1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Medina J, De Guzman RM, Workman JL. Prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in ovariectomized female rats. Neuropharmacology 2024; 258:110095. [PMID: 39084597 DOI: 10.1016/j.neuropharm.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Stress is a major risk factor for several neuropsychiatric disorders in women, including postpartum depression. During the postpartum period, diminished ovarian hormone secretion increases susceptibility to developing depressive symptoms. Pleiotropic peptide hormones, like prolactin, are markedly released during lactation and suppress hypothalamic-pituitary-adrenal axis responses in women and acute stress-induced behavioral responses in female rodents. However, the effects of prolactin on chronic stress-induced maladaptive behaviors remain unclear. Here, we used chronic variable stress to induce maladaptive physiology in ovariectomized female rats and concurrently administered prolactin to assess its effects on several depression-relevant behavioral, endocrine, and neural characteristics. We found that chronic stress increased sucrose anhedonia and passive coping in saline-treated, but not prolactin-treated rats. Prolactin treatment did not alter stress-induced thigmotaxis, corticosterone (CORT) concentrations, hippocampal cell activation or survival. However, prolactin treatment reduced basal CORT concentrations and increased dopaminergic cells in the ventral tegmental area. Further, prolactin-treated rats had reduced microglial activation in the ventral hippocampus following chronic stress exposure. Together, these data suggest prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in hypogonadal females. Moreover, these findings imply neuroendocrine-immune mechanisms by which peptide hormones confer stress resilience during periods of low ovarian hormone secretion.
Collapse
Affiliation(s)
- Joanna Medina
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA.
| | - Rose M De Guzman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Joanna L Workman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA; Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA
| |
Collapse
|
3
|
Xu Y, Alves-Wagner AB, Inada H, Firouzjah SD, Osana S, Amir MS, Conlin RH, Hirshman MF, Nozik ES, Goodyear LJ, Nagatomi R, Kusuyama J. Placenta-derived SOD3 deletion impairs maternal behavior via alterations in FGF/FGFR-prolactin signaling axis. Cell Rep 2024; 43:114789. [PMID: 39325622 DOI: 10.1016/j.celrep.2024.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Ana B Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hitoshi Inada
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sepideh D Firouzjah
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya 60132, Indonesia; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, the University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
Babey ME, Krause WC, Chen K, Herber CB, Torok Z, Nikkanen J, Rodriguez R, Zhang X, Castro-Navarro F, Wang Y, Wheeler EE, Villeda S, Leach JK, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. A maternal brain hormone that builds bone. Nature 2024; 632:357-365. [PMID: 38987585 PMCID: PMC11306098 DOI: 10.1038/s41586-024-07634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.
Collapse
Affiliation(s)
- Muriel E Babey
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, San Francisco, CA, USA
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Chen
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Zsofia Torok
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joni Nikkanen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ruben Rodriguez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Carmot Therapeutics, Berkeley, CA, USA
| | - Xiao Zhang
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Fernanda Castro-Navarro
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Erika E Wheeler
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Saul Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Nancy E Lane
- Department of Medicine, Division of Rheumatology, University of California, Davis, Sacramento, CA, USA
| | - Erica L Scheller
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA.
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Rizwan MZ, Kamstra K, Pretz D, Shepherd PR, Tups A, Grattan DR. Conditional Deletion of β-Catenin in the Mediobasal Hypothalamus Impairs Adaptive Energy Expenditure in Response to High-Fat Diet and Exacerbates Diet-Induced Obesity. J Neurosci 2024; 44:e1666232024. [PMID: 38395612 PMCID: PMC10993030 DOI: 10.1523/jneurosci.1666-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
β-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, β-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether β-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female β-catenin flox mice, to specifically delete β-catenin expression in the mediobasal hypothalamus (MBH-β-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-β-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-β-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-β-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for β-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.
Collapse
Affiliation(s)
- Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Dominik Pretz
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Alexander Tups
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Clarke GS, Vincent AD, Ladyman SR, Gatford KL, Page AJ. Circadian patterns of behaviour change during pregnancy in mice. J Physiol 2024. [PMID: 38477893 DOI: 10.1113/jp285553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Food intake and activity adapt during pregnancy to meet the increased energy demands. In comparison to non-pregnant females, pregnant mice consume more food, eating larger meals during the light phase, and reduce physical activity. How pregnancy changes the circadian timing of behaviour was less clear. We therefore randomised female C57BL/6J mice to mating for study until early (n = 10), mid- (n = 10) or late pregnancy (n = 11) or as age-matched, non-pregnant controls (n = 12). Mice were housed individually in Promethion cages with a 12 h light-12 h dark cycle [lights on at 07.00 h, Zeitgeber (ZT)0] for behavioural analysis. Food intake between ZT10 and ZT11 was greater in pregnant than non-pregnant mice on days 6.5-12.5 and 12.5-17.5. In mice that exhibited a peak in the last 4 h of the light phase (ZT8-ZT12), peaks were delayed by 1.6 h in the pregnant compared with the non-pregnant group. Food intake immediately after dark-phase onset (ZT13-ZT14) was greater in the pregnant than non-pregnant group during days 12.5-17.5. Water intake patterns corresponded to food intake. From days 0.5-6.5 onwards, the pregnant group moved less during the dark phase, with decreased probability of being awake, in comparison to the non-pregnant group. The onset of dark-phase activity, peaks in activity, and wakefulness were all delayed during pregnancy. In conclusion, increased food intake during pregnancy reflects increased amplitude of eating behaviour, without longer duration. Decreases in activity also contribute to positive energy balance in pregnancy, with delays to all measured behaviours evident from mid-pregnancy onwards. KEY POINTS: Circadian rhythms synchronise daily behaviours including eating, drinking and sleep, but how these change in pregnancy is unclear. Food intake increased, with delays in peaks of food intake behaviour late in the light phase from days 6.5 to 12.5 of pregnancy, in comparison to the non-pregnant group. The onset of activity after lights off (dark phase) was delayed in pregnant compared with non-pregnant mice. Activity decreased by ∼70% in the pregnant group, particularly in the dark (active) phase, with delays in peaks of wakefulness evident from days 0.5-6.5 of pregnancy onwards. These behavioural changes contribute to positive energy balance during pregnancy. Delays in circadian behaviours during mouse pregnancy were time period and pregnancy stage specific, implying different regulatory mechanisms.
Collapse
Affiliation(s)
- Georgia S Clarke
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Freemasons Centre for Male Health & Wellbeing, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, Dunedin, New Zealand
| | - Kathryn L Gatford
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Amanda J Page
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
8
|
Georgescu T. The role of maternal hormones in regulating autonomic functions during pregnancy. J Neuroendocrinol 2023; 35:e13348. [PMID: 37936545 DOI: 10.1111/jne.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Offspring development relies on numerous physiological changes that occur in a mother's body, with hormones driving many of these adaptations. Amongst these, the physiological functions controlled by the autonomic nervous system are required for the mother to survive and are adjusted to meet the demands of the growing foetus and to ensure a successful birth. The hormones oestrogen, progesterone, and lactogenic hormones rise significantly during pregnancy, suggesting they may also play a role in regulating the maternal adaptations linked to autonomic nervous system functions, including respiratory, cardiovascular, and thermoregulatory functions. Indeed, expression of pregnancy hormone receptors spans multiple brain regions known to regulate these physiological functions. This review examines how respiratory, cardiovascular, and thermoregulatory functions are controlled by these pregnancy hormones by focusing on their action on central nervous system circuits. Inadequate adaptations in these systems during pregnancy can give rise to several pregnancy complications, highlighting the importance in understanding the mechanistic underpinnings of these changes and potentially identifying ways to treat pregnancy-associated afflictions using hormones.
Collapse
Affiliation(s)
- T Georgescu
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Habibu B, Aliyu A, Idris SY, Buhari HU, Galadanchi FA, Abdulrahman M, Yaqub LS. Thermoregulation in periparturient rabbit does and their neonatal kits with different litter sizes during West African winter. Anim Biotechnol 2023; 34:4357-4366. [PMID: 36459437 DOI: 10.1080/10495398.2022.2150200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The study evaluated the changes in body temperatures and hematological parameters in periparturient rabbit does and the dynamics of body surface temperature in neonatal rabbit kits during West African winter. The variables were measured in 21 rabbits, comprising periparturient (n = 12) and dry (n = 9) does, and after kindling, the kits were grouped based on litter size, into small (4 kits per litter; n = 24) and large (5-7 kits per litter; n = 34) litter. Results revealed that all body temperatures of the does were lower (p < 0.05) during gestation compared with lactation period or dry does in all hours of the day, and the PCV was significantly higher in lactating than dry does. At birth, small litter kits had higher (p < 0.05) body weight and morning body surface temperature than the large litter kits. The large litter kits showed distinct (p < 0.05) diurnal variation in body surface temperature from birth, while diurnal variation in the small litter kits was absent (P > 0.05) in the first three days after birth. It was concluded that pregnant rabbits and large litter kits may have poor thermoregulation during West African winter, and thus, the need for special protective housing to improve productivity.
Collapse
Affiliation(s)
- Buhari Habibu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Adamu Aliyu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Sherif Y Idris
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | - Hajarah U Buhari
- Samaru College of Agriculture, Division of Agricultural Colleges, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima A Galadanchi
- Department of Plant Science and Biotechnology, Federal University Dutsin-Ma, Dutsin-Ma, Nigeria
| | - Musa Abdulrahman
- Swine and Rabbit Research Programme, National Animal Production Research Institute, Ahmadu Bello University, Zaria, Nigeria
| | - Lukman S Yaqub
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
10
|
Brown RSE, Jacobs IM, Khant Aung Z, Knowles PJ, Grattan DR, Ladyman SR. High fat diet-induced maternal obesity in mice impairs peripartum maternal behaviour. J Neuroendocrinol 2023; 35:e13350. [PMID: 37926066 DOI: 10.1111/jne.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Obesity during pregnancy represents a significant health issue and can lead to increased complications during pregnancy and impairments with breastfeeding, along with long-term negative health consequences for both mother and offspring. In rodent models, diet-induced obesity (DIO) during pregnancy leads to poor outcomes for offspring. Using a DIO mouse model, consisting of feeding mice a high fat diet for 8 weeks before mating, we recapitulate the effect of high pup mortality within the first 3 days postpartum. To examine the activity of the dam around the time of birth, late pregnant control and DIO dams were recorded in their home cages and the behaviour of the dam immediately before and after birth was analysed. Prior to giving birth, DIO dams spent less time engaging in nesting behaviour, while after birth, DIO dams spent less time in the nest with their pups compared to control dams, indicating reduced pup-engagement in the early postpartum period. We have previously reported that lactogenic hormone action, mediated by the prolactin receptor, in the medial preoptic area of the hypothalamus (MPOA) is critical for the onset of normal postpartum maternal behaviour. We hypothesized that DIO dams may have lower lactogenic hormone activity during late pregnancy, which would contribute to impaired onset of normal postpartum maternal behaviour. Day 16 lactogenic activity, transport of prolactin into the brain, and plasma prolactin concentrations around birth were all similar in control and DIO dams. Moreover, endogenous pSTAT5, a marker of prolactin receptor activity, in the MPOA was unaffected by DIO. Overall, these data indicate that lactogenic activity in late pregnancy of DIO dams is not different to controls and is unlikely to play a major role in impaired onset of normal postpartum maternal behaviour.
Collapse
Affiliation(s)
- Rosemary Shanon Eileen Brown
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ireland M Jacobs
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Pene J Knowles
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
11
|
Babey ME, Krause WC, Herber CB, Chen K, Nikkanen J, Rodriquez R, Zhang X, Castro-Navarro F, Wang Y, Villeda S, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. Brain-Derived CCN3 Is An Osteoanabolic Hormone That Sustains Bone in Lactating Females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554707. [PMID: 37693376 PMCID: PMC10491109 DOI: 10.1101/2023.08.28.554707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In lactating mothers, the high calcium (Ca 2+ ) demand for milk production triggers significant bone resorption. While estrogen would normally counteract excessive bone loss and maintain sufficient bone formation during this postpartum period, this sex steroid drops precipitously after giving birth. Here, we report that brain-derived CCN3 (Cellular Communication Network factor 3) secreted from KISS1 neurons of the arcuate nucleus (ARC KISS1 ) fills this void and functions as a potent osteoanabolic factor to promote bone mass in lactating females. Using parabiosis and bone transplant methods, we first established that a humoral factor accounts for the female-specific, high bone mass previously observed by our group after deleting estrogen receptor alpha (ER α ) from ARC KISS1 neurons 1 . This exceptional bone phenotype in mutant females can be traced back to skeletal stem cells (SSCs), as reflected by their increased frequency and osteochondrogenic potential. Based on multiple assays, CCN3 emerged as the most promising secreted pro-osteogenic factor from ARC KISS1 neurons, acting on mouse and human SSCs at low subnanomolar concentrations independent of age or sex. That brain-derived CCN3 promotes bone formation was further confirmed by in vivo gain- and loss-of-function studies. Notably, a transient rise in CCN3 appears in ARC KISS1 neurons in estrogen-depleted lactating females coincident with increased bone remodeling and high calcium demand. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone that defines a novel female-specific brain-bone axis for ensuring mammalian species survival.
Collapse
|
12
|
Ammari R, Monaca F, Cao M, Nassar E, Wai P, Del Grosso NA, Lee M, Borak N, Schneider-Luftman D, Kohl J. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. Science 2023; 382:76-81. [PMID: 37797007 PMCID: PMC7615220 DOI: 10.1126/science.adi0576] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
During pregnancy, physiological adaptations prepare the female body for the challenges of motherhood. Becoming a parent also requires behavioral adaptations. Such adaptations can occur as early as during pregnancy, but how pregnancy hormones remodel parenting circuits to instruct preparatory behavioral changes remains unknown. We found that action of estradiol and progesterone on galanin (Gal)-expressing neurons in the mouse medial preoptic area (MPOA) is critical for pregnancy-induced parental behavior. Whereas estradiol silences MPOAGal neurons and paradoxically increases their excitability, progesterone permanently rewires this circuit node by promoting dendritic spine formation and recruitment of excitatory synaptic inputs. This MPOAGal-specific neural remodeling sparsens population activity in vivo and results in persistently stronger, more selective responses to pup stimuli. Pregnancy hormones thus remodel parenting circuits in anticipation of future behavioral need.
Collapse
Affiliation(s)
- Rachida Ammari
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Francesco Monaca
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Mingran Cao
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Estelle Nassar
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Patty Wai
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nicholas A. Del Grosso
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Matthew Lee
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Neven Borak
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Deborah Schneider-Luftman
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Johannes Kohl
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
13
|
Servin-Barthet C, Martínez-García M, Pretus C, Paternina-Die M, Soler A, Khymenets O, Pozo ÓJ, Leuner B, Vilarroya O, Carmona S. The transition to motherhood: linking hormones, brain and behaviour. Nat Rev Neurosci 2023; 24:605-619. [PMID: 37612425 DOI: 10.1038/s41583-023-00733-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
We are witnessing a stark increase in scientific interest in the neurobiological processes associated with pregnancy and maternity. Convergent evidence suggests that around the time of labour, first-time mothers experience a specific pattern of neuroanatomical changes that are associated with maternal behaviour. Here we provide an overview of the human neurobiological adaptations of motherhood, focusing on the interplay between pregnancy-related steroid and peptide hormones, and neuroplasticity in the brain. We discuss which brain plasticity mechanisms might underlie the structural changes detected by MRI, which hormonal systems are likely to contribute to such neuroanatomical changes and how these brain mechanisms may be linked to maternal behaviour. This Review offers an overarching framework that can serve as a roadmap for future investigations.
Collapse
Affiliation(s)
- Camila Servin-Barthet
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Pretus
- Hospital del Mar Research Institute, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de els Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Paternina-Die
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Soler
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Óscar J Pozo
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Benedetta Leuner
- Psychology Department, The Ohio State University, Columbus, OH, USA
| | - Oscar Vilarroya
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
| | - Susana Carmona
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Peng Z, Ziros PG, Martini T, Liao XH, Stoop R, Refetoff S, Albrecht U, Sykiotis GP, Kellenberger S. ASIC1a affects hypothalamic signaling and regulates the daily rhythm of body temperature in mice. Commun Biol 2023; 6:857. [PMID: 37591947 PMCID: PMC10435469 DOI: 10.1038/s42003-023-05221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
The body temperature of mice is higher at night than during the day. We show here that global deletion of acid-sensing ion channel 1a (ASIC1a) results in lower body temperature during a part of the night. ASICs are pH sensors that modulate neuronal activity. The deletion of ASIC1a decreased the voluntary activity at night of mice that had access to a running wheel but did not affect their spontaneous activity. Daily rhythms of thyrotropin-releasing hormone mRNA in the hypothalamus and of thyroid-stimulating hormone β mRNA in the pituitary, and of prolactin mRNA in the hypothalamus and pituitary were suppressed in ASIC1a-/- mice. The serum thyroid hormone levels were however not significantly changed by ASIC1a deletion. Our findings indicate that ASIC1a regulates activity and signaling in the hypothalamus and pituitary. This likely leads to the observed changes in body temperature by affecting the metabolism or energy expenditure.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tomaz Martini
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Hôpital de Cery, Lausanne University Hospital, Lausanne, Switzerland
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Urs Albrecht
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Irvine A, Gaffney MI, Haughee EK, Horton MA, Morris HC, Harris KC, Corbin JE, Merrill C, Perlis ML, Been LE. Elevated estradiol during a hormone simulated pseudopregnancy decreases sleep and increases hypothalamic activation in female Syrian hamsters. J Neuroendocrinol 2023:e13278. [PMID: 37127859 DOI: 10.1111/jne.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Sleep disruptions are a common occurrence during the peripartum period. While physical and environmental factors associated with pregnancy and newborn care account for some sleep disruptions, there is evidence that peripartum fluctuations in estrogens may independently impact sleep. However, the impact of these large fluctuations in estrogens on peripartum sleep is unclear because it is difficult to tease apart the effects of estrogens on sleep from effects associated with the growth and development of the fetus or parental care. We therefore used a hormone-simulated pseudopregnancy (HSP) in female Syrian hamsters to test the hypothesis that pregnancy-like increases in estradiol decrease sleep in the absence of other factors. Adult female Syrian hamsters were ovariectomized and given daily hormone injections that simulate estradiol levels during early pregnancy, late pregnancy, and the postpartum period. Home cage video recordings were captured at seven timepoints and videos were analyzed for actigraphy. During "late pregnancy," total sleep time and sleep efficiency were decreased in hormone-treated animals during the white light period compared to pretest levels. Likewise, during "late pregnancy," locomotion was increased in the white light period for hormone-treated animals compared to pretest levels. These changes continued into the "postpartum period" for animals who continued to receive estradiol treatment, but not for animals who were withdrawn from estradiol. At the conclusion of the experiment, animals were euthanized and cFos expression was quantified in the ventral lateral preoptic area (VLPO) and lateral hypothalamus (LH). Animals who continued to receive high levels of estradiol during the "postpartum" period had significantly more cFos in the VLPO and LH than animals who were withdrawn from hormones or vehicle controls. Together, these data suggest that increased levels of estradiol during pregnancy are associated with sleep suppression, which may be mediated by increased activation of hypothalamic nuclei.
Collapse
Affiliation(s)
- Abiola Irvine
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Maeve I Gaffney
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Erin K Haughee
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Marité A Horton
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Hailey C Morris
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Kagan C Harris
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Jaclyn E Corbin
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Clara Merrill
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Michael L Perlis
- Department of Psychiatry, Behavioral Sleep Medicine Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E Been
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| |
Collapse
|
16
|
Swart JM, Grattan DR, Ladyman SR, Brown RSE. Pups and prolactin are rewarding to virgin female and pregnant mice. J Neuroendocrinol 2022:e13232. [PMID: 36691950 DOI: 10.1111/jne.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Maternal interactions with offspring are highly rewarding, which reinforces expression of essential caregiving behaviours that promote offspring survival. In rats, the rewarding effect of pups depends on reproductive state, with lactating females specifically developing strong preferences for pup-associated contexts. Whether this also occurs in mice is unknown, hence we aimed to characterise pup-related preference across reproductive states in female mice. In a conditioned place preference (CPP) test, pups were a rewarding stimulus to female mice prior to lactation, with virgin and pregnant females developing a preference for a pup-associated context. We have previously shown that lactogenic hormones, acting through the prolactin receptor (Prlr), play an important role in maternal motivation. Here, we aimed to investigate whether Prlr action is important for pup-related reward behaviour in mice. We showed that prolactin itself had a reinforcing effect in a CPP test, and that exposure to pups increased blood prolactin levels in virgin female mice. Prlr expression in CamKIIα-expressing neurons and GABAergic neurons has previously been shown to be important for different aspects of parental behaviour. However, we found that conditional Prlr deletion from either of these neuronal populations did not disrupt the development of a preference for pup-associated contexts in pregnant female mice, indicating that lactogenic action on these populations is not necessary for the rewarding effect of pups. Together, these data show that while lactogenic hormones likely contribute to a rewarding effect of pups, their action on two key neuronal populations is not necessary for this effect in female mice.
Collapse
Affiliation(s)
- Judith M Swart
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Polzin BJ, Maksimoski AN, Stevenson SA, Zhao C, Riters LV. Mu opioid receptor stimulation in the medial preoptic area or nucleus accumbens facilitates song and reward in flocking European starlings. Front Physiol 2022; 13:970920. [PMID: 36171974 PMCID: PMC9510710 DOI: 10.3389/fphys.2022.970920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
It has been proposed that social cohesion in gregarious animals is reinforced both by a positive affective state induced by social interactions and by the prevention of a negative state that would be caused by social separation. Opioids that bind to mu opioid receptors (MORs) act in numerous brain regions to induce positive and to reduce negative affective states. Here we explored a potential role for MORs in affective states that may impact flocking behavior in mixed-sex flocks of nonbreeding European starlings, Sturnus vulgaris. Singing behavior, which is considered central to flock cohesion, and other social behaviors were quantified after infusions of the MOR agonist D-Ala2, N-Me-Phe4, glycinol5-ENK (DAMGO) into either the medial preoptic area (POM) or the nucleus accumbens (NAC), regions previously implicated in affective state and flock cohesion. We focused on beak wiping, a potential sign of stress or redirected aggression in this species, to provide insight into a presumed negative state. We also used conditioned place preference (CPP) tests to provide insight into the extent to which infusions of DAMGO into POM or NAC that stimulated song might be rewarding. We found that MOR stimulation in either POM or NAC dose-dependently promoted singing behavior, reduced beak wiping, and induced a CPP. Subtle differences in responses to MOR stimulation between NAC and POM also suggest potential functional differences in the roles of these two regions. Finally, because the location of NAC has only recently been identified in songbirds, we additionally performed a tract tracing study that confirmed the presence of dopaminergic projections from the ventral tegmental area to NAC, suggesting homology with mammalian NAC. These findings support the possibility that MORs in POM and NAC play a dual role in reinforcing social cohesion in flocks by facilitating positive and reducing negative affective states.
Collapse
|
18
|
Georgescu T, Swart JM, Grattan DR, Brown RSE. The Prolactin Family of Hormones as Regulators of Maternal Mood and Behavior. Front Glob Womens Health 2021; 2:767467. [PMID: 34927138 PMCID: PMC8673487 DOI: 10.3389/fgwh.2021.767467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Transition into motherhood involves profound physiological and behavioral adaptations that ensure the healthy development of offspring while maintaining maternal health. Dynamic fluctuations in key hormones during pregnancy and lactation induce these maternal adaptations by acting on neural circuits in the brain. Amongst these hormonal changes, lactogenic hormones (e.g., prolactin and its pregnancy-specific homolog, placental lactogen) are important regulators of these processes, and their receptors are located in key brain regions controlling emotional behaviors and maternal responses. With pregnancy and lactation also being associated with a marked elevation in the risk of developing mood disorders, it is important to understand how hormones are normally regulating mood and behavior during this time. It seems likely that pathological changes in mood could result from aberrant expression of these hormone-induced behavioral responses. Maternal mental health problems during pregnancy and the postpartum period represent a major barrier in developing healthy mother-infant interactions which are crucial for the child's development. In this review, we will examine the role lactogenic hormones play in driving a range of specific maternal behaviors, including motivation, protectiveness, and mother-pup interactions. Understanding how these hormones collectively act in a mother's brain to promote nurturing behaviors toward offspring will ultimately assist in treatment development and contribute to safeguarding a successful pregnancy.
Collapse
Affiliation(s)
- Teodora Georgescu
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Judith M. Swart
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S. E. Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Khant Aung Z, Kokay IC, Grattan DR, Ladyman SR. Prolactin-Induced Adaptation in Glucose Homeostasis in Mouse Pregnancy Is Mediated by the Pancreas and Not in the Forebrain. Front Endocrinol (Lausanne) 2021; 12:765976. [PMID: 34867810 PMCID: PMC8632874 DOI: 10.3389/fendo.2021.765976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ilona C. Kokay
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Sharon R. Ladyman,
| |
Collapse
|