1
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
2
|
Mastenbroek LJM, Kooistra SM, Eggen BJL, Prins JR. The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin Immunopathol 2024; 46:1. [PMID: 38990389 PMCID: PMC11239780 DOI: 10.1007/s00281-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- L J M Mastenbroek
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - S M Kooistra
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B J L Eggen
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J R Prins
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Otero AM, Connolly MG, Gonzalez-Ricon RJ, Wang SS, Allen JM, Antonson AM. Influenza A virus during pregnancy disrupts maternal intestinal immunity and fetal cortical development in a dose- and time-dependent manner. Mol Psychiatry 2024:10.1038/s41380-024-02648-9. [PMID: 38961232 DOI: 10.1038/s41380-024-02648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Epidemiological studies link exposure to viral infection during pregnancy, including influenza A virus (IAV) infection, with increased incidence of neurodevelopmental disorders (NDDs) in offspring. Models of maternal immune activation (MIA) using viral mimetics demonstrate that activation of maternal intestinal T helper 17 (TH17) cells, which produce effector cytokine interleukin (IL)-17, leads to aberrant fetal brain development, such as neocortical malformations. Fetal microglia and border-associated macrophages (BAMs) also serve as potential cellular mediators of MIA-induced cortical abnormalities. However, neither the inflammation-induced TH17 cell pathway nor fetal brain-resident macrophages have been thoroughly examined in models of live viral infection during pregnancy. Here, we inoculated pregnant mice with two infectious doses of IAV and evaluated peak innate and adaptive immune responses in the dam and fetus. While respiratory IAV infection led to dose-dependent maternal colonic shortening and microbial dysregulation, there was no elevation in intestinal TH17 cells nor IL-17. Systemically, IAV resulted in consistent dose- and time-dependent increases in IL-6 and IFN-γ. Fetal cortical abnormalities and global changes in fetal brain transcripts were observable in the high-but not the moderate-dose IAV group. Profiling of fetal microglia and BAMs revealed dose- and time-dependent differences in the numbers of meningeal but not choroid plexus BAMs, while microglial numbers and proliferative capacity of Iba1+ cells remained constant. Fetal brain-resident macrophages increased phagocytic CD68 expression, also in a dose- and time-dependent fashion. Taken together, our findings indicate that certain features of MIA are conserved between mimetic and live virus models, while others are not. Overall, we provide consistent evidence of an infection severity threshold for downstream maternal inflammation and fetal cortical abnormalities, which recapitulates a key feature of the epidemiological data and further underscores the importance of using live pathogens in NDD modeling to better evaluate the complete immune response and to improve translation to the clinic.
Collapse
Affiliation(s)
- Ashley M Otero
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Meghan G Connolly
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Selena S Wang
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adrienne M Antonson
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Osman HC, Moreno R, Rose D, Rowland ME, Ciernia AV, Ashwood P. Impact of maternal immune activation and sex on placental and fetal brain cytokine and gene expression profiles in a preclinical model of neurodevelopmental disorders. J Neuroinflammation 2024; 21:118. [PMID: 38715090 PMCID: PMC11077729 DOI: 10.1186/s12974-024-03106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.
Collapse
Affiliation(s)
- Hadley C Osman
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Rachel Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA.
| |
Collapse
|
5
|
Rodriguez-Zas SL, Southey NL, Rund L, Antonson AM, Nowak RA, Johnson RW. Prenatal and postnatal challenges affect the hypothalamic molecular pathways that regulate hormonal levels. PLoS One 2023; 18:e0292952. [PMID: 37851674 PMCID: PMC10584192 DOI: 10.1371/journal.pone.0292952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
This study aimed to improve our understanding of how the hypothalamus mediates the effects of prenatal and postnatal challenges on behavior and sensitivity to stimuli. A pig model of virally initiated maternal immune activation (MIA) was used to investigate potential interactions of the prenatal challenge both with sex and with postnatal nursing withdrawal. The hypothalami of 72 females and males were profiled for the effects of MIA and nursing withdrawal using RNA-sequencing. Significant differential expression (FDR-adjusted p value < 0.05) was detected in the profile of 222 genes. Genes involved in the Gene Ontology biological process of regulation of hormone levels tended to be over-expressed in individuals exposed to both challenges relative to individuals exposed to either one challenge, and most of these genes were over-expressed in MIA females relative to males across nursing levels. Differentially expressed genes included Fshb, Ttr, Agrp, Gata3, Foxa2, Tfap2b, Gh1, En2, Cga, Msx1, and Npy. The study also found that prenatal and postnatal challenges, as well as sex, impacted the regulation of neurotransmitter activity and immune effector processes in the hypothalamus. In particular, the olfactory transduction pathway genes were over-expressed in weaned MIA males, and several transcription factors were potentially found to target the differentially expressed genes. Overall, these results highlight how multiple environmental challenges can interact and affect the molecular mechanisms of the hypothalamus, including hormonal, immune response, and neurotransmitter processes.
Collapse
Affiliation(s)
- Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicole L. Southey
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Adrienne M. Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
6
|
Southey BR, Johnson RW, Rodriguez-Zas SL. Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome. Metabolites 2023; 13:881. [PMID: 37623825 PMCID: PMC10456262 DOI: 10.3390/metabo13080881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Prenatal stress often results in maternal immune activation (MIA) that can impact prenatal brain development, molecular processes, and substrates and products of metabolism that participate in physiological processes at later stages of life. Postnatal metabolic and immunological stressors can affect brain metabolites later in life, independently or in combination with prenatal stressors. The effects of prenatal and postnatal stressors on hippocampal metabolites were studied using a pig model of viral MIA exposed to immunological and metabolic stressors at 60 days of age using gas chromatography mass spectrometry. Postnatal stress and MIA elicited effects (FDR-adjusted p-value < 0.1) on fifty-nine metabolites, while eight metabolites exhibited an interaction effect. The hippocampal metabolites impacted by MIA or postnatal stress include 4-aminobutanoate (GABA), adenine, fumarate, glutamate, guanine, inosine, ornithine, putrescine, pyruvate, and xanthine. Metabolites affected by MIA or postnatal stress encompassed eight significantly (FDR-adjusted p-value < 0.1) enriched Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathways. The enriched arginine biosynthesis and glutathione metabolism pathways included metabolites that are also annotated for the urea cycle and polyamine biosynthesis pathways. Notably, the prenatal and postnatal challenges were associated with disruption of the glutathione metabolism pathway and changes in the levels of glutamic acid, glutamate, and purine nucleotide metabolites that resemble patterns elicited by drugs of abuse and may underlie neuroinflammatory processes. The combination of MIA and postnatal stressors also supported the double-hit hypothesis, where MIA amplifies the impact of stressors later in life, sensitizing the hippocampus of the offspring to future challenges. The metabolites and pathways characterized in this study offer evidence of the role of immunometabolism in understanding the impact of MIA and stressors later in life on memory, spatial navigation, neuropsychiatric disorders, and behavioral disorders influenced by the hippocampus.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Yin H, Wang Z, Liu J, Li Y, Liu L, Huang P, Wang W, Shan Z, Sun R, Shen J, Duan L. Dysregulation of immune and metabolism pathways in maternal immune activation induces an increased risk of autism spectrum disorders. Life Sci 2023; 324:121734. [PMID: 37105442 DOI: 10.1016/j.lfs.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
AIMS Maternal immune activation (MIA) via infection during pregnancy is known to be an environmental risk factor for neurodevelopmental disorders and the development of autism spectrum disorders (ASD) in the offspring, but it still remains elusive that the molecular relevance between infection-induced abnormal neurodevelopmental events and an increased risk for ASD development. MAIN METHODS Fully considering the extremely high genetic heterogeneity of ASD and the universality of risk-gene with minimal effect-sizes, the gene and pathway-based association analysis was performed with the transcriptomic and DNA methylation landscapes of temporal human embryonic brain development and ASD, and the time-course transcriptional profiling of MIA. We conducted the transcriptional profiling of mouse abnormal neurodevelopment two days following induced MIA via LPS injection at E10.5. KEY FINDINGS A novel evidence was proved that illustrated altering four immune and metabolism-related risk pathways, including starch and sucrose metabolism, ribosome, protein processing in endoplasmic reticulum, and retrograde endocannabinoid signaling pathway, which were prominent involvement in the process of MIA regulating abnormal fetal brain development to induce an increased risk of ASD. Here, we have observed that almost all key genes within these risk pathways are significantly differentially expressed at embryonic days (E) 10.5-12.5, which is considered to be the optimal coincidence window of mouse embryonic brain development to study the intimate association between MIA and ASD using mouse animal models. SIGNIFICANCE There search establishes that MIA causes dysregulation of immune and metabolic pathways, which leads to abnormal embryonic neurodevelopment, thus promoting development of ASD symptoms in offspring.
Collapse
Affiliation(s)
- Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ying Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Peijun Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
9
|
Dubey H, Sharma RK, Krishnan S, Knickmeyer R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front Neurosci 2022; 16:1021721. [PMID: 36590303 PMCID: PMC9800937 DOI: 10.3389/fnins.2022.1021721] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Pregnant women constitute one of the most vulnerable populations to be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019. SARS-CoV-2 infection during pregnancy could negatively impact fetal brain development via multiple mechanisms. Accumulating evidence indicates that mother to fetus transmission of SARS-CoV-2 does occur, albeit rarely. When it does occur, there is a potential for neuroinvasion via immune cells, retrograde axonal transport, and olfactory bulb and lymphatic pathways. In the absence of maternal to fetal transmission, there is still the potential for negative neurodevelopmental outcomes as a consequence of disrupted placental development and function leading to preeclampsia, preterm birth, and intrauterine growth restriction. In addition, maternal immune activation may lead to hypomyelination, microglial activation, white matter damage, and reduced neurogenesis in the developing fetus. Moreover, maternal immune activation can disrupt the maternal or fetal hypothalamic-pituitary-adrenal (HPA) axis leading to altered neurodevelopment. Finally, pro-inflammatory cytokines can potentially alter epigenetic processes within the developing brain. In this review, we address each of these potential mechanisms. We propose that SARS-CoV-2 could lead to neurodevelopmental disorders in a subset of pregnant women and that long-term studies are warranted.
Collapse
Affiliation(s)
- Harikesh Dubey
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ravindra K. Sharma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suraj Krishnan
- Jacobi Medical Center, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Rebecca Knickmeyer
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States,Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States,*Correspondence: Rebecca Knickmeyer,
| |
Collapse
|
10
|
Duan L, Liu J, Yin H, Wang W, Liu L, Shen J, Wang Z. Dynamic changes in spatiotemporal transcriptome reveal maternal immune dysregulation of autism spectrum disorder. Comput Biol Med 2022; 151:106334. [PMID: 36442276 DOI: 10.1016/j.compbiomed.2022.106334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Maternal immune activation (MIA) during pregnancy is known to be an environmental risk factor for neurodevelopment and autism spectrum disorder (ASD). However, it is unclear at which fetal brain developmental windows and regions MIA induces ASD-related neurodevelopmental transcriptional abnormalities. The non-chasm differentially expressed genes (DEGs) involved in MIA inducing ASD during fetal brain developmental windows were identified by performing the differential expression analysis and comparing the common DEGs among MIA at four different gestational development windows, ASD with multiple brain regions from human patients and mouse models, and human and mouse embryonic brain developmental trajectory. The gene set and functional enrichment analyses were performing to identify MIA dysregulated ASD-related the fetal neurodevelopmental windows and brain regions and function annotations. Additionally, the networks were constructed using Cytoscape for visualization. MIA at E12.5 and E14.5 increased the risk of distinct brain regions for ASD. MIA-driven transcriptional alterations of non-chasm DEGs, during the coincidence brain developmental windows between human and mice, involving ASD-relevant synaptic components, as well as immune- and metabolism-related functions and pathways. Furthermore, a great number of non-chasm brain development-, immune-, and metabolism-related DEGs were overlapped in at least two existing ASD-associated databases, suggesting that the others could be considered as the candidate targets to construct the model mice for explaining the pathological changes of ASD when environmental factors (MIA) and gene mutation effects co-occur. Overall, our search supported that transcriptome-based MIA dysregulated the brain development-, immune-, and metabolism-related non-chasm DEGs at specific embryonic brain developmental window and region, leading to abnormal embryonic neurodevelopment, to induce the increasing risk of ASD.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Huamin Yin
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China.
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
11
|
Griego E, Segura-Villalobos D, Lamas M, Galván EJ. Maternal immune activation increases excitability via downregulation of A-type potassium channels and reduces dendritic complexity of hippocampal neurons of the offspring. Brain Behav Immun 2022; 105:67-81. [PMID: 35803480 DOI: 10.1016/j.bbi.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
The epidemiological association between bacterial or viral maternal infections during pregnancy and increased risk for developing psychiatric disorders in offspring is well documented. Numerous rodent and non-human primate studies of viral- or, to a lesser extent, bacterial-induced maternal immune activation (MIA) have documented a series of neurological alterations that may contribute to understanding the pathophysiology of schizophrenia and autism spectrum disorders. Long-term neuronal and behavioral alterations are now ascribed to the effect of maternal proinflammatory cytokines rather than the infection itself. However, detailed electrophysiological alterations in brain areas relevant to psychiatric disorders, such as the dorsal hippocampus, are lacking in response to bacterial-induced MIA. This study determined if electrophysiological and morphological alterations converge in CA1 pyramidal cells (CA1 PC) from the dorsal hippocampus in bacterial-induced MIA offspring. A series of changes in the functional expression of K+ and Na+ ion channels altered the passive and active membrane properties and triggered hyperexcitability of CA1 PC. Contributing to the hyperexcitability, the somatic A-type potassium current (IA) was decreased in MIA CA1 PC. Likewise, the spontaneous glutamatergic and GABAergic inputs were dysregulated and biased toward increased excitation, thereby reshaping the excitation-inhibition balance. Consistent with these findings, the dendritic branching complexity of MIA CA1 PC was reduced. Together, these morphophysiological alterations modify CA1 PC computational capabilities and contribute to explaining cellular alterations that may underlie the cognitive symptoms of MIA-associated psychiatric disorders.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Mónica Lamas
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Infection of the murine placenta by Listeria monocytogenes induces sex-specific responses in the fetal brain. Pediatr Res 2022; 93:1566-1573. [PMID: 36127406 DOI: 10.1038/s41390-022-02307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Epidemiological data indicate that prenatal infection is associated with an increased risk of several neurodevelopmental disorders in the progeny. These disorders display sex differences in presentation. The role of the placenta in the sex-specificity of infection-induced neurodevelopmental abnormalities is not well-defined. We used an imaging-based animal model of the bacterial pathogen Listeria monocytogenes to identify sex-specific effects of placental infection on neurodevelopment of the fetus. METHODS Pregnant CD1 mice were infected with a bioluminescent strain of Listeria on embryonic day 14.5 (E14.5). Excised fetuses were imaged on E18.5 to identify the infected placentas. The associated fetal brains were analyzed for gene expression and altered brain structure due to infection. The behavior of adult offspring affected by prenatal Listeria infection was analyzed. RESULTS Placental infection induced sex-specific alteration of gene expression patterns in the fetal brain and resulted in abnormal cortical development correlated with placental infection levels. Furthermore, male offspring exhibited abnormal social interaction, whereas females exhibited elevated anxiety. CONCLUSION Placental infection by Listeria induced sex-specific abnormalities in neurodevelopment of the fetus. Prenatal infection also affected the behavior of the offspring in a sex-specific manner. IMPACT Placental infection with Listeria monocytogenes induces sexually dichotomous gene expression patterns in the fetal brains of mice. Abnormal cortical lamination is correlated with placental infection levels. Placental infection results in autism-related behavior in male offspring and heightened anxiety levels in female offspring.
Collapse
|
13
|
Santos-Terra J, Deckmann I, Carello-Collar G, Nunes GDF, Bauer-Negrini G, Schwingel GB, Fontes-Dutra M, Riesgo R, Gottfried C. Resveratrol Prevents Cytoarchitectural and Interneuronal Alterations in the Valproic Acid Rat Model of Autism. Int J Mol Sci 2022; 23:ijms23084075. [PMID: 35456893 PMCID: PMC9027778 DOI: 10.3390/ijms23084075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by several alterations, including disorganized brain cytoarchitecture and excitatory/inhibitory (E/I) imbalance. We aimed to analyze aspects associated with the inhibitory components in ASD, using bioinformatics to develop notions about embryonic life and tissue analysis for postnatal life. We analyzed microarray and RNAseq datasets of embryos from different ASD models, demonstrating that regions involved in neuronal development are affected. We evaluated the effect of prenatal treatment with resveratrol (RSV) on the neuronal organization and quantity of parvalbumin-positive (PV+), somatostatin-positive (SOM+), and calbindin-positive (CB+) GABAergic interneurons, besides the levels of synaptic proteins and GABA receptors in the medial prefrontal cortex (mPFC) and hippocampus (HC) of the ASD model induced by valproic acid (VPA). VPA increased the total number of neurons in the mPFC, while it reduced the number of SOM+ neurons, as well as the proportion of SOM+, PV+, and CB+ neurons (subregion-specific manner), with preventive effects of RSV. In summary, metabolic alterations or gene expression impairments could be induced by VPA, leading to extensive damage in the late developmental stages. By contrast, due to its antioxidant, neuroprotective, and opposite action on histone properties, RSV may avoid damages induced by VPA.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Giovanna Carello-Collar
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
| | - Gustavo Della-Flora Nunes
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
- Child Neurology Unit, Department of Pediatrics, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
- Correspondence:
| |
Collapse
|
14
|
Guma E, Bordeleau M, González Ibáñez F, Picard K, Snook E, Desrosiers-Grégoire G, Spring S, Lerch JP, Nieman BJ, Devenyi GA, Tremblay ME, Chakravarty MM. Differential effects of early or late exposure to prenatal maternal immune activation on mouse embryonic neurodevelopment. Proc Natl Acad Sci U S A 2022; 119:e2114545119. [PMID: 35286203 PMCID: PMC8944668 DOI: 10.1073/pnas.2114545119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Emily Snook
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Imaging Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Gabriel A. Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V8P 5C2, Canada
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V8P 5C2, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - M. Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
15
|
Krüppel-like Transcription Factor 7 Is a Causal Gene in Autism Development. Int J Mol Sci 2022; 23:ijms23063376. [PMID: 35328799 PMCID: PMC8949233 DOI: 10.3390/ijms23063376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disease. To date, more than 1000 genes have been shown to be associated with ASD, and only a few of these genes account for more than 1% of autism cases. Klf7 is an important transcription factor of cell proliferation and differentiation in the nervous system, but whether klf7 is involved in autism is unclear. Methods: We first performed ChIP-seq analysis of klf7 in N2A cells, then performed behavioral tests and RNA-seq in klf7+/− mice, and finally restored mice with adeno-associated virus (AAV)-mediated overexpression of klf7 in klf7+/− mice. Results: Klf7 targeted genes are enriched with ASD genes, and 631 ASD risk genes are also differentially expressed in klf7+/− mice which exhibited the core symptoms of ASD. When klf7 levels were increased in the central nervous system (CNS) in klf7+/− adult mice, deficits in social interaction, repetitive behavior and majority of dysregulated ASD genes were rescued in the adults, suggesting transcriptional regulation. Moreover, knockdown of klf7 in human brain organoids caused dysregulation of 517 ASD risk genes, 344 of which were shared with klf7+/− mice, including some high-confidence ASD genes. Conclusions: Our findings highlight a klf7 regulation of ASD genes and provide new insights into the pathogenesis of ASD and promising targets for further research on mechanisms and treatments.
Collapse
|
16
|
Fujitani M, Miyajima H, Otani Y, Liu X. Maternal and Adult Interleukin-17A Exposure and Autism Spectrum Disorder. Front Psychiatry 2022; 13:836181. [PMID: 35211045 PMCID: PMC8861354 DOI: 10.3389/fpsyt.2022.836181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Epidemiological evidence in humans has suggested that maternal infections and maternal autoimmune diseases are involved in the pathogenesis of autism spectrum disorder. Animal studies supporting human results have shown that maternal immune activation causes brain and behavioral alterations in offspring. Several underlying mechanisms, including interleukin-17A imbalance, have been identified. Apart from the pro-inflammatory effects of interleukin-17A, there is also evidence to support the idea that it activates neuronal function and defines cognitive behavior. In this review, we examined the signaling pathways in both immunological and neurological contexts that may contribute to the improvement of autism spectrum disorder symptoms associated with maternal blocking of interleukin-17A and adult exposure to interleukin-17A. We first describe the epidemiology of maternal immune activation then focus on molecular signaling of the interleukin-17 family regarding its physiological and pathological roles in the embryonic and adult brain. In the future, it may be possible to use interleukin-17 antibodies to prevent autism spectrum disorder.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Hisao Miyajima
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Xinlang Liu
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| |
Collapse
|
17
|
Räsänen N, Tiihonen J, Koskuvi M, Lehtonen Š, Koistinaho J. The iPSC perspective on schizophrenia. Trends Neurosci 2021; 45:8-26. [PMID: 34876311 DOI: 10.1016/j.tins.2021.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Over a decade of schizophrenia research using human induced pluripotent stem cell (iPSC)-derived neural models has provided substantial data describing neurobiological characteristics of the disorder in vitro. Simultaneously, translation of the results into general mechanistic concepts underlying schizophrenia pathophysiology has been trailing behind. Given that modeling brain function using cell cultures is challenging, the gap between the in vitro models and schizophrenia as a clinical disorder has remained wide. In this review, we highlight reproducible findings and emerging trends in recent schizophrenia-related iPSC studies. We illuminate the relevance of the results in the context of human brain development, with a focus on processes coinciding with critical developmental periods for schizophrenia.
Collapse
Affiliation(s)
- Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden; Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|