1
|
Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Zaharieva V, Atanasov V, Kostandieva R, Mitev M, Petkova-Parlapanska K, Karamalakova Y, Tsoneva V, Nikolova G. Stable Nitroxide as Diagnostic Tools for Monitoring of Oxidative Stress and Hypoalbuminemia in the Context of COVID-19. Int J Mol Sci 2024; 25:8045. [PMID: 39125614 PMCID: PMC11312055 DOI: 10.3390/ijms25158045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Oxidative stress is a major source of ROS-mediated damage to macromolecules, tissues, and the whole body. It is an important marker in the severe picture of pathological conditions. The discovery of free radicals in biological systems gives a "start" to studying various pathological processes related to the development and progression of many diseases. From this moment on, the enrichment of knowledge about the participation of free radicals and free-radical processes in the pathogenesis of cardiovascular, neurodegenerative, and endocrine diseases, inflammatory conditions, and infections, including COVID-19, is increasing exponentially. Excessive inflammatory responses and abnormal reactive oxygen species (ROS) levels may disrupt mitochondrial dynamics, increasing the risk of cell damage. In addition, low serum albumin levels and changes in the normal physiological balance between reduced and oxidized albumin can be a serious prerequisite for impaired antioxidant capacity of the body, worsening the condition in patients. This review presents the interrelationship between oxidative stress, inflammation, and low albumin levels, which are hallmarks of COVID-19.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Yovcho Yovchev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Georgi Arabadzhiev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Vyara Zaharieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Mitko Mitev
- Department of Diagnostic Imaging, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| |
Collapse
|
2
|
Wu G, Gu M, Zhu J, Gu R, Yang B, Ji S, Zhao Y, Gu K. Prognostic prediction of oxidative stress related hematological biomarkers in locally advanced cervical cancer patients undergoing chemoradiotherapy. Biomarkers 2024; 29:255-264. [PMID: 38767430 DOI: 10.1080/1354750x.2024.2358300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE This investigation aimed to develop and validate a novel oxidative stress score for prognostic prediction in locally advanced cervical cancer (LACC) patients receiving chemoradiotherapy. METHODS A total of 301 LACC patients were enrolled and randomly divided into a training and a validation set. The association between oxidative stress parameters and prognosis was analyzed for oxidative stress score (OSS) establishment. A Cox regression model was conducted for overall survival (OS) and progression-free survival (PFS). A nomogram prediction model was developed using independent prognostic factors from the training set and validated in the validation set. RESULTS A novel OSS was established with four oxidative stress parameters, including albumin, total bilirubin, blood urea nitrogen, and lactate dehydrogenase. Multivariate regression analysis identified OSS as an independent prognostic factor for OS (p = 0.001) and PFS (p < 0.001). A predictive nomogram based on the OSS was established and validated. The C-indexes of the nomogram in the training set were 0.772 for OS and 0.781 for PFS, while in the validation set the C-indexes were 0.642 for OS and 0.621 for PFS. CONCLUSION This study confirmed that preoperative OSS could serve as a useful independent prognostic factor in LACC patients who received CCRT.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Mengxuan Gu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiahao Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ruike Gu
- Department of Rehabilitation Medical, Suzhou Rehabilitation Hospital (Suzhou Municipal Hospital Rehabilitation Medical Center), Suzhou, Jiangsu, P.R. China
| | - Bo Yang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
3
|
Vajdi M, Karimi A, Hassanizadeh S, Farhangi MA, Bagherniya M, Askari G, Roufogalis BD, Davies NM, Sahebkar A. Effect of polyphenols against complications of COVID-19: current evidence and potential efficacy. Pharmacol Rep 2024; 76:307-327. [PMID: 38498260 DOI: 10.1007/s43440-024-00585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
The COVID-19 pandemic that started in 2019 and resulted in significant morbidity and mortality continues to be a significant global health challenge, characterized by inflammation, oxidative stress, and immune system dysfunction.. Developing therapies for preventing or treating COVID-19 remains an important goal for pharmacology and drug development research. Polyphenols are effective against various viral infections and can be extracted and isolated from plants without losing their therapeutic potential. Researchers have developed methods for separating and isolating polyphenols from complex matrices. Polyphenols are effective in treating common viral infections, including COVID-19, and can also boost immunity. Polyphenolic-based antiviral medications can mitigate SARS-CoV-2 enzymes vital to virus replication and infection. Individual polyphenolic triterpenoids, flavonoids, anthraquinonoids, and tannins may also inhibit the SARS-CoV-2 protease. Polyphenol pharmacophore structures identified to date can explain their action and lead to the design of novel anti-COVID-19 compounds. Polyphenol-containing mixtures offer the advantages of a well-recognized safety profile with few known severe side effects. However, studies to date are limited, and further animal studies and randomized controlled trials are needed in future studies. The purpose of this study was to review and present the latest findings on the therapeutic impact of plant-derived polyphenols on COVID-19 infection and its complications. Exploring alternative approaches to traditional therapies could aid in developing novel drugs and remedies against coronavirus infection.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shirin Hassanizadeh
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Abbasalizad Farhangi
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Ferrer MD, Reynés C, Jiménez L, Malagraba G, Monserrat-Mesquida M, Bouzas C, Sureda A, Tur JA, Pons A. Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation. Int J Mol Sci 2024; 25:3001. [PMID: 38474248 DOI: 10.3390/ijms25053001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
SARS-CoV-2 induces a hyperinflammatory reaction due to the excessive release of cytokines during the immune response. The bacterial endotoxin lipopolysaccharide (LPS) contributes to the low-grade inflammation associated with the metabolic syndrome, enhancing the hyperinflammatory reaction induced by the SARS-CoV-2 infection. The intake of sodium nitrate, a precursor of nitrite and nitric oxide, influences the antioxidant and pro-inflammatory gene expression profile after immune stimulation with LPS in peripheral blood mononuclear cells from metabolic syndrome patients. We aimed to assess the inflammatory and antioxidant responses of immune cells from metabolic syndrome patients to exposure to the SARS-CoV-2 spike protein (S protein) together with LPS and the effect of nitrite in these responses. Whole blood samples obtained from six metabolic syndrome patients were cultured for 16 h at 37 °C with four different media: control medium, control medium plus LPS (100 ng/mL), control medium plus LPS (100 ng/mL) plus S protein (10 ng/mL), and control medium plus LPS (100 ng/mL) plus S protein (10 ng/mL) plus nitrite (5 µM). Immune stimulation with the LPS/S protein enhanced nitrate biosynthesis from nitrite oxidation and probably from additional organic precursors. In vitro incubations with the LPS/S protein enhanced the expression and/or release of pro-inflammatory TNFα, IL-6, IL-1β, and TLR4, as well as the expression of the anti-inflammatory IL-1ra and IL-10 and antioxidant enzymes. Nitrite attenuated the pro- and anti-inflammatory response induced by the S protein without interfering with the activation of TLR4 and antioxidant enzyme expression, raising the possibility that nitrite could have potential as a coadjutant in the treatment of COVID-19.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Clara Reynés
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Laura Jiménez
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Gianluca Malagraba
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
6
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
7
|
Granato G, Gesmundo I, Pedrolli F, Kasarla R, Begani L, Banfi D, Bruno S, Lopatina T, Brizzi MF, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Growth hormone-releasing hormone antagonist MIA-602 inhibits inflammation induced by SARS-CoV-2 spike protein and bacterial lipopolysaccharide synergism in macrophages and human peripheral blood mononuclear cells. Front Immunol 2023; 14:1231363. [PMID: 37649486 PMCID: PMC10462983 DOI: 10.3389/fimmu.2023.1231363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1β, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1β secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.
Collapse
Affiliation(s)
- Giuseppina Granato
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iacopo Gesmundo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Pedrolli
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ramesh Kasarla
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Begani
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
| | - Ezio Ghigo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrew V. Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
- Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Riccarda Granata
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Li Y, Hook JS, Ding Q, Xiao X, Chung SS, Mettlen M, Xu L, Moreland JG, Agathocleous M. Neutrophil metabolomics in severe COVID-19 reveal GAPDH as a suppressor of neutrophil extracellular trap formation. Nat Commun 2023; 14:2610. [PMID: 37147288 PMCID: PMC10162006 DOI: 10.1038/s41467-023-37567-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
Severe COVID-19 is characterized by an increase in the number and changes in the function of innate immune cells including neutrophils. However, it is not known how the metabolome of immune cells changes in patients with COVID-19. To address these questions, we analyzed the metabolome of neutrophils from patients with severe or mild COVID-19 and healthy controls. We identified widespread dysregulation of neutrophil metabolism with disease progression including in amino acid, redox, and central carbon metabolism. Metabolic changes in neutrophils from patients with severe COVID-19 were consistent with reduced activity of the glycolytic enzyme GAPDH. Inhibition of GAPDH blocked glycolysis and promoted pentose phosphate pathway activity but blunted the neutrophil respiratory burst. Inhibition of GAPDH was sufficient to cause neutrophil extracellular trap (NET) formation which required neutrophil elastase activity. GAPDH inhibition increased neutrophil pH, and blocking this increase prevented cell death and NET formation. These findings indicate that neutrophils in severe COVID-19 have an aberrant metabolism which can contribute to their dysfunction. Our work also shows that NET formation, a pathogenic feature of many inflammatory diseases, is actively suppressed in neutrophils by a cell-intrinsic mechanism controlled by GAPDH.
Collapse
Affiliation(s)
- Yafeng Li
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Ding
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen S Chung
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Mettlen
- Department of Cell Biology, Quantitative Light Microscopy Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Georgieva E, Atanasov V, Kostandieva R, Tsoneva V, Mitev M, Arabadzhiev G, Yovchev Y, Karamalakova Y, Nikolova G. Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19. Int J Mol Sci 2023; 24:ijms24065807. [PMID: 36982882 PMCID: PMC10058219 DOI: 10.3390/ijms24065807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Oxidative stress and the albumin oxidized form can lead to hypoalbuminemia, which is a predisposing factor for reduced treatment effectiveness and an increased mortality rate in severe COVID-19 patients. The aim of the study is to evaluate the application of free radical 3-Maleimido-PROXYL and SDSL-EPR spectroscopy in the in vitro determination of ox/red HSA in serum samples from patients with SARS-CoV-2 infection. Venous blood was collected from patients intubated (pO2 < 90%) with a positive PCR test for SARS-CoV-2 and controls. At the 120th minute after the incubation of the serum samples from both groups with the 3-Maleimido-PROXYL, the EPR measurement was started. The high levels of free radicals were determined through the nitroxide radical TEMPOL, which probably led to increased oxidation of HSA and hypoalbuminemia in severe COVID-19. The double-integrated spectra of 3-Maleimido-PROXYL radical showed a low degree of connectivity due to high levels of oxidized albumin in COVID-19 patients. The low concentrations of reduced albumin in serum samples partially inhibit spin-label rotation, with Amax values and ΔH0 spectral parameters comparable to those of 3-Maleimido-PROXYL/DMSO. Based on the obtained results, we suggest that the stable nitroxide radical 3-Maleimido-PROXYL can be successfully used as a marker to study oxidized albumin levels in COVID-19.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of "General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of "Medical Chemistry and Biochemistry", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Mitko Mitev
- Department of "Diagnostic Imaging", University Hospital "Prof. Dr. St. Kirkovich", 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of "Surgery and anesthesiology", University Hospital "Prof. Dr. St. Kirkovich", 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of "Surgery and anesthesiology", University Hospital "Prof. Dr. St. Kirkovich", 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of "Medical Chemistry and Biochemistry", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of "Medical Chemistry and Biochemistry", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| |
Collapse
|
11
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Deep Survival Analysis With Clinical Variables for COVID-19. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:223-231. [PMID: 36950264 PMCID: PMC10027076 DOI: 10.1109/jtehm.2023.3256966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. METHODS AND PROCEDURES We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables ([Formula: see text]=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. RESULTS Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. CONCLUSION Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. CLINICAL IMPACT The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient's chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.
Collapse
|
13
|
Yucel K, Fuat Gurbuz A. Hypoxia-inducible factor-1α and ischemia-modified albumin levels in intensive care COVID-19 Patients. Horm Mol Biol Clin Investig 2022; 43:415-420. [PMID: 35851469 DOI: 10.1515/hmbci-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In this study, it was aimed to evaluate the hypoxia-inducible factor-1α (HIF-1α) and ischemia-modified albumin (IMA) levels of patients diagnosed with COVID-19 in the intensive care unit (ICU) and healthy controls. To our knowledge, this is the first study investigate HIF-1α and IMA levels in COVID-19 patients in ICUs and comparing them with a healthy control group. For this reason, our study is original and will contribute to the literature. METHODS A total of 70 intensive care patients diagnosed with COVID-19, and 72 healthy controls were included in the study. RESULTS When we compared the patient and healthy control group; there were no statistically significant differences between the groups in terms of age and gender (p>0.05). No exitus was observed in the patient group. We found weak correlation between HIF-1α and IMA (r: 0.320). However, there were statistically significant differences in HIF-1α and IMA levels in the patient group. The receiver operating characteristic (ROC) curve demonstrated an area under curve (AUC) value of 0.651 for HIF-1α and 0.937 for IMA. CONCLUSIONS The HIF-1α and IMA levels were significantly higher among COVID-19 patients in ICU compared with healthy controls. HIF-1α and IMA levels can be used as reliable markers for the prognosis of COVID-19.
Collapse
Affiliation(s)
- Kamile Yucel
- Department of Medical Biochemistry, KTO Karatay University, Faculty of Medicine, Konya, Turkey
| | - Ali Fuat Gurbuz
- Department of Internal Medicine, Health Sciences University, Van Training and Research Hospital, Van, Turkey
| |
Collapse
|
14
|
Georgieva E, Karamalakova Y, Arabadzhiev G, Atanasov V, Kostandieva R, Mitev M, Tsoneva V, Yovchev Y, Nikolova G. Site-Directed Spin Labeling EPR Spectroscopy for Determination of Albumin Structural Damage and Hypoalbuminemia in Critical COVID-19. Antioxidants (Basel) 2022; 11:antiox11122311. [PMID: 36552520 PMCID: PMC9774111 DOI: 10.3390/antiox11122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
The main factors in the COVID-19 pathology, which can initiate extensive structural changes at the cellular and molecular levels, are the generation of free radicals in abnormal amounts, and oxidative stress. Under "oxidative shock" conditions, the proteins undergo various modifications that affect their function and activity, and as a result distribute malfunctioning protein derivatives in the body. Human serum albumin is a small globular protein characterized by a high overall binding capacity for neutral lipophilic and acidic dosage forms. The albumin concentration is crucial for the maintenance of plasma oncotic pressure, the transport of nutrients, amino acids, and drugs, the effectiveness of drug therapy, and the prevention of drug toxicity. Hypoalbuminemia and structural defects molecule in the protein suggest a risk of changed metabolism and increased plasma concentration of unbound drugs. Therefore, the albumin structural and functional changes accompanied by low protein levels can be a serious prerequisite for ineffective therapy, frequent complications, and high mortality in patients with SARS-CoV-2 infection. The current opinion aims the research community the application of Site-Directed Spin Labeling Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) and 3-Maleimido-PROXYL radical in determining abnormalities of the albumin dynamics and protein concentrations in COVID-19 critical patients.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Mitko Mitev
- Department of “Diagnostic Imaging”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Correspondence: ; Tel.: +359-897771301
| |
Collapse
|
15
|
Yasseen BA, Elkhodiry AA, El-Messiery RM, El-sayed H, Elbenhawi MW, Kamel AG, Gad SA, Zidan M, Hamza MS, Al-ansary M, Abdel-Rahman EA, Ali SS. Platelets' morphology, metabolic profile, exocytosis, and heterotypic aggregation with leukocytes in relation to severity and mortality of COVID-19-patients. Front Immunol 2022; 13:1022401. [PMID: 36479107 PMCID: PMC9720295 DOI: 10.3389/fimmu.2022.1022401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Roles of platelets during infections surpass the classical thrombus function and are now known to modulate innate immune cells. Leukocyte-platelet aggregations and activation-induced secretome are among factors recently gaining interest but little is known about their interplay with severity and mortality during the course of SARS-Cov-2 infection. The aim of the present work is to follow platelets' bioenergetics, redox balance, and calcium homeostasis as regulators of leukocyte-platelet interactions in a cohort of COVID-19 patients with variable clinical severity and mortality outcomes. We investigated COVID-19 infection-related changes in platelet counts, activation, morphology (by flow cytometry and electron microscopy), bioenergetics (by Seahorse analyzer), mitochondria function (by high resolution respirometry), intracellular calcium (by flow cytometry), reactive oxygen species (ROS, by flow cytometry), and leukocyte-platelet aggregates (by flow cytometry) in non-intensive care unit (ICU) hospitalized COVID-19 patients (Non-ICU, n=15), ICU-survivors of severe COVID-19 (ICU-S, n=35), non-survivors of severe COVID-19 (ICU-NS, n=60) relative to control subjects (n=31). Additionally, molecular studies were carried out to follow gene and protein expressions of mitochondrial electron transport chain complexes (ETC) in representative samples of isolated platelets from the studied groups. Our results revealed that COVID-19 infection leads to global metabolic depression especially in severe patients despite the lack of significant impacts on levels of mitochondrial ETC genes and proteins. We also report that severe patients' platelets exhibit hyperpolarized mitochondria and significantly lowered intracellular calcium, concomitantly with increased aggregations with neutrophil. These changes were associated with increased populations of giant platelets and morphological transformations usually correlated with platelets activation and inflammatory signatures, but with impaired exocytosis. Our data suggest that hyperactive platelets with impaired exocytosis may be integral parts in the pathophysiology dictating severity and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Basma A. Yasseen
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Aya A. Elkhodiry
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Riem M. El-Messiery
- Infectious Disease Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hajar El-sayed
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | | | - Azza G. Kamel
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Shaimaa A. Gad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Mona Zidan
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Marwa S. Hamza
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Al-ansary
- Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A. Abdel-Rahman
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt,*Correspondence: Sameh S. Ali, ; Engy A. Abdel-Rahman,
| | - Sameh S. Ali
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt,*Correspondence: Sameh S. Ali, ; Engy A. Abdel-Rahman,
| |
Collapse
|
16
|
Jayashankar E, Khurana U, Kapoor N. Use of Nitroblue Tetrazolium Test: Revisited in Context of COVID-19. J Lab Physicians 2022. [DOI: 10.1055/s-0042-1757418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
| | - Ujjawal Khurana
- Department of Pathology and Lab Medicine, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| | - Neelkamal Kapoor
- Department of Pathology and Lab Medicine, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
17
|
Majumder N, Deepak V, Hadique S, Aesoph D, Velayutham M, Ye Q, Mazumder MHH, Lewis SE, Kodali V, Roohollahi A, Guo NL, Hu G, Khramtsov VV, Johnson RJ, Wen S, Kelley EE, Hussain S. Redox imbalance in COVID-19 pathophysiology. Redox Biol 2022; 56:102465. [PMID: 36116160 PMCID: PMC9464257 DOI: 10.1016/j.redox.2022.102465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. Methods COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. Results Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. Conclusion Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Vishal Deepak
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah Hadique
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Drake Aesoph
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV, USA
| | - Murugesan Velayutham
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Qing Ye
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV, USA
| | - Md Habibul Hasan Mazumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sara E Lewis
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Vamsi Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Anthony Roohollahi
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Nancy Lan Guo
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Gangqing Hu
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Valery V Khramtsov
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Richard J Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sijin Wen
- Department of Epidemiology and Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
18
|
Study of Albumin Oxidation in COVID-19 Pneumonia Patients: Possible Mechanisms and Consequences. Int J Mol Sci 2022; 23:ijms231710103. [PMID: 36077496 PMCID: PMC9456270 DOI: 10.3390/ijms231710103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress induced by neutrophils and hypoxia in COVID-19 pneumonia leads to albumin modification. This may result in elevated levels of advanced oxidation protein products (AOPPs) and advanced lipoxidation end-products (ALEs) that trigger oxidative bursts of neutrophils and thus participate in cytokine storms, accelerating endothelial lung cell injury, leading to respiratory distress. In this study, sixty-six hospitalized COVID-19 patients with respiratory symptoms were studied. AOPPs-HSA was produced in vitro by treating human serum albumin (HSA) with chloramine T. The interaction of malondialdehyde with HSA was studied using time-resolved fluorescence spectroscopy. The findings revealed a significantly elevated level of AOPPs in COVID-19 pneumonia patients on admission to the hospital and one week later as long as they were in the acute phase of infection when compared with values recorded for the same patients 6- and 12-months post-infection. Significant negative correlations of albumin and positive correlations of AOPPs with, e.g., procalcitonin, D-dimers, lactate dehydrogenase, aspartate transaminase, and radiological scores of computed tomography (HRCT), were observed. The AOPPs/albumin ratio was found to be strongly correlated with D-dimers. We suggest that oxidized albumin could be involved in COVID-19 pathophysiology. Some possible clinical consequences of the modification of albumin are also discussed.
Collapse
|
19
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Postiga IAL, Teixeira PC, Neves CAM, Santana Filho P, Marmett B, Carvalho R, Peres A, Rotta L, Thompson CE, Dorneles GP, Romão PRT. Systemic redox imbalance in severe COVID-19 patients. Cell Biochem Funct 2022; 40:694-705. [PMID: 35980161 PMCID: PMC9538604 DOI: 10.1002/cbf.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate the systemic redox state and inflammatory markers in intensive care unit (ICU) or non-ICU severe COVID-19 patients during the hospitalization period. Blood samples were collected at hospital admission (T1) (Controls and COVID-19 patients), 5-7 days after admission (T2: 5-7 days after hospital admission), and at the discharge time from the hospital (T3: 0-72 h before leaving hospital or death) to analyze systemic oxidative stress markers and inflammatory variables. The reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were analyzed in peripheral granulocytes and monocytes. THP-1 human monocytic cell line was incubated with plasma from non-ICU and ICU COVID-19 patients and cell viability and apoptosis rate were analyzed. Higher total antioxidant capacity, protein oxidation, lipid peroxidation, and IL-6 at hospital admission were identified in both non-ICU and ICU COVID-19 patients. ICU COVID-19 patients presented increased C-reactive protein, ROS levels, and protein oxidation over hospitalization period compared to non-ICU patients, despite increased antioxidant status. Granulocytes and monocytes of non-ICU and ICU COVID-19 patients presented lower MMP and higher ROS production compared to the healthy controls, with the highest values found in ICU COVID-19 group. Finally, the incubation of THP-1 cells with plasma acquired from ICU COVID-19 patients at T3 hospitalization period decreased cell viability and apoptosis rate. In conclusion, disturbance in redox state is a hallmark of severe COVID-19 and is associated with cell damage and death.
Collapse
Affiliation(s)
- Isabelle A L Postiga
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paula C Teixeira
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carla Andretta Moreira Neves
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paulo Santana Filho
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Marmett
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roseana Carvalho
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Liane Rotta
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Gilson P Dorneles
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Pedro R T Romão
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
21
|
Huang Y, Yuan Y, Chen S, Xu D, Xiao L, Wang X, Qin W, Liu B. Identifying potential pharmacological targets and mechanisms of vitamin D for hepatocellular carcinoma and COVID-19. Front Immunol 2022; 13:985781. [PMID: 36275701 PMCID: PMC9583923 DOI: 10.3389/fimmu.2022.985781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID‐19) is a severe pandemic that has posed an unprecedented challenge to public health worldwide. Hepatocellular carcinoma (HCC) is a common digestive system malignancy, with high aggressiveness and poor prognosis. HCC patients may be vulnerable to COVID-19. Since the anti-inflammatory, immunomodulatory and antiviral effects of vitamin D, we aimed to investigate the possible therapeutic effects and underlying action mechanisms of vitamin D in COVID-19 and HCC in this study. By using a range of bioinformatics and network pharmacology analyses, we identified many COVID-19/HCC target genes and analyzed their prognostic significance in HCC patients. Further, a risk score model with good predictive performance was developed to evaluate the prognosis of HCC patients with COVID-19 based on these target genes. Moreover, we identified seven possible pharmacological targets of vitamin D against COVID-19/HCC, including HMOX1, MB, TLR4, ALB, TTR, ACTA1 and RBP4. And we revealed the biological functions, signaling pathways and TF-miRNA coregulatory network of vitamin D in COVID-19/HCC. The enrichment analysis revealed that vitamin D could help in treating COVID-19/HCC effects through regulation of immune response, epithelial structure maintenance, regulation of chemokine and cytokine production involved in immune response and anti-inflammatory action. Finally, the molecular docking analyses were performed and showed that vitamin D possessed effective binding activity in COVID-19. Overall, we revealed the possible molecular mechanisms and pharmacological targets of vitamin D for treating COVID-19/HCC for the first time. But these findings need to be further validated in actual HCC patients with COVID-19 and need further investigation to confirm.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of general surgery, Shangrao People's Hospital, Shangrao, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu,
| |
Collapse
|
22
|
Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022; 15:727-745. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED This article reviews the pathophysiological role of platelets, neutrophils and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION Virus-induced platelet, neutrophil and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signalling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.
Collapse
Affiliation(s)
- E Falcinelli
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Vollbracht C, Kraft K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front Pharmacol 2022; 13:899198. [PMID: 35571085 PMCID: PMC9100929 DOI: 10.3389/fphar.2022.899198] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is a pivotal point in the pathophysiology of COVID-19 and presumably also in Long-COVID. Inflammation and oxidative stress are mutually reinforcing each other, thus contributing to the systemic hyperinflammatory state and coagulopathy which are cardinal pathological mechanisms of severe stages. COVID-19 patients, like other critically ill patients e.g. with pneumonia, very often show severe deficiency of the antioxidant vitamin C. So far, it has not been investigated how long this deficiency lasts or whether patients with long COVID symptoms also suffer from deficiencies. A vitamin C deficit has serious pathological consequences because vitamin C is one of the most effective antioxidants, but also co-factor of many enzymatic processes that affect the immune and nervous system, blood circulation and energy metabolism. Because of its anti-oxidative, anti-inflammatory, endothelial-restoring, and immunomodulatory effects the supportive intravenous (iv) use of supraphysiological doses has been investigated so far in 12 controlled or observational studies with altogether 1578 inpatients with COVID-19. In these studies an improved oxygenation, a decrease in inflammatory markers and a faster recovery were observed. In addition, early treatment with iv high dose vitamin C seems to reduce the risks of severe courses of the disease such as pneumonia and also mortality. Persistent inflammation, thrombosis and a dysregulated immune response (auto-immune phenomena and/or persistent viral load) seem to be major contributors to Long-COVID. Oxidative stress and inflammation are involved in the development and progression of fatigue and neuro-psychiatric symptoms in various diseases by disrupting tissue (e.g. autoantibodies), blood flow (e.g. immune thrombosis) and neurotransmitter metabolism (e.g. excitotoxicity). In oncological diseases, other viral infections and autoimmune diseases, which are often associated with fatigue, cognitive disorders, pain and depression similar to Long-COVID, iv high dose vitamin C was shown to significantly relieve these symptoms. Supportive iv vitamin C in acute COVID-19 might therefore reduce the risk of severe courses and also the development of Long-COVID.
Collapse
Affiliation(s)
- Claudia Vollbracht
- Medical Science Department, Pascoe Pharmazeutische Präparate GmbH, Giessen, Germany
| | - Karin Kraft
- Chair of Naturopathy, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
24
|
Bellanti F, Lo Buglio A, Vendemiale G. Redox Homeostasis and Immune Alterations in Coronavirus Disease-19. BIOLOGY 2022; 11:159. [PMID: 35205026 PMCID: PMC8869285 DOI: 10.3390/biology11020159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
The global Coronavirus Disease 2019 (COVID-19) pandemic is characterized by a wide variety of clinical features, from no or moderate symptoms to severe illness. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that first affects the respiratory tract. Other than being limited to lungs, SARS-CoV-2 may lead to a multisystem disease that can even be durable (long COVID). The clinical spectrum of COVID-19 depends on variability in the immune regulation. Indeed, disease progression is consequent to failure in the immune regulation, characterized by an intensification of the pro-inflammatory response. Disturbance of systemic and organ-related redox balance may be a further mechanism underlying variability in COVID-19 severity. Other than being determinant for SARS-CoV-2 entry and fusion to the host cell, reactive species and redox signaling are deeply involved in the immune response. This review sums up the present knowledge on the role of redox balance in the regulation of susceptibility to SARS-CoV-2 infection and related immune response, debating the effectiveness of antioxidant compounds in the management of COVID-19.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (A.L.B.); (G.V.)
| | | | | |
Collapse
|
25
|
Krenytska D, Rachkovska A, Savchuk O, Karbovskiy V. BIOCHEMICAL PARAMETERS OF KIDNEY FUNCTION IN DONORS UNDER THE PRESENCE OF ANTI-SARS-CoV-2 IgG IN BLOOD. BULLETIN OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV. SERIES: BIOLOGY 2022. [DOI: 10.17721/1728.2748.2022.90.20-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pandemic caused by SARS-CoV-2 virus in the world influences negatively on economic and social life, health care system. Conctracted COVID-19 patients suffered from outcome this disease after recovery because of SARS-CoV-2 has affected system disorder of body. Problems of digestion, blood coagulation, humoral and nervous systems could be discovered background disorder of respiratory system working. Besides, the clinical researches agree the changes of functioning kidneys in hospitalized patients suffered by SARS-CoV-2 virus. Therefore the pathological status of kidneys could develop in post-COVID-19 period. Our research is aimed to analysis of changes of concentration albumin, creatinine, urea and urea acid in blood plasma of donors with different titers of anti-SARS-CoV-2 IgG. Groups of donors were selected, in which the maximum and minimum values of the studied parameters were observed relative to the control group - donors without anti-SARS-CoV-2 IgG in blood. We determined that donor group with minimum titer of anti-SARS-CoV-2 IgG – 10 ± 3 Index (S/C) – have been characterized the maximum concentration of creatinine, urea and urea acid. Moreover the donor group with titer of anti-SARS-CoV-2 IgG 75 ± 5 Index (S/C) had the minimum concentration of albumin, creatinine, urea and urea acid. Obtained results could be linked with the potential influence of SARS-CoV-2 virus to kindey cells and consequents of immune response to infection caused by COVID-19 disease. Our research could be useful for treatment of COVID-19, which would involve the clinical therapy aimed not only at neutralizing the virus in the body, but also at reducing the negative load on the kidneys to prevent the development of pathological conditions in the post-COVID-19 period.
Collapse
|