1
|
Lin Y, Shi J, Yu X, Sun J, Lixia S, Dou J, Zhang M, Li X, Tian Z, Deng H, Feng B, Su Q, Peng Y. Enhancing Diabetes Treatment: Comparing Pioglitazone/Metformin with Dapagliflozin Versus Basal Insulin/Metformin in Type 2 Diabetes. Drug Des Devel Ther 2025; 19:1795-1808. [PMID: 40098912 PMCID: PMC11911819 DOI: 10.2147/dddt.s512872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Aim The aim of this study was to compare the efficacy and safety of fixed-dose combination (FDC) of pioglitazone and metformin supplemented with dapagliflozin (test group) with those of basal insulin supplemented with metformin (control group) in patients with inadequately controlled type 2 diabetes mellitus (T2DM). Methods This 16-week, prospective, randomized, open-label study enrolled patients aged 18-75 years with glycated hemoglobin (HbA1c) levels between ≥ 8% and ≤ 11%. The primary endpoint was the proportion of patients who achieved HbA1c < 7% at week 16 without hypoglycemia or weight gain. The secondary endpoints included blood glucose, lipid profile, body weight, body mass index, inflammatory markers, bone Gla-protein, liver enzymes, and patient satisfaction. Results Among the full analysis set of 147 participants, no significant difference was observed in the primary endpoint between the test group and the control group. However, the test group had a higher percentage of patients who achieved HbA1c <7% at week 16 without hypoglycemia and experienced a weight loss of ≥3% (31.51% vs 13.51%, P=0.009). Patients in the test group whose BMI≥24 kg/m2 also achieved a substantial achievement rate (36.73% vs 15.79%, P=0.014). The test group also exhibited a greater reduction in body weight and improvements in 2-hour postprandial glucose level, systolic blood pressure, and lipid profile. Notably, combination therapy did not increase the risk of hypoglycemia or weight gain. Patients in the test group were more satisfied than those in the control group with continuing to accept pioglitazone/metformin FDC combined with dapagliflozin. Conclusion In the absence of contraindications, pioglitazone/metformin FDC supplemented with dapagliflozin may serve as a safe and effective alternative to basal insulin combined with metformin for rectifying inadequate glucose control, as the former enables metabolic improvements without compromising safety. Chinese Clinical Trial Registry Number CHiCTR2000036076. https://www.chictr.org.cn/showproj.html?proj=58825.
Collapse
Affiliation(s)
- Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianxia Shi
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xuemei Yu
- Central Hospital of Fengxian District, Shanghai, People's Republic of China
| | - Jiao Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Suo Lixia
- Shanghai Jiading Central Hospital, Shanghai Jiading Central Hospital, Shanghai, People's Republic of China
| | - Jiaqing Dou
- Chaohu Hospital of Anhui Medical University, Chaohu, People's Republic of China
| | - Min Zhang
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xiaohua Li
- Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhufang Tian
- Xi'an Central Hospital, Xi'an, Shanxi, People's Republic of China
| | - Hongyan Deng
- Wuhan Fourth Hospital, Wuhan, People's Republic of China
| | - Bo Feng
- Dongfang Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Bozdag D, Entezari B, Gurer-Orhan H. The effects of citalopram and sertraline on adipogenesis and lipogenesis in 3T3-L1 cells. Toxicol Lett 2025; 405:67-75. [PMID: 39955080 DOI: 10.1016/j.toxlet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), widely used antidepressants, have been associated with metabolic adverse effects, including weight gain and disrupted lipid metabolism. This study investigates the potential adipogenic and lipogenic effects of two commonly prescribed SSRIs, citalopram (CIT) and sertraline (SER), using the murine 3T3-L1 preadipocyte cell line. Key markers, such as adiponectin secretion, G3PDH activity, and the expression of critical transcription factors (PPARγ, CEBPα, SREBP1) and lipogenic enzymes (FASN, LPL), were evaluated. Furthermore, assessment of intracellular lipid accumulation via Oil Red O staining was used as a measure for enhanced adipogenesis. The results show that CIT significantly increased adiponectin secretion and G3PDH activity, with comparable potency to the positive control, rosiglitazone. Both SSRIs upregulated the transcription of key adipogenic genes but displayed discrepancies in protein expression. Despite these molecular changes, neither CIT nor SER promoted lipid accumulation, indicating disruption of adipogenic and lipogenic processes without direct stimulation of fat storage. These findings underscore the complexity of SSRI-induced metabolic effects and the need for further studies to evaluate their long-term impact.
Collapse
Affiliation(s)
- Deniz Bozdag
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Bita Entezari
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey.
| |
Collapse
|
3
|
Kounatidis D, Vallianou NG, Rebelos E, Kouveletsou M, Kontrafouri P, Eleftheriadou I, Diakoumopoulou E, Karampela I, Tentolouris N, Dalamaga M. The Many Facets of PPAR-γ Agonism in Obesity and Associated Comorbidities: Benefits, Risks, Challenges, and Future Directions. Curr Obes Rep 2025; 14:19. [PMID: 39934485 DOI: 10.1007/s13679-025-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW Obesity is strongly associated with cardiometabolic disorders and certain malignancies, emphasizing the key role of adipose tissue in human health. While incretin mimetics have shown effectiveness in glycemic control and weight loss, a holistic strategy for combating obesity and associated comorbidities remains elusive. This review explores peroxisome proliferator-activated receptor gamma (PPAR-γ) agonism as a potential therapeutic approach, highlighting its benefits, addressing its limitations, and outlining future directions for developing more effective treatment strategies. RECENT FINDINGS Both natural and synthetic PPAR-γ agonists hold significant therapeutic potential as insulin sensitizers, while also demonstrating anti-inflammatory properties and playing a critical role in regulating lipid metabolism. However, the clinical use of natural agonists is limited by poor bioavailability, while synthetic agents like thiazolidinediones are associated with adverse effects, including fluid retention, weight gain, and bone loss. Current research is focused on developing modified, tissue-specific PPAR-γ agonists, as well as dual PPAR-α/PPAR-γ agonists, with improved safety profiles to mitigate these side effects. Nanotechnology-based drug delivery systems also hold promise for enhancing bioavailability and therapeutic efficacy. Furthermore, the transformative potential of machine learning and artificial intelligence offers opportunities to accelerate advancements in this field. PPAR-γ agonists exhibit significant potential in addressing metabolic syndrome, cardiovascular disease, and cancer. However, their clinical use is restricted by safety concerns and suboptimal pharmacokinetics. Innovations in modified PPAR-γ agonists, nanotechnology-based delivery systems, and computational tools hold promise for creating safer and more effective therapeutic options for obesity and its associated disorders.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paraskevi Kontrafouri
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
4
|
Latambale G, Juvale K. Thiazolidinedione derivatives: emerging role in cancer therapy. Mol Divers 2025:10.1007/s11030-024-11093-3. [PMID: 39899123 DOI: 10.1007/s11030-024-11093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of death worldwide, with the Globocan 2022 study reporting an estimated 9.7 million cancer deaths. Without the selectivity built for tumour cells, chemotherapeutic agents could be toxic to non-cancerous cells. Administration of such non-selective cytotoxic compounds causes severe side effects and could lead to death. Improved cancer treatments are required to overcome the limitations of the current cancer treatment. The potential of thiazolidinedione derivatives as anticancer drugs has recently drawn attention, despite their primary use as insulin sensitizers in the treatment of type 2 diabetes. The ability of thiazolidinedione derivatives to alter important molecular pathways implicated in carcinogenesis, such as cell proliferation, apoptosis, angiogenesis, Raf kinase, EGFR and HER-2 kinases, HDAC, COX-2 enzyme and metastasis, is highlighted in this review, which examines the growing relevance of these compounds in cancer treatment. Thiazolidinediones have anti-inflammatory, antioxidant, and antiproliferative properties in a variety of cancer types, including breast, colon, and prostate cancers, via activating the peroxisome proliferator-activated gamma receptor (PPARγ). In addition to examining the safety profile and difficulties in clinical translation, the paper looks at preclinical and clinical research that points to these medicines potential to improve the effectiveness of immunotherapy and chemotherapy. This review highlights the encouraging therapeutic possibilities and structure-activity relationship insight of TZDs for their anticancer activity and highlights the molecular level facets of the 'glitazone' pharmacophore for its anticancer activity.
Collapse
Affiliation(s)
- Ganesh Latambale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
5
|
Anson M, Henney AE, Zhao SS, Ibarburu GH, Lip GYH, Cuthbertson DJ, Nabrdalik K, Alam U. Effect of combination pioglitazone with sodium-glucose cotransporter-2 inhibitors or glucagon-like peptide-1 receptor agonists on outcomes in type 2 diabetes: A systematic review, meta-analysis, and real-world study from an international federated database. Diabetes Obes Metab 2024; 26:2606-2623. [PMID: 38558280 DOI: 10.1111/dom.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
AIMS To evaluate the efficacy and cardiovascular outcomes of combination pioglitazone with either a glucagon-like peptide-1 receptor agonist (GLP-1RA) or a sodium-glucose cotransporter-2 (SGLT2) inhibitor in individuals with type 2 diabetes (T2D) by conducting a systematic review, meta-analysis, and analysis of a large international real-world database. METHODS We searched MEDLINE, SCOPUS and Web of Science to identify relevant articles for inclusion (PROSPERO [CRD: 42023483126]). Nineteen studies assessing pioglitazone + SGLT2 inhibitors or GLP-1RAs versus controls were identified, 16 of which were randomized controlled trials. Risk of bias was assessed using Cochrane-endorsed tools and quality of evidence was assessed using GRADE. We additionally performed a retrospective cohort study of all individuals aged 18 years or over with T2D, using the TriNetX platform. We included propensity-score-matched individuals who were treated for at least 1 year with pioglitazone and a GLP-1RA or pioglitazone and an SGLT2 inhibitor, compared against GLP-1RA and SGLT2 inhibitor monotherapy. Outcomes were all-cause mortality, heart failure, chronic kidney disease and composite stroke and transient ischaemic attack. RESULTS The average follow-up in the included studies ranged from 24 to 52 weeks. Combination of pioglitazone with a GLP-1RA reduced glycated haemoglobin (HbA1c) and weight greater than in controls: mean differences -1% (95% confidence interval [CI] -1.27, -0.74) and -1.19 kg (95% CI -1.80, -0.58), respectively. There was no statistically significant difference in systolic blood pressure (SBP) or mortality between groups: mean difference - 1.56 mmHg (95% CI -4.48, 1.35; p = 0.30) and relative risk (RR) 0.29 (95% CI 0.07-1.15; p = 0.08), respectively. Combination of pioglitazone with SGLT2 inhibitors reduced HbA1c, weight and SBP to a greater extent than control treatment: mean differences -0.48% (95% CI -0.67, -0.28), -2.3 kg (95% CI -2.72, -1.88) and -2.4 mmHg (95% CI -4.1, -0.7; p = 0.01), respectively. There was no statistically significant difference in mortality between groups (RR 1.81, 95% CI 0.30-10.97; p = 0.52). The included trials demonstrated a reduction in risk of heart failure with combination treatment. Similarly, from the real-world database (n = 25 230 identified), pioglitazone and SGLT2 inhibitor combination therapy was associated with reduced risk of heart failure compared to monotherapy alone (hazard ratio 0.50, 95% CI 0.38-0.65; p < 0.001). CONCLUSION Both our systematic review/meta-analysis and the real-world dataset show that combination of pioglitazone with either GLP-1RAs or SGLT2 inhibitors is associated with increased weight loss and reduced risk of heart failure compared with monotherapy.
Collapse
Affiliation(s)
- Matthew Anson
- Diabetes & Endocrinology Research and Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Alex E Henney
- Diabetes & Endocrinology Research and Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Sizheng S Zhao
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Gregory Y H Lip
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Daniel J Cuthbertson
- Diabetes & Endocrinology Research, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Katarzyna Nabrdalik
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Uazman Alam
- Diabetes & Endocrinology Research and Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
- Visiting Fellow, Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
6
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
7
|
Heidarpour M, Mojarad M, Mazaheri-Tehrani S, Kachuei A, Najimi A, Shafie D, Rezvanian H. Comparative Effectiveness of Antidiabetic Drugs as an Additional Therapy to Metformin in Women with Polycystic Ovary Syndrome: A Systematic Review of Metabolic Approaches. Int J Endocrinol 2024; 2024:9900213. [PMID: 38500709 PMCID: PMC10948218 DOI: 10.1155/2024/9900213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Background Metformin is commonly prescribed to treat polycystic ovary syndrome (PCOS) patients, but in some cases, it may not be effective even at high doses or may cause intolerable side effects. Therefore, recent studies have examined the impact of combining metformin with other antidiabetic medications. Methods A systematic search was performed in Scopus, PubMed, Web of Science, and Embase up to 30 June 2023. All interventional studies that assessed the efficacy of different antidiabetic agents were included. Results Among the 3488 records found in the primary search, 16 papers were included. Our study showed that dipeptidyl peptidase-4 inhibitors (DPP4i) had the most significant impact on glycemic profile, while thiazolidinediones (TZDs) had the most influence on lipid levels. However, it was observed that patients taking only metformin experienced a greater increase in high-density lipoprotein cholesterol (HDL-C) levels. Glucagon-like peptide-1 receptor agonists (GLP1RAs) effectively modified various anthropometric measurements, such as weight, body mass index, waist circumference, and waist-to-hip ratio. The effects of different antidiabetic drugs on hormone levels were inconclusive, although testosterone levels were more affected by GLP1RA, sodium-glucose cotransporter-2 inhibitors (SGLT2i), and TZDs. None of the combined therapies showed a significant change in blood pressure. Conclusion Since PCOS is a metabolic disorder, choosing the best combination of antidiabetic drugs in the clinical course of PCOS patients will be very important. Today, it seems that we need a new metabolic approach for better treatment of the metabolic aspects of these patients.
Collapse
Affiliation(s)
- Maryam Heidarpour
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrzad Mojarad
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Mazaheri-Tehrani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kachuei
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Najimi
- Medical Education Department, Medical Education Research Center, Education Development Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Rezvanian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
9
|
Anekwe CV, Ahn YJ, Bajaj SS, Stanford FC. Pharmacotherapy causing weight gain and metabolic alteration in those with obesity and obesity-related conditions: A review. Ann N Y Acad Sci 2024; 1533:145-155. [PMID: 38385953 PMCID: PMC11057385 DOI: 10.1111/nyas.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review aims to summarize pharmacological interventions that may affect adiposity and metabolic equilibrium in individuals with obesity. Pharmacological therapy is frequently used to treat medical conditions that are both directly related to obesity (such as hypertension and type 2 diabetes) and indirectly related to obesity (such as asthma, insomnia, and type 1 diabetes). This pharmacological therapy may result in weight gain and alterations in the metabolic profile. Many medication classes are implicated in the pharmacologic causes of weight gain, including antipsychotics, glucocorticoids, beta-adrenergic blockers, tricyclic antidepressants, antihistamines, insulin, neuropathic agents, sleep agents, and steroids. This article describes the mechanisms of action and pathways of pharmacological interventions causing obesity.
Collapse
Affiliation(s)
- Chika V. Anekwe
- Massachusetts General Hospital, MGH Weight Center, Department of Internal Medicine-Division of Endocrinology-Metabolism Unit, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yoon Ji Ahn
- Massachusetts General Hospital, MGH Weight Center, Department of Internal Medicine-Division of Endocrinology-Metabolism Unit, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Fatima Cody Stanford
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, MGH Weight Center, Department of Internal Medicine-Division of Endocrinology-Neuroendocrine Unit and Department of Pediatrics-Division of Pediatric Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA, USA
| |
Collapse
|
10
|
Furber EC, Hyatt K, Collins K, Yu X, Droz BA, Holland A, Friedrich JL, Wojnicki S, Konkol DL, O’Farrell LS, Baker HE, Coskun T, Scherer PE, Kusminski CM, Christe ME, Sloop KW, Samms RJ. GIPR Agonism Enhances TZD-Induced Insulin Sensitivity in Obese IR Mice. Diabetes 2024; 73:292-305. [PMID: 37934926 PMCID: PMC10796301 DOI: 10.2337/db23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
Recent studies have found that glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism can enhance the metabolic efficacy of glucagon-like peptide-1 receptor agonist treatment by promoting both weight-dependent and -independent improvements on systemic insulin sensitivity. These findings have prompted new investigations aimed at better understanding the broad metabolic benefit of GIPR activation. Herein, we determined whether GIPR agonism favorably influenced the pharmacologic efficacy of the insulin-sensitizing thiazolidinedione (TZD) rosiglitazone in obese insulin-resistant (IR) mice. Genetic and pharmacological approaches were used to examine the role of GIPR signaling on rosiglitazone-induced weight gain, hyperphagia, and glycemic control. RNA sequencing was conducted to uncover potential mechanisms by which GIPR activation influences energy balance and insulin sensitivity. In line with previous findings, treatment with rosiglitazone induced the mRNA expression of the GIPR in white and brown fat. However, obese GIPR-null mice dosed with rosiglitazone had equivalent weight gain to that of wild-type (WT) animals. Strikingly, chronic treatment of obese IR WT animals with a long-acting GIPR agonist prevented rosiglitazone-induced weight-gain and hyperphagia, and it enhanced the insulin-sensitivity effect of this TZD. The systemic insulin sensitization was accompanied by increased glucose disposal in brown adipose tissue, which was underlined by the recruitment of metabolic and thermogenic genes. These findings suggest that GIPR agonism can counter the negative consequences of rosiglitazone treatment on body weight and adiposity, while improving its insulin-sensitizing efficacy at the same time. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ellen C. Furber
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Karissa Hyatt
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyla Collins
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Xinxin Yu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brian A. Droz
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Adrienne Holland
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Jessica L. Friedrich
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Samantha Wojnicki
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Debra L. Konkol
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Libbey S. O’Farrell
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Hana E. Baker
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Tamer Coskun
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Christine M. Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael E. Christe
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyle W. Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ricardo J. Samms
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|
11
|
Arte PA, Tungare K, Bhori M, Jobby R, Aich J. Treatment of type 2 diabetes mellitus with stem cells and antidiabetic drugs: a dualistic and future-focused approach. Hum Cell 2024; 37:54-84. [PMID: 38038863 DOI: 10.1007/s13577-023-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) accounts for more than 90% of total diabetes mellitus cases all over the world. Obesity and lack of balance between energy intake and energy expenditure are closely linked to T2DM. Initial pharmaceutical treatment and lifestyle interventions can at times lead to remission but usually help alleviate it to a certain extent and the condition remains, thus, recurrent with the patient being permanently pharmaco-dependent. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing cells with the ability to secrete a variety of biological factors that can help restore and repair injured tissues. MSC-derived exosomes possess these properties of the original stem cells and are potentially able to confer superior effects due to advanced cell-to-cell signaling and the presence of stem cell-specific miRNAs. On the other hand, the repository of antidiabetic agents is constantly updated with novel T2DM disease-modifying drugs, with higher efficacy and increasingly convenient delivery protocols. Delving deeply, this review details the latest progress and ongoing studies related to the amalgamation of stem cells and antidiabetic drugs, establishing how this harmonized approach can exert superior effects in the management and potential reversal of T2DM.
Collapse
Affiliation(s)
- Priyamvada Amol Arte
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India.
- Anatek Services PVT LTD, Sai Chamber, 10, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India.
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| |
Collapse
|
12
|
Najmi A, Alam MS, Thangavel N, Taha MME, Meraya AM, Albratty M, Alhazmi HA, Ahsan W, Haque A, Azam F. Synthesis, molecular docking, and in vivo antidiabetic evaluation of new benzylidene-2,4-thiazolidinediones as partial PPAR-γ agonists. Sci Rep 2023; 13:19869. [PMID: 37963936 PMCID: PMC10645977 DOI: 10.1038/s41598-023-47157-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) partial agonists or antagonists, also termed as selective PPAR-γ modulators, are more beneficial than full agonists because they can avoid the adverse effects associated with PPAR-γ full agonists, such as weight gain and congestive heart disorders, while retaining the antidiabetic efficiency. In this study, we designed and synthesized new benzylidene-thiazolidine-2,4-diones while keeping the acidic thiazolidinedione (TZD) ring at the center, which is in contrast with the typical pharmacophore of PPAR-γ agonists. Five compounds (5a-e) were designed and synthesized in moderate to good yields and were characterized using spectral techniques. The in vivo antidiabetic efficacy of the synthesized compounds was assessed on streptozotocin-induced diabetic mice using standard protocols, and their effect on weight gain was also studied. Molecular docking and molecular dynamics (MD) simulation studies were performed to investigate the binding interactions of the title compounds with the PPAR-γ receptor and to establish their binding mechanism. Antidiabetic activity results revealed that compounds 5d and 5e possess promising antidiabetic activity comparable with the standard drug rosiglitazone. No compound showed considerable effect on the body weight of animals after 21 days of administration, and the findings showed statistical difference (p < 0.05 to p < 0.0001) among the diabetic control and standard drug rosiglitazone groups. In molecular docking study, compounds 5c and 5d exhibited higher binding energies (- 10.1 and - 10.0 kcal/mol, respectively) than the native ligand, non-thiazolidinedione PPAR-γ partial agonist (nTZDpa) (- 9.8 kcal/mol). MD simulation further authenticated the stability of compound 5c-PPAR-γ complex over the 150 ns duration. The RMSD, RMSF, rGyr, SASA, and binding interactions of compound 5c-PPAR-γ complex were comparable to those of native ligand nTZDpa-PPAR-γ complex, suggesting that the title compounds have the potential to be developed as partial PPAR-γ agonists.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia.
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, P.O Box 31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
13
|
Abstract
Obesity research is advancing swiftly, but the increase in obesity prevalence is faster. Over the past three decades, researchers have found that biopsychosocial factors determine weight gain much more than personal choices and responsibility. Various genes have found to predispose people to obesity by interacting with our obesogenic environment. In this review, we discuss the impact of physical inactivity, excessive caloric intake, intrauterine environment, postnatal influences, insufficient sleep, drugs, medical conditions, socioeconomic status, ethnicity, psychosocial stress, endocrine disrupting chemicals and the gastrointestinal microbiome, on the occurrence of obesity.
Collapse
|
14
|
Pharmacological Treatments and Natural Biocompounds in Weight Management. Pharmaceuticals (Basel) 2023; 16:ph16020212. [PMID: 37139804 PMCID: PMC9962258 DOI: 10.3390/ph16020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The obesity pandemic is one of society’s most urgent public health concerns. One-third of the global adult population may fall under obese or overweight by 2025, suggesting a rising demand for medical care and an exorbitant cost of healthcare expenditure in the coming years. Generally, the treatment strategy for obese patients is largely patient-centric and needs dietary, behavioral, pharmacological, and sometimes even surgical interventions. Given that obesity cases are rising in adults and children and lifestyle modifications have failed to produce the desired results, the need for medical therapy adjunct to lifestyle modifications is vital for better managing obesity. Most existing or past drugs for obesity treatment target satiety or monoamine pathways and induce a feeling of fullness in patients, while drugs such as orlistat are targeted against intestinal lipases. However, many medications targeted against neurotransmitters showed adverse events in patients, thus being withdrawn from the market. Alternatively, the combination of some drugs has been successfully tested in obesity management. However, the demand for novel, safer, and more efficacious pharmaceutical medicines for weight management does exist. The present review elucidates the current understanding of the available anti-obesity medicines of synthetic and natural origin, their main mechanisms of action, and the shortcomings associated with current weight management drugs.
Collapse
|
15
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
16
|
Fowler LA, Fernández JR, Deemer SE, Gower BA. Genetic risk score prediction of leg fat and insulin sensitivity differs by race/ethnicity in early pubertal children. Pediatr Obes 2021; 16:e12828. [PMID: 34180151 PMCID: PMC10228538 DOI: 10.1111/ijpo.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND In the United States, the underlying reasons for racial/ethnic disparities in type 2 diabetes risk remain unclear. However, differences in genetic risk for insulin resistance and peripheral adipose tissue distribution may be contributing factors. OBJECTIVE To investigate racial/ethnic differences in associations of genetic risk for insulin resistance with leg fat and insulin sensitivity in a cohort of American children. METHODS Participants were healthy European-American (n = 83), African-American (n = 79) and Hispanic-American (n = 74) children aged 7-12 years. Genetic risk scores were derived from published variants associated with insulin resistance phenotypes in European adults. Body composition was assessed using dual-energy X-ray absorptiometry. Insulin sensitivity was determined from the frequently sampled intravenous glucose tolerance test and minimal modelling. Statistical models were adjusted for age, sex, pubertal stage and body composition. RESULTS In the combined cohort, risk score was inversely associated with insulin sensitivity (p = 0.033) but not leg fat (p = 0.170). Within Hispanic Americans, risk score was inversely associated with insulin sensitivity (p = 0.027) and leg fat (p = 0.005), while associations were non-significant in European and African Americans (p > 0.200). CONCLUSIONS The higher type 2 diabetes risk observed among Hispanic Americans may have a genetic basis related to an inability to store lipid in peripheral adipose tissue.
Collapse
Affiliation(s)
- Lauren A Fowler
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - José R Fernández
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah E Deemer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
17
|
Koopmans SJ, van Beusekom HMM, van der Staay FJ, Binnendijk G, Hulst M, Mroz Z, Ackermans MT, Benthem L. Beneficial effects of a plant-fish oil, slow carbohydrate diet on cardio-metabolic health exceed the correcting effects of metformin-pioglitazone in diabetic pigs fed a fast-food diet. PLoS One 2021; 16:e0257299. [PMID: 34669714 PMCID: PMC8528510 DOI: 10.1371/journal.pone.0257299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Lifestyle influences endocrine, metabolic and cardiovascular homeostasis. This study investigated the impact of diet and oral anti-diabetic medication on cardio-metabolic health in human-sized diabetic pigs. Methods After a growing pre-phase from ~30 to ~69 kg during which domestic pigs were fed either a low fat, low sucrose diet (group A) or a fast food-type diet elevated in lard (15%) and sucrose (40%) (group B), the pigs were subdivided in 5 groups (n = 7–8 pigs per group). Group 1, normal pigs from group A on a low fat, low sugar (L) pig diet and group 2, normal pigs from group B on a high lard (25%), sucrose-fructose (40%), cholesterol (1%) fast food-type (F) diet. Diabetes (D) was induced in group B pigs by streptozotocin and group 3 received the F diet (DF), group 4 received the F diet with Anti-diabetic medication metformin (2 g.day-1)-pioglitazone (40 mg.day-1) (DFA) and group 5 switched to a Plant-Fish oil (25%), Slowly digestible starch (40%) diet (DPFS). The F and PFS diets were identical for fat, carbohydrate and protein content but only differed in fat and carbohydrate composition. The 5 pig groups were followed up for 7 weeks until reaching ~120 kg. Results In normal pigs, the F diet predisposed to several abnormalities related to metabolic syndrome. Diabetes amplified the inflammatory and cardiometabolic abnormalities of the F diet, but both oral FA medication and the PFS diet partially corrected these abnormalities (mean±SEM) as follows: Fasting plasma TNF-ɑ (pg.ml-1) and NEFA (mmol.l-1) concentrations were high (p<0.02) in DF (193±55 and 0.79±0.16), intermediate in DFA (136±40 and 0.57±012) and low in DPFS pigs (107±31 and 0.48±0.19). Meal intolerance (response over fasting) for glucose and triglycerides (area under the curve, mmol.h-1) and for lactate (3-h postprandial, mmol.l-1) was high (p<0.03) in DF (489±131, 8.6±4.8 and 2.2±0.6), intermediate in DFA (276±145, 1.4±1.1 and 1.6±0.4) and low in DPFS (184±62, 0.7±1.8 and 0.1±0.1). Insulin-mediated glucose disposal (mg.kg-1.min-1) showed a numerical trend (p = NS): low in DF (6.9±2.2), intermediate in DFA (8.2±1.3) and high in DPFS pigs (10.4±2.7). Liver weight (g.kg-1 body weight) and liver triglyceride concentration (g.kg-1 liver) were high (p<0.001) in DF (23.8±2.0 and 69±14), intermediate in DFA (21.1±2.0 and 49±15) and low in DPFS pigs (16.4±0.7 and 13±2.0). Aorta fatty streaks were high (p<0.01) in DF (16.4±5.7%), intermediate in DFA (7.4±4.5%) and low in DPFS pigs (0.05±0.02%). Conclusion This translational study using pigs with induced type 2 diabetes provides evidence that a change in nutritional life style from fast food to a plant-fish oil, slowly digestible starch diet can be more effective than sole anti-diabetic medication.
Collapse
Affiliation(s)
- Sietse J Koopmans
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | | | - F Josef van der Staay
- Department of Farm Animal Health, Veterinary Faculty, Utrecht University, Utrecht, The Netherlands
| | - Gisabeth Binnendijk
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcel Hulst
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Zlaw Mroz
- Department of Animal Science and Bioeconomy, University of Life Sciences, Lublin, Poland
| | - Mariette T Ackermans
- Endocrine Laboratory, Clinical Chemistry, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
19
|
Ji L, Chan JCN, Yu M, Yoon KH, Kim SG, Choi SH, Huang C, Te Tu S, Wang C, Paldánius PM, Sheu WHH. Early combination versus initial metformin monotherapy in the management of newly diagnosed type 2 diabetes: An East Asian perspective. Diabetes Obes Metab 2021; 23:3-17. [PMID: 32991073 PMCID: PMC7756748 DOI: 10.1111/dom.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) in the East Asian population is characterized by phenotypes such as low body mass index, an index of β-cell dysfunction, and higher percentage of body fat, an index of insulin resistance. These phenotypes/pathologies may predispose people to early onset of diabetes with increased risk of stroke and renal disease. Less than 50% of patients with T2D in East Asia achieve glycaemic targets recommended by national or regional guidelines, which may be attributable to knowledge and/or implementation gaps. Herein, we review the latest evidence with special reference to East Asian patients with T2D and present arguments for the need to use early combination therapy to intensify glycaemic control. This strategy is supported by the 5-year worldwide VERIFY study, which reported better glycaemic durability in newly diagnosed patients with T2D with a mean HbA1c of 6.9% treated with early combination therapy of vildagliptin plus metformin versus those treated with initial metformin monotherapy followed by addition of vildagliptin only with worsening glycaemic control. This paradigm shift of early intensified treatment is now recommended by the American Diabetes Association and the European Association for the Study of Diabetes. In order to translate these evidence to practice, increased awareness and strengthening of the healthcare system are needed to diagnose and manage patients with T2D early for combination therapy.
Collapse
Affiliation(s)
- Linong Ji
- Department of Endocrinology and MetabolismPeking University People's HospitalPekingChina
| | - Juliana C. N. Chan
- Department of Medicine and TherapeuticsHong Kong Institute of Diabetes and Obesity and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalHong KongChina
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of HealthPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Kun Ho Yoon
- Department of Endocrinology and MetabolismThe Catholic University College of MedicineSeoulRepublic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal MedicineKorea University College of MedicineSeoulRepublic of Korea
| | - Sung Hee Choi
- Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Chien‐Ning Huang
- Division of Endocrinology and Metabolism, Department of Internal MedicineChung Shan Medical University Hospital, Institute of Medicine, Chung Shan Medical UniversityTaichungTaiwan
| | - Shih Te Tu
- Division of Endocrinology and Metabolism, Department of MedicineChanghua Christian HospitalChanghuaTaiwan
| | - Chih‐Yuan Wang
- Division of Endocrinology and Metabolism, Department of Internal MedicineCollege of Medicine, National Taiwan University Hospital, National Taiwan UniversityTaipeiTaiwan
| | - Päivi Maria Paldánius
- Children's Hospital, Helsinki University HospitalHelsinkiFinland
- Program for Clinical and Molecular MetabolismHelsinki UniversityHelsinkiFinland
| | - Wayne H. H. Sheu
- Division of Endocrinology and Metabolism, Department of Internal MedicineTaichung Veterans General HospitalTaiwan
- Department of Medicine, School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Institute of Medical Technology, College of Life Science, National Chung‐Hsing UniversityTaichungTaiwan
- School of Medicine, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
20
|
Ebadi M, Bhanji RA, Tandon P, Mazurak V, Baracos VE, Montano-Loza AJ. Review article: prognostic significance of body composition abnormalities in patients with cirrhosis. Aliment Pharmacol Ther 2020; 52:600-618. [PMID: 32621329 DOI: 10.1111/apt.15927] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent advances in evaluation of body composition show body mass index to be inadequate in differentiating between body compartments in cirrhosis. Given the limitations of body mass index, body composition evaluation using computed tomography has been increasingly used as a non-invasive clinical tool with prognostic value. Another factor influencing prognosis includes sex-specific differences in body composition that are seen in cirrhosis. AIM To review current knowledge regarding the frequency and clinical implications of abnormal body composition features in cirrhosis. METHODS We searched PubMed database and limited the literature search to full-text papers published in English. Studies using inappropriate landmarks or demarcation of body composition components on computed tomography images were eliminated. RESULTS Sarcopenia is a well established factor affecting morbidity and mortality in cirrhosis. Other important body composition components that have been overlooked thus far include subcutaneous adipose tissue and visceral adipose tissue. Female patients with cirrhosis and low subcutaneous adiposity have a higher risk of mortality, whereas male patients with high visceral adiposity have a higher risk of hepatocellular carcinoma and recurrence following liver transplantation. Increased adipose tissue radiodensity has been associated with risk of decompensation and mortality. CONCLUSIONS Further evaluation of body composition abnormalities may help with development of targeted therapeutic strategies and improve outcome in patients with cirrhosis. Moreover, recognition of these abnormalities could improve prioritisation for liver transplantation as our current method based solely on liver function might lead to risk misclassification.
Collapse
Affiliation(s)
- Maryam Ebadi
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Rahima A Bhanji
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Puneeta Tandon
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Vera Mazurak
- Division of Human Nutrition, University of Alberta, Edmonton, AB, Canada
| | - Vickie E Baracos
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Aldo J Montano-Loza
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| |
Collapse
|
21
|
Kaur J, Famta P, Khurana N, Vyas M, Khatik GL. Pharmacotherapy of Type 2 Diabetes. OBESITY AND DIABETES 2020:679-694. [DOI: 10.1007/978-3-030-53370-0_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
23
|
Pang KL, Chin KY. The Role of Tocotrienol in Protecting Against Metabolic Diseases. Molecules 2019; 24:E923. [PMID: 30845769 PMCID: PMC6429133 DOI: 10.3390/molecules24050923] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic β-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.
Collapse
Affiliation(s)
- Kok-Lun Pang
- School of Pharmacy, University of Reading Malaysia, Iskandar Puteri Johor 79200, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Choi BH, Jin Z, Yi CO, Oh J, Jeong EA, Lee JY, Park KA, Kim KE, Lee JE, Kim HJ, Hahm JR, Roh GS. Effects of lobeglitazone on insulin resistance and hepatic steatosis in high-fat diet-fed mice. PLoS One 2018; 13:e0200336. [PMID: 29979770 PMCID: PMC6034891 DOI: 10.1371/journal.pone.0200336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Lobeglitazone (Lobe) is a novel thiazolidinedione antidiabetic drug that reduces insulin resistance by activating peroxisome proliferator-activated receptor-gamma (PPARγ). However, the exact mechanisms of antidiabetic effects of Lobe have not been established in an animal model. The aim of this study was to evaluate the hypoglycemic effects of Lobe and investigate possible factors involved in Lobe-enhanced hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were fed an HFD for 15 weeks. Lobe was administrated orally during the last 9 weeks. Lobe treatment significantly reduced insulin resistance and increased expression of hepatic glucose transporter 4 (GLUT4) and PPARs in HFD-fed mice. However, increased body weight and hepatic steatosis were not reduced by Lobe in these mice. Metabolomics fingerprinting showed that several lipogenesis-related hepatic and serum metabolites in HFD-fed mice had positive or negative correlations with Lobe administration. In particular, increased leptin levels during HFD were further increased by Lobe. HFD-induced signaling transducer and activator of transcription 3 (STAT3) phosphorylation in the hypothalamus was increased by Lobe. In addition, immunohistochemical analysis showed more proopiomelanocortin (POMC)-positive neurons in the hypothalamus of HFD-fed mice (with or without Lobe) compared with normal diet-fed mice. Despite improving leptin signaling in the hypothalamus and enhancing insulin sensitivity in HFD-fed mice, Lobe increased body weight and steatosis. Further research is necessary regarding other factors affecting Lobe-enhanced hepatic steatosis and hyperphagia.
Collapse
Affiliation(s)
- Bong-Hoi Choi
- Department of Nuclear Medicine, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Chin-ok Yi
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Juhong Oh
- EZmass Co., Ltd., Jinju, Gyeongnam, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyung-ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun-Jin Kim
- EZmass Co., Ltd., Jinju, Gyeongnam, Republic of Korea
- Department of Food Science and Technology, Division of Applied Life Sciences (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jong Ryeal Hahm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|