1
|
Ren L, Fan Y, Wu W, Qian Y, He M, Li X, Wang Y, Yang Y, Wen X, Zhang R, Li C, Chen X, Hu J. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur J Pharmacol 2024; 983:176994. [PMID: 39271040 DOI: 10.1016/j.ejphar.2024.176994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Anxiety disorders are one of the most prevalent mental health conditions worldwide, imposing a significant burden on individuals affected by them and society in general. Current research endeavors aim to enhance the effectiveness of existing anxiolytic drugs and reduce their side effects through optimization or the development of new treatments. Several anxiolytic novel drugs have been produced as a result of discovery-focused research. However, many drug candidates that show promise in preclinical rodent model studies fail to offer any substantive clinical benefits to patients. This review provides an overview of the diagnosis and classification of anxiety disorders together with a systematic review of anxiolytic drugs with a focus on their targets, therapeutic applications, and side effects. It also provides a concise overview of the constraints and disadvantages associated with frequently administered anxiolytic drugs. Additionally, the study comprehensively reviews animal models used in anxiety studies and their associated molecular mechanisms, while also summarizing the brain circuitry related to anxiety. In conclusion, this article provides a valuable foundation for future anxiolytic drug discovery efforts.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China.
| | - Yue Fan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Wenjian Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yuanxin Qian
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Miao He
- College of Life Sciences and Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xinlong Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yizhu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yu Yang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xuetong Wen
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Ruijia Zhang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Chenhang Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Jingqing Hu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
St Laurent R, Kusche KM, Rein B, Raymond KB, Kreitzer AC, Malenka RC. Intercalated amygdala dysfunction drives avoidance extinction deficits in the Sapap3 mouse model of obsessive-compulsive disorder. Biol Psychiatry 2024:S0006-3223(24)01730-X. [PMID: 39491639 DOI: 10.1016/j.biopsych.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The avoidance of aversive stimuli through negative reinforcement learning is critical for survival in real-world environments, which demand dynamic responding to both positive and negative stimuli that often conflict with each other. Individuals with obsessive-compulsive disorder (OCD) commonly exhibit impaired negative reinforcement and extinction, perhaps involving deficits in amygdala functioning. An amygdala subregion of particular interest is the intercalated nuclei of the amygdala (ITC) which has been linked to negative reinforcement and extinction, with distinct clusters mediating separate aspects of behavior. This study focuses on the dorsal ITC cluster (ITCd) and its role in negative reinforcement during a complex behavior that models real-world dynamic decision making. METHODS We investigated the impact of ITCd function on negative reinforcement and extinction by applying fiber photometry measurement of GCamp6f signals and optogenetic manipulations during a platform-mediated avoidance task in a mouse model of OCD-like behavior: the Sapap3-null mouse. RESULTS We find impaired neural activity in the ITCd of male and female Sapap3-null mice to the encoding of negative stimuli during platform-mediated avoidance. Sapap3-null mice also exhibit deficits in extinction of avoidant behavior, which is modulated by ITCd neural activity. CONCLUSIONS Sapap3-null mice fail to extinguish avoidant behavior in platform-mediated avoidance, due to heightened ITCd activity. This deficit can be rescued by optogenetically inhibiting ITCd during extinction. Together, our results provide insight into the neural mechanisms underpinning negative reinforcement deficits in the context of OCD, emphasizing the necessity of ITCd in responding to negative stimuli in complex environments.
Collapse
Affiliation(s)
- Robyn St Laurent
- Gladstone Institutes, San Francisco, CA, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Ben Rein
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kendall B Raymond
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Anatol C Kreitzer
- Gladstone Institutes, San Francisco, CA, USA; Department of Physiology, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Torres-García VM, Rodríguez-Nava E, Alcántara-Rivas RI, Picazo O, Roldán-Roldán G, Morin JP. Scopolamine infusion in the basolateral amygdala after saccharin intake induces conditioned taste avoidance in rats. Psychopharmacology (Berl) 2024; 241:2133-2144. [PMID: 38822849 PMCID: PMC11442510 DOI: 10.1007/s00213-024-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
RATIONALE Muscarinic receptor activity in the basolateral amygdala (BLA) is known to be involved in plasticity mechanisms that underlie emotional learning. The BLA is involved in the Attenuation of Neophobia, an incidental taste learning task in which a novel taste becomes familiar and recognized as safe. OBJECTIVE Here we assessed the role of muscarinic receptor activity in the BLA in incidental taste learning. METHODS Young adult male Wistar rats were bilaterally implanted with cannulas aimed at BLA. After recovery, rats were randomly assigned to either vehicle or muscarinic antagonist group, for each experiment. We tested the effect of specific and non-specific muscarinic antagonists administered either 1) 20 min before novel taste presentation; 2) immediately after novel taste presentation; 3) immediately after retrieval (the second taste presentation on Day 5 -S2-) or immediately after the fifth taste presentation on Day 8 (S5). RESULTS Non-specific muscarinic receptor antagonist scopolamine infused prior to novel taste, while not affecting novel taste preference, abolished AN, i.e., the increased preference observed in control animals on the second presentation. When administered after taste consumption, intra-BLA scopolamine not only prevented AN but caused a steep decrease in the taste preference on the second presentation. This scopolamine-induced taste avoidance was not dependent on taste novelty, nor did it generalize to another novel taste. Targeting putative postsynaptic muscarinic receptors with specific M1 or M3 antagonists appeared to produce a partial taste avoidance, while M2 antagonism had no effect. CONCLUSION These data suggest that if a salient gustatory experience is followed by muscarinic receptors antagonism in the BLA, it will be strongly and persistently avoided in the future. The study also shows that scopolamine is not just an amnesic drug, and its cognitive effects may be highly dependent on the task and the structure involved.
Collapse
Affiliation(s)
- Víctor Manuel Torres-García
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Emmanuel Rodríguez-Nava
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Rosa Itzel Alcántara-Rivas
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ofir Picazo
- Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Gabriel Roldán-Roldán
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Jean-Pascal Morin
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
4
|
Ehret B, Boehringer R, Amadei EA, Cervera MR, Henning C, Galgali AR, Mante V, Grewe BF. Population-level coding of avoidance learning in medial prefrontal cortex. Nat Neurosci 2024; 27:1805-1815. [PMID: 39075325 PMCID: PMC11374698 DOI: 10.1038/s41593-024-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
The medial prefrontal cortex (mPFC) has been proposed to link sensory inputs and behavioral outputs to mediate the execution of learned behaviors. However, how such a link is implemented has remained unclear. To measure prefrontal neural correlates of sensory stimuli and learned behaviors, we performed population calcium imaging during a new tone-signaled active avoidance paradigm in mice. We developed an analysis approach based on dimensionality reduction and decoding that allowed us to identify interpretable task-related population activity patterns. While a large fraction of tone-evoked activity was not informative about behavior execution, we identified an activity pattern that was predictive of tone-induced avoidance actions and did not occur for spontaneous actions with similar motion kinematics. Moreover, this avoidance-specific activity differed between distinct avoidance actions learned in two consecutive tasks. Overall, our results are consistent with a model in which mPFC contributes to the selection of goal-directed actions by transforming sensory inputs into specific behavioral outputs through distributed population-level computations.
Collapse
Affiliation(s)
- Benjamin Ehret
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elizabeth A Amadei
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maria R Cervera
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Henning
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Aniruddh R Galgali
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Valerio Mante
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
- ETH AI Center, ETH Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem 2024; 213:107943. [PMID: 38821256 DOI: 10.1016/j.nlm.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Gabriel CJ, Gupta T, Sanchez-Fuentes A, Zeidler Z, Wilke SA, DeNardo LA. Transformations in prefrontal ensemble activity underlying rapid threat avoidance learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610165. [PMID: 39257764 PMCID: PMC11383712 DOI: 10.1101/2024.08.28.610165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The capacity to learn cues that predict aversive outcomes, and understand how to avoid those outcomes, is critical for adaptive behavior. Naturalistic avoidance often means accessing a safe location, but whether a location is safe depends on the nature of the impending threat. These relationships must be rapidly learned if animals are to survive. The prelimbic subregion (PL) of the medial prefrontal cortex (mPFC) integrates learned associations to influence these threat avoidance strategies. Prior work has focused on the role of PL activity in avoidance behaviors that are fully established, leaving the prefrontal mechanisms that drive rapid avoidance learning poorly understood. To determine when and how these learning-related changes emerge, we recorded PL neural activity using miniscope calcium imaging as mice rapidly learned to avoid a threatening cue by accessing a safe location. Over the course of learning, we observed enhanced modulation of PL activity representing intersections of a threatening cue with safe or risky locations and movements between them. We observed rapid changes in PL population dynamics that preceded changes observable in the encoding of individual neurons. Successful avoidance could be predicted from cue-related population dynamics during early learning. Population dynamics during specific epochs of the conditioned tone period correlated with the modeled learning rates of individual animals. In contrast, changes in single-neuron encoding occurred later, once an avoidance strategy had stabilized. Together, our findings reveal the sequence of PL changes that characterize rapid threat avoidance learning.
Collapse
|
7
|
Ma J, O'Malley JJ, Kreiker M, Leng Y, Khan I, Kindel M, Penzo MA. Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus. Nat Commun 2024; 15:6598. [PMID: 39097600 PMCID: PMC11297946 DOI: 10.1038/s41467-024-50941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Current concepts of corticothalamic organization in the mammalian brain are mainly based on sensory systems, with less focus on circuits for higher-order cognitive functions. In sensory systems, first-order thalamic relays are driven by subcortical inputs and modulated by cortical feedback, while higher-order relays receive strong excitatory cortical inputs. The applicability of these principles beyond sensory systems is uncertain. We investigated mouse prefronto-thalamic projections to the midline thalamus, revealing distinct top-down control. Unlike sensory systems, this pathway relies on indirect modulation via the thalamic reticular nucleus (TRN). Specifically, the prelimbic area, which influences emotional and motivated behaviors, impacts instrumental avoidance responses through direct and indirect projections to the paraventricular thalamus. Both pathways promote defensive states, but the indirect pathway via the TRN is essential for organizing avoidance decisions through disinhibition. Our findings highlight intra-thalamic circuit dynamics that integrate cortical cognitive signals and their role in shaping complex behaviors.
Collapse
Affiliation(s)
- Jun Ma
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
- Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, China
| | - John J O'Malley
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Malaz Kreiker
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Yan Leng
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Isbah Khan
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Morgan Kindel
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Mario A Penzo
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Ghane M, Trambaiolli L, Bertocci MA, Martinez-Rivera FJ, Chase HW, Brady T, Skeba A, Graur S, Bonar L, Iyengar S, Quirk GJ, Rasmussen SA, Haber SN, Phillips ML. Specific Patterns of Endogenous Functional Connectivity Are Associated With Harm Avoidance in Obsessive-Compulsive Disorder. Biol Psychiatry 2024; 96:137-146. [PMID: 38336216 DOI: 10.1016/j.biopsych.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/11/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Individuals with obsessive-compulsive disorder (OCD) show persistent avoidance behaviors, often in the absence of actual threat. Quality-of-life costs and heterogeneity support the need for novel brain-behavior intervention targets. Informed by mechanistic and anatomical studies of persistent avoidance in rodents and nonhuman primates, our goal was to test whether connections within a hypothesized persistent avoidance-related network predicted OCD-related harm avoidance (HA), a trait measure of persistent avoidance. We hypothesized that 1) HA, not an OCD diagnosis, would be associated with altered endogenous connectivity in at least one connection in the network; 2) HA-specific findings would be robust to comorbid symptoms; and 3) reliable findings would replicate in a holdout testing subsample. METHODS Using resting-state functional connectivity magnetic resonance imaging, cross-validated elastic net for feature selection, and Poisson generalized linear models, we tested which connections significantly predicted HA in our training subsample (n = 73; 71.8% female; healthy control group n = 36, OCD group n = 37); robustness to comorbidities; and replicability in a testing subsample (n = 30; 56.7% female; healthy control group n = 15, OCD group n = 15). RESULTS Stronger inverse connectivity between the right dorsal anterior cingulate cortex and right basolateral amygdala and stronger positive connectivity between the right ventral anterior insula and left ventral striatum were associated with greater HA across groups. Network connections did not discriminate OCD diagnostic status or predict HA-correlated traits, suggesting sensitivity to trait HA. The dorsal anterior cingulate cortex-basolateral amygdala relationship was robust to controlling for comorbidities and medication in individuals with OCD and was also predictive of HA in our testing subsample. CONCLUSIONS Stronger inverse dorsal anterior cingulate cortex-basolateral amygdala connectivity was robustly and reliably associated with HA across groups and in OCD. Results support the relevance of a cross-species persistent avoidance-related network to OCD, with implications for precision-based approaches and treatment.
Collapse
Affiliation(s)
- Merage Ghane
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Lucas Trambaiolli
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lisa Bonar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory J Quirk
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Suzanne N Haber
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts; School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Russman Block SR. Better Safe Than Sorry: On the Evolutionary Origins of Avoidant Behavior in Obsessive-Compulsive Disorder. Biol Psychiatry 2024; 96:e5-e6. [PMID: 38925718 DOI: 10.1016/j.biopsych.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
|
10
|
Zhou X, Xiao Q, Liu Y, Chen S, Xu X, Zhang Z, Hong Y, Shao J, Chen Y, Chen Y, Wang L, Yang F, Tu J. Astrocyte-mediated regulation of BLA WFS1 neurons alleviates risk-assessment deficits in DISC1-N mice. Neuron 2024; 112:2197-2217.e7. [PMID: 38642554 DOI: 10.1016/j.neuron.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Qian Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaohui Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Shuai Chen
- University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Xirong Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Zhigang Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuchuan Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Jie Shao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuewen Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Fan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Tu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
11
|
Ruble S, Kramer C, West L, Payne K, Ness H, Erickson G, Scott A, Diehl MM. Active avoidance recruits the anterior cingulate cortex regardless of social context in male and female rats. RESEARCH SQUARE 2024:rs.3.rs-3750422. [PMID: 38260416 PMCID: PMC10802695 DOI: 10.21203/rs.3.rs-3750422/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Actively avoiding danger is necessary for survival. Most research has focused on the behavioral and neurobiological processes when individuals avoid danger alone, under solitary conditions. Therefore, little is known about how social context affects active avoidance. Using a modified version of the platform-mediated avoidance task in rats, we investigated whether the presence of a social partner attenuates conditioned freezing and enhances avoidance learning compared to avoidance learned under solitary conditions. Rats spent a similar percentage of time avoiding during the tone under both conditions; however, rats trained under social conditions exhibited greater freezing during the tone as well as lower rates of darting and food seeking compared to solitary rats. Under solitary conditions, we observed higher levels of avoidance in females compared to males, which was not present in rats trained under social conditions. To gain greater mechanistic insight, we optogenetically inactivated glutamatergic projection neurons in the anterior cingulate cortex (ACC) following avoidance training. Photoinactivation of ACC neurons reduced expression of avoidance under social conditions both in the presence and absence of the partner. Under solitary conditions, photoinactivation of ACC delayed avoidance in males but blocked avoidance in females. Our findings suggest that avoidance is mediated by the ACC, regardless of social context, and may be dysfunctional in those suffering from trauma-related disorders. Furthermore, sex differences in prefrontal circuits mediating active avoidance warrant further investigation, given that females experience a higher risk of developing anxiety disorders.
Collapse
Affiliation(s)
- Shannon Ruble
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Cassandra Kramer
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Lexe West
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Karissa Payne
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Halle Ness
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Greg Erickson
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Alyssa Scott
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
12
|
Lozano-Ortiz K, Felix-Ortiz AC, Terrell JM, Ramos AR, Rodriguez-Romaguera J, Burgos-Robles A. The prelimbic prefrontal cortex mediates the development of lasting social phobia as a consequence of social threat conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597446. [PMID: 38895224 PMCID: PMC11185685 DOI: 10.1101/2024.06.04.597446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Social phobia is highly detrimental for social behavior, mental health, and productivity. Despite much previous research, the behavioral and neurobiological mechanisms associated with the development of social phobia remain elusive. To investigate these issues, the present study implemented a mouse model of social threat conditioning in which mice received electric shock punishment upon interactions with unfamiliar conspecifics. This resulted in immediate reductions in social behavior and robust increases in defensive mechanisms such as avoidance, freezing, darting, and ambivalent stretched posture. Furthermore, social deficits lasted for prolonged periods and were independent of contextual settings, sex variables, or particular identity of the social stimuli. Shedding new light into the neurobiological factors contributing to this phenomenon, we found that optogenetic silencing of the prelimbic (PL), but not the infralimbic (IL), subregion of the medial prefrontal cortex (mPFC) during training led to subsequent forgetting and development of lasting social phobia. Similarly, pharmacological inhibition of NMDARs in PL also impaired the development of social phobia. These findings are consistent with the notion that social-related trauma is a prominent risk factor for the development of social phobia, and that this phenomenon engages learning-related mechanisms within the prelimbic prefrontal cortex to promote prolonged representations of social threat. Abstract Figure
Collapse
|
13
|
Kietzman HW, Trinoskey-Rice G, Seo EH, Guo J, Gourley SL. Neuronal Ensembles in the Amygdala Allow Social Information to Motivate Later Decisions. J Neurosci 2024; 44:e1848232024. [PMID: 38499360 PMCID: PMC11026342 DOI: 10.1523/jneurosci.1848-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.
Collapse
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Esther H Seo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
14
|
López-Moraga A, Luyten L, Beckers T. A history of avoidance does not impact extinction learning in male rats. NPJ SCIENCE OF LEARNING 2024; 9:11. [PMID: 38402221 PMCID: PMC10894225 DOI: 10.1038/s41539-024-00223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Pervasive avoidance is one of the central symptoms of all anxiety-related disorders. In treatment, avoidance behaviors are typically discouraged because they are assumed to maintain anxiety. Yet, it is not clear if engaging in avoidance is always detrimental. In this study, we used a platform-mediated avoidance task to investigate the influence of avoidance history on extinction learning in male rats. Our results show that having the opportunity to avoid during fear acquisition training does not significantly influence the extinction of auditory-cued fear in rats subjected to this platform-mediated avoidance procedure, which constitutes a realistic approach/avoidance conflict. This holds true irrespective of whether or not avoidance was possible during the extinction phase. This suggests that imposing a realistic cost on avoidance behavior prevents the adverse effects that avoidance has been claimed to have on extinction. However, avoidance does not appear to have clear positive effects on extinction learning nor on retention either.
Collapse
Affiliation(s)
- Alba López-Moraga
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Felix-Ortiz AC, Terrell JM, Gonzalez C, Msengi HD, Boggan MB, Ramos AR, Magalhães G, Burgos-Robles A. Prefrontal Regulation of Safety Learning during Ethologically Relevant Thermal Threat. eNeuro 2024; 11:ENEURO.0140-23.2024. [PMID: 38272673 PMCID: PMC10903390 DOI: 10.1523/eneuro.0140-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.
Collapse
Affiliation(s)
- Ada C Felix-Ortiz
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jaelyn M Terrell
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Carolina Gonzalez
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Hope D Msengi
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Miranda B Boggan
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Angelica R Ramos
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Gabrielle Magalhães
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| | - Anthony Burgos-Robles
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
16
|
Gongwer MW, Klune CB, Couto J, Jin B, Enos AS, Chen R, Friedmann D, DeNardo LA. Brain-Wide Projections and Differential Encoding of Prefrontal Neuronal Classes Underlying Learned and Innate Threat Avoidance. J Neurosci 2023; 43:5810-5830. [PMID: 37491314 PMCID: PMC10423051 DOI: 10.1523/jneurosci.0697-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
To understand how the brain produces behavior, we must elucidate the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) is critical for complex functions including decision-making and mood. mPFC projection neurons collateralize extensively, but the relationships between mPFC neuronal activity and brain-wide connectivity are poorly understood. We performed whole-brain connectivity mapping and fiber photometry to better understand the mPFC circuits that control threat avoidance in male and female mice. Using tissue clearing and light sheet fluorescence microscopy (LSFM), we mapped the brain-wide axon collaterals of populations of mPFC neurons that project to nucleus accumbens (NAc), ventral tegmental area (VTA), or contralateral mPFC (cmPFC). We present DeepTraCE (deep learning-based tracing with combined enhancement), for quantifying bulk-labeled axonal projections in images of cleared tissue, and DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging), for quantifying cell bodies. Anatomical maps produced with DeepTraCE aligned with known axonal projection patterns and revealed class-specific topographic projections within regions. Using TRAP2 mice and DeepCOUNT, we analyzed whole-brain functional connectivity underlying threat avoidance. PL was the most highly connected node with functional connections to subsets of PL-cPL, PL-NAc, and PL-VTA target sites. Using fiber photometry, we found that during threat avoidance, cmPFC and NAc-projectors encoded conditioned stimuli, but only when action was required to avoid threats. mPFC-VTA neurons encoded learned but not innate avoidance behaviors. Together our results present new and optimized approaches for quantitative whole-brain analysis and indicate that anatomically defined classes of mPFC neurons have specialized roles in threat avoidance.SIGNIFICANCE STATEMENT Understanding how the brain produces complex behaviors requires detailed knowledge of the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) plays a key role in learning, mood, and decision-making, including evaluating and responding to threats. mPFC dysfunction is strongly linked to fear, anxiety and mood disorders. Although mPFC circuits are clear therapeutic targets, gaps in our understanding of how they produce cognitive and emotional behaviors prevent us from designing effective interventions. To address this, we developed a high-throughput analysis pipeline for quantifying bulk-labeled fluorescent axons [DeepTraCE (deep learning-based tracing with combined enhancement)] or cell bodies [DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging)] in intact cleared brains. Using DeepTraCE, DeepCOUNT, and fiber photometry, we performed detailed anatomic and functional mapping of mPFC neuronal classes, identifying specialized roles in threat avoidance.
Collapse
Affiliation(s)
- Michael W Gongwer
- Department of Physiology
- Neuroscience Interdepartmental Program
- Medical Scientist Training Program
| | | | | | - Benita Jin
- Department of Physiology
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095
| | | | | | | | | |
Collapse
|
17
|
Martínez-Rivera FJ, Pérez-Torres J, Velázquez-Díaz CD, Sánchez-Navarro MJ, Huertas-Pérez CI, Diehl MM, Phillips ML, Haber SN, Quirk GJ. A Novel Insular/Orbital-Prelimbic Circuit That Prevents Persistent Avoidance in a Rodent Model of Compulsive Behavior. Biol Psychiatry 2023; 93:1000-1009. [PMID: 35491274 DOI: 10.1016/j.biopsych.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND A common symptom of obsessive-compulsive disorder is the persistent avoidance of cues incorrectly associated with negative outcomes. This maladaptation becomes increasingly evident as subjects fail to respond to extinction-based treatments such as exposure-with-response prevention therapy. While previous studies have highlighted the role of the insular-orbital cortex in fine-tuning avoidance-based decisions, little is known about the projections from this area that might modulate compulsive-like avoidance. METHODS Here, we used anatomical tract-tracing, single-unit recording, and optogenetics to characterize the projections from the insular-orbital cortex. To model exposure-with-response prevention and persistent avoidance in rats, we used the platform-mediated avoidance task followed by extinction-with-response prevention training. RESULTS Using tract-tracing and unit recording, we found that projections from the agranular insular/lateral orbital (AI/LO) cortex to the prefrontal cortex predominantly target the rostral portion of the prelimbic (rPL) cortex and excite rPL neurons. Photoinhibiting this projection induced persistent avoidance after extinction-with-response prevention training, an effect that was still present 1 week later. Consistent with this, photoexcitation of this projection prevented persistent avoidance in overtrained rats. This projection to rPL appears to be key for AI/LO's effects, considering that there was no effect of photoinhibiting AI/LO projections to the ventral striatum or basolateral amygdala. CONCLUSIONS Our findings suggest that projections from the AI/LO to the rPL decreases the likelihood of avoidance behavior following extinction. In humans, this connectivity may share some homology of projections from lateral prefrontal cortices (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, and insula) to other prefrontal areas and the anterior cingulate cortex, suggesting that reduced activity in these pathways may contribute to obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.
| | - José Pérez-Torres
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Coraly D Velázquez-Díaz
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Marcos J Sánchez-Navarro
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Carlos I Huertas-Pérez
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Maria M Diehl
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York; McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
18
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
19
|
Obray JD, Landin JD, Vaughan DT, Scofield MD, Chandler LJ. Adolescent alcohol exposure reduces dopamine 1 receptor modulation of prelimbic neurons projecting to the nucleus accumbens and basolateral amygdala. ADDICTION NEUROSCIENCE 2022; 4:100044. [PMID: 36643604 PMCID: PMC9836047 DOI: 10.1016/j.addicn.2022.100044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Department of Anesthesiology, Medical University of South Carolina, Charleston SC, USA
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Corresponding author. (L.J. Chandler)
| |
Collapse
|
20
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
21
|
López-Moraga A, Beckers T, Luyten L. The effects of stress on avoidance in rodents: An unresolved matter. Front Behav Neurosci 2022; 16:983026. [PMID: 36275848 PMCID: PMC9580497 DOI: 10.3389/fnbeh.2022.983026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
In the face of a possible threat, a range of physiological (e.g., increased heart rate) and behavioral (e.g., avoidance or escape) responses are recruited. Here, we will focus on avoidance, in its persistent form one of the core symptoms of anxiety disorders and obsessive-compulsive disorder. The initial goal of fear and avoidance responses is to increase survival, but if they become persistent or overgeneralize, they can disrupt normal daily functioning, and ultimately even result in anxiety-related disorders. Relatedly, acute stress responses promote adaptation and survival, while chronic stress has been found to aggravate pathophysiology. Thus, stress might trigger the transition from adaptive to maladaptive responses, e.g., from goal-directed to persistent avoidance. Animal models are prime tools to unravel if and how stress influences avoidance. This is typically done by performing stress inductions prior to the assessment of (passive or active) avoidance behavior. Despite its clinical relevance, the current literature on this topic is fragmented, and an overall conclusion is lacking. In this Review, we first recapitulate the state of the art regarding stress and active as well as passive avoidance procedures. We then summarize the behavioral effects of acute and chronic stress on active and passive avoidance, and discuss the main neurobiological findings of the field. Finally, we highlight possible reasons for the largely contradictory findings in the literature and we propose strategies to further unravel the effect of stress on avoidance behavior. A deeper understanding of this currently unresolved matter may provide further insights in the etiology and treatment of anxiety-related disorders.
Collapse
Affiliation(s)
- Alba López-Moraga
- Center for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tom Beckers
- Center for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- *Correspondence: Tom Beckers,
| | - Laura Luyten
- Center for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laura Luyten,
| |
Collapse
|
22
|
Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours. Nat Commun 2022; 13:5462. [PMID: 36115848 PMCID: PMC9482654 DOI: 10.1038/s41467-022-33139-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Generalization is a fundamental cognitive ability of organisms to deal with the uncertainty in real-world situations. Excessive fear generalization and impaired reward generalization are closely related to many psychiatric disorders. However, the neural circuit mechanism for reward generalization and its role in anxiety-like behaviours remain elusive. Here, we found a robust activation of calbindin 1-neurons (Calb 1) in the posterior basolateral amygdala (pBLA), simultaneous with reward generalization to an ambiguous cue after reward conditioning in mice. We identify the infralimbic medial prefrontal cortex (IL) to the pBLACalb1 (Calb 1 neurons in the pBLA) pathway as being involved in reward generalization for the ambiguity. Activating IL–pBLA inputs strengthens reward generalization and reduces chronic unpredictable mild stress-induced anxiety- and depression-like behaviours in a manner dependent on pBLACalb1 neuron activation. These findings suggest that the IL–pBLACalb1 circuit could be a target to promote stress resilience via reward generalization and consequently ameliorate anxiety- and depression-like behaviours. The neural mechanisms for reward generalization are not fully understood. Here the authors investigate the role of posterior basolateral amygdala calbindin-expressing cells in modulating behavioural responses related to reward and aversion.
Collapse
|
23
|
The elegant complexity of fear in non-human animals. Emerg Top Life Sci 2022; 6:445-455. [PMID: 36069657 PMCID: PMC9788375 DOI: 10.1042/etls20220001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023]
Abstract
Activation of the fear system is adaptive, and protects individuals from impending harm; yet, exacerbation of the fear system is at the source of anxiety-related disorders. Here, we briefly review the 'why' and 'how' of fear, with an emphasis on models that encapsulate the elegant complexity of rodents' behavioral responding in the face of impending harm, and its relevance to developing treatment interventions.
Collapse
|
24
|
Divergent encoding of active avoidance behavior in corticostriatal and corticolimbic projections. Sci Rep 2022; 12:10731. [PMID: 35750718 PMCID: PMC9232563 DOI: 10.1038/s41598-022-14930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Active avoidance behavior, in which an animal performs an action to avoid a stressor, is crucial for survival and may provide insight into avoidance behaviors seen in anxiety disorders. Active avoidance requires the dorsomedial prefrontal cortex (dmPFC), which is thought to regulate avoidance via downstream projections to the striatum and amygdala. However, the endogenous activity of dmPFC projections during active avoidance learning has never been recorded. Here we utilized fiber photometry to record from the dmPFC and its axonal projections to the dorsomedial striatum (DMS) and the basolateral amygdala (BLA) during active avoidance learning in both male and female mice. We examined neural activity during conditioned stimulus (CS) presentations and during clinically relevant behaviors such as active avoidance or cued freezing. Both prefrontal projections showed learning-related increases in activity during CS onset throughout active avoidance training. The dmPFC as a whole showed increased and decreased patterns of activity during avoidance and cued freezing, respectively. Finally, dmPFC-DMS and dmPFC-BLA projections show divergent encoding of active avoidance behavior, with the dmPFC-DMS projection showing increased activity and the dmPFC-BLA projection showing decreased activity during active avoidance. Our results demonstrate task-relevant encoding of active avoidance in projection-specific dmPFC subpopulations that play distinct but complementary roles in active avoidance learning.
Collapse
|
25
|
Ferranti AS, Johnson KA, Winder DG, Conn PJ, Joffe ME. Prefrontal cortex parvalbumin interneurons exhibit decreased excitability and potentiated synaptic strength after ethanol reward learning. Alcohol 2022; 101:17-26. [PMID: 35227826 PMCID: PMC9117490 DOI: 10.1016/j.alcohol.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The prefrontal cortex (PFC) is intimately associated with behavioral characteristics of alcohol use disorders, including high motivation to drink and difficulty with moderation. Thus, continued mechanistic research investigating PFC cells and targets altered by ethanol experiences should inform translational efforts to craft new, efficacious treatments. Inhibitory interneurons expressing parvalbumin (PV-INs) comprise only a minor fraction of cells within the PFC, yet these cells are indispensable for coordinating PFC ensemble function, oscillatory activity, and subcortical output. Based on this, PV-INs represent an exciting target for the rational design of breakthrough treatments for alcohol use disorders. Here, we assessed experience-dependent physiological adaptations via ethanol place conditioning. By manipulating the timing of administration relative to conditioning sessions, equivalent ethanol exposure can form either rewarding or aversive memories in different individuals. Here, we found that female mice and male mice on a C57BL/6J background display conditioned place preference (CPP) or aversion (CPA) to an intoxicating dose of ethanol (2 g/kg, intraperitoneal [i.p.]) without overt differences between sexes. Ethanol reward learning was associated with decreased PV-IN excitability in deep layer prelimbic PFC, whereas PV-INs from CPA mice were not different from controls. Furthermore, PV-INs from mice in the CPP group, but not the CPA group, displayed potentiated excitatory synaptic strength that emerged during 1 week of abstinence. Taken together, these findings illustrate that synaptic and intrinsic adaptations associated with ethanol can depend on an individual's experience. These studies provide further context and support for PFC PV-INs as intriguing targets for modulating alcohol associations.
Collapse
Affiliation(s)
| | - Kari A. Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Addiction Research, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - P. Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Addiction Research, Nashville, TN
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Grunfeld IS, Likhtik E. The paradoxical effects of chronic stress on avoidance: a role for amygdala-dorsomedial prefrontal cortex dialogue. Neuropsychopharmacology 2022; 47:1143-1144. [PMID: 35022537 PMCID: PMC9018896 DOI: 10.1038/s41386-021-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 02/02/2023]
Affiliation(s)
- Itamar S. Grunfeld
- grid.253482.a0000 0001 0170 7903Psychology Program, The Graduate Center, CUNY, New York, NY USA
| | - Ekaterina Likhtik
- Biological Sciences Dept., Hunter College, CUNY, New York, NY, USA. .,Biology Program, The Graduate Center, CUNY, New York, NY, USA.
| |
Collapse
|
27
|
Ball TM, Gunaydin LA. Measuring maladaptive avoidance: from animal models to clinical anxiety. Neuropsychopharmacology 2022; 47:978-986. [PMID: 35034097 PMCID: PMC8938494 DOI: 10.1038/s41386-021-01263-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022]
Abstract
Avoiding stimuli that predict danger is required for survival. However, avoidance can become maladaptive in individuals who overestimate threat and thus avoid safe situations as well as dangerous ones. Excessive avoidance is a core feature of anxiety disorders, post-traumatic stress disorder (PTSD), and obsessive-compulsive disorder (OCD). This avoidance prevents patients from confronting maladaptive threat beliefs, thereby maintaining disordered anxiety. Avoidance is associated with high levels of psychosocial impairment yet is poorly understood at a mechanistic level. Many objective laboratory assessments of avoidance measure adaptive avoidance, in which an individual learns to successfully avoid a truly noxious stimulus. However, anxiety disorders are characterized by maladaptive avoidance, for which there are fewer objective laboratory measures. We posit that maladaptive avoidance behavior depends on a combination of three altered neurobehavioral processes: (1) threat appraisal, (2) habitual avoidance, and (3) trait avoidance tendency. This heterogeneity in underlying processes presents challenges to the objective measurement of maladaptive avoidance behavior. Here we first review existing paradigms for measuring avoidance behavior and its underlying neural mechanisms in both human and animal models, and identify how existing paradigms relate to these neurobehavioral processes. We then propose a new framework to improve the translational understanding of maladaptive avoidance behavior by adapting paradigms to better differentiate underlying processes and mechanisms and applying these paradigms in clinical populations across diagnoses with the goal of developing novel interventions to engage specific identified neurobehavioral targets.
Collapse
Affiliation(s)
- Tali M. Ball
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Lisa A. Gunaydin
- grid.266102.10000 0001 2297 6811Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
28
|
Joffe ME, Maksymetz J, Luschinger JR, Dogra S, Ferranti AS, Luessen DJ, Gallinger IM, Xiang Z, Branthwaite H, Melugin PR, Williford KM, Centanni SW, Shields BC, Lindsley CW, Calipari ES, Siciliano CA, Niswender CM, Tadross MR, Winder DG, Conn PJ. Acute restraint stress redirects prefrontal cortex circuit function through mGlu 5 receptor plasticity on somatostatin-expressing interneurons. Neuron 2022; 110:1068-1083.e5. [PMID: 35045338 PMCID: PMC8930582 DOI: 10.1016/j.neuron.2021.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Joseph R Luschinger
- Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Isabel M Gallinger
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Hannah Branthwaite
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kellie M Williford
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brenda C Shields
- Department of Neurobiology, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R Tadross
- Department of Neurobiology, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Danny G Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Zhou X, Xiao Q, Tu J. Diverse risk-avoidance behaviors in DISC1 mice are associated with different neuronal firing patterns in BLA neurons. Biochem Biophys Res Commun 2022; 587:107-112. [PMID: 34871997 DOI: 10.1016/j.bbrc.2021.11.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
It is very important to maintain normal levels of risk avoidance in daily life. We found that DISC1-NTM mice, which are a model for mental disorders, had a phenotype marked by a risk-avoidance impairment as measured in an open-field test (OFT). We used optogenetic methods to modulate glutamatergic neurons in the basolateral amygdala (BLA) in an attempt to rescue this risk-avoidance impairment. We found that photostimulation of BLA neurons at 20 Hz modified DISC1-NTM mouse behavior from low risk avoidance to high risk avoidance. We observed following photostimulation that, compared to controls, the number of entries to the center of the open field was lower and less time was spent in the central area. We also found that the time spent immobile was higher during photostimulation compared with WT mice. We also used a lower photostimulation frequency of 5 Hz, which activated BLA glutamatergic neurons and rescued the risk-avoidance impairment in DISC1-NTM mice. Our findings confirm that the BLA participates in diverse risk-avoidance behavior. Our results are also a reminder that differences in neuronal firing patterns within the same pathway may lead to different physiological functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese of Academy of Sciences, Beijing, 100049, China
| | - Qian Xiao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jie Tu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese of Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Gabriel CJ, Zeidler Z, Jin B, Guo C, Goodpaster CM, Kashay AQ, Wu A, Delaney M, Cheung J, DiFazio LE, Sharpe MJ, Aharoni D, Wilke SA, DeNardo LA. BehaviorDEPOT is a simple, flexible tool for automated behavioral detection based on markerless pose tracking. eLife 2022; 11:74314. [PMID: 35997072 PMCID: PMC9398447 DOI: 10.7554/elife.74314] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/05/2022] [Indexed: 01/16/2023] Open
Abstract
Quantitative descriptions of animal behavior are essential to study the neural substrates of cognitive and emotional processes. Analyses of naturalistic behaviors are often performed by hand or with expensive, inflexible commercial software. Recently, machine learning methods for markerless pose estimation enabled automated tracking of freely moving animals, including in labs with limited coding expertise. However, classifying specific behaviors based on pose data requires additional computational analyses and remains a significant challenge for many groups. We developed BehaviorDEPOT (DEcoding behavior based on POsitional Tracking), a simple, flexible software program that can detect behavior from video timeseries and can analyze the results of experimental assays. BehaviorDEPOT calculates kinematic and postural statistics from keypoint tracking data and creates heuristics that reliably detect behaviors. It requires no programming experience and is applicable to a wide range of behaviors and experimental designs. We provide several hard-coded heuristics. Our freezing detection heuristic achieves above 90% accuracy in videos of mice and rats, including those wearing tethered head-mounts. BehaviorDEPOT also helps researchers develop their own heuristics and incorporate them into the software's graphical interface. Behavioral data is stored framewise for easy alignment with neural data. We demonstrate the immediate utility and flexibility of BehaviorDEPOT using popular assays including fear conditioning, decision-making in a T-maze, open field, elevated plus maze, and novel object exploration.
Collapse
Affiliation(s)
- Christopher J Gabriel
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States,UCLA Neuroscience Interdepartmental Program, University of California, Los AngelesLos AngelesUnited States
| | - Zachary Zeidler
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Benita Jin
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States,UCLA Molecular, Cellular, and Integrative Physiology Program, University of California, Los AngelesLos AngelesUnited States
| | - Changliang Guo
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Caitlin M Goodpaster
- UCLA Neuroscience Interdepartmental Program, University of California, Los AngelesLos AngelesUnited States
| | - Adrienne Q Kashay
- Department of Psychiatry, University of California, Los AngelesLos AngelesUnited States
| | - Anna Wu
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Molly Delaney
- Department of Psychiatry, University of California, Los AngelesLos AngelesUnited States
| | - Jovian Cheung
- Department of Psychiatry, University of California, Los AngelesLos AngelesUnited States
| | - Lauren E DiFazio
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Melissa J Sharpe
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Daniel Aharoni
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Scott A Wilke
- Department of Psychiatry, University of California, Los AngelesLos AngelesUnited States
| | - Laura A DeNardo
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
31
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
32
|
McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021; 197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
This review highlights literature relating the anatomy, physiology, and behavioral contributions by projections between rodent prefrontal cortical areas and the basolateral amygdala. These projections are robustly modulated by both environmental experience and exposure to drugs of abuse including ethanol. Recent literature relating optogenetic and chemogenetic dissection of these circuits within behavior both compliments and occasionally challenges roles defined by more traditional pharmacological or lesion-based approaches. In particular, cortico-amygdala circuits help control both aversive and reward-seeking. Exposure to pathology-producing environments or abused drugs dysregulates the relative 'balance' of these outcomes. Modern circuit-based approaches have also shown that overlapping populations of neurons within a given brain region frequently govern both aversion and reward-seeking. In addition, these circuits often dramatically influence 'local' cortical or basolateral amygdala excitatory or inhibitory circuits. Our understanding of these neurobiological processes, particularly in relation to ethanol research, has just begun and represents a significant opportunity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
33
|
Headley DB, Kyriazi P, Feng F, Nair SS, Pare D. Gamma Oscillations in the Basolateral Amygdala: Localization, Microcircuitry, and Behavioral Correlates. J Neurosci 2021; 41:6087-6101. [PMID: 34088799 PMCID: PMC8276735 DOI: 10.1523/jneurosci.3159-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
The lateral (LA) and basolateral (BL) nuclei of the amygdala regulate emotional behaviors. Despite their dissimilar extrinsic connectivity, they are often combined, perhaps because their cellular composition is similar to that of the cerebral cortex, including excitatory principal cells reciprocally connected with fast-spiking interneurons (FSIs). In the cortex, this microcircuitry produces gamma oscillations that support information processing and behavior. We tested whether this was similarly the case in the rat (males) LA and BL using extracellular recordings, biophysical modeling, and behavioral conditioning. During periods of environmental assessment, both nuclei exhibited gamma oscillations that stopped upon initiation of active behaviors. Yet, BL exhibited more robust spontaneous gamma oscillations than LA. The greater propensity of BL to generate gamma resulted from several microcircuit differences, especially the proportion of FSIs and their interconnections with principal cells. Furthermore, gamma in BL but not LA regulated the efficacy of excitatory synaptic transmission between connected neurons. Together, these results suggest fundamental differences in how LA and BL operate. Most likely, gamma in LA is externally driven, whereas in BL it can also arise spontaneously to support ruminative processing and the evaluation of complex situations.SIGNIFICANCE STATEMENT The basolateral amygdala (BLA) participates in the production and regulation of emotional behaviors. It is thought to perform this using feedforward circuits that enhance stimuli that gain emotional significance and directs them to valence-appropriate downstream effectors. This perspective overlooks the fact that its microcircuitry is recurrent and potentially capable of generating oscillations in the gamma band (50-80 Hz), which synchronize spiking activity and modulate communication between neurons. This study found that BLA gamma supports both of these processes, is associated with periods of action selection and environmental assessment regardless of valence, and differs between BLA subnuclei in a manner consistent with their heretofore unknown microcircuit differences. Thus, it provides new mechanisms for BLA to support emotional behaviors.
Collapse
Affiliation(s)
- Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Pinelopi Kyriazi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, New Jersey 07102
| | - Feng Feng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211
| | - Satish S Nair
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
34
|
Soares VPMN, de Andrade TGCS, Canteras NS, Coimbra NC, Wotjak CT, Almada RC. Orexin 1 and 2 Receptors in the Prelimbic Cortex Modulate Threat Valuation. Neuroscience 2021; 468:158-167. [PMID: 34126185 DOI: 10.1016/j.neuroscience.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The ability to distinguish between threatening (repulsors), neutral and appetitive stimuli (attractors) stimuli is essential for survival. The orexinergic neurons of hypothalamus send projections to the limbic structures, such as different subregions of the medial prefrontal cortex (mPFC), suggesting that the orexinergic mechanism in the prelimbic cortex (PL) is involved in the processing of fear and anxiety. We investigated the role of orexin receptors type 1 (OX1R) and type 2 (OX2R) in the PL in such processes upon confrontation with an erratically moving robo-beetle in mice. The selective blockade of OX1R and OX2R in the PL with SB 334867 (3, 30, 300 nM) and TCS OX2 29 (3, 30, 300 nM), respectively, did not affect general exploratory behavior or reactive fear such as avoidance, jumping or freezing, but significantly enhances tolerance and approach behavior at the highest dose of each antagonist tested (300 nM). We interpret these findings as evidence for an altered cognitive appraisal of the potential threatening stimulus. Consequently, the orexin system seems to bias the perception of stimuli towards danger or threat via OX1R and OX2R in the PL.
Collapse
Affiliation(s)
- Victor P M N Soares
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Telma G C S de Andrade
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Biomedical Sciences Institute of the University of São Paulo (ICB-USP), São Paulo, São Paulo, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael C Almada
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
35
|
Quiñones-Laracuente K, Vega-Medina A, Quirk GJ. Time-Dependent Recruitment of Prelimbic Prefrontal Circuits for Retrieval of Fear Memory. Front Behav Neurosci 2021; 15:665116. [PMID: 34012387 PMCID: PMC8126619 DOI: 10.3389/fnbeh.2021.665116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The long-lasting nature of fear memories is essential for survival, but the neural circuitry for retrieval of these associations changes with the passage of time. We previously reported a time-dependent shift from prefrontal-amygdalar circuits to prefrontal-thalamic circuits for the retrieval of auditory fear conditioning. However, little is known about the time-dependent changes in the originating site, the prefrontal cortex. Here we monitored the responses of prelimbic (PL) prefrontal neurons to conditioned tones at early (2 h) vs. late (4 days) timepoints following training. Using c-Fos, we find that PL neurons projecting to the amygdala are activated early after learning, but not later, whereas PL neurons projecting to the paraventricular thalamus (PVT) show the opposite pattern. Using unit recording, we find that PL neurons in layer V (the origin of projections to amygdala) showed cue-induced excitation at earlier but not later timepoints, whereas PL neurons in Layer VI (the origin of projections to PVT) showed cue-induced inhibition at later, but not earlier, timepoints, along with an increase in spontaneous firing rate. Thus, soon after conditioning, there are conditioned excitatory responses in PL layer V which influence the amygdala. With the passage of time, however, retrieval of fear memories shifts to inhibitory responses in PL layer VI which influence the midline thalamus.
Collapse
Affiliation(s)
| | | | - Gregory J. Quirk
- Laboratory of Gregory J. Quirk, Departments of Psychiatry, Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
36
|
Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021; 53:3039-3062. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
How does the brain guide our actions? This is a complex issue, where the medial prefrontal cortex (mPFC) plays a crucial role. The mPFC is essential for cognitive flexibility and decision making. These functions are related to reward- and aversion-based learning, which ultimately drive behavior. Though, cortical projections and modulatory systems that may regulate those processes in the mPFC are less understood. How does the mPFC regulate approach-avoidance behavior in the case of conflicting aversive and appetitive stimuli? This is likely dependent on the bottom-up neuromodulation of the mPFC projection neurons. In this review, we integrate behavioral-, pharmacological-, and viral-based circuit manipulation data showing the involvement of mPFC dopaminergic, noradrenergic, cholinergic, and serotoninergic inputs in reward and aversion processing. Given that an incorrect balance of reward and aversion value could be a key problem in mental diseases such as substance use disorders, we discuss outstanding questions for future research on the role of mPFC modulation in reward and aversion.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Jorge Horacio Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
37
|
Cruz AM, Kim TH, Smith RJ. Monosynaptic Retrograde Tracing From Prelimbic Neuron Subpopulations Projecting to Either Nucleus Accumbens Core or Rostromedial Tegmental Nucleus. Front Neural Circuits 2021; 15:639733. [PMID: 33732114 PMCID: PMC7959753 DOI: 10.3389/fncir.2021.639733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The prelimbic (PL) region of the medial prefrontal cortex (mPFC) has been implicated in both driving and suppressing motivated behaviors, including cocaine-seeking in rats. These seemingly opposing functions may be mediated by different efferent targets of PL projections, such as the nucleus accumbens (NAc) core and rostromedial tegmental nucleus (RMTg), which have contrasting roles in reward-seeking behaviors. We sought to characterize the anatomical connectivity differences between PL neurons projecting to NAc core and RMTg. We used conventional retrograde tracers to reveal distinct subpopulations of PL neurons projecting to NAc core vs. RMTg in rats, with very little overlap. To examine potential differences in input specificity for these two PL subpopulations, we then used Cre-dependent rabies virus (EnvA-RV-EGFP) as a monosynaptic retrograde tracer and targeted specific PL neurons via injections of retrograde CAV2-Cre in either NAc core or RMTg. We observed a similar catalog of cortical, thalamic, and limbic afferents for both NAc- and RMTg-projecting populations, with the primary source of afferent information arising from neighboring prefrontal neurons in ipsilateral PL and infralimbic cortex (IL). However, when the two subpopulations were directly compared, we found that RMTg-projecting PL neurons received a greater proportion of input from ipsilateral PL and IL, whereas NAc-projecting PL neurons received a greater proportion of input from most other cortical areas, mediodorsal thalamic nucleus, and several other subcortical areas. NAc-projecting PL neurons also received a greater proportion of contralateral cortical input. Our findings reveal that PL subpopulations differ not only in their efferent target but also in the input specificity from afferent structures. These differences in connectivity are likely to be critical to functional differences of PL subpopulations.
Collapse
Affiliation(s)
- Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Tabitha H Kim
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel J Smith
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States.,Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Levy I, Schiller D. Neural Computations of Threat. Trends Cogn Sci 2021; 25:151-171. [PMID: 33384214 PMCID: PMC8084636 DOI: 10.1016/j.tics.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
A host of learning, memory, and decision-making processes form the individual's response to threat and may be disrupted in anxiety and post-trauma psychopathology. Here we review the neural computations of threat, from the first encounter with a dangerous situation, through learning, storing, and updating cues that predict it, to making decisions about the optimal course of action. The overview highlights the interconnected nature of these processes and their reliance on shared neural and computational mechanisms. We propose an integrative approach to the study of threat-related processes, in which specific computations are studied across the various stages of threat experience rather than in isolation. This approach can generate new insights about the evolution, diagnosis, and treatment of threat-related psychopathology.
Collapse
Affiliation(s)
- Ifat Levy
- Departments of Comparative Medicine, Neuroscience, and Psychology, Yale University, New Haven, CT, USA.
| | - Daniela Schiller
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|