1
|
Wang J, Du LF, Zhang MZ, Wei W, Chen ZY, Zhang X, Xiong T, Wang ZF, Xia LY, Jiang JF, Li WJ, Zhu DY, Jia N, Cao WC. Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry. Commun Biol 2024; 7:784. [PMID: 38951577 PMCID: PMC11217389 DOI: 10.1038/s42003-024-06468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, P. R. China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zi-Yun Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zhen-Fei Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wen-Jun Li
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| |
Collapse
|
2
|
Liang Y, Wang H, Sun K, Sun J, Soong L. Lack of the IFN-γ signal leads to lethal Orientia tsutsugamushi infection in mice with skin eschar lesions. PLoS Pathog 2024; 20:e1012020. [PMID: 38743761 PMCID: PMC11125519 DOI: 10.1371/journal.ppat.1012020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/24/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-β. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hui Wang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Danielson M, Nicolai CJ, Vo TT, Wolf N, Burke TP. Cytosolic bacterial pathogens activate TLR pathways in tumors that synergistically enhance STING agonist cancer therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578087. [PMID: 38352567 PMCID: PMC10862861 DOI: 10.1101/2024.01.30.578087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacterial pathogens that invade the eukaryotic cytosol are distinctive tools for fighting cancer, as they preferentially target tumors and can deliver cancer antigens to MHC-I. Cytosolic bacterial pathogens have undergone extensive preclinical development and human clinical trials, yet the molecular mechanisms by which they are detected by innate immunity in tumors is unclear. We report that intratumoral delivery of phylogenetically distinct cytosolic pathogens, including Listeria, Rickettsia, and Burkholderia species, elicited anti-tumor responses in established, poorly immunogenic melanoma and lymphoma in mice. We were surprised to observe that although the bacteria required entry to the cytosol, the anti-tumor responses were largely independent of the cytosolic sensors cGAS/STING and instead required TLR signaling. Combining pathogens with TLR agonists did not enhance anti-tumor efficacy, while combinations with STING agonists elicited profound, synergistic anti-tumor effects with complete responses in >80% of mice after a single dose. Small molecule TLR agonists also synergistically enhanced the anti-tumor activity of STING agonists. The anti-tumor effects were diminished in Rag2-deficient mice and upon CD8 T cell depletion. Mice cured from combination therapy developed immunity to cancer rechallenge that was superior to STING agonist monotherapy. Together, these data provide a framework for enhancing the efficacy of microbial cancer therapies and small molecule innate immune agonists, via the co-activation of STING and TLRs.
Collapse
Affiliation(s)
- Meggie Danielson
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA USA
| | - Chris J Nicolai
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Thaomy T Vo
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA USA
| | - Natalie Wolf
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Thomas P Burke
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
4
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
5
|
Bei J, Qiu Y, Cockrell D, Chang Q, Husseinzadeh S, Zhou C, Fang X, Bao X, Jin Y, Gaitas A, Khanipov K, Saito TB, Gong B. Identification of common sequence motifs shared exclusively among selectively packed exosomal pathogenic microRNAs during rickettsial infections. J Cell Physiol 2023; 238:1937-1948. [PMID: 37334929 DOI: 10.1002/jcp.31061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
We previously reported that microRNA (miR)23a and miR30b are selectively sorted into exosomes derived from rickettsia-infected endothelial cells (R-ECExos). Yet, the mechanism remains unknown. Cases of spotted fever rickettsioses have been increasing, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the goal of the present study is to further dissect the molecular mechanism underlying R-ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Infected ticks transmit the rickettsiae to human hosts following a bite and injections of the bacteria into the skin. In the present study, we demonstrate that treatment with R-ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin, and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. We did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R-ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a monopartition, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R-ECExos.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Diane Cockrell
- Laboratory of Bacteriology, Division of Intramural Research, NIAID-NIH, Hamilton, Montana, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiaoyong Bao
- Department of Pediatric, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Department of Medicine, Pulmonary and Critical Care Medicine Division, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Laboratory of Bacteriology, Division of Intramural Research, NIAID-NIH, Hamilton, Montana, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
7
|
Du LF, Zhang MZ, Yuan TT, Ni XB, Wei W, Cui XM, Wang N, Xiong T, Zhang J, Pan YS, Zhu DY, Li LJ, Xia LY, Wang TH, Wei R, Liu HB, Sun Y, Zhao L, Lam TTY, Cao WC, Jia N. New insights into the impact of microbiome on horizontal and vertical transmission of a tick-borne pathogen. MICROBIOME 2023; 11:50. [PMID: 36915209 PMCID: PMC10012463 DOI: 10.1186/s40168-023-01485-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The impact of host skin microbiome on horizontal transmission of tick-borne pathogens , and of pathogen associated transstadial and transovarial changes in tick microbiome are largely unknown, but are important to control increasingly emerging tick-borne diseases worldwide. METHODS Focusing on a rickettsiosis pathogen, Rickettsia raoultii, we used R. raoultii-positive and R. raoultii-negative Dermacentor spp. tick colonies to study the involvement of skin microbiota in cutaneous infection with rickettsiae in laboratory mice, and the function of the tick microbiome on maintenance of rickettsiae through all tick developmental stages (eggs, larvae, nymphs, adults) over two generations. RESULTS We observed changes in the skin bacteria community, such as Chlamydia, not only associated with rickettsial colonization but also with tick feeding on skin. The diversity of skin microbiome differed between paired tick-bitten and un-bitten sites. For vertical transmission, significant differences in the tick microbiota between pathogenic rickettsia-positive and -negative tick chorts was observed across all developmental stages at least over two generations, which appeared to be a common pattern not only for R. raoultii but also for another pathogenic species, Candidatus Rickettsia tarasevichiae. More importantly, bacterial differences were complemented by functional shifts primed for genetic information processing during blood feeding. Specifically, the differences in tick microbiome gene repertoire between pathogenic Rickettsia-positive and -negative progenies were enriched in pathways associated with metabolism and hormone signals during vertical transmission. CONCLUSIONS We demonstrate that host skin microbiome might be a new factor determining the transmission of rickettsial pathogens through ticks. While pathogenic rickettsiae infect vertebrate hosts during blood-feeding by the tick, they may also manipulate the maturation of the tick through changing the functional potential of its microbiota over the tick's life stages. The findings here might spur the development of new-generation control methods for ticks and tick-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ting-Ting Yuan
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tian-Hong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China.
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China.
- EKIH (Gewuzhikang) Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China.
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
8
|
Bei J, Qiu Y, Cockrell D, Chang Q, Husseinzadeh S, Zhou C, Gaitas A, Fang X, Jin Y, Khanipov K, Saito TB, Gong B. Identification of common sequence motifs shared exclusively among selectively packed exosomal pathogenic microRNAs during rickettsial infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522907. [PMID: 36712112 PMCID: PMC9881928 DOI: 10.1101/2023.01.06.522907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that microRNA (miR)23a and miR30b are selectively sorted into rickettsia-infected, endothelial cell-derived exosomes ( R -ECExos). Yet, the mechanism remains unknown. The number of cases of spotted fever rickettsioses has been increasing in recent years, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the aim of the present study is to continue to dissect the molecular mechanism underlying R -ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Rickettsiae are transmitted to human hosts by the bite of an infected tick into the skin. In the present study we demonstrate that treatment with R -ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. Similarly, we did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R -ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a single, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R -ECExos.
Collapse
|
9
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
10
|
Underwood J, Harvey C, Lohstroh E, Pierce B, Chambers C, Guzman Valencia S, Oliva Chávez AS. Anaplasma phagocytophilum Transmission Activates Immune Pathways While Repressing Wound Healing in the Skin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121965. [PMID: 36556330 PMCID: PMC9781593 DOI: 10.3390/life12121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular bacterium transmitted by the bite of black-legged ticks, Ixodes scapularis. The main host cells in vertebrates are neutrophils. However, the first site of entry is in the skin during tick feeding. Given that the initial responses within skin are a crucial determinant of disease outcome in vector-borne diseases, we used a non-biased approach to characterize the transcriptional changes that take place at the bite during I. scapularis feeding and A. phagocytophilum transmission. Experimentally infected ticks were allowed to feed for 3 days on C57BL/6J mice to allow bacterial transmission and establishment. Skin biopsies were taken from the attachment site of uninfected ticks and A. phagocytophilum-infected ticks. Skin without ticks (intact skin) was used as baseline. RNA was isolated and sequenced using next-generation sequencing (NGS). The differentially expressed genes were used to identify over-represented pathways by gene ontology (GO) and pathway enrichment (PE). Anaplasma phagocytophilum transmission resulted in the activation of interferon signaling and neutrophil chemotaxis pathways in the skin. Interestingly, it also led to the downregulation of genes encoding extracellular matrix (ECM) components, and upregulation of metalloproteinases, suggesting that A. phagocytophilum delays wound healing responses and may increase vascular permeability at the bite site.
Collapse
Affiliation(s)
- Jacob Underwood
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Navy Entomology Center of Excellence, United States Navy, Jacksonville, FL 32212, USA
| | - Cristina Harvey
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Elizabeth Lohstroh
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Branden Pierce
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Cross Chambers
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | | | - Adela S. Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Correspondence: ; Tel.: +1-979-845-1946
| |
Collapse
|
11
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
12
|
Involvement of Pore Formation and Osmotic Lysis in the Rapid Killing of Gamma Interferon-Pretreated C166 Endothelial Cells by Rickettsia prowazekii. Trop Med Infect Dis 2022; 7:tropicalmed7080163. [PMID: 36006255 PMCID: PMC9415803 DOI: 10.3390/tropicalmed7080163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rickettsia prowazekii, the bacterial cause of epidemic typhus in humans, proliferates mainly within the microvascular endothelial cells. Previous studies have shown that murine macrophage-like RAW264.7 cells are rapidly damaged if they are pretreated with gamma interferon (IFN-γ) and then infected with R. prowazekii. In the present study, the effects of IFN-γ and R. prowazekii on murine C166 endothelial cells were evaluated. In the IFN-γ-pretreated R. prowazekii-infected endothelial cell cultures, evidence of cell damage was observed within several hours after addition of the rickettsiae. Considerable numbers of the cells became permeable to trypan blue dye and ethidium bromide, and substantial amounts of lactate dehydrogenase (LDH) were released from the cells. Such evidence of cellular injury was not observed in the untreated infected cultures or in any of the mock-infected cultures. Polyethylene glycols (PEGs) of different nominal average molecular weights were used to assess the possible involvement of pore formation and osmotic lysis in this cellular injury. PEG 8000 dramatically suppressed LDH release, PEG 4000 partially inhibited it, and PEGs 2000 and 1450 had no effect. Despite its inhibition of LDH release, PEG 8000 did not prevent the staining of the IFN-γ-pretreated infected endothelial cells by ethidium bromide. These findings suggest that the observed cellular injury involves the formation of pores in the endothelial cell membranes, followed by osmotic lysis of the cells.
Collapse
|
13
|
Borgo GM, Burke TP, Tran CJ, Lo NTN, Engström P, Welch MD. A patatin-like phospholipase mediates Rickettsia parkeri escape from host membranes. Nat Commun 2022; 13:3656. [PMID: 35760786 PMCID: PMC9237051 DOI: 10.1038/s41467-022-31351-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/15/2022] [Indexed: 12/25/2022] Open
Abstract
Rickettsia species of the spotted fever group are arthropod-borne obligate intracellular bacteria that can cause mild to severe human disease. These bacteria invade host cells, replicate in the cell cytosol, and spread from cell to cell. To access the host cytosol and avoid immune detection, they escape membrane-bound vacuoles by expressing factors that disrupt host membranes. Here, we show that a patatin-like phospholipase A2 enzyme (Pat1) facilitates Rickettsia parkeri infection by promoting escape from host membranes and cell-cell spread. Pat1 is important for infection in a mouse model and, at the cellular level, is crucial for efficiently escaping from single and double membrane-bound vacuoles into the host cytosol, and for avoiding host galectins that mark damaged membranes. Pat1 is also important for avoiding host polyubiquitin, preventing recruitment of autophagy receptor p62, and promoting actin-based motility and cell-cell spread. Pathogenic Rickettsia species are arthropod-borne, obligate intracellular bacteria that invade host cells, replicate in the cell cytosol, and spread from cell to cell. Here, Borgo et al. identify a Rickettsia phospholipase enzyme that is important for infection by helping the bacteria escape from host cell vacuoles into the host cytosol, preventing targeting by autophagy, and promoting bacterial motility and spread to other cells.
Collapse
Affiliation(s)
- Gina M Borgo
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Thomas P Burke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Cuong J Tran
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T N Lo
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Primordial Genetics, San Diego, CA, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Scott AT, Vondrak CJ, Sanderlin AG, Lamason RL. Rickettsia parkeri. Trends Microbiol 2022; 30:511-512. [PMID: 35115187 PMCID: PMC11093278 DOI: 10.1016/j.tim.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Allison T Scott
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassandra J Vondrak
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|