1
|
Magallanes S, Llorente F, Ruiz-López MJ, la Puente JMD, Ferraguti M, Gutiérrez-López R, Soriguer R, Aguilera-Sepúlveda P, Fernández-Delgado R, Jímenez-Clavero MÁ, Figuerola J. Warm winters are associated to more intense West Nile virus circulation in southern Spain. Emerg Microbes Infect 2024; 13:2348510. [PMID: 38686545 PMCID: PMC11073421 DOI: 10.1080/22221751.2024.2348510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - María José Ruiz-López
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Parasitology, University of Granada, Granada, Spain
| | - Martina Ferraguti
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ramón Soriguer
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | | | - Miguel Ángel Jímenez-Clavero
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Jordi Figuerola
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Romanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, Ali Z, Ameli N, Angelova D, Ayeb-Karlsson S, Basart S, Beagley J, Beggs PJ, Blanco-Villafuerte L, Cai W, Callaghan M, Campbell-Lendrum D, Chambers JD, Chicmana-Zapata V, Chu L, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dubrow R, Eckelman MJ, Ford JD, Freyberg C, Gasparyan O, Gordon-Strachan G, Grubb M, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Jamart L, Jankin S, Jatkar H, Jay O, Kelman I, Kennard H, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Lampard P, Lee JKW, Lemke B, Li B, Liu Y, Liu Z, Llabrés-Brustenga A, Lott M, Lowe R, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx J, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrisey K, Munzert S, Murray KA, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman OL, Pega F, Perishing AJ, Pinho-Gomes AC, Ponmattam J, Rabbaniha M, Rickman J, Robinson E, Rocklöv J, Rojas-Rueda D, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Singh P, Sjödin H, Slater J, Sofiev M, Sorensen C, Springmann M, Stalhandske Z, Stowell JD, Tabatabaei M, Taylor J, Tong D, Tonne C, Treskova M, Trinanes JA, Uppstu A, Wagner F, Warnecke L, Whitcombe H, Xian P, Zavaleta-Cortijo C, Zhang C, Zhang R, Zhang S, Zhang Y, Zhu Q, Gong P, Montgomery H, Costello A. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action. Lancet 2024; 404:1847-1896. [PMID: 39488222 DOI: 10.1016/s0140-6736(24)01822-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Annalyse Moskeland
- Department of Geography and Environment, London School of Economics and Political Science, London, UK
| | | | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Zakari Ali
- Medical Research Council Unit, The Gambia, London School of Hygiene & Tropical Medicine, Serekunda, The Gambia
| | - Nadia Ameli
- Institute for Sustainable Resources, University College London, London, UK
| | - Denitsa Angelova
- Institute for Sustainable Resources, University College London, London, UK
| | - Sonja Ayeb-Karlsson
- Department of Risk and Disaster Reduction, University College London, London, UK
| | - Sara Basart
- World Metereological Organization, Geneva, Switzerland
| | | | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Luciana Blanco-Villafuerte
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | | | | | - Victoria Chicmana-Zapata
- Intercultural Citizenship and Indigenous Health Unit, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lingzhi Chu
- Yale Center on Climate Change and Health, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Troy J Cross
- Heat and Health Research Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Euro-Mediterranean Center on Climate Change Foundation, Lecce, Italy
| | - Michael Davies
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Robert Dubrow
- Yale Center on Climate Change and Health, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Matthew J Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - James D Ford
- Priestley Centre for Climate Futures, University of Leeds, Leeds, UK
| | | | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | - Georgiana Gordon-Strachan
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Kingston, Jamaica
| | - Michael Grubb
- Institute for Sustainable Resources, University College London, London, UK
| | - Samuel H Gunther
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Yun Hang
- Department of Environmental and Occupational Health Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Stella Hartinger
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kehan He
- Institute for Climate and Carbon Neutrality, University of Hong Kong, Hong Kong Special Administrative Region, China; University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Julian Heidecke
- Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Jeremy J Hess
- Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Slava Jankin
- School of Government, University of Birmingham, Birmingham, UK
| | | | - Ollie Jay
- Heat and Health Research Centre, University of Sydney, Sydney, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Gregor Kiesewetter
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Patrick Kinney
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | | | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Jason K W Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruno Lemke
- Nelson Marlborough Institute of Technology-Te Pukenga, Nelson, New Zealand
| | - Bo Li
- School of Management, Beijing Institute of Technology, Beijing, China
| | - Yang Liu
- Emory University, Atlanta, GA, USA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | | | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Environmental Studies Program, Denison University, Granville, OH, USA
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health, Environments, and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelton Minor
- Data Science Institute, Columbia University, New York, NY, USA
| | - Jan Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | - Maziar Moradi-Lakeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrisey
- Department of Technology, Management and Economics, Technical University of Denmark, Copenhagen, Denmark
| | | | - Kris A Murray
- Medical Research Council Unit, The Gambia, London School of Hygiene & Tropical Medicine, Serekunda, The Gambia
| | - Nick Obradovich
- Laureate Institute for Brain Research, Massachusetts Institute of Technology, Tulsa, OK, USA
| | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Camile Oliveira
- Institute for Global Health, University College London, London, UK
| | | | - Matthias Otto
- Nelson Marlborough Institute of Technology-Te Pukenga, Nelson, New Zealand
| | - Fereidoon Owfi
- Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Olivia L Pearman
- Social and Economic Analysis Branch, US Geological Survey, Fort Collins, OH, USA
| | - Frank Pega
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | | | | | - Jamie Ponmattam
- Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Mahnaz Rabbaniha
- Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Jamie Rickman
- Institute for Sustainable Resources, University College London, London, UK
| | | | - Joacim Rocklöv
- Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jodi D Sherman
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Pratik Singh
- Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Henrik Sjödin
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jessica Slater
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Cecilia Sorensen
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Marco Springmann
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Jennifer D Stowell
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Marina Treskova
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Joaquin A Trinanes
- Department of Electronics and Computer Sciences, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Fabian Wagner
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Laura Warnecke
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Hannah Whitcombe
- Institute for Global Health, University College London, London, UK
| | - Peng Xian
- United States Navy Research Laboratory, Monterey, CA, USA
| | - Carol Zavaleta-Cortijo
- Intercultural Citizenship and Indigenous Health Unit, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chi Zhang
- School of Management, Beijing Institute of Technology, Beijing, China
| | - Ran Zhang
- Natural Language Learning Group, University of Mannheim, Mannheim, Germany
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ying Zhang
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Qiao Zhu
- Emory University, Atlanta, GA, USA
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Centre for Human Health and Performance, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
3
|
Pardo-Araujo M, Eritja R, Alonso D, Bartumeus F. Present and future suitability of invasive and urban vectors through an environmentally driven mosquito reproduction number. Proc Biol Sci 2024; 291:20241960. [PMID: 39500373 PMCID: PMC11537753 DOI: 10.1098/rspb.2024.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024] Open
Abstract
Temperature and water availability significantly influence mosquito population dynamics. We have developed a method, integrating experimental data with insights from mosquito and thermal biology, to calculate the basic reproduction number ([Formula: see text]) for urban mosquito species Aedes albopictus and Aedes aegypti. [Formula: see text] represents the number of female mosquitoes produced by one female during her lifespan, indicating suitability for growth. Environmental conditions, including temperature, rainfall and human density, influence [Formula: see text] by altering key mosquito life cycle traits. Validation using data from Spain and Europe confirms the approach's reliability. Our analysis suggests that temperature increases may not uniformly benefit Ae. albopictus proliferation but could boost Ae. aegypti expansion. We suggest using vector [Formula: see text] maps, leveraging climate and environmental data, to predict areas susceptible to invasive mosquito population growth. These maps aid resource allocation for intervention strategies, supporting effective vector surveillance and management efforts.
Collapse
Affiliation(s)
| | - Roger Eritja
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - David Alonso
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Frederic Bartumeus
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, Spain
| |
Collapse
|
4
|
MacDonald AJ, Hyon D, Sambado S, Ring K, Boser A. Remote sensing of temperature-dependent mosquito and viral traits predicts field surveillance-based disease risk. Ecology 2024; 105:e4420. [PMID: 39319755 PMCID: PMC11534503 DOI: 10.1002/ecy.4420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 09/26/2024]
Abstract
Mosquito-borne diseases contribute substantially to the global burden of disease, and are strongly influenced by environmental conditions. Ongoing and rapid environmental change necessitates improved understanding of the response of mosquito-borne diseases to environmental factors like temperature, and novel approaches to mapping and monitoring risk. Recent development of trait-based mechanistic models has improved understanding of the temperature dependence of transmission, but model predictions remain challenging to validate in the field. Using West Nile virus (WNV) as a case study, we illustrate the use of a novel remote sensing-based approach to mapping temperature-dependent mosquito and viral traits at high spatial resolution and across the diurnal cycle. We validate the approach using mosquito and WNV surveillance data controlling for other key factors in the ecology of WNV, finding strong agreement between temperature-dependent traits and field-based metrics of risk. Moreover, we find that WNV infection rate in mosquitos exhibits a unimodal relationship with temperature, peaking at ~24.6-25.2°C, in the middle of the 95% credible interval of optimal temperature for transmission of WNV predicted by trait-based mechanistic models. This study represents one of the highest resolution validations of trait-based model predictions, and illustrates the utility of a novel remote sensing approach to predicting mosquito-borne disease risk.
Collapse
Affiliation(s)
- Andrew J. MacDonald
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - David Hyon
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - Samantha Sambado
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Kacie Ring
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Anna Boser
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Kontopoulos DG, Sentis A, Daufresne M, Glazman N, Dell AI, Pawar S. No universal mathematical model for thermal performance curves across traits and taxonomic groups. Nat Commun 2024; 15:8855. [PMID: 39402046 PMCID: PMC11473535 DOI: 10.1038/s41467-024-53046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
In ectotherms, the performance of physiological, ecological and life-history traits universally increases with temperature to a maximum before decreasing again. Identifying the most appropriate thermal performance model for a specific trait type has broad applications, from metabolic modelling at the cellular level to forecasting the effects of climate change on population, ecosystem and disease transmission dynamics. To date, numerous mathematical models have been designed, but a thorough comparison among them is lacking. In particular, we do not know if certain models consistently outperform others and how factors such as sampling resolution and trait or organismal identity influence model performance. To fill this knowledge gap, we compile 2,739 thermal performance datasets from diverse traits and taxa, to which we fit a comprehensive set of 83 existing mathematical models. We detect remarkable variation in model performance that is not primarily driven by sampling resolution, trait type, or taxonomic information. Our results reveal a surprising lack of well-defined scenarios in which certain models are more appropriate than others. To aid researchers in selecting the appropriate set of models for any given dataset or research objective, we derive a classification of the 83 models based on the average similarity of their fits.
Collapse
Affiliation(s)
- Dimitrios -Georgios Kontopoulos
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, UK.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
| | - Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence Cedex 5, France
| | - Martin Daufresne
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence Cedex 5, France
| | - Natalia Glazman
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, UK
| | - Anthony I Dell
- National Great Rivers Research and Education Center, East Alton, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, UK
| |
Collapse
|
6
|
Bhowmick S, Fritz ML, Smith RL. Host-feeding preferences and temperature shape the dynamics of West Nile virus: A mathematical model to predict the impacts of vector-host interactions and vector management on R 0. Acta Trop 2024; 258:107346. [PMID: 39111645 DOI: 10.1016/j.actatropica.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
West Nile virus (WNV) is prevalent across the United States, but its transmission patterns and spatio-temporal intensity vary significantly, particularly in the Eastern United States. For instance, Chicago has long been a hotspot for WNV cases due to its high cumulative incidence of infection, with the number of cases varying considerably from year to year. The abilities of host species to maintain and disseminate WNV, along with eco-epidemiological factors that influence vector-host contact rates underlie WNV transmission potential. There is growing evidence that several vectors exhibit strong feeding preferences towards different host communities. In our research study, we construct a process based weather driven ordinary differential equation (ODE) model to understand the impact of one vector species (Culex pipiens), its preferred avian and non-preferred human hosts on the basic reproduction number (R0). In developing this WNV transmission model, we account for the feeding index, which is defined as the relative preference of the vectors for taking blood meals from a competent avian host versus a non-competent mammalian host. We also include continuous introduction of infected agents into the model during the simulations as the introduction of WNV is not a single event phenomenon. We derive an analytic form of R0 to predict the conditions under which there will be an outbreak of WNV and the relationship between the feeding index and the efficacy of adulticide is highly nonlinear. In our mechanistic model, we also demonstrate that adulticide treatments produced significant reductions in the Culex pipiens population. Sensitivity analysis demonstrates that feeding index and rate of introduction of infected agents are two important factors beside the efficacy of adulticide. We validate our model by comparing simulations to surveillance data collected for the Culex pipiens complex in Cook County, Illinois, USA. Our results reveal that the interaction between the feeding index and mosquito abatement strategy is intricate, especially considering the fluctuating temperature conditions. This induces heterogeneous transmission patterns that need to be incorporated when modelling multi-host, multi-vector transmission models.
Collapse
Affiliation(s)
- Suman Bhowmick
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Megan Lindsay Fritz
- Department of Entomology, Institute for Advanced Computer Studies, University of Maryland, USA
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Bhowmick S, Irwin P, Lopez K, Fritz ML, Smith RL. A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions. ARXIV 2024:arXiv:2409.11550v1. [PMID: 39398219 PMCID: PMC11468159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Even as the incidence of mosquito-borne diseases like West Nile Virus (WNV) in North America has risen over the past decade, effectively modelling mosquito population density or, the abundance has proven to be a persistent challenge. It is critical to capture the fluctuations in mosquito abundance across seasons in order to forecast the varying risk of disease transmission from one year to the next. We develop a process-based mechanistic weather-driven Ordinary Differential Equation (ODE) model to study the population biology of both aqueous and terrestrial stages of mosquito population. The progression of mosquito lifecycle through these stages is influenced by different factors, including temperature, daylight hours, intra-species competition and the availability of aquatic habitats. Weather-driven parameters are utilised in our work, are a combination of laboratory research and literature data. In our model, we include precipitation data as a substitute for evaluating additional mortality in the mosquito population. We compute the Basic offspring number of the associated model and perform sensitivity analysis. Finally, we employ our model to assess the effectiveness of various adulticides strategies to predict the reduction in mosquito population. This enhancement in modelling of mosquito abundance can be instrumental in guiding interventions aimed at reducing mosquito populations and mitigating mosquito-borne diseases such as the WNV.
Collapse
Affiliation(s)
- Suman Bhowmick
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Patrick Irwin
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristina Lopez
- North Shore Mosquito Abatement District, Northfield, Illinois, USA
| | - Megan Lindsay Fritz
- Department of Entomology, Institute for Advanced Computer Studies, University of Maryland, USA
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Mbaoma OC, Thomas SM, Beierkuhnlein C. Spatiotemporally Explicit Epidemic Model for West Nile Virus Outbreak in Germany: An Inversely Calibrated Approach. J Epidemiol Glob Health 2024; 14:1052-1070. [PMID: 38965178 PMCID: PMC11442818 DOI: 10.1007/s44197-024-00254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Since the first autochthonous transmission of West Nile Virus was detected in Germany (WNV) in 2018, it has become endemic in several parts of the country and is continuing to spread due to the attainment of a suitable environment for vector occurrence and pathogen transmission. Increasing temperature associated with a changing climate has been identified as a potential driver of mosquito-borne disease in temperate regions. This scenario justifies the need for the development of a spatially and temporarily explicit model that describes the dynamics of WNV transmission in Germany. In this study, we developed a process-based mechanistic epidemic model driven by environmental and epidemiological data. Functional traits of mosquitoes and birds of interest were used to parameterize our compartmental model appropriately. Air temperature, precipitation, and relative humidity were the key climatic forcings used to replicate the fundamental niche responsible for supporting mosquito population and infection transmission risks in the study area. An inverse calibration method was used to optimize our parameter selection. Our model was able to generate spatially and temporally explicit basic reproductive number (R0) maps showing dynamics of the WNV occurrences across Germany, which was strongly associated with the deviation from daily means of climatic forcings, signaling the impact of a changing climate in vector-borne disease dynamics. Epidemiological data for human infections sourced from Robert Koch Institute and animal cases collected from the Animal Diseases Information System (TSIS) of the Friedrich-Loeffler-Institute were used to validate model-simulated transmission rates. From our results, it was evident that West Nile Virus is likely to spread towards the western parts of Germany with the rapid attainment of environmental suitability for vector mosquitoes and amplifying host birds, especially short-distance migratory birds. Locations with high risk of WNV outbreak (Baden-Württemberg, Bavaria, Berlin, Brandenburg, Hamburg, North Rhine-Westphalia, Rhineland-Palatinate, Saarland, Saxony-Anhalt and Saxony) were shown on R0 maps. This study presents a path for developing an early warning system for vector-borne diseases driven by climate change.
Collapse
Affiliation(s)
- Oliver Chinonso Mbaoma
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany.
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Geographical Institute of the University of Bayreuth, GIB, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Departamento de Botánico, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
9
|
Athni TS, Childs ML, Glidden CK, Mordecai EA. Temperature dependence of mosquitoes: Comparing mechanistic and machine learning approaches. PLoS Negl Trop Dis 2024; 18:e0012488. [PMID: 39283940 PMCID: PMC11460681 DOI: 10.1371/journal.pntd.0012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/08/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Mosquito vectors of pathogens (e.g., Aedes, Anopheles, and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change.
Collapse
Affiliation(s)
- Tejas S. Athni
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, United States of America
- Center for the Environment, Harvard University, Cambridge, Massachusetts, United States of America
| | - Caroline K. Glidden
- Department of Biology, Stanford University, Stanford, California, United States of America
- Stanford Institute for Human-centered Artificial Intelligence, Stanford University, Stanford, California, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Cruz-Loya M, Mordecai EA, Savage VM. A flexible model for thermal performance curves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605695. [PMID: 39149255 PMCID: PMC11326125 DOI: 10.1101/2024.08.01.605695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Temperature responses of many biological traits-including population growth, survival, and development-are described by thermal performance curves (TPCs) with phenomenological models like the Briere function or mechanistic models related to chemical kinetics. Existing TPC models are either simple but inflexible in shape, or flexible yet difficult to interpret in biological terms. Here we present flexTPC: a model that is parameterized exclusively in terms of biologically interpretable quantities, including the thermal minimum, optimum, and maximum, and the maximum trait value. FlexTPC can describe unimodal temperature responses of any skewness and thermal breadth, enabling direct comparisons across populations, traits, or taxa with a single model. We apply flexTPC to various microbial and entomological datasets, compare results with the Briere model, and find that flexTPC often has better predictive performance. The interpretability of flexTPC makes it ideal for modeling how thermal responses change with ecological stressors or evolve over time.
Collapse
Affiliation(s)
| | | | - Van M Savage
- Department of Computational Medicine, University of California, Los Angeles
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Santa Fe Institute
| |
Collapse
|
11
|
de Souza WM, Weaver SC. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol 2024; 22:476-491. [PMID: 38486116 DOI: 10.1038/s41579-024-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Vector-borne diseases are transmitted by haematophagous arthropods (for example, mosquitoes, ticks and sandflies) to humans and wild and domestic animals, with the largest burden on global public health disproportionately affecting people in tropical and subtropical areas. Because vectors are ectothermic, climate and weather alterations (for example, temperature, rainfall and humidity) can affect their reproduction, survival, geographic distribution and, consequently, ability to transmit pathogens. However, the effects of climate change on vector-borne diseases can be multifaceted and complex, sometimes with ambiguous consequences. In this Review, we discuss the potential effects of climate change, weather and other anthropogenic factors, including land use, human mobility and behaviour, as possible contributors to the redistribution of vectors and spread of vector-borne diseases worldwide.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|
12
|
Chen DV, Slowinski SP, Kido AK, Bruns EL. High temperatures reduce growth, infection, and transmission of a naturally occurring fungal plant pathogen. Ecology 2024; 105:e4373. [PMID: 38923499 DOI: 10.1002/ecy.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Climate change is rapidly altering the distribution of suitable habitats for many species as well as their pathogenic microbes. For many pathogens, including vector-borne diseases of humans and agricultural pathogens, climate change is expected to increase transmission and lead to pathogen range expansions. However, if pathogens have a lower heat tolerance than their host, increased warming could generate so-called thermal refugia for hosts. Predicting the outcomes of warming on disease transmission requires detailed knowledge of the thermal tolerances of both the host and the pathogen. Such thermal tolerance studies are generally lacking for fungal pathogens of wild plant populations, despite the fact that plants form the base of all terrestrial communities. Here, we quantified three aspects of the thermal tolerance (growth, infection, and propagule production) of the naturally occurring fungal pathogen Microbotryum lychnidis-dioicae, which causes a sterilizing anther-smut disease on the herbaceous plant Silene latifolia. We also quantified two aspects of host thermal tolerance: seedling survival and flowering rate. We found that temperatures >30°C reduced the ability of anther-smut spores to germinate, grow, and conjugate in vitro. In addition, we found that high temperatures (30°C) during or shortly after the time of inoculation strongly reduced the likelihood of infection in seedlings. Finally, we found that high summer temperatures in the field temporarily cured infected plants, likely reducing transmission. Notably, high temperatures did not reduce survival or flowering of the host plants. Taken together, our results show that the fungus is considerably more sensitive to high temperatures than its host plant. A warming climate could therefore result in reduced disease spread or even local pathogen extirpation, leading to thermal refugia for the host.
Collapse
Affiliation(s)
- Dalia V Chen
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Samuel P Slowinski
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Allyson K Kido
- Biology, University of Maryland at College Park, College Park, Maryland, USA
- Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Emily L Bruns
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
13
|
Fay RL, Cruz-Loya M, Keyel AC, Price DC, Zink SD, Mordecai EA, Ciota AT. Population-specific thermal responses contribute to regional variability in arbovirus transmission with changing climates. iScience 2024; 27:109934. [PMID: 38799579 PMCID: PMC11126822 DOI: 10.1016/j.isci.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Temperature is increasing globally, and vector-borne diseases are particularly responsive to such increases. While it is known that temperature influences mosquito life history traits, transmission models have not historically considered population-specific effects of temperature. We assessed the interaction between Culex pipiens population and temperature in New York State (NYS) and utilized novel empirical data to inform predictive models of West Nile virus (WNV) transmission. Genetically and regionally distinct populations from NYS were reared at various temperatures, and life history traits were monitored and used to inform trait-based models. Variation in Cx. pipiens life history traits and population-dependent thermal responses account for a predicted 2.9°C difference in peak transmission that is reflected in regional differences in WNV prevalence. We additionally identified genetic signatures that may contribute to distinct thermal responses. Together, these data demonstrate how population variation contributes to significant geographic variability in arbovirus transmission with changing climates.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander C. Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Dana C. Price
- Department of Entomology, Rutgers University, New Brunswick, NJ, USA
| | - Steve D. Zink
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
14
|
Sisodiya SM, Gulcebi MI, Fortunato F, Mills JD, Haynes E, Bramon E, Chadwick P, Ciccarelli O, David AS, De Meyer K, Fox NC, Davan Wetton J, Koltzenburg M, Kullmann DM, Kurian MA, Manji H, Maslin MA, Matharu M, Montgomery H, Romanello M, Werring DJ, Zhang L, Friston KJ, Hanna MG. Climate change and disorders of the nervous system. Lancet Neurol 2024; 23:636-648. [PMID: 38760101 DOI: 10.1016/s1474-4422(24)00087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 05/19/2024]
Abstract
Anthropogenic climate change is affecting people's health, including those with neurological and psychiatric diseases. Currently, making inferences about the effect of climate change on neurological and psychiatric diseases is challenging because of an overall sparsity of data, differing study methods, paucity of detail regarding disease subtypes, little consideration of the effect of individual and population genetics, and widely differing geographical locations with the potential for regional influences. However, evidence suggests that the incidence, prevalence, and severity of many nervous system conditions (eg, stroke, neurological infections, and some mental health disorders) can be affected by climate change. The data show broad and complex adverse effects, especially of temperature extremes to which people are unaccustomed and wide diurnal temperature fluctuations. Protective measures might be possible through local forecasting. Few studies project the future effects of climate change on brain health, hindering policy developments. Robust studies on the threats from changing climate for people who have, or are at risk of developing, disorders of the nervous system are urgently needed.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK.
| | - Medine I Gulcebi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Francesco Fortunato
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Ethan Haynes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
| | - Paul Chadwick
- Centre for Behaviour Change, University College London, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Anthony S David
- Division of Psychiatry, University College London, London, UK
| | - Kris De Meyer
- UCL Climate Action Unit, University College London, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of the UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manju A Kurian
- Department of Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hadi Manji
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Mark A Maslin
- Department of Geography, University College London, London, UK; Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Manjit Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, UCL and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Hugh Montgomery
- Department of Medicine, University College London, London, UK
| | - Marina Romanello
- Institute for Global Health, University College London, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lisa Zhang
- Centre for Behaviour Change, University College London, London, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael G Hanna
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK; MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
15
|
Wang HR, Liu T, Gao X, Wang HB, Xiao JH. Impact of climate change on the global circulation of West Nile virus and adaptation responses: a scoping review. Infect Dis Poverty 2024; 13:38. [PMID: 38790027 PMCID: PMC11127377 DOI: 10.1186/s40249-024-01207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.
Collapse
Affiliation(s)
- Hao-Ran Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiang Gao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hong-Bin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jian-Hua Xiao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
16
|
Karkashan A. Immunoinformatics assisted profiling of West Nile virus proteome to determine immunodominant epitopes for the development of next-generation multi-peptide vaccine. Front Immunol 2024; 15:1395870. [PMID: 38799422 PMCID: PMC11116617 DOI: 10.3389/fimmu.2024.1395870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Emerging infectious diseases represent a significant threat to global health, with West Nile virus (WNV) being a prominent example due to its potential to cause severe neurological disorders alongside mild feverish conditions. Particularly prevalent in the continental United States, WNV has emerged as a global concern, with outbreaks indicating the urgent need for effective prophylactic measures. The current problem is that the absence of a commercial vaccine against WNV highlights a critical gap in preventive strategies against WNV. This study aims to address this gap by proposing a novel, multivalent vaccine designed using immunoinformatics approaches to elicit comprehensive humoral and cellular immune responses against WNV. The objective of the study is to provide a theoretical framework for experimental scientists to formulate of vaccine against WNV and tackle the current problem by generating an immune response inside the host. The research employs reverse vaccinology and subtractive proteomics methodologies to identify NP_041724.2 polyprotein and YP_009164950.1 truncated flavivirus polyprotein NS1 as the prime antigens. The selection process for epitopes focused on B and T-cell reactivity, antigenicity, water solubility, and non-allergenic properties, prioritizing candidates with the potential for broad immunogenicity and safety. The designed vaccine construct integrates these epitopes, connected via GPGPG linkers, and supplemented with an adjuvant with the help of another linker EAAAK, to enhance immunogenicity. Preliminary computational analyses suggest that the proposed vaccine could achieve near-universal coverage, effectively targeting approximately 99.74% of the global population, with perfect coverage in specific regions such as Sweden and Finland. Molecular docking and immune simulation studies further validate the potential efficacy of the vaccine, indicating strong binding affinity with toll-like receptor 3 (TLR-3) and promising immune response profiles, including significant antibody-mediated and cellular responses. These findings present the vaccine construct as a viable candidate for further development and testing. While the theoretical and computational results are promising, advancing from in-silico predictions to a tangible vaccine requires comprehensive laboratory validation. This next step is essential to confirm the vaccine's efficacy and safety in eliciting an immune response against WNV. Through this study, we propose a novel approach to vaccine development against WNV and contribute to the broader field of immunoinformatics, showcasing the potential to accelerate the design of effective vaccines against emerging viral threats. The journey from hypothesis to practical solution embodies the interdisciplinary collaboration essential for modern infectious disease management and prevention strategies.
Collapse
Affiliation(s)
- Alaa Karkashan
- Department of Biological Sciences, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
de Freitas Costa E, Streng K, Avelino de Souza Santos M, Counotte MJ. The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLoS Negl Trop Dis 2024; 18:e0012162. [PMID: 38709836 PMCID: PMC11098507 DOI: 10.1371/journal.pntd.0012162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/16/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.
Collapse
Affiliation(s)
- Eduardo de Freitas Costa
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Kiki Streng
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Michel Jacques Counotte
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| |
Collapse
|
18
|
Bayles BR, George MF, Christofferson RC. Long-term trends and spatial patterns of West Nile Virus emergence in California, 2004-2021. Zoonoses Public Health 2024; 71:258-266. [PMID: 38110854 DOI: 10.1111/zph.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS West Nile Virus (WNV) has remained a persistent source of vector-borne disease risk in California since first being identified in the state in 2003. The geographic distribution of WNV activity is relatively widespread, but varies considerably across different regions within the state. Spatial variation in human WNV infection depends upon social-ecological factors that influence mosquito populations and virus transmission dynamics. Measuring changes in spatial patterns over time is necessary for uncovering the underlying regional drivers of disease risk. METHODS AND RESULTS In this study, we utilized statewide surveillance data to quantify temporal changes and spatial patterns of WNV activity in California. We obtained annual WNV mosquito surveillance data from 2004 through 2021 from the California Arbovirus Surveillance Program. Geographic coordinates for mosquito pools were analysed using a suite of spatial statistics to identify and classify patterns in WNV activity over time. CONCLUSIONS We detected clear patterns of non-random WNV risk during the study period, including emerging hot spots in the Central Valley and non-random periods of oscillating WNV risk in Southern and Northern California subregions. Our findings offer new insights into 18 years of spatio-temporal variation in WNV activity across California, which may be used for targeted surveillance efforts and public health interventions.
Collapse
Affiliation(s)
- Brett R Bayles
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
- Department of Natural Sciences and Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michaela F George
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
19
|
Suh E, Stopard IJ, Lambert B, Waite JL, Dennington NL, Churcher TS, Thomas MB. Estimating the effects of temperature on transmission of the human malaria parasite, Plasmodium falciparum. Nat Commun 2024; 15:3230. [PMID: 38649361 PMCID: PMC11035611 DOI: 10.1038/s41467-024-47265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.
Collapse
Affiliation(s)
- Eunho Suh
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Isaac J Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Ben Lambert
- Department of Statistics, University of Oxford, Oxford, UK
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Research Development, University of Vermont, Burlington, VT, USA
| | - Nina L Dennington
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, University of York, York, UK
- Invasion Science Research Institute and Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Krol L, Remmerswaal L, Groen M, van der Beek JG, Sikkema RS, Dellar M, van Bodegom PM, Geerling GW, Schrama M. Landscape level associations between birds, mosquitoes and microclimates: possible consequences for disease transmission? Parasit Vectors 2024; 17:156. [PMID: 38532512 DOI: 10.1186/s13071-024-06239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.
Collapse
Affiliation(s)
- Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.
- Deltares, Daltonlaan 600, Utrecht, The Netherlands.
| | - Laure Remmerswaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Marvin Groen
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Jordy G van der Beek
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martha Dellar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Gertjan W Geerling
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
21
|
Varga Z, Bueno-Marí R, Risueño Iranzo J, Kurucz K, Tóth GE, Zana B, Zeghbib S, Görföl T, Jakab F, Kemenesi G. Accelerating targeted mosquito control efforts through mobile West Nile virus detection. Parasit Vectors 2024; 17:140. [PMID: 38500161 PMCID: PMC10949795 DOI: 10.1186/s13071-024-06231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.
Collapse
Affiliation(s)
- Zsaklin Varga
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Rubén Bueno-Marí
- Department of Research and Development, Laboratorios Lokímica, Valencia, Spain
- Parasite & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - José Risueño Iranzo
- Department of Research and Development, Laboratorios Lokímica, Valencia, Spain
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
22
|
de Wit MM, Dimas Martins A, Delecroix C, Heesterbeek H, ten Bosch QA. Mechanistic models for West Nile virus transmission: a systematic review of features, aims and parametrization. Proc Biol Sci 2024; 291:20232432. [PMID: 38471554 PMCID: PMC10932716 DOI: 10.1098/rspb.2023.2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.
Collapse
Affiliation(s)
- Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
23
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. Oecologia 2024; 204:389-399. [PMID: 38006450 DOI: 10.1007/s00442-023-05481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5 °C and 13 °C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
Affiliation(s)
- Sherine Ismail
- Department of Biology, Stanford University, Stanford, USA
| | | | - Lisa Couper
- Department of Biology, Stanford University, Stanford, USA
| | - Erin Mordecai
- Department of Biology, Stanford University, Stanford, USA
| | | |
Collapse
|
24
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. Proc Biol Sci 2024; 291:20232457. [PMID: 38264779 PMCID: PMC10806440 DOI: 10.1098/rspb.2023.2457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Johannah E. Farner
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Alexandra S. Lee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Childs ML, Lyberger K, Harris M, Burke M, Mordecai EA. Climate warming is expanding dengue burden in the Americas and Asia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24301015. [PMID: 38260629 PMCID: PMC10802639 DOI: 10.1101/2024.01.08.24301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Climate change poses significant threats to public health, with dengue representing a growing concern due to its high existing burden and sensitivity to climatic conditions. Yet, the quantitative impacts of temperature warming on dengue, both in the past and in the future, remain poorly understood. In this study, we quantify how dengue responds to climatic fluctuations, and use this inferred temperature response to estimate the impacts of historical warming and forecast trends under future climate change scenarios. To estimate the causal impact of temperature on the spread of dengue in the Americas and Asia, we assembled a dataset encompassing nearly 1.5 million dengue incidence records from 21 countries. Our analysis revealed a nonlinear relationship between temperature and dengue incidence with the largest marginal effects at lower temperatures (around 15°C), peak incidence at 27.8°C (95% CI: 27.3 - 28.2°C), and subsequent declines at higher temperatures. Our findings indicate that historical climate change has already increased dengue incidence 18% (12 - 25%) in the study region, and projections suggest a potential increase of 40% (17 - 76) to 57% (33 - 107%) by mid-century depending on the climate scenario, with some areas seeing up to 200% increases. Notably, our models suggest that lower emissions scenarios would substantially reduce the warming-driven increase in dengue burden. Together, these insights contribute to the broader understanding of how long-term climate patterns influence dengue, providing a valuable foundation for public health planning and the development of strategies to mitigate future risks due to climate change.
Collapse
Affiliation(s)
- Marissa L Childs
- Center for the Environment, Harvard University, Cambridge, MA, USA
| | - Kelsey Lyberger
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mallory Harris
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marshall Burke
- Global Environmental Policy, Stanford University, Stanford, CA, USA
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Parums DV. Editorial: Climate Change and the Spread of Vector-Borne Diseases, Including Dengue, Malaria, Lyme Disease, and West Nile Virus Infection. Med Sci Monit 2024; 29:e943546. [PMID: 38161310 PMCID: PMC10768291 DOI: 10.12659/msm.943546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
The major health threats from climate change include increasing temperatures, air pollution, extreme weather events, changes in the spread of infectious diseases, antimicrobial resistance, emerging pathogens, and an increase in vector-borne disease. Between October and December 2023, in 200 medical journal, epidemiologists, clinicians, healthcare policymakers, and journal editors published an emergency call to action to health professionals, the United Nations, and political leaders on climate change and its effects on the ecosystem and human health. Also, in December 2023, the Intergovernmental Panel on Climate Change (IPCC) published its sixth Assessment Report (AR6) that summarizes current knowledge, impacts, and health risks from climate change, as well as suggestions for mitigation and adaptation. For over a decade, the IPCC has reported that the prevalence of vector-borne diseases has increased and highlighted the importance of monitoring dengue, malaria, Lyme disease, West Nile virus infection, and other vector-borne diseases. This editorial aims to provide an update on the association between climate change and the spread of vector-borne diseases and highlights the urgent need for public health and disease prevention and treatment strategies to control the rise in vector-borne diseases.
Collapse
Affiliation(s)
- Dinah V Parums
- Science Editor, Medical Science Monitor, International Scientific Information, Inc., Melville, NY, USA
| |
Collapse
|
27
|
Dennington NL, Grossman MK, Ware-Gilmore F, Teeple JL, Johnson LR, Shocket MS, McGraw EA, Thomas MB. Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti. GLOBAL CHANGE BIOLOGY 2024; 30:e17041. [PMID: 38273521 DOI: 10.1111/gcb.17041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 01/27/2024]
Abstract
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.
Collapse
Affiliation(s)
- Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marissa K Grossman
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janet L Teeple
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, Florida, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Elizabeth A McGraw
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew B Thomas
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
- Invasion Science Research Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of York, York, UK
| |
Collapse
|
28
|
Romanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, Walawender M, Ali Z, Ameli N, Ayeb-Karlsson S, Beggs PJ, Belesova K, Berrang Ford L, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Freyberg C, Gasparyan O, Gordon-Strachan G, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Hsu SC, Jamart L, Jankin S, Jay O, Kelman I, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Larosa F, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lotto Batista M, Lowe R, Odhiambo Sewe M, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman O, Pega F, Pershing A, Rabbaniha M, Rickman J, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell JD, Tabatabaei M, Taylor J, Thompson R, Tonne C, Treskova M, Trinanes JA, Wagner F, Warnecke L, Whitcombe H, Winning M, Wyns A, Yglesias-González M, Zhang S, Zhang Y, Zhu Q, Gong P, Montgomery H, Costello A. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 2023; 402:2346-2394. [PMID: 37977174 PMCID: PMC7616810 DOI: 10.1016/s0140-6736(23)01859-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The Lancet Countdown is an international research collaboration that independently monitors the evolving impacts of climate change on health, and the emerging health opportunities of climate action. In its eighth iteration, this 2023 report draws on the expertise of 114 scientists and health practitioners from 52 research institutions and UN agencies worldwide to provide its most comprehensive assessment yet. In 2022, the Lancet Countdown warned that people’s health is at the mercy of fossil fuels and stressed the transformative opportunity of jointly tackling the concurrent climate change, energy, cost-of-living, and health crises for human health and wellbeing. This year’s report finds few signs of such progress. At the current 10-year mean heating of 1·14°C above pre-industrial levels, climate change is increasingly impacting the health and survival of people worldwide, and projections show these risks could worsen steeply with further inaction. However, with health matters gaining prominence in climate change negotiations, this report highlights new opportunities to deliver health-promoting climate change action and a safe and thriving future for all.
Collapse
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Claudia di Napoli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Carole Green
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Zakari Ali
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Nadia Ameli
- Institute for Sustainable Resources, University College London, London, UK
| | - Sonja Ayeb-Karlsson
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Paul J Beggs
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Kathryn Bowen
- School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Diarmid Campbell-Lendrum
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Jonathan Chambers
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Troy J Cross
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | | | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- International Development Department, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Euro-Mediterranean Center on Climate Change Foundation, Lecce, Italy
| | - Michael Davies
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | | | - Robert Dubrow
- School of Public Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Matthew Eckelman
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Chris Freyberg
- Department of Information Systems, Massey University, Palmerston North, New Zealand
| | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | | | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Samuel H Gunther
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Yun Hang
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | | | - Stella Hartinger
- Carlos Vidal Layseca School of Public Health and Management, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Kehan He
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Julian Heidecke
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Jeremy J Hess
- Centre for Health and the Global Environment, University of Washington, Washington, DC, USA
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Slava Jankin
- Centre for AI in Government, University of Birmingham, Birmingham, UK
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Patrick Kinney
- Department of Environmental Health, Boston University, Boston, MA, USA
| | - Dominic Kniveton
- School of Global Studies, University of Sussex, Brighton and Hove, UK
| | | | - Francesca Larosa
- Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jason K W Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Environmental Studies Program, Denison University, Granville, OH, USA
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelton Minor
- Data Science Institute, Columbia University, New York, NY, USA
| | - Jan C Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- Department of Technology Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Kris A Murray
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Tara Neville
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maria Nilsson
- Department for Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | | | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Camile Oliveira
- Institute for Global Health, University College London, London, UK
| | | | - Matthias Otto
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Olivia Pearman
- Center for Science and Technology Policy, University of Colorado Boulder, Boulder, CO, USA
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | | | | | - Jamie Rickman
- Institute for Sustainable Resources, University College London, London, UK
| | - Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK
| | - Joacim Rocklöv
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jodi D Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | | | - Grant Silbert
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Marco Springmann
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Marina Treskova
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Joaquin A Trinanes
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago, Spain
| | - Fabian Wagner
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Laura Warnecke
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Hannah Whitcombe
- Institute for Global Health, University College London, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Arthur Wyns
- Melbourne Climate Futures, The University of Melbourne, Melbourne, VIC, Australia
| | - Marisol Yglesias-González
- Centro Latinoamericano de Excelencia en Cambio Climatico y Salud, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Department of Experimental and Translational Medicine and Division of Medicine, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
29
|
Athni TS, Childs ML, Glidden CK, Mordecai EA. Temperature dependence of mosquitoes: comparing mechanistic and machine learning approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569955. [PMID: 38105988 PMCID: PMC10723351 DOI: 10.1101/2023.12.04.569955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mosquito vectors of pathogens (e.g., Aedes , Anopheles , and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically-plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.90). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming.
Collapse
|
30
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530886. [PMID: 37961581 PMCID: PMC10634975 DOI: 10.1101/2023.03.02.530886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity, and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1,200 km, we found remarkably limited variation in upper thermal tolerance between populations, with the upper thermal limits of fitness varying by <1°C across the species range. For one life history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found environmental temperatures already regularly exceed our highest estimated upper thermal limits throughout most of the species range, suggesting limited potential for mosquito thermal tolerance to evolve on pace with warming. Strategies for avoiding high temperatures such as diapause, phenological shifts, and behavioral thermoregulation are likely important for mosquito persistence.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Johannah E. Farner
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Alexandra S. Lee
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Erin A. Mordecai
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| |
Collapse
|
31
|
Holcomb KM, Staples JE, Nett RJ, Beard CB, Petersen LR, Benjamin SG, Green BW, Jones H, Johansson MA. Multi-Model Prediction of West Nile Virus Neuroinvasive Disease With Machine Learning for Identification of Important Regional Climatic Drivers. GEOHEALTH 2023; 7:e2023GH000906. [PMID: 38023388 PMCID: PMC10654557 DOI: 10.1029/2023gh000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental United States (CONUS). Spatial heterogeneity in historical incidence, environmental factors, and complex ecology make prediction of spatiotemporal variation in WNV transmission challenging. Machine learning provides promising tools for identification of important variables in such situations. To predict annual WNV neuroinvasive disease (WNND) cases in CONUS (2015-2021), we fitted 10 probabilistic models with variation in complexity from naïve to machine learning algorithm and an ensemble. We made predictions in each of nine climate regions on a hexagonal grid and evaluated each model's predictive accuracy. Using the machine learning models (random forest and neural network), we identified the relative importance and variation in ranking of predictors (historical WNND cases, climate anomalies, human demographics, and land use) across regions. We found that historical WNND cases and population density were among the most important factors while anomalies in temperature and precipitation often had relatively low importance. While the relative performance of each model varied across climatic regions, the magnitude of difference between models was small. All models except the naïve model had non-significant differences in performance relative to the baseline model (negative binomial model fit per hexagon). No model, including the ensemble or more complex machine learning models, outperformed models based on historical case counts on the hexagon or region level; these models are good forecasting benchmarks. Further work is needed to assess if predictive capacity can be improved beyond that of these historical baselines.
Collapse
Affiliation(s)
- Karen M. Holcomb
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Now at Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - J. Erin Staples
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Randall J. Nett
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Charles B. Beard
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Lyle R. Petersen
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Stanley G. Benjamin
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Benjamin W. Green
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Hunter Jones
- Climate Prediction OfficeNational Oceanic and Atmospheric AdministrationSilver SpringMDUSA
| | - Michael A. Johansson
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPRUSA
| |
Collapse
|
32
|
McCarter MSJ, Self S, Dye-Braumuller KC, Lee C, Li H, Nolan MS. The utility of a Bayesian predictive model to forecast neuroinvasive West Nile virus disease in the United States of America, 2022. PLoS One 2023; 18:e0290873. [PMID: 37682897 PMCID: PMC10490885 DOI: 10.1371/journal.pone.0290873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Arboviruses (arthropod-borne-viruses) are an emerging global health threat that are rapidly spreading as climate change, international business transport, and landscape fragmentation impact local ecologies. Since its initial detection in 1999, West Nile virus has shifted from being a novel to an established arbovirus in the United States of America. Subsequently, more than 25,000 cases of West Nile neuro-invasive disease have been diagnosed, cementing West Nile virus as an arbovirus of public health importance. Given its novelty in the United States of America, high-risk ecologies are largely underdefined making targeted population-level public health interventions challenging. Using the Centers for Disease Control and Prevention ArboNET neuroinvasive West Nile virus data from 2000-2021, this study aimed to predict neuroinvasive West Nile virus human cases at the county level for the contiguous USA using a spatio-temporal Bayesian negative binomial regression model. The model includes environmental, climatic, and demographic factors, as well as the distribution of host species. An integrated nested Laplace approximation approach was used to fit our model. To assess model prediction accuracy, annual counts were withheld, forecasted, and compared to observed values. The validated models were then fit to the entire dataset for 2022 predictions. This proof-of-concept mathematical, geospatial modelling approach has proven utility for national health agencies seeking to allocate funding and other resources for local vector control agencies tackling West Nile virus and other notifiable arboviral agents.
Collapse
Affiliation(s)
- Maggie S. J. McCarter
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of America
| | - Stella Self
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of America
| | - Kyndall C. Dye-Braumuller
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of America
| | - Christopher Lee
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, United States of America
| | - Huixuan Li
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of America
| | - Melissa S. Nolan
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
33
|
Talbot B, Kulkarni MA, Rioux-Rousseau M, Siebels K, Kotchi SO, Ogden NH, Ludwig A. Ecological Niche and Positive Clusters of Two West Nile Virus Vectors in Ontario, Canada. ECOHEALTH 2023; 20:249-262. [PMID: 37985537 PMCID: PMC10757704 DOI: 10.1007/s10393-023-01653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2023] [Accepted: 07/30/2023] [Indexed: 11/22/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen associated with uncommon but severe neurological complications in humans, especially among the elderly and immune-compromised. In Northeastern North America, the Culex pipiens/restuans complex and Aedes vexans are the two principal vector mosquito species/species groups of WNV. Using a 10-year surveillance dataset of WNV vector captures at 118 sites across an area of 40,000 km2 in Eastern Ontario, Canada, the ecological niches of Cx. pipiens/restuans and Aedes vexans were modeled by random forest analysis. Spatiotemporal clusters of WNV-positive mosquito pools were identified using Kulldorf's spatial scan statistic. The study region encompasses land cover types and climate representative of highly populated Southeastern Canada. We found highest vector habitat suitability in the eastern half of the study area, where temperatures are generally warmer (variable importance > 0.40) and residential and agricultural cropland cover is more prominent (variable importance > 0.25). We found spatiotemporal clusters of high WNV infection rates around the city of Ottawa in both mosquito vector species. These results support the previous literature in the same region and elsewhere suggesting areas surrounding highly populated areas are also high-risk areas for vector-borne zoonoses such as the WNV.
Collapse
Affiliation(s)
- Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Maxime Rioux-Rousseau
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Saint- Hyacinthe, QC, and Guelph, ON, Canada
| | - Kevin Siebels
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Saint- Hyacinthe, QC, and Guelph, ON, Canada
| | - Serge Olivier Kotchi
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Saint- Hyacinthe, QC, and Guelph, ON, Canada
- Signal, Image Processing and Multimedia (STIM), Research Unit and Digital Expertise (UREN), Université Virtuelle de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Nicholas H Ogden
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Saint- Hyacinthe, QC, and Guelph, ON, Canada
| | - Antoinette Ludwig
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Saint- Hyacinthe, QC, and Guelph, ON, Canada
| |
Collapse
|
34
|
Cuthbert RN, Darriet F, Chabrerie O, Lenoir J, Courchamp F, Claeys C, Robert V, Jourdain F, Ulmer R, Diagne C, Ayala D, Simard F, Morand S, Renault D. Invasive hematophagous arthropods and associated diseases in a changing world. Parasit Vectors 2023; 16:291. [PMID: 37592298 PMCID: PMC10436414 DOI: 10.1186/s13071-023-05887-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Biological invasions have increased significantly with the tremendous growth of international trade and transport. Hematophagous arthropods can be vectors of infectious and potentially lethal pathogens and parasites, thus constituting a growing threat to humans-especially when associated with biological invasions. Today, several major vector-borne diseases, currently described as emerging or re-emerging, are expanding in a world dominated by climate change, land-use change and intensive transportation of humans and goods. In this review, we retrace the historical trajectory of these invasions to better understand their ecological, physiological and genetic drivers and their impacts on ecosystems and human health. We also discuss arthropod management strategies to mitigate future risks by harnessing ecology, public health, economics and social-ethnological considerations. Trade and transport of goods and materials, including vertebrate introductions and worn tires, have historically been important introduction pathways for the most prominent invasive hematophagous arthropods, but sources and pathways are likely to diversify with future globalization. Burgeoning urbanization, climate change and the urban heat island effect are likely to interact to favor invasive hematophagous arthropods and the diseases they can vector. To mitigate future invasions of hematophagous arthropods and novel disease outbreaks, stronger preventative monitoring and transboundary surveillance measures are urgently required. Proactive approaches, such as the use of monitoring and increased engagement in citizen science, would reduce epidemiological and ecological risks and could save millions of lives and billions of dollars spent on arthropod control and disease management. Last, our capacities to manage invasive hematophagous arthropods in a sustainable way for worldwide ecosystems can be improved by promoting interactions among experts of the health sector, stakeholders in environmental issues and policymakers (e.g. the One Health approach) while considering wider social perceptions.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Olivier Chabrerie
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Franck Courchamp
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif sur Yvette, France
| | - Cecilia Claeys
- Centre de Recherche sur les Sociétés et les Environnement Méditerranéens (CRESEM), UR 7397 UPVD, Université de Perpignan, Perpignan, France
| | - Vincent Robert
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Frédéric Jourdain
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Santé Publique France, Saint-Maurice, France
| | - Romain Ulmer
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Christophe Diagne
- CBGP, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 755 Avenue du Campus Agropolis, 34988, Cedex, Montferrier-Sur-Lez, France
| | - Diego Ayala
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | - Frédéric Simard
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Serge Morand
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Faculty of Veterinary Technology, CNRS - CIRAD, Kasetsart University, Bangkok, Thailand
| | - David Renault
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) - UMR 6553, Rennes, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, France
| |
Collapse
|
35
|
Marie V, Gordon ML. The (Re-)Emergence and Spread of Viral Zoonotic Disease: A Perfect Storm of Human Ingenuity and Stupidity. Viruses 2023; 15:1638. [PMID: 37631981 PMCID: PMC10458268 DOI: 10.3390/v15081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases that are transmitted from vertebrate animals to humans are referred to as zoonotic diseases. Although microbial agents such as bacteria and parasites are linked to zoonotic events, viruses account for a high percentage of zoonotic diseases that have emerged. Worryingly, the 21st century has seen a drastic increase in the emergence and re-emergence of viral zoonotic disease. Even though humans and animals have coexisted for millennia, anthropogenic factors have severely increased interactions between the two populations, thereby increasing the risk of disease spill-over. While drivers such as climate shifts, land exploitation and wildlife trade can directly affect the (re-)emergence of viral zoonotic disease, globalisation, geopolitics and social perceptions can directly facilitate the spread of these (re-)emerging diseases. This opinion paper discusses the "intelligent" nature of viruses and their exploitation of the anthropogenic factors driving the (re-)emergence and spread of viral zoonotic disease in a modernised and connected world.
Collapse
Affiliation(s)
- Veronna Marie
- Microbiology Laboratory, Department of Analytical Services, Rand Water, Vereeniging 1939, South Africa
| | - Michelle L. Gordon
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
36
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
37
|
Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, Bartlow AW, Romero-Severson E, Manore CA. Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasit Vectors 2023; 16:200. [PMID: 37316915 DOI: 10.1186/s13071-023-05792-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Mosquitoes in the genus Culex are primary vectors in the US for West Nile virus (WNV) and other arboviruses. Climatic drivers such as temperature have differential effects on species-specific changes in mosquito range, distribution, and abundance, posing challenges for population modeling, disease forecasting, and subsequent public health decisions. Understanding these differences in underlying biological dynamics is crucial in the face of climate change. METHODS We collected empirical data on thermal response for immature development rate, egg viability, oviposition, survival to adulthood, and adult lifespan for Culex pipiens, Cx. quinquefasciatus, Cx. tarsalis, and Cx. restuans from existing literature according to the PRISMA scoping review guidelines. RESULTS We observed linear relationships with temperature for development rate and lifespan, and nonlinear relationships for survival and egg viability, with underlying variation between species. Optimal ranges and critical minima and maxima also appeared varied. To illustrate how model output can change with experimental input data from individual Culex species, we applied a modified equation for temperature-dependent mosquito type reproduction number for endemic spread of WNV among mosquitoes and observed different effects. CONCLUSIONS Current models often input theoretical parameters estimated from a single vector species; we show the need to implement the real-world heterogeneity in thermal response between species and present a useful data resource for researchers working toward that goal.
Collapse
Affiliation(s)
- S Kane Moser
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Martha Barnard
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Biostatistics, School of Public Health, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Rachel M Frantz
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - Julie A Spencer
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Katie A Rodarte
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Isabel K Crooker
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Biology, Cornell University, Ithaca, NY, USA
| | - Andrew W Bartlow
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ethan Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carrie A Manore
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
38
|
Skinner EB, Glidden CK, MacDonald AJ, Mordecai EA. Human footprint is associated with shifts in the assemblages of major vector-borne diseases. NATURE SUSTAINABILITY 2023; 6:652-661. [PMID: 37538395 PMCID: PMC10399301 DOI: 10.1038/s41893-023-01080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/01/2023] [Indexed: 08/05/2023]
Abstract
Predicting how increasing intensity of human-environment interactions affects pathogen transmission is essential to anticipate changing disease risks and identify appropriate mitigation strategies. Vector-borne diseases (VBDs) are highly responsive to environmental changes, but such responses are notoriously difficult to isolate because pathogen transmission depends on a suite of ecological and social responses in vectors and hosts that may differ across species. Here we use the emerging tools of cumulative pressure mapping and machine learning to better understand how the occurrence of six medically important VBDs, differing in ecology from sylvatic to urban, respond to multidimensional effects of human pressure. We find that not only is human footprint-an index of human pressure, incorporating built environments, energy and transportation infrastructure, agricultural lands and human population density-an important predictor of VBD occurrence, but there are clear thresholds governing the occurrence of different VBDs. Across a spectrum of human pressure, diseases associated with lower human pressure, including malaria, cutaneous leishmaniasis and visceral leishmaniasis, give way to diseases associated with high human pressure, such as dengue, chikungunya and Zika. These heterogeneous responses of VBDs to human pressure highlight thresholds of land-use transitions that may lead to abrupt shifts in infectious disease burdens and public health needs.
Collapse
Affiliation(s)
- Eloise B. Skinner
- Department of Biology, Stanford University, Stanford, CA, USA
- Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, Australia
| | | | - Andrew J. MacDonald
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | |
Collapse
|
39
|
Uelmen JA, Mapes CD, Prasauskas A, Boohene C, Burns L, Stuck J, Carney RM. A Habitat Model for Disease Vector Aedes aegypti in the Tampa Bay Area, FloridA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:96-107. [PMID: 37364184 DOI: 10.2987/22-7109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Within the contiguous USA, Florida is unique in having tropical and subtropical climates, a great abundance and diversity of mosquito vectors, and high rates of human travel. These factors contribute to the state being the national ground zero for exotic mosquito-borne diseases, as evidenced by local transmission of viruses spread by Aedes aegypti, including outbreaks of dengue in 2022 and Zika in 2016. Because of limited treatment options, integrated vector management is a key part of mitigating these arboviruses. Practical knowledge of when and where mosquito populations of interest exist is critical for surveillance and control efforts, and habitat predictions at various geographic scales typically rely on ecological niche modeling. However, most of these models, usually created in partnership with academic institutions, demand resources that otherwise may be too time-demanding or difficult for mosquito control programs to replicate and use effectively. Such resources may include intensive computational requirements, high spatiotemporal resolutions of data not regularly available, and/or expert knowledge of statistical analysis. Therefore, our study aims to partner with mosquito control agencies in generating operationally useful mosquito abundance models. Given the increasing threat of mosquito-borne disease transmission in Florida, our analytic approach targets recent Ae. aegypti abundance in the Tampa Bay area. We investigate explanatory variables that: 1) are publicly available, 2) require little to no preprocessing for use, and 3) are known factors associated with Ae. aegypti ecology. Out of our 4 final models, none required more than 5 out of the 36 predictors assessed (13.9%). Similar to previous literature, the strongest predictors were consistently 3- and 4-wk temperature and precipitation lags, followed closely by 1 of 2 environmental predictors: land use/land cover or normalized difference vegetation index. Surprisingly, 3 of our 4 final models included one or more socioeconomic or demographic predictors. In general, larger sample sizes of trap collections and/or citizen science observations should result in greater confidence in model predictions and validation. However, given disparities in trap collections across jurisdictions, individual county models rather than a multicounty conglomerate model would likely yield stronger model fits. Ultimately, we hope that the results of our assessment will enable more accurate and precise mosquito surveillance and control of Ae. aegypti in Florida and beyond.
Collapse
|
40
|
Field EN, Smith RC. Seasonality influences key physiological components contributing to Culex pipiens vector competence. FRONTIERS IN INSECT SCIENCE 2023; 3:1144072. [PMID: 38469495 PMCID: PMC10926469 DOI: 10.3389/finsc.2023.1144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 03/13/2024]
Abstract
Mosquitoes are the most important animal vector of disease on the planet, transmitting a variety of pathogens of both medical and veterinary importance. Mosquito-borne diseases display distinct seasonal patterns driven by both environmental and biological variables. However, an important, yet unexplored component of these patterns is the potential for seasonal influences on mosquito physiology that may ultimately influence vector competence. To address this question, we selected Culex pipiens, a primary vector of the West Nile virus (WNV) in the temperate United States, to examine the seasonal impacts on mosquito physiology by examining known immune and bacterial components implicated in mosquito arbovirus infection. Semi-field experiments were performed under spring, summer, and late-summer conditions, corresponding to historically low-, medium-, and high-intensity periods of WNV transmission, respectively. Through these experiments, we observed differences in the expression of immune genes and RNA interference (RNAi) pathway components, as well as changes in the distribution and abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together, these findings support the conclusion that seasonal changes significantly influence mosquito physiology and components of the mosquito microbiome, suggesting that seasonality may impact mosquito susceptibility to pathogen infection, which could account for the temporal patterns in mosquito-borne disease transmission.
Collapse
Affiliation(s)
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
41
|
Fesce E, Marini G, Rosà R, Lelli D, Cerioli MP, Chiari M, Farioli M, Ferrari N. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics. PLoS Negl Trop Dis 2023; 17:e0010252. [PMID: 37126524 PMCID: PMC10174579 DOI: 10.1371/journal.pntd.0010252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.
Collapse
Affiliation(s)
- Elisa Fesce
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento (TN), Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Mario Chiari
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Marco Farioli
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano (MI), Italy
| |
Collapse
|
42
|
Keyel AC. Patterns of West Nile Virus in the Northeastern United States Using Negative Binomial and Mechanistic Trait-Based Models. GEOHEALTH 2023; 7:e2022GH000747. [PMID: 37026081 PMCID: PMC10072317 DOI: 10.1029/2022gh000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
West Nile virus (WNV) primarily infects birds and mosquitoes but has also caused over 2,000 human deaths, and >50,000 reported human cases in the United States. Expected numbers of WNV neuroinvasive cases for the present were described for the Northeastern United States, using a negative binomial model. Changes in temperature-based suitability for WNV due to climate change were examined for the next decade using a temperature-trait model. WNV suitability was generally expected to increase over the next decade due to changes in temperature, but the changes in suitability were generally small. Many, but not all, populous counties in the northeast are already near peak suitability. Several years in a row of low case numbers is consistent with a negative binomial, and should not be interpreted as a change in disease dynamics. Public health budgets need to be prepared for the expected infrequent years with higher-than-average cases. Low-population counties that have not yet had a case are expected to have similar probabilities of having a new case as nearby low-population counties with cases, as these absences are consistent with a single statistical distribution and random chance.
Collapse
Affiliation(s)
- Alexander C. Keyel
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNYUSA
- Department of Atmospheric and Environmental SciencesUniversity at AlbanySUNYAlbanyNYUSA
| |
Collapse
|
43
|
Farooq Z, Sjödin H, Semenza JC, Tozan Y, Sewe MO, Wallin J, Rocklöv J. European projections of West Nile virus transmission under climate change scenarios. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
44
|
Holcomb KM, Mathis S, Staples JE, Fischer M, Barker CM, Beard CB, Nett RJ, Keyel AC, Marcantonio M, Childs ML, Gorris ME, Rochlin I, Hamins-Puértolas M, Ray EL, Uelmen JA, DeFelice N, Freedman AS, Hollingsworth BD, Das P, Osthus D, Humphreys JM, Nova N, Mordecai EA, Cohnstaedt LW, Kirk D, Kramer LD, Harris MJ, Kain MP, Reed EMX, Johansson MA. Evaluation of an open forecasting challenge to assess skill of West Nile virus neuroinvasive disease prediction. Parasit Vectors 2023; 16:11. [PMID: 36635782 PMCID: PMC9834680 DOI: 10.1186/s13071-022-05630-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).
Collapse
Affiliation(s)
- Karen M. Holcomb
- Global Systems Laboratory, National Atmospheric and Oceanic Administration, Boulder, CO USA
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Sarabeth Mathis
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - J. Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Marc Fischer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Charles B. Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Randall J. Nett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Alexander C. Keyel
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY USA
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY USA
| | - Matteo Marcantonio
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
- Evolutionary Ecology and Genetics Group, Earth & Life Institute-UCLouvain, Louvain-La-Neuve, Belgium
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA USA
| | - Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ USA
| | | | - Evan L. Ray
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA USA
| | - Johnny A. Uelmen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Nicholas DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Global Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Andrew S. Freedman
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC USA
| | | | - Praachi Das
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC USA
| | - Dave Osthus
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM USA
| | - John M. Humphreys
- Agricultural Research Service, United States Department of Agriculture, Sidney, MT USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA USA
| | | | - Lee W. Cohnstaedt
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS USA
| | - Devin Kirk
- Department of Biology, Stanford University, Stanford, CA USA
| | - Laura D. Kramer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY USA
| | | | - Morgan P. Kain
- Department of Biology, Stanford University, Stanford, CA USA
| | - Emily M. X. Reed
- Invasive Species Working Group, Global Change Center, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, NC USA
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR USA
| |
Collapse
|
45
|
Giesen C, Herrador Z, Fernandez B, Figuerola J, Gangoso L, Vazquez A, Gómez-Barroso D. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health 2023. [DOI: 10.1016/j.onehlt.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Ward MJ, Sorek-Hamer M, Vemuri KK, DeFelice NB. Statistical Tools for West Nile Virus Disease Analysis. Methods Mol Biol 2023; 2585:171-191. [PMID: 36331774 DOI: 10.1007/978-1-0716-2760-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is the most widespread arbovirus in the world and endemic to much of the United States. Its range continues to expand as land use patterns change, creating more habitable environments for the mosquito vector. Though WNV is endemic, the year-to-year risk is highly variable, thus making it difficult to understand the risk for human spillover events. Abatement districts monitor for infected mosquitoes to help understand these potential risks and to help guide our understanding of the risk posed by these observed infected mosquitoes. Creating optimal monitoring networks will provide more informed decision-making tools for abatement districts and policy makers. Investment in these monitoring networks that capture robust observations on mosquito infection rates will allow for environmentally informed inference systems to help guide decision-making and WNV risk. In turn, enhanced decision-making tools allow for faster response times of more targeted and economical surveillance and mosquito population reduction efforts and the overall reduction of WNV transmission. Here we discuss the data streams, their processing, and specifically three ways to calculate WNV infection rates in mosquitoes.
Collapse
Affiliation(s)
- Matthew J Ward
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meytar Sorek-Hamer
- Environmental Analytics Group (USRA), NASA Ames Research Center, Moffett Field, CA, USA
| | - Krishna Karthik Vemuri
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas B DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Global Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
47
|
Gutiérrez-López R, Figuerola J, Martínez-de la Puente J. Methodological procedures explain observed differences in the competence of European populations of Aedes albopictus for the transmission of Zika virus. Acta Trop 2023; 237:106724. [DOI: 10.1016/j.actatropica.2022.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
|
48
|
Affiliation(s)
- Madeleine C Thomson
- From the Climate and Health Challenge Area, the Wellcome Trust, London (M.C.T.); and the Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York (L.R.S.)
| | - Lawrence R Stanberry
- From the Climate and Health Challenge Area, the Wellcome Trust, London (M.C.T.); and the Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York (L.R.S.)
| |
Collapse
|
49
|
SEIR-Metapopulation model of potential spread of West Nile virus. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|