1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
3
|
Dagunts A, Adoff H, Novy B, Maria MD, Lobingier BT. Retromer Opposes Opioid-Induced Downregulation of the Mu Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626482. [PMID: 39677727 PMCID: PMC11642924 DOI: 10.1101/2024.12.02.626482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The mu opioid receptor (MOR) is protected from opioid-induced trafficking to lysosomes and proteolytic downregulation by its ability to access the endosomal recycling pathway through its C-terminal recycling motif, LENL. MOR sorting towards the lysosome results in downregulation of opioid signaling while recycling of MOR to the plasma membrane preserves signaling function. However, the mechanisms by which LENL promotes MOR recycling are unknown, and this sequence does not match any known consensus recycling motif. Here we took a functional genomics approach with a comparative genome-wide screen design to identify genes which control opioid receptor expression and downregulation. We identified 146 hits including all three subunits of the endosomal Retromer complex. We show that the LENL motif in MOR is a novel Retromer recycling motif and that LENL is a necessary, sufficient, and conserved mechanism to give MOR access to the Retromer recycling pathway and protect MOR from agonist-induced downregulation to multiple clinically relevant opioids including fentanyl and methadone.
Collapse
Affiliation(s)
- Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Jang W, Senarath K, Feinberg G, Lu S, Lambert NA. Visualization of endogenous G proteins on endosomes and other organelles. eLife 2024; 13:RP97033. [PMID: 39514269 PMCID: PMC11548881 DOI: 10.7554/elife.97033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Classical G-protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap, we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20-30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial-trans Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.
Collapse
Affiliation(s)
- Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Kanishka Senarath
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Gavin Feinberg
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Sumin Lu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| |
Collapse
|
5
|
Ripoll L, Li Y, Dessauer CW, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. Nat Commun 2024; 15:8297. [PMID: 39333071 PMCID: PMC11436756 DOI: 10.1038/s41467-024-52575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The cAMP cascade is increasingly recognized to transduce physiological effects locally through spatially limited cAMP gradients. However, little is known about how adenylyl cyclase enzymes that initiate cAMP gradients are localized. Here we address this question in physiologically relevant striatal neurons and investigate how AC localization impacts downstream signaling function. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that one isoform, AC9, is uniquely concentrated in endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We further show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we provide evidence that endosomal localization enables AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. Together, these results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream PKA signaling to the nucleus.
Collapse
Affiliation(s)
- Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Walid MKI, Rahman S, Smith EA. Reciprocal effect on lateral diffusion of receptor for advanced glycation endproducts and toll-like receptor 4 in the HEK293 cell membrane. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:327-338. [PMID: 39066956 DOI: 10.1007/s00249-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Receptor for advanced glycation endproducts (RAGE) and toll-like receptor 4 (TLR4) are pattern-recognition receptors that bind to molecular patterns associated with pathogens, stress, and cellular damage. Diffusion plays an important role in receptor functionality in the cell membrane. However, there has been no prior investigation of the reciprocal effect of RAGE and TLR4 diffusion properties in the presence and absence of each receptor. This study reports how RAGE and TLR4 affect the mobility of each other in the human embryonic kidney (HEK) 293 cell membrane. Diffusion properties were measured using single-particle tracking (SPT) with quantum dots (QDs) that are selectively attached to RAGE or TLR4. The Brownian diffusion coefficients of RAGE and TLR4 are affected by the presence of the other receptor, leading to similar diffusion coefficients when both receptors coexist in the cell. When TLR4 is present, the average Brownian diffusion coefficient of RAGE increases by 40%, while the presence of RAGE decreases the average Brownian diffusion coefficient of TLR4 by 32%. Diffusion in confined membrane domains is not altered by the presence of the other receptor. The mobility of the cell membrane lipid remains constant whether one or both receptors are present. Overall, this work shows that the presence of each receptor can affect a subset of diffusion properties of the other receptor without affecting the mobility of the membrane.
Collapse
Affiliation(s)
| | - Sharifur Rahman
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Jang W, Senarath K, Feinberg G, Lu S, Lambert NA. Visualization of endogenous G proteins on endosomes and other organelles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583500. [PMID: 38496652 PMCID: PMC10942389 DOI: 10.1101/2024.03.05.583500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Classical G protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20-30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.
Collapse
|
8
|
Cattani-Cavalieri I, Trombetta-Lima M, Yan H, Manzano-Covarrubias AL, Baarsma HA, Oun A, van der Veen MM, Oosterhout E, Dolga AM, Ostrom RS, Valenca SS, Schmidt M. Diesel exhaust particles alter mitochondrial bioenergetics and cAMP producing capacity in human bronchial epithelial cells. FRONTIERS IN TOXICOLOGY 2024; 6:1412864. [PMID: 39118833 PMCID: PMC11306203 DOI: 10.3389/ftox.2024.1412864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown. Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24-72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function. Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, β2-adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (β2-AR agonist) or PGE2 (EPR agonist). Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ana L. Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hoeke A. Baarsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | | | - Emily Oosterhout
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Samuel Santos Valenca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Klauer MJ, Willette BKA, Tsvetanova NG. Functional diversification of cell signaling by GPCR localization. J Biol Chem 2024; 300:105668. [PMID: 38272232 PMCID: PMC10882132 DOI: 10.1016/j.jbc.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a critical class of regulators of mammalian physiology. Also known as seven transmembrane receptors (7TMs), GPCRs are ubiquitously expressed and versatile, detecting a diverse set of endogenous stimuli, including odorants, neurotransmitters, hormones, peptides, and lipids. Accordingly, GPCRs have emerged as the largest class of drug targets, accounting for upward of 30% of all prescription drugs. The view that ligand-induced GPCR responses originate exclusively from the cell surface has evolved to reflect accumulating evidence that receptors can elicit additional waves of signaling from intracellular compartments. These events in turn shape unique cellular and physiological outcomes. Here, we discuss our current understanding of the roles and regulation of compartmentalized GPCR signaling.
Collapse
Affiliation(s)
- Matthew J Klauer
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Blair K A Willette
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
10
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Pizzoni A, Zhang X, Altschuler DL. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem 2024; 300:105497. [PMID: 38016514 PMCID: PMC10788541 DOI: 10.1016/j.jbc.2023.105497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Ripoll L, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570478. [PMID: 38106018 PMCID: PMC10723477 DOI: 10.1101/2023.12.06.570478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cAMP cascade is widely recognized to transduce its physiological effects locally through spatially limited cAMP gradients. However, little is known about how the adenylyl cyclase enzymes, which initiate cAMP gradients, are localized. Here we answer this question in physiologically relevant striatal neurons and delineate how AC localization impacts downstream signaling functions. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that AC9 is uniquely targeted to endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We also show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we show that endosomal localization is critical for AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. These results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream signal transduction to the nucleus.
Collapse
|
13
|
Daly C, Plouffe B. Gα q signalling from endosomes: A new conundrum. Br J Pharmacol 2023. [PMID: 37740273 DOI: 10.1111/bph.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors, and are involved in the transmission of a variety of extracellular stimuli such as hormones, neurotransmitters, light and odorants into intracellular responses. They regulate every aspect of physiology and, for this reason, about one third of all marketed drugs target these receptors. Classically, upon binding to their agonist, GPCRs are thought to activate G-proteins from the plasma membrane and to stop signalling by subsequent desensitisation and endocytosis. However, accumulating evidence indicates that, upon internalisation, some GPCRs can continue to activate G-proteins in endosomes. Importantly, this signalling from endomembranes mediates alternative cellular responses other than signalling at the plasma membrane. Endosomal G-protein signalling and its physiological relevance have been abundantly documented for Gαs - and Gαi -coupled receptors. Recently, some Gαq -coupled receptors have been reported to activate Gαq on endosomes and mediate important cellular processes. However, several questions relative to the series of cellular events required to translate endosomal Gαq activation into cellular responses remain unanswered and constitute a new conundrum. How are these responses in endosomes mediated in the quasi absence of the substrate for the canonical Gαq -activated effector? Is there another effector? Is there another substrate? If so, how does this alternative endosomal effector or substrate produce a downstream signal? This review aims to unravel and discuss these important questions, and proposes possible routes of investigation.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
14
|
Liu J, Wei L, Chen T, Wang H, Luo J, Chen X, Jiang Q, Xi Q, Sun J, Zhang L, Zhang Y. MiR-143 Targets SYK to Regulate NEFA Uptake and Contribute to Thermogenesis in Male Mice. Endocrinology 2023; 164:bqad114. [PMID: 37486737 DOI: 10.1210/endocr/bqad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) and white adipose tissue (WAT) thermogenesis has emerged as an attractive tool for antiobesity. Although miR-143 has been reported to be associated with BAT thermogenesis, its role remains unclear. Here, we found that miR-143 had highest expression in adipose tissue, especially in BAT. During short-term cold exposure or CL316,243 was injected, miR-143 was markedly downregulated in BAT and subcutaneous WAT (scWAT). Moreover, knockout (KO) of miR-143 increases the body temperature of mice upon cold exposure, which may be due to the increased thermogenesis of BAT and scWAT. More importantly, supplementation of miR-143 in BAT of KO mice can inhibit the increase in body temperature in KO mice. Mechanistically, spleen tyrosine kinase was revealed for the first time as a new target of miR-143, and deletion of miR-143 facilitates fatty acid uptake in BAT. In addition, we found that brown adipocytes can promote fat mobilization of white adipocytes, and miR-143 may participate in this process. Meanwhile, we demonstrate that inactivation of adenylate cyclase 9 (AC9) in BAT inhibits thermogenesis through AC9-PKA-AMPK-CREB-UCP1 signaling pathway. Overall, our results reveal a novel function of miR-143 on thermogenesis, and a new functional link of the BAT and WAT.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| |
Collapse
|
15
|
Martínez-Morales JC, González-Ruiz KD, Romero-Ávila MT, Rincón-Heredia R, Reyes-Cruz G, García-Sáinz JA. Lysophosphatidic acid receptor LPA 1 trafficking and interaction with Rab proteins, as evidenced by Förster resonance energy transfer. Mol Cell Endocrinol 2023; 570:111930. [PMID: 37054840 DOI: 10.1016/j.mce.2023.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
LPA1 internalization to endosomes was studied employing Förster Resonance Energy Transfer (FRET) in cells coexpressing the mCherry-lysophosphatidic acid LPA1 receptors and distinct eGFP-tagged Rab proteins. Lysophosphatidic acid (LPA)-induced internalization was rapid and decreased afterward: phorbol myristate acetate (PMA) action was slower and sustained. LPA stimulated LPA1-Rab5 interaction rapidly but transiently, whereas PMA action was rapid but sustained. Expression of a Rab5 dominant-negative mutant blocked LPA1-Rab5 interaction and receptor internalization. LPA-induced LPA1-Rab9 interaction was only observed at 60 min, and LPA1-Rab7 interaction after 5 min with LPA and after 60 min with PMA. LPA triggered immediate but transient rapid recycling (i.e., LPA1-Rab4 interaction), whereas PMA action was slower but sustained. Agonist-induced slow recycling (LPA1-Rab11 interaction) increased at 15 min and remained at this level, whereas PMA action showed early and late peaks. Our results indicate that LPA1 receptor internalization varies with the stimuli.
Collapse
Affiliation(s)
| | - Karla D González-Ruiz
- Departamento de Biología Celular y Desarrollo, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | |
Collapse
|
16
|
Martinez JM, Shen A, Xu B, Jovanovic A, de Chabot J, Zhang J, Xiang YK. Arrestin-dependent nuclear export of phosphodiesterase 4D promotes GPCR-induced nuclear cAMP signaling required for learning and memory. Sci Signal 2023; 16:eade3380. [PMID: 36976866 PMCID: PMC10404024 DOI: 10.1126/scisignal.ade3380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
G protein-coupled receptors (GPCRs) promote the expression of immediate early genes required for learning and memory. Here, we showed that β2-adrenergic receptor (β2AR) stimulation induced the nuclear export of phosphodiesterase 4D5 (PDE4D5), an enzyme that degrades the second messenger cAMP, to enable memory consolidation. We demonstrated that the endocytosis of β2AR phosphorylated by GPCR kinases (GRKs) mediated arrestin3-dependent nuclear export of PDE4D5, which was critical for promoting nuclear cAMP signaling and gene expression in hippocampal neurons for memory consolidation. Inhibition of the arrestin3-PDE4D5 association prevented β2AR-induced nuclear cAMP signaling without affecting receptor endocytosis. Direct PDE4 inhibition rescued β2AR-induced nuclear cAMP signaling and ameliorated memory deficits in mice expressing a form of the β2AR that could not be phosphorylated by GRKs. These data reveal how β2AR phosphorylated by endosomal GRK promotes the nuclear export of PDE4D5, leading to nuclear cAMP signaling, changes in gene expression, and memory consolidation. This study also highlights the translocation of PDEs as a mechanism to promote cAMP signaling in specific subcellular locations downstream of GPCR activation.
Collapse
Affiliation(s)
- Joseph M. Martinez
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Ao Shen
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, 95655, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Josephine de Chabot
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Jin Zhang
- Department of Pharmacology, University of California at San Diego, San Diego, CA, 92093, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, 95655, USA
| |
Collapse
|
17
|
Liu J, Wang H, Zeng D, Xiong J, Luo J, Chen X, Chen T, Xi Q, Sun J, Ren X, Zhang Y. The novel importance of miR-143 in obesity regulation. Int J Obes (Lond) 2023; 47:100-108. [PMID: 36528726 DOI: 10.1038/s41366-022-01245-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Obesity and substantially increased risk of metabolic diseases have become a global epidemic. microRNAs have attracted a great deal of attention as a potential therapeutic target for obesity. MiR-143 has been known to specifically promote adipocyte differentiation by downregulating extracellular signal-regulated kinase 5. Our latest study found that miR-143 knockout is against diet-induced obesity by promoting brown adipose tissue thermogenesis and inhibiting white adipose tissue adipogenesis. Moreover, LPS- or IL-6-induced inhibition of miR-143 expression in brown adipocytes promotes thermogenesis by targeting adenylate cyclase 9. In this review, we will summarize the expression and functions of miR-143 in different tissues, the influence of obesity on miR-143 in various tissues, the important role of adipose-derived miR-143 in the development of obesity, the role of miR-143 in immune cells and thermoregulation and discuss the potential significance and application prospects of miR-143 in obesity management.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Liu J, Zeng D, Luo J, Wang H, Xiong J, Chen X, Chen T, Sun J, Xi Q, Zhang Y. LPS-Induced Inhibition of miR-143 Expression in Brown Adipocytes Promotes Thermogenesis and Fever. Int J Mol Sci 2022; 23:13805. [PMID: 36430282 PMCID: PMC9696956 DOI: 10.3390/ijms232213805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, Lee HN, Sunahara RK, Zhang J. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 2022; 611:173-179. [PMID: 36289326 PMCID: PMC10031817 DOI: 10.1038/s41586-022-05343-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized β2-adrenergic receptor (β2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that β2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated β2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal β2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.
Collapse
Affiliation(s)
- Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mary Clark
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Geneva Walters
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Baldwin TA, Li Y, Marsden AN, Rinné S, Garza‐Carbajal A, Schindler RFR, Zhang M, Garcia MA, Venna VR, Decher N, Brand T, Dessauer CW. POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart. EMBO Rep 2022; 23:e55208. [PMID: 36254885 PMCID: PMC9724675 DOI: 10.15252/embr.202255208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the β-adrenergic receptor (βAR). AC9 activity is required for βAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Yong Li
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Autumn N Marsden
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Anibal Garza‐Carbajal
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | | | - Musi Zhang
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Mia A Garcia
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Venugopal Reddy Venna
- Department NeurologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Carmen W Dessauer
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| |
Collapse
|
21
|
Kumar GA, Puthenveedu MA. Diversity and specificity in location-based signaling outputs of neuronal GPCRs. Curr Opin Neurobiol 2022; 76:102601. [PMID: 35797808 PMCID: PMC11474636 DOI: 10.1016/j.conb.2022.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
The common mechanisms by which members of the G protein-coupled receptor (GPCR) family respond to neurotransmitters in the brain have been well studied. However, it is becoming increasingly clear that GPCRs show great diversity in their intracellular location, interacting partners and effectors, and signaling consequences. Here we will discuss recent studies on the diversity of location, effectors, and signaling of GPCRs, and how these could interact to generate specific spatiotemporal patterns of GPCR signaling in cells.
Collapse
Affiliation(s)
- G Aditya Kumar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. https://twitter.com/ityadi_
| | | |
Collapse
|
22
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
23
|
Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther 2022; 231:107977. [PMID: 34480967 PMCID: PMC9375844 DOI: 10.1016/j.pharmthera.2021.107977] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest group of receptors involved in cellular signaling across the plasma membrane and a major class of drug targets. The canonical model for GPCR signaling involves three components - the GPCR, a heterotrimeric G protein and a proximal plasma membrane effector - that have been generally thought to be freely mobile molecules able to interact by 'collision coupling'. Here, we synthesize evidence that supports the existence of GPCR-effector macromolecular membrane assemblies (GEMMAs) comprised of specific GPCRs, G proteins, plasma membrane effector molecules and other associated transmembrane proteins that are pre-assembled prior to receptor activation by agonists, which then leads to subsequent rearrangement of the GEMMA components. The GEMMA concept offers an alternative and complementary model to the canonical collision-coupling model, allowing more efficient interactions between specific signaling components, as well as the integration of the concept of GPCR oligomerization as well as GPCR interactions with orphan receptors, truncated GPCRs and other membrane-localized GPCR-associated proteins. Collision-coupling and pre-assembled mechanisms are not exclusive and likely both operate in the cell, providing a spectrum of signaling modalities which explains the differential properties of a multitude of GPCRs in their different cellular environments. Here, we explore the unique pharmacological characteristics of individual GEMMAs, which could provide new opportunities to therapeutically modulate GPCR signaling.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Addiction, Intramural Research Program, NIH, DHHS, Baltimore, MD, USA.
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Spain
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec
| | - Ralf Jockers
- University of Paris, Institute Cochin, INSERM, CNRS, Paris, France
| | - Diomedes E. Logothetis
- Laboratory of Electrophysiology, Departments of Pharmaceutical Sciences, Chemistry and Chemical Biology and Center for Drug Discovery, School of Pharmacy at the Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
24
|
De Logu F, Nassini R, Hegron A, Landini L, Jensen DD, Latorre R, Ding J, Marini M, Souza Monteiro de Araujo D, Ramírez-Garcia P, Whittaker M, Retamal J, Titiz M, Innocenti A, Davis TP, Veldhuis N, Schmidt BL, Bunnett NW, Geppetti P. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 2022; 13:646. [PMID: 35115501 PMCID: PMC8813987 DOI: 10.1038/s41467-022-28204-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
- Headache Center, Careggi University Hospital, Florence, 50139, Italy
| | - Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Dane D Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Julia Ding
- Department of Anesthesiology, Columbia University, New York, NY, 10010, USA
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Paulina Ramírez-Garcia
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Michael Whittaker
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jeffri Retamal
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Thomas P Davis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Veldhuis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA.
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA.
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
- Headache Center, Careggi University Hospital, Florence, 50139, Italy.
| |
Collapse
|
25
|
Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Roles of receptor phosphorylation and Rab proteins in G protein-coupled receptor function and trafficking. Mol Pharmacol 2021; 101:144-153. [PMID: 34969830 DOI: 10.1124/molpharm.121.000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The G Protein-Coupled Receptors form the most abundant family of membrane proteins and are crucial physiological players in the homeostatic equilibrium, which we define as health. They also participate in the pathogenesis of many diseases and are frequent targets of therapeutic intervention. Considering their importance, it is not surprising that different mechanisms regulate their function, including desensitization, resensitization, internalization, recycling to the plasma membrane, and degradation. These processes are modulated in a highly coordinated and specific way by protein kinases and phosphatases, ubiquitin ligases, protein adaptors, interaction with multifunctional complexes, molecular motors, phospholipid metabolism, and membrane distribution. This review describes significant advances in the study of the regulation of these receptors by phosphorylation and endosomal traffic (where signaling can take place); we revisited the bar code hypothesis and include two additional observations: a) that different phosphorylation patterns seem to be associated with internalization and endosome sorting for recycling or degradation, and b) that, surprisingly, phosphorylation of some G protein-coupled receptors appears to be required for proper receptor insertion into the plasma membrane. Significance Statement G protein-coupled receptor phosphorylation is an early event in desensitization/ signaling switching, endosomal traffic, and internalization. These events seem crucial for receptor responsiveness, cellular localization, and fate (recycling/ degradation) with important pharmacological/ therapeutic implications. Phosphorylation sites vary depending on the cells in which they are expressed and on the stimulus that leads to such covalent modification. Surprisingly, evidence suggests that phosphorylation also seems to be required for proper insertion into the plasma membrane for some receptors.
Collapse
|
26
|
Bhagirath AY, Bhatia V, Medapati MR, Singh N, Hinton M, Chelikani P, Dakshinamurti S. Critical cysteines in the functional interaction of adenylyl cyclase isoform 6 with Gαs. FASEB Bioadv 2021; 4:180-196. [PMID: 35664968 PMCID: PMC9159366 DOI: 10.1096/fba.2021-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Activation of adenylyl cyclases (ACs) by G‐protein Gαs catalyzes the production of cyclic adenosine monophosphate (cAMP), a key second messenger that regulates diverse physiological responses. There are 10 AC isoforms present in humans, with AC5 and AC6 proposed to play vital roles in cardiac function. We have previously shown that under hypoxic conditions, AC6 is amenable to post‐translational modification by nitrosylation, resulting in decreased AC catalytic activity. Using a computational model of the AC6–Gαs complex, we predicted key nitrosylation‐amenable cysteine residues involved in the interaction of AC6 with Gαs and pursued a structure–function analysis of these cysteine residues in both AC6 and Gαs. Our results based on site‐directed mutagenesis of AC6 and Gαs, a constitutively active Gαs, AC activity, and live cell intracellular cAMP assays suggest that Cys1004 in AC6 (subunit C2) and Cys237 in Gαs are present at the AC–Gαs interface and are important for the activation of AC6 by Gαs. We further provide mechanistic evidence to show that mutating Cys 1004 in the second catalytic domain of AC6 makes it amenable to inhibition by Gαi, which may account for decreased functional activity of AC6 when this residue is unavailable.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | - Vikram Bhatia
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | | | - Nisha Singh
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | - Martha Hinton
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg Manitoba Canada
| | - Prashen Chelikani
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg Manitoba Canada
- Department of Pediatrics University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
27
|
Harkes R, Kukk O, Mukherjee S, Klarenbeek J, van den Broek B, Jalink K. Dynamic FRET-FLIM based screening of signal transduction pathways. Sci Rep 2021; 11:20711. [PMID: 34671065 PMCID: PMC8528867 DOI: 10.1038/s41598-021-00098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Fluorescence Lifetime Imaging (FLIM) is an intrinsically quantitative method to screen for protein-protein interactions and is frequently used to record the outcome of signal transduction events. With new highly sensitive and photon efficient FLIM instrumentation, the technique also becomes attractive to screen, with high temporal resolution, for fast changes in Förster Resonance Energy Transfer (FRET), such as those occurring upon activation of cell signaling. The second messenger cyclic adenosine monophosphate (cAMP) is rapidly formed following activation of certain cell surface receptors. cAMP is subsequently degraded by a set of phosphodiesterases (PDEs) which display cell-type specific expression and may also affect baseline levels of the messenger. To study which specific PDEs contribute most to cAMP regulation, we knocked down individual PDEs and recorded breakdown rates of cAMP levels following transient stimulation in HeLa cells stably expressing the FRET/FLIM sensor, Epac-SH189. Many hundreds of cells were recorded at 5 s intervals for each condition. FLIM time traces were calculated for every cell, and decay kinetics were obtained. cAMP clearance was significantly slower when PDE3A and, to a lesser amount, PDE10A were knocked down, identifying these isoforms as dominant in HeLa cells. However, taking advantage of the quantitative FLIM data, we found that knockdown of individual PDEs has a very limited effect on baseline cAMP levels. By combining photon-efficient FLIM instrumentation with optimized sensors, systematic gene knockdown and an automated open-source analysis pipeline, our study demonstrates that dynamic screening of transient cell signals has become feasible. The quantitative platform described here provides detailed kinetic analysis of cellular signals in individual cells with unprecedented throughput.
Collapse
Affiliation(s)
- Rolf Harkes
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Olga Kukk
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sravasti Mukherjee
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Klarenbeek
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram van den Broek
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees Jalink
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
29
|
Abstract
cAMP is the indispensable second messenger regulating cell metabolism and function in response to extracellular hormones and neurotransmitters. cAMP is produced via the activation of G protein-coupled receptors located at both the cell surface and inside the cell. Recently, Tsvetanova et al. explored cAMP generation in distinct locations and the impact on respective cell functions. Using a phospho-proteomic analysis, they provide insight into the unique role of localized cAMP production in cellular phospho-responses.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA.
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Karina A Peña
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| |
Collapse
|
30
|
Bockaert J, Bécamel C, Chaumont-Dubel S, Claeysen S, Vandermoere F, Marin P. Novel and atypical pathways for serotonin signaling. Fac Rev 2021; 10:52. [PMID: 34195691 PMCID: PMC8204760 DOI: 10.12703/r/10-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor β-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Collapse
Affiliation(s)
- Joël Bockaert
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carine Bécamel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Claeysen
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
31
|
BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated G q activation at early endosomes. Proc Natl Acad Sci U S A 2021; 118:2025846118. [PMID: 33990469 DOI: 10.1073/pnas.2025846118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are gatekeepers of cellular homeostasis and the targets of a large proportion of drugs. In addition to their signaling activity at the plasma membrane, it has been proposed that their actions may result from translocation and activation of G proteins at endomembranes-namely endosomes. This could have a significant impact on our understanding of how signals from GPCR-targeting drugs are propagated within the cell. However, little is known about the mechanisms that drive G protein movement and activation in subcellular compartments. Using bioluminescence resonance energy transfer (BRET)-based effector membrane translocation assays, we dissected the mechanisms underlying endosomal Gq trafficking and activity following activation of Gq-coupled receptors, including the angiotensin II type 1, bradykinin B2, oxytocin, thromboxane A2 alpha isoform, and muscarinic acetylcholine M3 receptors. Our data reveal that GPCR-promoted activation of Gq at the plasma membrane induces its translocation to endosomes independently of β-arrestin engagement and receptor endocytosis. In contrast, Gq activity at endosomes was found to rely on both receptor endocytosis-dependent and -independent mechanisms. In addition to shedding light on the molecular processes controlling subcellular Gq signaling, our study provides a set of tools that will be generally applicable to the study of G protein translocation and activation at endosomes and other subcellular organelles, as well as the contribution of signal propagation to drug action.
Collapse
|
32
|
Tenner B, Zhang JZ, Kwon Y, Pessino V, Feng S, Huang B, Mehta S, Zhang J. FluoSTEPs: Fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. SCIENCE ADVANCES 2021; 7:7/21/eabe4091. [PMID: 34020947 PMCID: PMC8139597 DOI: 10.1126/sciadv.abe4091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
Growing evidence suggests that many essential intracellular signaling events are compartmentalized within kinetically distinct microdomains in cells. Genetically encoded fluorescent biosensors are powerful tools to dissect compartmentalized signaling, but current approaches to probe these microdomains typically rely on biosensor fusion and overexpression of critical regulatory elements. Here, we present a novel class of biosensors named FluoSTEPs (fluorescent sensors targeted to endogenous proteins) that combine self-complementing split green fluorescent protein, CRISPR-mediated knock-in, and fluorescence resonance energy transfer biosensor technology to probe compartmentalized signaling dynamics in situ. We designed FluoSTEPs for simultaneously highlighting endogenous microdomains and reporting domain-specific, real-time signaling events including kinase activities, guanosine triphosphatase activation, and second messenger dynamics in live cells. A FluoSTEP for 3',5'-cyclic adenosine monophosphate (cAMP) revealed distinct cAMP dynamics within clathrin microdomains in response to stimulation of G protein-coupled receptors, showcasing the utility of FluoSTEPs in probing spatiotemporal regulation within endogenous signaling architectures.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jason Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veronica Pessino
- Graduate Program of Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Siyu Feng
- The UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Peng GE, Pessino V, Huang B, von Zastrow M. Spatial decoding of endosomal cAMP signals by a metastable cytoplasmic PKA network. Nat Chem Biol 2021; 17:558-566. [PMID: 33649598 PMCID: PMC8084946 DOI: 10.1038/s41589-021-00747-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
G-protein-coupled receptor-regulated cAMP production from endosomes can specify signaling to the nucleus by moving the source of cAMP without changing its overall amount. How this is possible remains unknown because cAMP gradients dissipate over the nanoscale, whereas endosomes typically localize micrometers from the nucleus. We show that the key location-dependent step for endosome-encoded transcriptional control is nuclear entry of cAMP-dependent protein kinase (PKA) catalytic subunits. These are sourced from punctate accumulations of PKA holoenzyme that are densely distributed in the cytoplasm and titrated by global cAMP into a discrete metastable state, in which catalytic subunits are bound but dynamically exchange. Mobile endosomes containing activated receptors collide with the metastable PKA puncta and pause in close contact. We propose that these properties enable cytoplasmic PKA to act collectively like a semiconductor, converting nanoscale cAMP gradients generated from endosomes into microscale elevations of free catalytic subunits to direct downstream signaling.
Collapse
Affiliation(s)
- Grace E Peng
- Program in Cell Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Veronica Pessino
- Graduate Program of Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Swab56 Corp. and Neurophotometrics Ltd, San Diego, CA, USA
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Nguyen AH, Lefkowitz RJ. Signaling at the endosome: cryo-EM structure of a GPCR-G protein-beta-arrestin megacomplex. FEBS J 2021; 288:2562-2569. [PMID: 33605032 PMCID: PMC8252779 DOI: 10.1111/febs.15773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
G protein‐coupled receptors (GPCRs) are a large class of cell‐surface receptor involved in cellular signaling that are currently the target of over one third of all clinically approved therapeutics. Classically, an agonist‐bound, active GPCR couples to and activates G proteins through the receptor intracellular core. To attenuate G protein signaling, the GPCR is phosphorylated at its C‐terminal tail and/or relevant intracellular loops, allowing for the recruitment of β‐arrestins (βarrs). βarrs then couple to the receptor intracellular core in order to mediate receptor desensitization and internalization. However, our laboratory and others have observed that some GPCRs are capable of continuously signaling through G protein even after internalization. This mode of sustained signaling stands in contrast with our previous understanding of GPCR signaling, and its molecular mechanism is still not well understood. Recently, we have solved the structure of a GPCR–G protein–βarr megacomplex by cryo‐electron microscopy. This ‘megaplex’ structure illustrates the independent and simultaneous coupling of a G protein to the receptor intracellular core, and binding of a βarr to a phosphorylated receptor C‐terminal tail, with all three components maintaining their respective canonically active conformations. The structure provides evidence for the ability of a GPCR to activate G protein even while being bound to and internalized by βarr. It also reveals that the binding of G protein and βarr to the same GPCR is not mutually exclusive, and raises a number of future questions to be answered regarding the mechanism of sustained signaling.
Collapse
Affiliation(s)
- Anthony H Nguyen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
von Zastrow M, Sorkin A. Mechanisms for Regulating and Organizing Receptor Signaling by Endocytosis. Annu Rev Biochem 2021; 90:709-737. [PMID: 33606955 DOI: 10.1146/annurev-biochem-081820-092427] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California 94143, USA;
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
36
|
Kim H, Lee HN, Choi J, Seong J. Spatiotemporal Characterization of GPCR Activity and Function during Endosomal Trafficking Pathway. Anal Chem 2021; 93:2010-2017. [PMID: 33400862 DOI: 10.1021/acs.analchem.0c03323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptor (GPCR) is activated by extracellular signals. After their function at plasma membrane, GPCRs are internalized to be desensitized, while emerging evidence suggests that some GPCRs maintain their activity even after internalization. The endosomal trafficking pathway of a prototypic GPCR, β adrenergic receptor 2 (B2AR), is in the range of several hours, however, spatiotemporal B2AR activity during this long-term endosomal trafficking pathway has not been characterized yet. Here, we analyze an agonist-induced real-time B2AR activity and its downstream function at the level of individual vesicles, utilizing a fluorescence resonance energy transfer (FRET)-based B2AR biosensor and cAMP reporters tethered at different trafficking stages of endosomes. Our results report that the internalized B2ARs sustain the activity and maintain the production of cAMP for several hours during the endosomal trafficking pathway. Temporal kinetics of B2AR activity is mathematically well explained by our active-vesicle population model modified from the Ricker model. Therefore, our GPCR monitoring system and a new kinetics model can be applied to understand the spatiotemporal GPCR activity and its downstream function during the endosomal trafficking pathway.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaesik Choi
- Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Crilly SE, Puthenveedu MA. Compartmentalized GPCR Signaling from Intracellular Membranes. J Membr Biol 2020; 254:259-271. [PMID: 33231722 DOI: 10.1007/s00232-020-00158-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins that transduce a wide array of inputs including light, ions, hormones, and neurotransmitters into intracellular signaling responses which underlie complex processes ranging from vision to learning and memory. Although traditionally thought to signal primarily from the cell surface, GPCRs are increasingly being recognized as capable of signaling from intracellular membrane compartments, including endosomes, the Golgi apparatus, and nuclear membranes. Remarkably, GPCR signaling from these membranes produces functional effects that are distinct from signaling from the plasma membrane, even though often the same G protein effectors and second messengers are activated. In this review, we will discuss the emerging idea of a "spatial bias" in signaling. We will present the evidence for GPCR signaling through G protein effectors from intracellular membranes, and the ways in which this signaling differs from canonical plasma membrane signaling with important implications for physiology and pharmacology. We also highlight the potential mechanisms underlying spatial bias of GPCR signaling, including how intracellular membranes and their associated lipids and proteins affect GPCR activity and signaling.
Collapse
Affiliation(s)
- Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
39
|
Höring C, Seibel U, Tropmann K, Grätz L, Mönnich D, Pitzl S, Bernhardt G, Pockes S, Strasser A. A Dynamic, Split-Luciferase-Based Mini-G Protein Sensor to Functionally Characterize Ligands at All Four Histamine Receptor Subtypes. Int J Mol Sci 2020; 21:ijms21228440. [PMID: 33182741 PMCID: PMC7698210 DOI: 10.3390/ijms21228440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
In drug discovery, assays with proximal readout are of great importance to study target-specific effects of potential drug candidates. In the field of G protein-coupled receptors (GPCRs), the determination of GPCR-G protein interactions and G protein activation by means of radiolabeled GTP analogs ([35S]GTPγS, [γ-32P]GTP) has widely been used for this purpose. Since we were repeatedly faced with insufficient quality of radiolabeled nucleotides, there was a requirement to implement a novel proximal functional assay for the routine characterization of putative histamine receptor ligands. We applied the split-NanoLuc to the four histamine receptor subtypes (H1R, H2R, H3R, H4R) and recently engineered minimal G (mini-G) proteins. Using this method, the functional response upon receptor activation was monitored in real-time and the four mini-G sensors were evaluated by investigating selected standard (inverse) agonists and antagonists. All potencies and efficacies of the studied ligands were in concordance with literature data. Further, we demonstrated a significant positive correlation of the signal amplitude and the mini-G protein expression level in the case of the H2R, but not for the H1R or the H3R. The pEC50 values of histamine obtained under different mini-G expression levels were consistent. Moreover, we obtained excellent dynamic ranges (Z’ factor) and the signal spans were improved for all receptor subtypes in comparison to the previously performed [35S]GTPγS binding assay.
Collapse
Affiliation(s)
- Carina Höring
- Correspondence: (C.H.); , (A.S.); Tel.: +49-941-943-4748 (C.H.); +49-941-943-4821 (A.S.)
| | | | | | | | | | | | | | | | - Andrea Strasser
- Correspondence: (C.H.); , (A.S.); Tel.: +49-941-943-4748 (C.H.); +49-941-943-4821 (A.S.)
| |
Collapse
|
40
|
York HM, Coyle J, Arumugam S. To be more precise: the role of intracellular trafficking in development and pattern formation. Biochem Soc Trans 2020; 48:2051-2066. [PMID: 32915197 PMCID: PMC7609031 DOI: 10.1042/bst20200223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Living cells interpret a variety of signals in different contexts to elucidate functional responses. While the understanding of signalling molecules, their respective receptors and response at the gene transcription level have been relatively well-explored, how exactly does a single cell interpret a plethora of time-varying signals? Furthermore, how their subsequent responses at the single cell level manifest in the larger context of a developing tissue is unknown. At the same time, the biophysics and chemistry of how receptors are trafficked through the complex dynamic transport network between the plasma membrane-endosome-lysosome-Golgi-endoplasmic reticulum are much more well-studied. How the intracellular organisation of the cell and inter-organellar contacts aid in orchestrating trafficking, as well as signal interpretation and modulation by the cells are beginning to be uncovered. In this review, we highlight the significant developments that have strived to integrate endosomal trafficking, signal interpretation in the context of developmental biology and relevant open questions with a few chosen examples. Furthermore, we will discuss the imaging technologies that have been developed in the recent past that have the potential to tremendously accelerate knowledge gain in this direction while shedding light on some of the many challenges.
Collapse
Affiliation(s)
- Harrison M. York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Joanne Coyle
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
41
|
Semesta KM, Tian R, Kampmann M, von Zastrow M, Tsvetanova NG. A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling. PLoS Genet 2020; 16:e1009103. [PMID: 33052901 PMCID: PMC7588078 DOI: 10.1371/journal.pgen.1009103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/26/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) allow cells to respond to chemical and sensory stimuli through generation of second messengers, such as cyclic AMP (cAMP), which in turn mediate a myriad of processes, including cell survival, proliferation, and differentiation. In order to gain deeper insights into the complex biology and physiology of these key cellular pathways, it is critical to be able to globally map the molecular factors that shape cascade function. Yet, to this date, efforts to systematically identify regulators of GPCR/cAMP signaling have been lacking. Here, we combined genome-wide screening based on CRISPR interference with a novel sortable transcriptional reporter that provides robust readout for cAMP signaling, and carried out a functional screen for regulators of the pathway. Due to the sortable nature of the platform, we were able to assay regulators with strong and moderate phenotypes by analyzing sgRNA distribution among three fractions with distinct reporter expression. We identified 45 regulators with strong and 50 regulators with moderate phenotypes not previously known to be involved in cAMP signaling. In follow-up experiments, we validated the functional effects of seven newly discovered mediators (NUP93, PRIM1, RUVBL1, PKMYT1, TP53, SF3A2, and HRAS), and showed that they control distinct steps of the pathway. Thus, our study provides proof of principle that the screening platform can be applied successfully to identify bona fide regulators of GPCR/second messenger cascades in an unbiased and high-throughput manner, and illuminates the remarkable functional diversity among GPCR regulators.
Collapse
Affiliation(s)
- Khairunnisa Mentari Semesta
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Chen-Zuckerberg Biohub, San Francisco, California, United States of America
- Biophysics Graduate Program, University of California, San Francisco, California, United States of America
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Chen-Zuckerberg Biohub, San Francisco, California, United States of America
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California, United States of America
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Nikoleta G. Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|