobe modulates semantic control: Evidence from episodic memory distortions. Brain Cogn 2024; 175:106130. [PMID: 38219414 DOI: 10.1016/j.bandc.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Evidence accumulates to show that semantic cognition requires, in addition to semantic representations, control processes that regulate the accessibility and use of semantic knowledge in a task- and time-appropriate fashion. Semantic control has been recently proposed to rely on a distributed network that includes the posterior temporal cortex. Along these lines, recent meta-analyses of neuroimaging data and studies with patients suffering from semantic aphasia have suggested that the left posterior middle temporal gyrus (pMTG) is critically involved whenever situational context must constrain semantic retrieval. In the present experiment, we used transcranial direct current stimulation over the left posterior temporal lobe in an attempt to interfere with semantic control while participants performed a DRM task, a procedure for inducing conceptually-based false recognition that is contingent on both activation and control processes. Paralleling findings with patients suffering from brain damage restricted to the temporoparietal cortex, anodal stimulation (relative to sham stimulation) resulted in increased false recognition but intact true recognition. These findings fit well with the idea that the left pMTG is a key component of a semantic control network, the alteration of which results in memory performance that is affected by the intrusion of contextually-inappropriate semantic information.
Collapse
Affiliation(s)
- Maria A Alonso
- Institute on Neuroscience (IUNE), University of La Laguna, Tenerife, Spain; Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| | - Emiliano Díez
- Institute on Neuroscience (IUNE), University of La Laguna, Tenerife, Spain; Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| | - Antonio M Díez-Álamo
- Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain.
| | - Angel Fernandez
- Institute on Neuroscience (IUNE), University of La Laguna, Tenerife, Spain; Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
7
|
Assem M, Shashidhara S, Glasser MF, Duncan J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. Cereb Cortex 2024; 34:bhad537. [PMID: 38244562 PMCID: PMC10839840 DOI: 10.1093/cercor/bhad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Psychology Department, Ashoka University, Sonipat, 131029, India
| | - Matthew F Glasser
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| |
Collapse
|
8
|
Vogelsang DA, Furman DJ, Nee DE, Pappas I, White RL, Kayser AS, D'Esposito M. Dopamine Modulates Effective Connectivity in Frontal Cortex. J Cogn Neurosci 2024; 36:155-166. [PMID: 37902578 DOI: 10.1162/jocn_a_02077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is increasing evidence that the left lateral frontal cortex is hierarchically organized such that higher-order regions have an asymmetric top-down influence over lower order regions. However, questions remain about the underlying neuroarchitecture of this hierarchical control organization. Within the frontal cortex, dopamine plays an important role in cognitive control functions, and we hypothesized that dopamine may preferentially influence top-down connections within the lateral frontal hierarchy. Using a randomized, double-blind, within-subject design, we analyzed resting-state fMRI data of 66 healthy young participants who were scanned once each after administration of bromocriptine (a dopamine agonist with preferential affinity for D2 receptor), tolcapone (an inhibitor of catechol-O-methyltransferase), and placebo, to determine whether dopaminergic stimulation modulated effective functional connectivity between hierarchically organized frontal regions in the left hemisphere. We found that dopaminergic drugs modulated connections from the caudal middle frontal gyrus and the inferior frontal sulcus to both rostral and caudal frontal areas. In dorsal frontal regions, effectivity connectivity strength was increased, whereas in ventral frontal regions, effective connectivity strength was decreased. These findings suggest that connections within frontal cortex are differentially modulated by dopamine, which may bias the influence that frontal regions exert over each other.
Collapse
Affiliation(s)
| | | | | | - Ioannis Pappas
- University of California
- University of Southern California
| | - Robert L White
- Washington University School of Medicine, Saint Louis, MO
| | - Andrew S Kayser
- University of California
- VA Northern California Health Care System
| | - Mark D'Esposito
- University of California
- VA Northern California Health Care System
| |
Collapse
|
9
|
Sayalı C, Rubin-McGregor J, Badre D. Policy abstraction as a predictor of cognitive effort avoidance. J Exp Psychol Gen 2023; 152:3440-3458. [PMID: 37616076 PMCID: PMC10840644 DOI: 10.1037/xge0001449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Consistent evidence has established that people avoid cognitively effortful tasks. However, the features that make a task cognitively effortful are still not well understood. Multiple hypotheses have been proposed regarding which task demands underlie cognitive effort costs, such as time-on-task, error likelihood, and the general engagement of cognitive control. In this study, we test the novel hypothesis that tasks requiring behavior according to higher degrees of policy abstraction are experienced as more effortful. Accordingly, policy abstraction, operationalized as the levels of contextual contingency required by task rules, drives task avoidance over and above the effects of task performance, such as time-on-task or error likelihood. To test this hypothesis, we combined two previously established cognitive control tasks that parametrically manipulated policy abstraction with the demand selection task procedure. The design of these tasks allowed us to test whether people avoided tasks with higher order policy abstraction while controlling for the contribution of factors such as time-on-task and expected error rate (ER). Consistent with our hypothesis, we observed that policy abstraction was the strongest predictor of cognitive effort choices, followed by ER. This was evident across both studies and in a within-subject cross-study analysis. These results establish at least one task feature independent of performance, which is predictive of task avoidance behavior. We interpret these results within an opportunity cost framework for understanding aversive experiences of cognitive effort while performing a task. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences
- Carney Institute for Brain Science, Brown University
| |
Collapse
|
10
|
Arif Y, Wiesman AI, Christopher-Hayes N, Okelberry HJ, Johnson HJ, Willett MP, Wilson TW. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants. Neuroimage 2023; 280:120351. [PMID: 37659656 PMCID: PMC10545948 DOI: 10.1016/j.neuroimage.2023.120351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
11
|
Lande NM, Ask TF, Sætren SS, Lugo RG, Sütterlin S. The Role of Emotion Regulation for General Self-Efficacy in Adolescents Assessed Through Both Neurophysiological and Self-Reported Measures. Psychol Res Behav Manag 2023; 16:3373-3383. [PMID: 37650113 PMCID: PMC10464900 DOI: 10.2147/prbm.s406702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Background Self-efficacy, the belief in one's ability and capacity to organize and execute actions required to achieve desired results, is associated with adolescent academic achievement and reduced risk for psychopathology. Adolescent emotion regulation represents an important component in the relationship between self-efficacy and developmental outcomes, but the underlying neurophysiological mechanisms are poorly understood. It is unclear how emotion regulation strategies, which change with experience, and emotion regulation capacity, which is largely determined by genetics, contribute to the development of self-efficacy. Aim The present study aims to explore the relationship between emotion regulation and self-efficacy in adolescents. We hypothesize that neurophysiological emotion regulation capacity moderates the relationship between emotion regulation strategies and self-efficacy. Methods The present study applied a cross-sectional design. A sample of high-school students (N = 45, nfemale = 31, age = 17-18) provided answers on the General Self-Efficacy Questionnaire and the Emotion Regulation Questionnaire. Vagal tone was used as an indicator for emotion regulation capacity. Results In the initial correlational analysis, reappraisal, but not expressive suppression nor vagal tone was associated with self-efficacy. Vagal tone was not associated with any self-report measures of emotion regulation or self-efficacy. Contrary to our hypothesis, vagal tone did not moderate the relationship between emotion regulation and self-efficacy. Conclusion This is the first study assessing the relationship between neurophysiological indicators of emotion regulation and self-efficacy. Our results do not indicate that vagal tone moderates the relationship between emotion regulation strategies and general self-efficacy. Future studies should also assess the possible influence of metacognition and interoception on relationships.
Collapse
Affiliation(s)
| | - Torvald F Ask
- Department of Health, Welfare and Organization, Østfold University College, Halden, Norway
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Sjur Skjørshammer Sætren
- Department for Child and Adolescent Research, Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
- TIPS Centre for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
| | - Ricardo Gregorio Lugo
- Department of Health, Welfare and Organization, Østfold University College, Halden, Norway
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
- Centre for Digital Forensics and Cybersecurity, Tallinn University of Technology, Tallinn, Estonia
| | - Stefan Sütterlin
- Department of Health, Welfare and Organization, Østfold University College, Halden, Norway
- Centre for Digital Forensics and Cybersecurity, Tallinn University of Technology, Tallinn, Estonia
- Faculty of Computer Science, Albstadt-Sigmaringen University, Sigmaringen, Germany
| |
Collapse
|
12
|
Yang Y, Dai Y, He Q, Wang S, Chen X, Geng X, He J, Duan F. Altered brain functional connectivity in vegetative state and minimally conscious state. Front Aging Neurosci 2023; 15:1213904. [PMID: 37469954 PMCID: PMC10352323 DOI: 10.3389/fnagi.2023.1213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Objectives The pathological mechanism for a disorder of consciousness (DoC) is still not fully understood. Based on traditional behavioral scales, there is a high rate of misdiagnosis for subtypes of DoC. We aimed to explore whether topological characterization may explain the pathological mechanisms of DoC and be effective in diagnosing the subtypes of DoC. Methods Using resting-state functional magnetic resonance imaging data, the weighted brain functional networks for normal control subjects and patients with vegetative state (VS) and minimally conscious state (MCS) were constructed. Global and local network characteristics of each group were analyzed. A support vector machine was employed to identify MCS and VS patients. Results The average connection strength was reduced in DoC patients and roughly equivalent in MCS and VS groups. Global efficiency, local efficiency, and clustering coefficients were reduced, and characteristic path length was increased in DoC patients (p < 0.05). For patients of both groups, global network measures were not significantly different (p > 0.05). Nodal efficiency, nodal local efficiency, and nodal clustering coefficient were reduced in frontoparietal brain areas, limbic structures, and occipital and temporal brain areas (p < 0.05). The comparison of nodal centrality suggested that DoC causes reorganization of the network structure on a large scale, especially the thalamus. Lobal network measures emphasized that the differences between the two groups of patients mainly involved frontoparietal brain areas. The accuracy, sensitivity, and specificity of the classifier for identifying MCS and VS patients were 89.83, 78.95, and 95%, respectively. Conclusion There is an association between altered network structures and clinical symptoms of DoC. With the help of network metrics, it is feasible to differentiate MCS and VS patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yangyang Dai
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Duan
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Yu X, Zhou Z, Becker SI, Boettcher SEP, Geng JJ. Good-enough attentional guidance. Trends Cogn Sci 2023; 27:391-403. [PMID: 36841692 DOI: 10.1016/j.tics.2023.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/27/2023]
Abstract
Theories of attention posit that attentional guidance operates on information held in a target template within memory. The template is often thought to contain veridical target features, akin to a photograph, and to guide attention to objects that match the exact target features. However, recent evidence suggests that attentional guidance is highly flexible and often guided by non-veridical features, a subset of features, or only associated features. We integrate these findings and propose that attentional guidance maximizes search efficiency based on a 'good-enough' principle to rapidly localize candidate target objects. Candidates are then serially interrogated to make target-match decisions using more precise information. We suggest that good-enough guidance optimizes the speed-accuracy-effort trade-offs inherent in each stage of visual search.
Collapse
Affiliation(s)
- Xinger Yu
- Center for Mind and Brain, University of California Davis, Davis, CA, USA; Department of Psychology, University of California Davis, Davis, CA, USA
| | - Zhiheng Zhou
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Stefanie I Becker
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | | | - Joy J Geng
- Center for Mind and Brain, University of California Davis, Davis, CA, USA; Department of Psychology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
14
|
Fornaro S, Vallesi A. Functional connectivity abnormalities of brain networks in obsessive–compulsive disorder: a systematic review. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive abnormalities encompassing several executive processes. Neuroimaging studies highlight functional abnormalities of executive fronto-parietal network (FPN) and default-mode network (DMN) in OCD patients, as well as of the prefrontal cortex (PFC) more specifically. We aim at assessing the presence of functional connectivity (FC) abnormalities of intrinsic brain networks and PFC in OCD, possibly underlying specific computational impairments and clinical manifestations. A systematic review of resting-state fMRI studies investigating FC was conducted in unmedicated OCD patients by querying three scientific databases (PubMed, Scopus, PsycInfo) up to July 2022 (search terms: “obsessive–compulsive disorder” AND “resting state” AND “fMRI” AND “function* *connect*” AND “task-positive” OR “executive” OR “central executive” OR “executive control” OR “executive-control” OR “cognitive control” OR “attenti*” OR “dorsal attention” OR “ventral attention” OR “frontoparietal” OR “fronto-parietal” OR “default mode” AND “network*” OR “system*”). Collectively, 20 studies were included. A predominantly reduced FC of DMN – often related to increased symptom severity – emerged. Additionally, intra-network FC of FPN was predominantly increased and often positively related to clinical scores. Concerning PFC, a predominant hyper-connectivity of right-sided prefrontal links emerged. Finally, FC of lateral prefrontal areas correlated with specific symptom dimensions. Several sources of heterogeneity in methodology might have affected results in unpredictable ways and were discussed. Such findings might represent endophenotypes of OCD manifestations, possibly reflecting computational impairments and difficulties in engaging in self-referential processes or in disengaging from cognitive control and monitoring processes.
Collapse
|
15
|
Wood JL, Nee DE. Cingulo-Opercular Subnetworks Motivate Frontoparietal Subnetworks during Distinct Cognitive Control Demands. J Neurosci 2023; 43:1225-1237. [PMID: 36609452 PMCID: PMC9962782 DOI: 10.1523/jneurosci.1314-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Cognitive control is the ability to flexibly adapt behavior in a goal-directed manner when habit will not suffice. Control can be separated into distinct forms based on the timescale (present-future) and/or medium (external-internal) over which it operates. Both the frontoparietal network (FPN) and cingulo-opercular network (CON) are engaged during control, but their respective functions and interactions remain unclear. Here, we examined activations in the FPN and CON with fMRI in humans (male and female) during a task that manipulated control across timescales/mediums. The findings show that the CON can be distinguished into the following two separable subnetworks mirroring the FPN: a rostral/ventral subnetwork sensitive to future-oriented control involving internal representations, and a caudal/dorsal subnetwork sensitive to present-oriented control involving external representations. Relative to the FPN, activation in the CON was particularly pronounced during transitions into and out of particular control demands. Moreover, the relationship of each CON subnetwork to behavior was mediated by a respective FPN subnetwork. Such data are consistent with the idea that the CON motivates the FPN, which, in turn, drives behavior. Within the CON, the dorsomedial prefrontal cortex (dmPFC) mediated the relationship between the anterior insula and FPN, suggesting that the dmPFC acts as the crux that links the CON to the FPN. Collectively, these data indicate that parallel CON-FPN subnetworks mediate controlled behaviors at distinct timescales/mediums.SIGNIFICANCE STATEMENT The cingulo-opercular network (CON) and frontoparietal network (FPN) are engaged in diverse, demanding tasks. A functional model describing how areas within these networks can be distinguished, and also interact, would facilitate understanding of how the brain adapts to demanding situations. During a comprehensive control task, fMRI data revealed that the FPN and CON can be fractionated into subnetworks based on control demands that are either externally oriented for use in the present, or control demands that operate internally to guide future behavior. Moreover, we found evidence for a chain of relationships from the CON to FPN to behavior consistent with the idea that the CON drives the FPN to adapt behavior.
Collapse
Affiliation(s)
- Jessica L Wood
- Department of Psychology, Florida State University, Tallahassee, Florida 32306-4301
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, Florida 32306-4301
| |
Collapse
|
16
|
Castro MN, Bocaccio H, De Pino G, Sánchez SM, Wainsztein AE, Drucaroff L, Costanzo EY, Crossley NA, Villarreal MF, Guinjoan SM. Abnormal brain network community structure related to psychological stress in schizophrenia. Schizophr Res 2023; 254:42-53. [PMID: 36801513 DOI: 10.1016/j.schres.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
Recent functional imaging studies in schizophrenia consistently report a disruption of brain connectivity. However, most of these studies analyze the brain connectivity during resting state. Since psychological stress is a major factor for the emergence of psychotic symptoms, we sought to characterize the brain connectivity reconfiguration induced by stress in schizophrenia. We tested the hypothesis that an alteration of the brain's integration-segregation dynamic could be the result of patients with schizophrenia facing psychological stress. To this end, we studied the modular organization and the reconfiguration of networks induced by a stress paradigm in forty subjects (twenty patients and twenty controls), thus analyzing the dynamics of the brain in terms of integration and segregation processes by using 3T-fMRI. Patients with schizophrenia did not show statistically significant differences during the control task compared with controls, but they showed an abnormal community structure during stress condition and an under-connected reconfiguration network with a reduction of hub nodes, suggesting a deficit of integration dynamic with a greater compromise of the right hemisphere. These results provide evidence that schizophrenia has a normal response to undemanding stimuli but shows a disruption of brain functional connectivity between key regions involved in stress response, potentially leading to altered functional brain dynamics by reducing integration capacity and showing deficits recruiting right hemisphere regions. This could in turn underlie the hyper-sensitivity to stress characteristic of schizophrenia.
Collapse
Affiliation(s)
- Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Hernán Bocaccio
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fleni, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina
| | - Stella M Sánchez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina
| | - Agustina E Wainsztein
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Lucas Drucaroff
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Elsa Y Costanzo
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Nicolás A Crossley
- Departamento de Psiquiatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, USA; Department of Psychiatry, Health Sciences Center, Oklahoma University, Tulsa, Oklahoma, USA
| |
Collapse
|
17
|
Neural substrates of continuous and discrete inhibitory control. Transl Psychiatry 2023; 13:23. [PMID: 36693831 PMCID: PMC9873791 DOI: 10.1038/s41398-022-02295-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Inhibitory control dysfunctions play an important role in psychiatric disorders but the precise nature of these dysfunctions is still not well understood. Advances in computational modeling of real-time motor control using a proportion-integral-derivative (PID) control framework have parsed continuous motor inhibition into a preemptive drive component (signified by the Kp parameter) and a reactive damping component (signified by the Kd parameter). This investigation examined the relationship between inhibitory control processing during a stop signal task and continuous motor control during a simulated one-dimensional driving task in a transdiagnostic sample of participants. A transdiagnostic psychiatric sample of 492 individuals completed a stop signal task during functional magnetic resonance imaging and a simple behavioral motor control task, which was modeled using the PID framework. We examined associations between the Kp and Kd parameters and behavioral indices as well as neural activation on the stop signal task. Individuals with higher damping, controlling for a drive, on the driving task exhibited relatively less strategic adjustment after a stop trial (indexed by the difference in go trial reaction time and by stop trial accuracy) on the stop signal task. Individuals with higher damping, controlling for a drive, additionally exhibited increased activity in the frontal and parietal regions as well as the insula and caudate during response inhibition on the stop signal task. The results suggest that computational indices of motor control performance may serve as behavioral markers of the functioning of neural systems involved in inhibitory control.
Collapse
|
18
|
Ask TF, Knox BJ, Lugo RG, Helgetun I, Sütterlin S. Neurophysiological and emotional influences on team communication and metacognitive cyber situational awareness during a cyber engineering exercise. Front Hum Neurosci 2023; 16:1092056. [PMID: 36684840 PMCID: PMC9850429 DOI: 10.3389/fnhum.2022.1092056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Cyber operations unfold at superhuman speeds where cyber defense decisions are based on human-to-human communication aiming to achieve a shared cyber situational awareness. The recently proposed Orient, Locate, Bridge (OLB) model suggests a three-phase metacognitive approach for successful communication of cyber situational awareness for good cyber defense decision-making. Successful OLB execution implies applying cognitive control to coordinate self-referential and externally directed cognitive processes. In the brain, this is dependent on the frontoparietal control network and its connectivity to the default mode network. Emotional reactions may increase default mode network activity and reduce attention allocation to analytical processes resulting in sub-optimal decision-making. Vagal tone is an indicator of activity in the dorsolateral prefrontal node of the frontoparietal control network and is associated with functional connectivity between the frontoparietal control network and the default mode network. Aim: The aim of the present study was to assess whether indicators of neural activity relevant to the processes outlined by the OLB model were related to outcomes hypothesized by the model. Methods: Cyber cadets (N = 36) enrolled in a 3-day cyber engineering exercise organized by the Norwegian Defense Cyber Academy participated in the study. Differences in prospective metacognitive judgments of cyber situational awareness, communication demands, and mood were compared between cyber cadets with high and low vagal tone. Vagal tone was measured at rest prior to the exercise. Affective states, communication demands, cyber situational awareness, and metacognitive accuracy were measured on each day of the exercise. Results: We found that cyber cadets with higher vagal tone had better metacognitive judgments of cyber situational awareness, imposed fewer communication demands on their teams, and had more neutral moods compared to cyber cadets with lower vagal tone. Conclusion: These findings provide neuroergonomic support for the OLB model and suggest that it may be useful in education and training. Future studies should assess the effect of OLB-ing as an intervention on communication and performance.
Collapse
Affiliation(s)
- Torvald F. Ask
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
- Faculty for Health, Welfare and Organization, Østfold University College, Halden, Norway
| | - Benjamin J. Knox
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
- Faculty for Health, Welfare and Organization, Østfold University College, Halden, Norway
- Norwegian Armed Forces Cyber Defense, Lillehammer, Norway
| | - Ricardo G. Lugo
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
- Faculty for Health, Welfare and Organization, Østfold University College, Halden, Norway
| | - Ivar Helgetun
- Norwegian Defense University College, Cyber Academy, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty for Health, Welfare and Organization, Østfold University College, Halden, Norway
- Faculty of Computer Science, Albstadt-Sigmaringen University, Sigmaringen, Germany
- Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
19
|
DiNicola LM, Ariyo OI, Buckner RL. Functional specialization of parallel distributed networks revealed by analysis of trial-to-trial variation in processing demands. J Neurophysiol 2023; 129:17-40. [PMID: 36197013 PMCID: PMC9799157 DOI: 10.1152/jn.00211.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple large-scale networks populate human association cortex. Here, we explored the functional properties of these networks by exploiting trial-to-trial variation in component-processing demands. In two behavioral studies (n = 136 and n = 238), participants quantified strategies used to solve individual task trials that spanned remembering, imagining future scenarios, and various control trials. These trials were also all scanned in an independent sample of functional MRI participants (n = 10), each with sufficient data to precisely define within-individual networks. Stable latent factors varied across trials and correlated with trial-level functional responses selectively across networks. One network linked to parahippocampal cortex, labeled Default Network A (DN-A), tracked scene construction, including for control trials that possessed minimal episodic memory demands. To the degree, a trial encouraged participants to construct a mental scene with imagery and awareness about spatial locations of objects or places, the response in DN-A increased. The juxtaposed Default Network B (DN-B) showed no such response but varied in relation to social processing demands. Another adjacent network, labeled Frontoparietal Network B (FPN-B), robustly correlated with trial difficulty. These results support that DN-A and DN-B are specialized networks differentially supporting information processing within spatial and social domains. Both networks are dissociable from a closely juxtaposed domain-general control network that tracks cognitive effort.NEW & NOTEWORTHY Tasks shown to differentially recruit parallel association networks are multifaceted, leaving open questions about network processes. Here, examining trial-to-trial network response properties in relation to trial traits reveals new insights into network functions. In particular, processes linked to scene construction selectively recruit a distributed network with links to parahippocampal and retrosplenial cortices, including during trials designed not to rely on the personal past. Adjacent networks show distinct patterns, providing novel evidence of functional specialization.
Collapse
Affiliation(s)
- Lauren M. DiNicola
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Oluwatobi I. Ariyo
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Randy L. Buckner
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts,2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts,3Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
20
|
Hwang K, Shine JM, Cole MW, Sorenson E. Thalamocortical contributions to cognitive task activity. eLife 2022; 11:e81282. [PMID: 36537658 PMCID: PMC9799971 DOI: 10.7554/elife.81282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are associated with multi-domain behavioral impairments in language, memory, and executive functions. Here, we show how task-evoked thalamic activity is organized to support these broad cognitive abilities. We analyzed functional magnetic resonance imaging (MRI) data from human subjects that performed 127 tasks encompassing a broad range of cognitive representations. We first investigated the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that are suggestive of broad functional participation. These thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outperformed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation result was further supported by profiles of neuropsychological impairments in human patients with focal thalamic lesions. In summary, our results suggest a general organizational principle of how the human thalamocortical system supports cognitive task activity.
Collapse
Affiliation(s)
- Kai Hwang
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
- Department of Psychiatry, University of IowaIowa CityUnited States
| | - James M Shine
- Brain and Mind Center, University of SydneySydneyAustralia
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-NewarkNewarkUnited States
| | - Evan Sorenson
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Psychiatry, University of IowaIowa CityUnited States
| |
Collapse
|
21
|
Hogeveen J, Medalla M, Ainsworth M, Galeazzi JM, Hanlon CA, Mansouri FA, Costa VD. What Does the Frontopolar Cortex Contribute to Goal-Directed Cognition and Action? J Neurosci 2022; 42:8508-8513. [PMID: 36351824 PMCID: PMC9665930 DOI: 10.1523/jneurosci.1143-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the unique functions of different subregions of primate prefrontal cortex has been a longstanding goal in cognitive neuroscience. Yet, the anatomy and function of one of its largest subregions (the frontopolar cortex) remain enigmatic and underspecified. Our Society for Neuroscience minisymposium Primate Frontopolar Cortex: From Circuits to Complex Behaviors will comprise a range of new anatomic and functional approaches that have helped to clarify the basic circuit anatomy of the frontal pole, its functional involvement during performance of cognitively demanding behavioral paradigms in monkeys and humans, and its clinical potential as a target for noninvasive brain stimulation in patients with brain disorders. This review consolidates knowledge about the anatomy and connectivity of frontopolar cortex and provides an integrative summary of its function in primates. We aim to answer the question: what, if anything, does frontopolar cortex contribute to goal-directed cognition and action?
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University, Boston, MA 02118
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Juan M Galeazzi
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Colleen A Hanlon
- Department of Cancer Biology
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Farshad Alizadeh Mansouri
- Department of Physiology, Monash Biomedicine Discovery Institute, Clayton Victoria, 3800, Australia
- ARC Centre for Integrative Brain Function, Monash University, Clayton Victoria, 3800, Australia
| | - Vincent D Costa
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006
| |
Collapse
|
22
|
Cookson SL, D'Esposito M. Evaluating the reliability, validity, and utility of overlapping networks: Implications for network theories of cognition. Hum Brain Mapp 2022; 44:1030-1045. [PMID: 36317718 PMCID: PMC9875920 DOI: 10.1002/hbm.26134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 10/17/2022] [Indexed: 01/26/2023] Open
Abstract
Brain network definitions typically assume nonoverlap or minimal overlap, ignoring regions' connections to multiple networks. However, new methods are emerging that emphasize network overlap. Here, we investigated the reliability and validity of one assignment method, the mixed membership algorithm, and explored its potential utility for identifying gaps in existing network models of cognition. We first assessed between-sample reliability of overlapping assignments with a split-half design; a bootstrapped Dice similarity analysis demonstrated good agreement between the networks from the two subgroups. Next, we assessed whether overlapping networks captured expected nonoverlapping topographies; overlapping networks captured portions of one to three nonoverlapping topographies, which aligned with canonical network definitions. Following this, a relative entropy analysis showed that a majority of regions participated in more than one network, as is seen biologically, and many regions did not show preferential connection to any one network. Finally, we explored overlapping network membership in regions of the dual-networks model of cognitive control, showing that almost every region was a member of multiple networks. Thus, the mixed membership algorithm produces consistent and biologically plausible networks, which presumably will allow for the development of more complete network models of cognition.
Collapse
Affiliation(s)
- Savannah L. Cookson
- Helen Wills Neuroscience InstituteUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Mark D'Esposito
- Helen Wills Neuroscience InstituteUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
23
|
Pitts M, Nee DE. Generalizing the control architecture of the lateral prefrontal cortex. Neurobiol Learn Mem 2022; 195:107688. [PMID: 36265793 PMCID: PMC11514053 DOI: 10.1016/j.nlm.2022.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022]
Abstract
Cognitive control guides non-habitual, goal directed behaviors allowing us to flexibly adapt to ongoing demands. Previous work has suggested that multiple cognitive control processes exist that can be classed according to their action on present-oriented/external information versus future-oriented/internal information. These processes can be mapped onto the lateral prefrontal cortex (LPFC) such that increasingly rostral areas are involved in increasingly future-oriented/internal control processes. Whether and how such processes are organized to support goal-directed behavior remains unclear. On the one hand, the LPFC may flexibly adapt based upon demands. On the other hand, there may be a consistent control architecture such as a control hierarchy that generalizes across demands. Previous work using fMRI in humans during a comprehensive control task that engaged several control processes at once found that an area in mid-LPFC consistently exerted widespread influence throughout the LPFC. These data suggested that the mid-LPFC forms an apex of a putative control hierarchy. However, whether such an architecture generalizes across tasks remains to be tested. Here, we utilized a modified comprehensive control task designed to alter how control processes influence one another to test the generalizability of the LPFC control architecture. Univariate fMRI activations revealed distinct control-related activations relative to past work. Despite these changes, effective connectivity modeling revealed a directed architecture similar to previous findings with the mid-LPFC exerting the most widespread influences throughout LPFC. These results suggest that the fundamental control architecture of the LPFC is relatively fixed, and that different demands are accommodated through modulations of this fixed architecture.
Collapse
Affiliation(s)
- McKinney Pitts
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301, United States
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301, United States.
| |
Collapse
|
24
|
Xia H, He Q, Chen A. Understanding cognitive control in aging: A brain network perspective. Front Aging Neurosci 2022; 14:1038756. [PMID: 36389081 PMCID: PMC9659905 DOI: 10.3389/fnagi.2022.1038756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive control decline is a major manifestation of brain aging that severely impairs the goal-directed abilities of older adults. Magnetic resonance imaging evidence suggests that cognitive control during aging is associated with altered activation in a range of brain regions, including the frontal, parietal, and occipital lobes. However, focusing on specific regions, while ignoring the structural and functional connectivity between regions, may impede an integrated understanding of cognitive control decline in older adults. Here, we discuss the role of aging-related changes in functional segregation, integration, and antagonism among large-scale networks. We highlight that disrupted spontaneous network organization, impaired information co-processing, and enhanced endogenous interference promote cognitive control declines during aging. Additionally, in older adults, severe damage to structural network can weaken functional connectivity and subsequently trigger cognitive control decline, whereas a relatively intact structural network ensures the compensation of functional connectivity to mitigate cognitive control impairment. Thus, we propose that age-related changes in functional networks may be influenced by structural networks in cognitive control in aging (CCA). This review provided an integrative framework to understand the cognitive control decline in aging by viewing the brain as a multimodal networked system.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
25
|
Serrarens C, Kashyap S, Riveiro-Lago L, Otter M, Campforts BCM, Stumpel CTRM, Jansma H, Linden DEJ, van Amelsvoort TAMJ, Vingerhoets C. Resting-state functional connectivity in adults with 47,XXX: a 7 Tesla MRI study. Cereb Cortex 2022; 33:5210-5217. [PMID: 36255323 PMCID: PMC10151873 DOI: 10.1093/cercor/bhac410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Triple X syndrome is a sex chromosomal aneuploidy characterized by the presence of a supernumerary X chromosome, resulting in a karyotype of 47,XXX in affected females. It has been associated with a variable cognitive, behavioral, and psychiatric phenotype, but little is known about its effects on brain function. We therefore conducted 7 T resting-state functional magnetic resonance imaging and compared data of 19 adult individuals with 47,XXX and 21 age-matched healthy control women using independent component analysis and dual regression. Additionally, we examined potential relationships between social cognition and social functioning scores, and IQ, and mean functional connectivity values. The 47,XXX group showed significantly increased functional connectivity of the fronto-parietal resting-state network with the right postcentral gyrus. Resting-state functional connectivity (rsFC) variability was not associated with IQ and social cognition and social functioning deficits in the participants with 47,XXX. We thus observed an effect of a supernumerary X chromosome in adult women on fronto-parietal rsFC. These findings provide additional insight into the role of the X chromosome on functional connectivity of the brain. Further research is needed to understand the clinical implications of altered rsFC in 47,XXX.
Collapse
Affiliation(s)
- Chaira Serrarens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands.,Techna Institute, University Health Network, Toronto, M5G 2C4, Canada
| | - Laura Riveiro-Lago
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Maarten Otter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,Medical Department, SIZA, Arnhem, 6800 AM, The Netherlands.,Department of Community Mental Health in Mild Intellectual Disabilities, Trajectum, Zutphen, 7202 AG, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, 6229 ER, The Netherlands
| | - Henk Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,'s Heeren Loo Zorggroep, Amersfoort, 3818 LA, The Netherlands
| |
Collapse
|
26
|
Abdallah M, Zanitti GE, Iovene V, Wassermann D. Functional gradients in the human lateral prefrontal cortex revealed by a comprehensive coordinate-based meta-analysis. eLife 2022; 11:e76926. [PMID: 36169404 PMCID: PMC9578708 DOI: 10.7554/elife.76926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LPFC) of humans enables flexible goal-directed behavior. However, its functional organization remains actively debated after decades of research. Moreover, recent efforts aiming to map the LPFC through meta-analysis are limited, either in scope or in the inferred specificity of structure-function associations. These limitations are in part due to the limited expressiveness of commonly-used data analysis tools, which restricts the breadth and complexity of questions that can be expressed in a meta-analysis. Here, we adopt NeuroLang, a novel approach to more expressive meta-analysis based on probabilistic first-order logic programming, to infer the organizing principles of the LPFC from 14,371 neuroimaging studies. Our findings reveal a rostrocaudal and a dorsoventral gradient, respectively explaining the most and second most variance in meta-analytic connectivity across the LPFC. Moreover, we identify a unimodal-to-transmodal spectrum of coactivation patterns along with a concrete-to-abstract axis of structure-function associations extending from caudal to rostral regions of the LPFC. Finally, we infer inter-hemispheric asymmetries along the principal rostrocaudal gradient, identifying hemisphere-specific associations with topics of language, memory, response inhibition, and sensory processing. Overall, this study provides a comprehensive meta-analytic mapping of the LPFC, grounding future hypothesis generation on a quantitative overview of past findings.
Collapse
Affiliation(s)
- Majd Abdallah
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Gaston E Zanitti
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Valentin Iovene
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Demian Wassermann
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| |
Collapse
|
27
|
Vaidya AR, Badre D. Abstract task representations for inference and control. Trends Cogn Sci 2022; 26:484-498. [DOI: 10.1016/j.tics.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|
28
|
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022; 47:72-89. [PMID: 34408280 PMCID: PMC8617292 DOI: 10.1038/s41386-021-01132-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 199.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Concepts of cognitive control (CC) and executive function (EF) are defined in terms of their relationships with goal-directed behavior versus habits and controlled versus automatic processing, and related to the functions of the prefrontal cortex (PFC) and related regions and networks. A psychometric approach shows unity and diversity in CC constructs, with 3 components in the most commonly studied constructs: general or common CC and components specific to mental set shifting and working memory updating. These constructs are considered against the cellular and systems neurobiology of PFC and what is known of its functional neuroanatomical or network organization based on lesioning, neurochemical, and neuroimaging approaches across species. CC is also considered in the context of motivation, as "cool" and "hot" forms. Its Common CC component is shown to be distinct from general intelligence (g) and closely related to response inhibition. Impairments in CC are considered as possible causes of psychiatric symptoms and consequences of disorders. The relationships of CC with the general factor of psychopathology (p) and dimensional constructs such as impulsivity in large scale developmental and adult populations are considered, as well as implications for genetic studies and RDoC approaches to psychiatric classification.
Collapse
Affiliation(s)
- Naomi P Friedman
- Department of Psychology & Neuroscience and Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Xiao Z, Chen Z, Chen W, Gao W, He L, Wang Q, Lei X, Qiu J, Feng T, Chen H, Turel O, Bechara A, He Q. OUP accepted manuscript. Cereb Cortex 2022; 32:4605-4618. [PMID: 35059700 PMCID: PMC9383225 DOI: 10.1093/cercor/bhab505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/14/2022] Open
Abstract
The Coronavirus disease of 2019 (COVID-19) and measures to curb it created population-level changes in male-dominant impulsive and risky behaviors such as violent crimes and gambling. One possible explanation for this is that the pandemic has been stressful, and males, more so than females, tend to respond to stress by altering their focus on immediate versus delayed rewards, as reflected in their delay discounting rates. Delay discounting rates from healthy undergraduate students were collected twice during the pandemic. Discounting rates of males (n=190) but not of females (n=493) increased during the pandemic. Using machine learning, we show that prepandemic functional connectome predict increased discounting rates in males (n=88). Moreover, considering that delay discounting is associated with multiple psychiatric disorders, we found the same neural pattern that predicted increased discounting rates in this study, in secondary datasets of patients with major depression and schizophrenia. The findings point to sex-based differences in maladaptive delay discounting under real-world stress events, and to connectome-based neuromarkers of such effects. They can explain why there was a population-level increase in several impulsive and risky behaviors during the pandemic and point to intriguing questions about the shared underlying mechanisms of stress responses, psychiatric disorders and delay discounting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qinghua He
- Address correspondence to Qinghua He, Faculty of Psychology, Southwest University, 2 Tiansheng Road, 400715 Chongqing, China. , Tel: +86-13647691390
| |
Collapse
|