1
|
Rodrigues MÂ, Correia CM, Arrobas M. The Application of a Foliar Spray Containing Methylobacterium symbioticum Had a Limited Effect on Crop Yield and Nitrogen Recovery in Field and Pot-Grown Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2909. [PMID: 39458855 PMCID: PMC11510831 DOI: 10.3390/plants13202909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
In this study, the effectiveness of an inoculant containing a nitrogen (N)-fixing microorganism (Methylobacterium symbioticum) was evaluated on maize (Zea mays L.) grown both in the field (silage maize) and in pots over two years (2021 and 2022). The field trial included the following two treatments: with (Yes) and without (No) the inoculant. The pot experiment was designed as a factorial arrangement with two factors: the application of the inoculant (Yes and No) and N applied to the soil (0, 0.4, 0.8, and 1.6 g pot-1). In the field, total dry matter yield (DMY) did not differ significantly between treatments, although the average DMY was higher in the inoculant treatment. In pots, the total DMY varied significantly across all N rates but was only significantly affected by the inoculant application in 2022. N fixation estimates in the field were 58.8 and 14.5 kg ha-1 for 2021 and 2022, respectively, representing 23.7% and 9.1% of the N recovered in the aboveground plant parts. In pots, the estimated fixed N values were -49.2 and 199.2 mg pot-1 in 2021 and 2022, respectively, which corresponded to -5.2% and 18.5% of the N found in the aboveground plant parts. Considering the average values obtained across the four cultivation conditions, there was a positive outcome for the treated plants. However, these values cannot be considered significant when compared to nitrogen removal in maize crops. A commercial product should provide an unequivocal and quantitatively relevant contribution to plant nutrition, which did not appear to be the case. Thus, for this inoculant to provide reliable guarantees of positive outcomes for farmers and become a useful tool in promoting more sustainable agriculture, further studies appear necessary. These studies should aim to determine in which crops and under what cultivation conditions the application of the inoculant is truly effective in enhancing N fixation and improving crop productivity.
Collapse
Affiliation(s)
- Manuel Ângelo Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carlos Manuel Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - Margarida Arrobas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Kończak B, Wiesner-Sękala M, Ziembińska-Buczyńska A. The European trees phyllosphere characteristics and its potential in air bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123977. [PMID: 38621454 DOI: 10.1016/j.envpol.2024.123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The air pollution remediation is naturally carried out by plants. Their overground parts called phyllosphere are a type of a natural filter on which pollutants can be adsorb. Moreover, microbial communities living in phyllosphere perform a variety of biochemical processes removing also chemical pollutants. As their pollution is nowadays a burning issue especially for highly developed countries, the development of effective and ecological technologies for air treatment are of the utmost importance. The use of phyllosphere bacteria in the process of air bioremediation is a promising technology. This article reviews the role of phyllospheric bacteria in air bioremediation processes especially linked with the moderate climate plants. Research results published so far indicate that phyllosphere bacteria are able to metabolize the air pollutants but their potential is strictly determined by plant-phyllospheric bacteria interaction. The European tree species most commonly used for this purpose are also presented. The collected information filled the gap in the practical use of tree species in air bioremediation in the moderate climate zone.
Collapse
Affiliation(s)
- B Kończak
- Department of Water Protection, Central Mining Institute - National Research Institute, Plac Gwarków 1, 40-166, Katowice, Poland.
| | - M Wiesner-Sękala
- Department of Water Protection, Central Mining Institute - National Research Institute, Plac Gwarków 1, 40-166, Katowice, Poland.
| | - A Ziembińska-Buczyńska
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Silesian University of Technology, str. Akademicka 2, 44-100, Gliwice, Poland.
| |
Collapse
|
3
|
Duan Y, Siegenthaler A, Skidmore AK, Chariton AA, Laros I, Rousseau M, De Groot GA. Forest top canopy bacterial communities are influenced by elevation and host tree traits. ENVIRONMENTAL MICROBIOME 2024; 19:21. [PMID: 38581032 PMCID: PMC10998314 DOI: 10.1186/s40793-024-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The phyllosphere microbiome is crucial for plant health and ecosystem functioning. While host species play a determining role in shaping the phyllosphere microbiome, host trees of the same species that are subjected to different environmental conditions can still exhibit large degrees of variation in their microbiome diversity and composition. Whether these intra-specific variations in phyllosphere microbiome diversity and composition can be observed over the broader expanse of forest landscapes remains unclear. In this study, we aim to assess the variation in the top canopy phyllosphere bacterial communities between and within host tree species in the temperate European forests, focusing on Fagus sylvatica (European beech) and Picea abies (Norway spruce). RESULTS We profiled the bacterial diversity, composition, driving factors, and discriminant taxa in the top canopy phyllosphere of 211 trees in two temperate forests, Veluwe National Parks, the Netherlands and Bavarian Forest National Park, Germany. We found the bacterial communities were primarily shaped by host species, and large variation existed within beech and spruce. While we showed that there was a core microbiome in all tree species examined, community composition varied with elevation, tree diameter at breast height, and leaf-specific traits (e.g., chlorophyll and P content). These driving factors of bacterial community composition also correlated with the relative abundance of specific bacterial families. CONCLUSIONS While our results underscored the importance of host species, we demonstrated a substantial range of variation in phyllosphere bacterial diversity and composition within a host species. Drivers of these variations have implications at both the individual host tree level, where the bacterial communities differed based on tree traits, and at the broader forest landscape level, where drivers like certain highly plastic leaf traits can potentially link forest canopy bacterial community variations to forest ecosystem processes. We eventually showed close associations between forest canopy phyllosphere bacterial communities and host trees exist, and the consistent patterns emerging from these associations are critical for host plant functioning.
Collapse
Affiliation(s)
- Yiwei Duan
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Andjin Siegenthaler
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Andrew K Skidmore
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Anthony A Chariton
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ivo Laros
- Wageningen Environmental Research, Wageningen UR, P.O. Box 46, 6700 AA, Wageningen, The Netherlands
| | - Mélody Rousseau
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - G Arjen De Groot
- Wageningen Environmental Research, Wageningen UR, P.O. Box 46, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
4
|
Carper DL, Lawrence TJ, Quiroz D, Kueppers LM, Frank AC. Needle bacterial community structure across the species range of limber pine. ISME COMMUNICATIONS 2024; 4:ycae062. [PMID: 38800125 PMCID: PMC11128189 DOI: 10.1093/ismeco/ycae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species' range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.
Collapse
Affiliation(s)
- Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, United States
| | - Travis J Lawrence
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Dianne Quiroz
- Energy & Resources Group, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Lara M Kueppers
- Energy & Resources Group, University of California, Berkeley, Berkeley, CA 94720, United States
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA 95353, United States
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - A Carolin Frank
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA 95353, United States
- Life and Environmental Sciences Department, School of Natural Sciences, University of California, Merced, 5200 Lake Rd, Merced, CA 95343, United States
| |
Collapse
|
5
|
Hudson JE, Levia DF, Yoshimura KM, Gottel NR, Hudson SA, Biddle JF. Mapping bark bacteria: initial insights of stemflow-induced changes in bark surface phyla. Microbiol Spectr 2023; 11:e0356223. [PMID: 37971233 PMCID: PMC10715197 DOI: 10.1128/spectrum.03562-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Compared with the phyllosphere, bacteria inhabiting bark surfaces are inadequately understood. Based on a preliminary pilot study, our work suggests that microbial populations vary across tree bark surfaces and may differ in relation to surrounding land use. Initial results suggest that stemflow, the water that flows along the bark surface, actively moves bacterial communities across a tree. These preliminary findings underscore the need for further study of niche microbial populations to determine whether there are connections between the biodiversity of microbiomes inhabiting corticular surfaces, land use, and hydrology.
Collapse
Affiliation(s)
- J. E. Hudson
- Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
| | - D. F. Levia
- Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - K. M. Yoshimura
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - N. R. Gottel
- Argonne National Lab, University of Chicago Medicine, Chicago, Illinois, USA
| | - S. A. Hudson
- Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
| | - J. F. Biddle
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Wang Y, Hu C, Wang X, Shi G, Lei Z, Tang Y, Zhang H, Wuriyanghan H, Zhao X. Selenium-induced rhizosphere microorganisms endow salt-sensitive soybeans with salt tolerance. ENVIRONMENTAL RESEARCH 2023; 236:116827. [PMID: 37544471 DOI: 10.1016/j.envres.2023.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Soil salinization is a prevalent abiotic stress that adversely affects soybean production. Rhizosphere microorganisms have been shown to modulate the rhizosphere microenvironment of plants, leading to improved stress resistance. Selenium is known to optimize the rhizosphere microbial community, however, it remains uncertain whether selenium-induced rhizosphere microorganisms can enhance plant salt tolerance. In this study, we selected two soybean varieties, including salt-tolerant and salt-sensitive, and conducted pot experiments to explore the impact of selenium application on the structure and composition of the rhizosphere microbial community of soybean plants under salt stress. Four salt-tolerant bacteria from salt-tolerant soybean rhizosphere soil fertilized with selenium under salt stress were isolated, and their effects on improving salt tolerance in salt-sensitive soybean were also investigated. Our results showed that selenium application enhanced soybean salt tolerance by optimizing the structure of the plant rhizosphere microbial community and improving soil enzyme activities in both salt-tolerant and salt-sensitive varieties. Moreover, compared with salt-only treatment, inoculation of the four bacteria led to a significant increase in the plant height (7.2%-19.8%), aboveground fresh weight (57.3%-73.5%), SPAD value (8.4%-30.3%), and K+ content (4.5%-12.1%) of salt-sensitive soybean, while reducing the content of proline (84.5%-94%), MDA (26.5%-49.3%), and Na+ (7.1%-21.3%). High-throughput sequencing of the 16 S ribosomal RNA gene indicated that the four bacteria played a crucial role in changing the community structure of salt-sensitive soybean and mitigating the effects of salt stress. This study highlighted the importance of selenium combined with beneficial microorganisms in the plant rhizosphere in alleviating salinity stress.
Collapse
Affiliation(s)
- Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Forage and Endemic Crop Biology (Inner Mongolia University), Ministry of Education, 49 Xilinguole Road, Hohhot, 010020, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology (Inner Mongolia University), Ministry of Education, 49 Xilinguole Road, Hohhot, 010020, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Smets W, Chock MK, Walsh CM, Vanderburgh CQ, Kau E, Lindow SE, Fierer N, Koskella B. Leaf side determines the relative importance of dispersal versus host filtering in the phyllosphere microbiome. mBio 2023; 14:e0111123. [PMID: 37436063 PMCID: PMC10470611 DOI: 10.1128/mbio.01111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/13/2023] Open
Abstract
Leaves harbor distinct microbial communities that can have an important impact on plant health and microbial ecosystems worldwide. Nevertheless, the ecological processes that shape the composition of leaf microbial communities remain unclear, with previous studies reporting contradictory results regarding the importance of bacterial dispersal versus host selection. This discrepancy could be driven in part because leaf microbiome studies typically consider the upper and lower leaf surfaces as a single entity despite these habitats possessing considerable anatomical differences. We characterized the composition of bacterial phyllosphere communities from the upper and lower leaf surfaces across 24 plant species. Leaf surface pH and stomatal density were found to shape phyllosphere community composition, and the underside of leaves had lower richness and higher abundances of core community members than upper leaf surfaces. We found fewer endemic bacteria on the upper leaf surfaces, suggesting that dispersal is more important in shaping these communities, with host selection being a more important force in microbiome assembly on lower leaf surfaces. Our study illustrates how changing the scale in which we observe microbial communities can impact our ability to resolve and predict microbial community assembly patterns on leaf surfaces. IMPORTANCE Leaves can harbor hundreds of different bacterial species that form unique communities for every plant species. Bacterial communities on leaves are really important because they can, for example, protect their host against plant diseases. Usually, bacteria from the whole leaf are considered when trying to understand these communities; however, this study shows that the upper and lower sides of a leaf have a very different impact on how these communities are shaped. It seems that the bacteria on the lower leaf side are more closely associated with the plant host, and communities on the upper leaf side are more impacted by immigrating bacteria. This can be really important when we want to treat, for example, crops in the field with beneficial bacteria or when trying to understand host-microbe interactions on the leaves.
Collapse
Affiliation(s)
- Wenke Smets
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Mason K. Chock
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Corinne M. Walsh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Caihong Qiu Vanderburgh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Ethan Kau
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Steven E. Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
8
|
Demarquest G, Lajoie G. Bacterial endophytes of sugar maple leaves vary more idiosyncratically than epiphytes across a large geographic area. FEMS Microbiol Ecol 2023; 99:fiad079. [PMID: 37442613 DOI: 10.1093/femsec/fiad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Bacteria from the leaf surface and the leaf tissue have been attributed with several beneficial properties for their plant host. Though physically connected, the microbial ecology of these compartments has mostly been studied separately such that we lack an integrated understanding of the processes shaping their assembly. We sampled leaf epiphytes and endophytes from the same individuals of sugar maple across the northern portion of its range to evaluate if their community composition was driven by similar processes within and across populations differing in plant traits and overall abiotic environment. Leaf compartment explained most of the variation in community diversity and composition across samples. Leaf epiphytic communities were driven more by host and site characteristics than endophytic communities, whose community composition was more idiosyncratic across samples. Our results suggest a greater importance of priority effects and opportunistic colonization in driving community assembly of leaf endophytes. Understanding the comparative assembly of bacterial communities at the surface and inside plant leaves may be particularly useful for leveraging their respective potential for improving the health of plants in natural and anthropized ecosystems.
Collapse
Affiliation(s)
- Garance Demarquest
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E, H1X 2B2 Montréal, Canada
- Université de Rennes, Agro-Campus Ouest, 65 Rue de Saint-Brieuc, 35042 Rennes, France
| | - Geneviève Lajoie
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E, H1X 2B2 Montréal, Canada
- Jardin Botanique de Montréal, 4101 rue Sherbrooke E, H1X 2B2 Montréal, Canada
| |
Collapse
|
9
|
Faticov M, Abdelfattah A, Hambäck P, Roslin T, Tack AJM. Different spatial structure of plant-associated fungal communities above- and belowground. Ecol Evol 2023; 13:e10065. [PMID: 37223309 PMCID: PMC10200691 DOI: 10.1002/ece3.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Département de biologieUniversité de SherbrookeSherbrookeQuebecCanada
| | - Ahmed Abdelfattah
- Leibniz Institute of Agricultural Engineering and Bio‐economyPotsdamGermany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
10
|
Wicaksono WA, Morauf C, Müller H, Abdelfattah A, Donat C, Berg G. The mature phyllosphere microbiome of grapevine is associated with resistance against Plasmopara viticola. Front Microbiol 2023; 14:1149307. [PMID: 37113228 PMCID: PMC10127535 DOI: 10.3389/fmicb.2023.1149307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Phyllosphere microbiota represents a substantial but hardly explored reservoir for disease resistance mechanisms. The goal of our study was to understand the link between grapevine cultivars susceptibility to Plasmopara viticola, one of the most devastating leaf pathogens in viticulture, and the phyllosphere microbiota. Therefore, we analyzed a 16S rRNA gene library for the dominant phyllosphere bacterial phyla Alphaproteobacteria of seven Vitis genotypes at different developmental stages, i.e., flowering and harvesting, via amplicon sequencing. Young leaves had significantly higher Alphaproteobacterial richness and diversity without significant host-specificity. In contrast, the microbial communities of mature leaves were structurally distinct in accordance with P. viticola resistance levels. This statistically significant link between mature bacterial phyllosphere communities and resistant phenotypes was corroborated by beta diversity metrics and network analysis. Beyond direct host-driven effects via the provision of microhabitats, we found evidence that plants recruit for specific bacterial taxa that were likely playing a fundamental role in mediating microbe-microbe interactions and structuring clusters within mature communities. Our results on grape-microbiota interaction provide insights for targeted biocontrol and breeding strategies.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Graz, Austria
| |
Collapse
|
11
|
Do TT, Smyth C, Crispie F, Burgess C, Brennan F, Walsh F. Comparison of soil and grass microbiomes and resistomes reveals grass as a greater antimicrobial resistance reservoir than soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159179. [PMID: 36191722 DOI: 10.1016/j.scitotenv.2022.159179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Grasslands cover a large proportion of global agricultural landmass used to feed herbivores and ruminants and link the environment to the food chain via animals onto humans. However, most scientific studies of antimicrobial resistance and microbiomes at the environmental - animal nexus have focused on soil or vegetables rather than grasslands. Based on previous microbiome phyllosphere-soil studies we hypothesised that the microbiome and resistomes across soil and grass would have a core of shared taxa and antimicrobial resistance genes (ARGs), but that in addition each would also have a minority of unique signatures. Our data indicated grass contained a wider variety and higher relative abundance of ARGs and mobile genetic elements (MGEs) than soil with or without slurry amendments. The microbiomes of soil and grass were similar in content but varied in the composition proportionality. While there were commonalities across many of the ARGs present in soil and on grass their correlations with MGEs and bacteria differed, suggesting a source other than soil is also relevant for the resistome of grass. The variations in the relative abundances of ARGs in soil and on grass also indicated that either the MGEs or the bacteria carrying the ARGs comprised a higher relative abundance on grass than in soil. We conclude that while soil may be a source of some of these genes it cannot be the source for all ARGs and MGEs. Our data identifies grass as a more diverse and abundant reservoir of ARGs and MGEs in the environment than soil, which is significant to human and animal health when viewed in the context of grazing food animals.
Collapse
Affiliation(s)
- Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | | | - Fiona Brennan
- Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co. Wexford Y35 Y521, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Li M, Hong L, Ye W, Wang Z, Shen H. Phyllosphere bacterial and fungal communities vary with host species identity, plant traits and seasonality in a subtropical forest. ENVIRONMENTAL MICROBIOME 2022; 17:29. [PMID: 35681245 PMCID: PMC9185928 DOI: 10.1186/s40793-022-00423-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/31/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Phyllosphere microbes play important roles in host plant performance and fitness. Recent studies have suggested that tropical and temperate forests harbor diverse phyllosphere bacterial and fungal communities and their assembly is driven by host species identity and plant traits. However, no study has yet examined how seasonality (e.g. dry vs. wet seasons) influences phyllosphere microbial community assembly in natural forests. In addition, in subtropical forests characterized as the transitional zonal vegetation type from tropical to temperate forests, how tree phyllosphere microbial communities are assembled remains unknown. In this study, we quantified bacterial and fungal community structure and diversity on the leaves of 45 tree species with varying phylogenetic identities and importance values within a 20-ha lower subtropical evergreen broad-leaved forest plot in dry and wet seasons. We explored if and how the microbial community assembly varies with host species identity, plant traits and seasonality. RESULTS Phyllosphere microbial communities in the subtropical forest are more abundant and diverse than those in tropical and temperate forests, and the tree species share a "core microbiome" in either bacteria or fungi. Variations in phyllosphere bacterial and fungal community assembly are explained more by host species identity than by seasonality. There is a strong clustering of the phyllosphere microbial assemblage amongst trees by seasonality, and the seasonality effects are more pronounced on bacterial than fungal community assembly. Host traits have different effects on community compositions and diversities of both bacteria and fungi, and among them calcium concentration and importance value are the most powerful explaining variables for bacteria and fungi, respectively. There are significant evolutionary associations between host species and phyllosphere microbiome. CONCLUSIONS Our results suggest that subtropical tree phyllosphere microbial communities vary with host species identity, plant traits and seasonality. Host species identity, compared to seasonality, has greater effects on phyllosphere microbial community assembly, and such effects differ between bacterial and fungal communities. These findings advance our understanding of the patterns and drivers of phyllosphere microbial community assembly in zonal forests at a global scale.
Collapse
Affiliation(s)
- Mengjiao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lan Hong
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Wanhui Ye
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhangming Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Hao Shen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
13
|
De Bellis T, Laforest-Lapointe I, Solarik KA, Gravel D, Kembel SW. Regional variation drives differences in microbial communities associated with sugar maple across a latitudinal range. Ecology 2022; 103:e3727. [PMID: 35412652 DOI: 10.1002/ecy.3727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Climate change is prompting plants to migrate and establish novel interactions in new habitats. Because of the pivotal roles microbes have on plant health and function, it is important to understand the ecological consequences of these shifts in host-microbe interactions with range expansion. Here we examine how the diversity of plant associated microbes varies along the host's current range and extended range according with climate change predictions, and assess the relative influence of host genotype (seed provenance) and environment in structuring the host microbiome. We collected sugar maple seeds from across the species current range, then planted them in temperate and mixedwood/transitional forests (current range) and in the boreal region (beyond range but predicted future range in response to climate change). We used amplicon sequencing to quantify bacterial, fungal, and mycorrhizal communities from seedling leaves and roots. Variation among sites and regions were the main drivers of the differences in host microbial communities whereas seed provenance did not play a large role. No unifying pattern was observed for microbial community richness, diversity, or specialization, demonstrating the complexity of responses of different taxa on above- and belowground plant compartments. Along the latitudinal gradient, we (1) observed reductions in mycorrhizal diversity which can negatively impact maple establishment; (2) and revealed reductions in fungal leaf pathogens which can have opposite effects. Our results highlight the need for an integrated approach including the examination of various microbial taxa on different plant compartments to improve our understanding of plant range shifts and plant-microbe interactions.
Collapse
Affiliation(s)
- Tonia De Bellis
- Department of Biology, Concordia University, Montréal, QC, Canada.,Department of Biology, Dawson College, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre Sève, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kevin A Solarik
- National Council for Air and Stream Improvement, Inc. (NCASI), Montréal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Fine-Scale Adaptations to Environmental Variation and Growth Strategies Drive Phyllosphere Methylobacterium Diversity. mBio 2022; 13:e0317521. [PMID: 35073752 PMCID: PMC8787475 DOI: 10.1128/mbio.03175-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Methylobacterium is a prevalent bacterial genus of the phyllosphere. Despite its ubiquity, little is known about the extent to which its diversity reflects neutral processes like migration and drift, versus environmental filtering of life history strategies and adaptations. In two temperate forests, we investigated how phylogenetic diversity within Methylobacterium is structured by biogeography, seasonality, and growth strategies. Using deep, culture-independent barcoded marker gene sequencing coupled with culture-based approaches, we uncovered a considerable diversity of Methylobacterium in the phyllosphere. We cultured different subsets of Methylobacterium lineages depending upon the temperature of isolation and growth (20°C or 30°C), suggesting long-term adaptation to temperature. To a lesser extent than temperature adaptation, Methylobacterium diversity was also structured across large (>100 km; between forests) and small (<1.2 km; within forests) geographical scales, among host tree species, and was dynamic over seasons. By measuring the growth of 79 isolates during different temperature treatments, we observed contrasting growth performances, with strong lineage- and season-dependent variations in growth strategies. Finally, we documented a progressive replacement of lineages with a high-yield growth strategy typical of cooperative, structured communities in favor of those characterized by rapid growth, resulting in convergence and homogenization of community structure at the end of the growing season. Together, our results show how Methylobacterium is phylogenetically structured into lineages with distinct growth strategies, which helps explain their differential abundance across regions, host tree species, and time. This work paves the way for further investigation of adaptive strategies and traits within a ubiquitous phyllosphere genus. IMPORTANCE Methylobacterium is a bacterial group tied to plants. Despite the ubiquity of methylobacteria and the importance to their hosts, little is known about the processes driving Methylobacterium community dynamics. By combining traditional culture-dependent and -independent (metabarcoding) approaches, we monitored Methylobacterium diversity in two temperate forests over a growing season. On the surface of tree leaves, we discovered remarkably diverse and dynamic Methylobacterium communities over short temporal (from June to October) and spatial (within 1.2 km) scales. Because we cultured different subsets of Methylobacterium diversity depending on the temperature of incubation, we suspected that these dynamics partly reflected climatic adaptation. By culturing strains under laboratory conditions mimicking seasonal variations, we found that diversity and environmental variations were indeed good predictors of Methylobacterium growth performances. Our findings suggest that Methylobacterium community dynamics at the surface of tree leaves results from the succession of strains with contrasting growth strategies in response to environmental variations.
Collapse
|
15
|
Liber JA, Minier DH, Stouffer-Hopkins A, Van Wyk J, Longley R, Bonito G. Maple and hickory leaf litter fungal communities reflect pre-senescent leaf communities. PeerJ 2022; 10:e12701. [PMID: 35127279 PMCID: PMC8801177 DOI: 10.7717/peerj.12701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Fungal communities are known to contribute to the functioning of living plant microbiomes as well as to the decay of dead plant material and affect vital ecosystem services, such as pathogen resistance and nutrient cycling. Yet, factors that drive structure and function of phyllosphere mycobiomes and their fate in leaf litter are often ignored. We sought to determine the factors contributing to the composition of communities in temperate forest substrates, with culture-independent amplicon sequencing of fungal communities of pre-senescent leaf surfaces, internal tissues, leaf litter, underlying humus soil of co-occurring red maple (Acer rubrum) and shagbark hickory (Carya ovata). Paired samples were taken at five sites within a temperate forest in southern Michigan, USA. Fungal communities were differentiable based on substrate, host species, and site, as well as all two-way and three-way interactions of these variables. PERMANOVA analyses and co-occurrence of taxa indicate that soil communities are unique from both phyllosphere and leaf litter communities. Correspondence of endophyte, epiphyte, and litter communities suggests dispersal plays an important role in structuring fungal communities. Future work will be needed to assess how this dispersal changes microbial community functioning in these niches.
Collapse
Affiliation(s)
- Julian A. Liber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States,Department of Biology, Duke University, Durham, North Carolina, United States
| | - Douglas H. Minier
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States
| | - Anna Stouffer-Hopkins
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States
| | - Judson Van Wyk
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States
| | - Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
16
|
Heminger AR, Belden LK, Barney JN, Badgley BD, Haak DC. Horsenettle ( Solanum carolinense) fruit bacterial communities are not variable across fine spatial scales. PeerJ 2021; 9:e12359. [PMID: 34820171 PMCID: PMC8582302 DOI: 10.7717/peerj.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Fruit house microbial communities that are unique from the rest of the plant. While symbiotic microbial communities complete important functions for their hosts, the fruit microbiome is often understudied compared to other plant organs. Fruits are reproductive tissues that house, protect, and facilitate the dispersal of seeds, and thus they are directly tied to plant fitness. Fruit microbial communities may, therefore, also impact plant fitness. In this study, we assessed how bacterial communities associated with fruit of Solanum carolinense, a native herbaceous perennial weed, vary at fine spatial scales (<0.5 km). A majority of the studies conducted on plant microbial communities have been done at large spatial scales and have observed microbial community variation across these large spatial scales. However, both the environment and pollinators play a role in shaping plant microbial communities and likely have impacts on the plant microbiome at fine scales. We collected fruit samples from eight sampling locations, ranging from 2 to 450 m apart, and assessed the fruit bacterial communities using 16S rRNA gene amplicon sequencing. Overall, we found no differences in observed richness or microbial community composition among sampling locations. Bacterial community structure of fruits collected near one another were not more different than those that were farther apart at the scales we examined. These fine spatial scales are important to obligate out-crossing plant species such as S. carolinense because they are ecologically relevant to pollinators. Thus, our results could imply that pollinators serve to homogenize fruit bacterial communities across these smaller scales.
Collapse
Affiliation(s)
- Ariel R Heminger
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K Belden
- Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Jacob N Barney
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
17
|
Katsoula A, Vasileiadis S, Karamanoli K, Vokou D, Karpouzas DG. Factors Structuring the Epiphytic Archaeal and Fungal Communities in a Semi-arid Mediterranean Ecosystem. MICROBIAL ECOLOGY 2021; 82:638-651. [PMID: 33594547 DOI: 10.1007/s00248-021-01712-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The phyllosphere microbiome exerts a strong effect on plants' productivity, and its composition is determined by various factors. To date, most phyllosphere studies have focused on bacteria, while fungi and especially archaea have been overlooked. We studied the effects of plant host and season on the abundance and diversity of the epiphytic archaeal and fungal communities in a typical semi-arid Mediterranean ecosystem. We collected leaves in two largely contrasting seasons (summer and winter) from eight perennial species of varying attributes which could be grouped into the following: (i) high-canopy, evergreen sclerophyllοus shrubs with leathery leaves, and low-canopy, either semi-deciduous shrubs or non-woody perennials with non-leathery leaves, and (ii) aromatic and non-aromatic plants. We determined the abundance of epiphytic Crenarchaea, total fungi, Alternaria and Cladosporium (main airborne fungi) via q-PCR and the structure of the epiphytic archaeal and fungal communities via amplicon sequencing. We observed a strong seasonal effect with all microbial groups examined showing higher abundance in summer. Plant host and season were equally important determinants of the composition of the fungal community consisted mostly of Ascomycota, with Hypocreales dominating in winter and Capnodiales and Pleosporales in summer. In contrast, the archaeal community showed plant host driven patterns dominated by the Soil Crenarchaeotic Group (SCG) and Aenigmarchaeota. Plant habit and aromatic nature exhibited filtering effects only on the epiphytic fungal communities. Our study provides a first in-depth analysis of the key determinants shaping the phyllosphere archaeal and fungal communities of a semi-arid Mediterranean ecosystem.
Collapse
Affiliation(s)
- A Katsoula
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - S Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - K Karamanoli
- School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - D Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - D G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
18
|
Al Ashhab A, Meshner S, Alexander-Shani R, Dimerets H, Brandwein M, Bar-Lavan Y, Winters G. Temporal and Spatial Changes in Phyllosphere Microbiome of Acacia Trees Growing in Arid Environments. Front Microbiol 2021; 12:656269. [PMID: 34322096 PMCID: PMC8312645 DOI: 10.3389/fmicb.2021.656269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The evolutionary relationships between plants and their microbiomes are of high importance to the survival of plants in general and even more in extreme conditions. Changes in the plant's microbiome can affect plant development, growth, fitness, and health. Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate, phenology, and seasonality on the epiphytic and endophytic microbiome of acacia trees. One hundred thirty-nine leaf samples were collected throughout the sampling year and were assessed using 16S rDNA gene amplified with five different primers (targeting different gene regions) and sequenced (150 bp paired-end) on an Illumina MiSeq sequencing platform. Results: Epiphytic bacterial diversity indices (Shannon-Wiener, Chao1, Simpson, and observed number of operational taxonomic units) were found to be nearly double compared to endophyte counterparts. Epiphyte and endophyte communities were significantly different from each other in terms of the composition of the microbial associations. Interestingly, the epiphytic bacterial diversity was similar in the two acacia species, but the canopy sides and sample months exhibited different diversity, whereas the endophytic bacterial communities were different in the two acacia species but similar throughout the year. Abiotic factors, such as air temperature and precipitation, were shown to significantly affect both epiphyte and endophytes communities. Bacterial community compositions showed that Firmicutes dominate A. raddiana, and Proteobacteria dominate A. tortilis; these bacterial communities consisted of only a small number of bacterial families, mainly Bacillaceae and Comamonadaceae in the endophyte for A. raddiana and A. tortilis, respectively, and Geodematophilaceae and Micrococcaceae for epiphyte bacterial communities, respectively. Interestingly, ~60% of the obtained bacterial classifications were unclassified below family level (i.e., "new"). Conclusions: These results shed light on the unique desert phyllosphere microbiome highlighting the importance of multiple genotypic and abiotic factors in shaping the epiphytic and endophytic microbial communities. This study also shows that only a few bacterial families dominate both epiphyte and endophyte communities, highlighting the importance of climate change (precipitation, air temperature, and humidity) in affecting arid land ecosystems where acacia trees are considered keystone species.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- Dead Sea and Arava Science Center, Masada, Israel.,Ben-Gurion University of the Negev, Eilat Campus, Be'er Sheva, Israel
| | | | | | | | - Michael Brandwein
- Dead Sea and Arava Science Center, Masada, Israel.,Biofilm Research Laboratory, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Gidon Winters
- Dead Sea and Arava Science Center, Masada, Israel.,Ben-Gurion University of the Negev, Eilat Campus, Be'er Sheva, Israel
| |
Collapse
|
19
|
Ishak S, Dormontt E, Young JM. Microbiomes in forensic botany: a review. Forensic Sci Med Pathol 2021; 17:297-307. [PMID: 33830453 DOI: 10.1007/s12024-021-00362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
Fragments of botanical material can often be found at crime scenes (on live and dead bodies, or on incriminating objects) and can provide circumstantial evidence on various aspects of forensic investigations such as determining crime scene locations, times of death or possession of illegal species. Morphological and genetic analysis are the most commonly applied methods to analyze plant fragment evidence but are limited by their low capacity to differentiate between potential source locations, especially at local scales. Here, we review the current applications and limitations of current plant fragment analysis for forensic investigations and introduce the potential of microbiome analysis to complement the existing forensic plant fragment analysis toolkit. The potential for plant fragment provenance identification at geographic scales meaningful to forensic investigations warrants further investigation of the phyllosphere microbiome in this context. To that end we identify three key areas of future research: 1) Retrieval of microbial DNA of sufficient quality and quantity from botanical material; 2) Variability of the phyllosphere microbiome at different taxonomic and spatial scales, with explicit reference to assignment capacity; 3) Impacts on assignment capacity of time, seasonality and movement of fragments between locations. The development of robust microbiome analysis tools for forensic purposes in botanical material could increase the evidentiary value of the botanical evidence commonly encountered in casework, aiding in the identification of crime scene locations.
Collapse
Affiliation(s)
- Sarah Ishak
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Eleanor Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer M Young
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Natural Bacterial Assemblages in Arabidopsis thaliana Tissues Become More Distinguishable and Diverse during Host Development. mBio 2021; 12:mBio.02723-20. [PMID: 33468687 PMCID: PMC7845642 DOI: 10.1128/mbio.02723-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Developing synthetic microbial communities that can increase plant yield or deter pathogens requires basic research on several fronts, including the efficiency with which microbes colonize plant tissues, how plant genes shape the microbiome, and the microbe-microbe interactions involved in community assembly. Findings on each of these fronts depend upon the spatial and temporal scales at which plant microbiomes are surveyed. To study the spatial and temporal dynamics of bacterial colonization under field conditions, we planted and sampled Arabidopsis thaliana during 2 years at two Michigan sites and surveyed colonists by sequencing 16S rRNA gene amplicons. Mosaic and dynamic assemblages revealed the plant as a patchwork of tissue habitats that differentiated with age. Although assemblages primarily varied between roots and shoots, amplicon sequence variants (ASVs) also differentiated phyllosphere tissues. Increasing assemblage diversity indicated that variants dispersed more widely over time, decreasing the importance of stochastic variation in early colonization relative to tissue differences. As tissues underwent developmental transitions, the root and phyllosphere assemblages became more distinct. This pattern was driven by common variants rather than those restricted to a particular tissue or transiently present at one developmental stage. Patterns also depended critically on fine phylogenetic resolution: when ASVs were grouped at coarse taxonomic levels, their associations with host tissue and age weakened. Thus, the observed spatial and temporal variation in colonization depended upon bacterial traits that were not broadly shared at the family level. Some colonists were consistently more successful at entering specific tissues, as evidenced by their repeatable spatial prevalence distributions across sites and years. However, these variants did not overtake plant assemblages, which instead became more even over time. Together, these results suggested that the increasing effect of tissue type was related to colonization bottlenecks for specific ASVs rather than to their ability to dominate other colonists once established.
Collapse
|
21
|
Parizadeh M, Mimee B, Kembel SW. Neonicotinoid Seed Treatments Have Significant Non-target Effects on Phyllosphere and Soil Bacterial Communities. Front Microbiol 2021; 11:619827. [PMID: 33584586 PMCID: PMC7873852 DOI: 10.3389/fmicb.2020.619827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
The phyllosphere and soil are dynamic habitats for microbial communities. Non-pathogenic microbiota, including leaf and soil beneficial bacteria, plays a crucial role in plant growth and health, as well as in soil fertility and organic matter production. In sustainable agriculture, it is important to understand the composition of these bacterial communities, their changes in response to disturbances, and their resilience to agricultural practices. Widespread pesticide application may have had non-target impacts on these beneficial microorganisms. Neonicotinoids are a family of systemic insecticides being vastly used to control soil and foliar pests in recent decades. A few studies have demonstrated the long-term and non-target effects of neonicotinoids on agroecosystem microbiota, but the generality of these findings remains unclear. In this study, we used 16S rRNA gene amplicon sequencing to characterize the effects of neonicotinoid seed treatment on soil and phyllosphere bacterial community diversity, composition and temporal dynamics in a 3-year soybean/corn rotation in Quebec, Canada. We found that habitat, host species and time are stronger drivers of variation in bacterial composition than neonicotinoid application. They, respectively, explained 37.3, 3.2, and 2.9% of the community variation. However, neonicotinoids did have an impact on bacterial community structure, especially on the taxonomic composition of soil communities (2.6%) and over time (2.4%). They also caused a decrease in soil alpha diversity in the middle of the growing season. While the neonicotinoid treatment favored some bacterial genera known as neonicotinoid biodegraders, there was a decline in the relative abundance of some potentially beneficial soil bacteria in response to the pesticide application. Some of these bacteria, such as the plant growth-promoting rhizobacteria and the bacteria involved in the nitrogen cycle, are vital for plant growth and improve soil fertility. Overall, our results indicate that neonicotinoids have non-target effects on phyllosphere and soil bacterial communities in a soybean-corn agroecosystem. Exploring the interactions among bacteria and other organisms, as well as the bacterial functional responses to the pesticide treatment, may enhance our understanding of these non-target effects and help us adapt agricultural practices to control these impacts.
Collapse
Affiliation(s)
- Mona Parizadeh
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, QC, Canada
| | - Steven W. Kembel
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Herrmann M, Geesink P, Richter R, Küsel K. Canopy Position Has a Stronger Effect than Tree Species Identity on Phyllosphere Bacterial Diversity in a Floodplain Hardwood Forest. MICROBIAL ECOLOGY 2021; 81:157-168. [PMID: 32761502 PMCID: PMC7794210 DOI: 10.1007/s00248-020-01565-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 05/17/2023]
Abstract
The phyllosphere is a challenging microbial habitat in which microorganisms can flourish on organic carbon released by plant leaves but are also exposed to harsh environmental conditions. Here, we assessed the relative importance of canopy position-top, mid, and bottom at a height between 31 and 20 m-and tree species identity for shaping the phyllosphere microbiome in a floodplain hardwood forest. Leaf material was sampled from three tree species-maple (Acer pseudoplatanus L.), oak (Quercus robur L.), and linden (Tilia cordata MILL.)-at the Leipzig canopy crane facility (Germany). Estimated bacterial species richness (Chao1) and bacterial abundances approximated by quantitative PCR of 16S rRNA genes exhibited clear vertical trends with a strong increase from the top to the mid and bottom position of the canopy. Thirty operational taxonomic units (OTUs) formed the core microbiome, which accounted for 77% of all sequence reads. These core OTUs showed contrasting trends in their vertical distribution within the canopy, pointing to different ecological preferences and tolerance to presumably more extreme conditions at the top position of the canopy. Co-occurrence analysis revealed distinct tree species-specific OTU networks, and 55-57% of the OTUs were unique to each tree species. Overall, the phyllosphere microbiome harbored surprisingly high fractions of Actinobacteria of up to 66%. Our results clearly demonstrate strong effects of the position in the canopy on phyllosphere bacterial communities in a floodplain hardwood forest and-in contrast to other temperate or tropical forests-a strong predominance of Actinobacteria.
Collapse
Affiliation(s)
- Martina Herrmann
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| | - Patricia Geesink
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743, Jena, Germany
| | - Ronny Richter
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Geoinformatics and Remote Sensing, Institute of Geography, Leipzig University, Johannisallee 19a, 04103, Leipzig, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
23
|
Floral fungal-bacterial community structure and co-occurrence patterns in four sympatric island plant species. Fungal Biol 2020; 125:49-61. [PMID: 33317776 DOI: 10.1016/j.funbio.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Flowers' fungal and bacterial communities can exert great impacts on host plant wellness and reproductive success-both directly and indirectly through species interactions. However, information about community structure and co-occurrence patterns in floral microbiome remains scarce. Here, using culture-independent methods, we investigated fungal and bacterial communities associated with stamens and pistils of four plant species (Scaevola taccada, Ipomoea cairica, Ipomoea pes-caprae, and Mussaenda kwangtungensis) growing together under the same environment conditions in an island located in South China. Plant species identity significantly influenced community composition of floral fungi but not bacteria. Stamen and pistil microbiomes did not differ in community composition, but differed in co-occurrence network topological features. Compared with the stamen network, pistil counterpart had fewer links between bacteria and fungi and showed more modular but less concentrated and connected structure. In addition, degree distribution of microbial network in each host species and each microhabitat (stamen or pistil) followed a significant power-law pattern. These results enhance our understanding in the assembly principles and ecological interactions of floral microbial communities.
Collapse
|
24
|
Steinberg S, Grinberg M, Beitelman M, Peixoto J, Orevi T, Kashtan N. Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging. ISME JOURNAL 2020; 15:409-420. [PMID: 32963344 DOI: 10.1038/s41396-020-00767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The phyllosphere - the aerial parts of plants - is an important microbial habitat that is home to diverse microbial communities. The spatial organization of bacterial cells on leaf surfaces is non-random, and correlates with leaf microscopic features. Yet, the role of microscale interactions between bacterial cells therein is not well understood. Here, we ask how interactions between immigrant bacteria and resident microbiota affect the spatial organization of the combined community. By means of live imaging in a simplified in vitro system, we studied the spatial organization, at the micrometer scale, of the biocontrol agent Pseudomonas fluorescens A506 and the plant pathogen P. syringae B728a when introduced to pear and bean leaf microbiota (the corresponding native plants of these strains). We found significant co-localization of immigrant and resident microbial cells at distances of a few micrometers, for both strains. Interestingly, this co-localization was in part due to preferential attachment of microbiota cells near newly formed P. fluorescens aggregates. Our results indicate that two-way immigrant bacteria - resident microbiota interactions affect the microscale spatial organization of leaf microbiota, and possibly that of other surface-related microbial communities.
Collapse
Affiliation(s)
- Shifra Steinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Michael Beitelman
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Julianna Peixoto
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.,Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
25
|
Young JM, Linacre A. Massively parallel sequencing is unlocking the potential of environmental trace evidence. Forensic Sci Int Genet 2020; 50:102393. [PMID: 33157385 DOI: 10.1016/j.fsigen.2020.102393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/16/2023]
Abstract
Massively parallel sequencing (MPS) has revolutionised the field of genomics enabling substantial advances in human DNA profiling. Further, the advent of MPS now allows biological signatures to be obtained from complex DNA mixtures and trace amounts of low biomass samples. Environmental samples serve as ideal forms of contact trace evidence as detection at a scene can establish a link between a suspect, location and victim. Many studies have applied MPS technology to characterise the biodiversity within high biomass environmental samples (such as soil and water) to address questions related to ecology, conservation, climate change and human health. However, translation of these tools to forensic science remains in its infancy, due in part to the merging of traditional forensic ecology practices with unfamiliar DNA technologies and complex datasets. In addition, people and objects also carry low biomass environmental signals which have recently been shown to reflect a specific individual or location. The sensitivity, and reducing cost, of MPS is now unlocking the power of both high and low biomass environmental DNA (eDNA) samples as useful sources of genetic information in forensic science. This paper discusses the potential of eDNA to forensic science by reviewing the most explored applications that are leading the integration of this technology into the field. We introduce novel areas of forensic ecology that could also benefit from these tools with a focus on linking a suspect to a scene or establishing provenance of an unknown sample and discuss the current limitations and validation recommendations to achieve translation of eDNA into casework.
Collapse
Affiliation(s)
- J M Young
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
| | - A Linacre
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Noble AS, Noe S, Clearwater MJ, Lee CK. A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand. PLoS One 2020; 15:e0237079. [PMID: 32790769 PMCID: PMC7425925 DOI: 10.1371/journal.pone.0237079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022] Open
Abstract
The phyllosphere microbiome is increasingly recognised as an influential component of plant physiology, yet it remains unclear whether stable host-microbe associations generally exist in the phyllosphere. Leptospermum scoparium (mānuka) is a tea tree indigenous to New Zealand, and honey derived from mānuka is widely known to possess unique antimicrobial properties. However, the host physiological traits associated with these antimicrobial properties vary widely, and the specific cause of such variation has eluded scientists despite decades of research. Notably, the mānuka phyllosphere microbiome remains uncharacterised, and its potential role in mediating host physiology has not been considered. Working within the prevailing core microbiome conceptual framework, we hypothesise that the phyllosphere microbiome of mānuka exhibits specific host association patterns congruent with those of a microbial community under host selective pressure (null hypothesis: the mānuka phyllosphere microbiome is recruited stochastically from the surrounding environment). To examine our hypothesis, we characterised the phyllosphere and associated soil microbiomes of five distinct and geographically distant mānuka populations across the North Island of New Zealand. We identified a habitat-specific and relatively abundant core microbiome in the mānuka phyllosphere, which was persistent across all samples. In contrast, non-core phyllosphere microorganisms exhibited significant variation across individual host trees and populations that was strongly driven by environmental and spatial factors. Our results demonstrate the existence of a dominant and ubiquitous core microbiome in the phyllosphere of mānuka, supporting our hypothesis that phyllosphere microorganisms of mānuka exhibit specific host association and potentially mediate physiological traits of this nationally and culturally treasured indigenous plant. In addition, our results illustrate biogeographical patterns in mānuka phyllosphere microbiomes and offer insight into factors contributing to phyllosphere microbiome assembly.
Collapse
Affiliation(s)
- Anya S. Noble
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Stevie Noe
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Charles K. Lee
- School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
27
|
Vogel MA, Mason OU, Miller TE. Host and environmental determinants of microbial community structure in the marine phyllosphere. PLoS One 2020; 15:e0235441. [PMID: 32614866 PMCID: PMC7332025 DOI: 10.1371/journal.pone.0235441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Although seagrasses are economically and ecologically critical species, little is known about their blade surface microbial communities and how these communities relate to the plant host. To determine microbial community composition and diversity on seagrass blade surfaces and in the surrounding seawater,16S rRNA gene sequencing (iTag) was used for samples collected at five sites along a gradient of freshwater input in the northern Gulf of Mexico on three separate sampling dates. Additionally, seagrass surveys were performed and environmental parameters were measured to characterize host characteristics and the abiotic conditions at each site. Results showed that Thalassia testudinum (turtle grass) blades hosted unique microbial communities that were distinct in composition and diversity from the water column. Environmental conditions, including water depth, salinity, and temperature, influenced community structure as blade surface microbial communities varied among sites and sampling dates in correlation with changes in environmental parameters. Microbial community composition also correlated with seagrass host characteristics, including growth rates and blade nutrient composition. There is some evidence for a core community for T. testudinum as 21 microorganisms from five phyla (Cyanobacteria, Proteobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes) were present in all blade surface samples. This study provides new insights and understanding of the processes that influence the structure of marine phyllosphere communities, how these microbial communities relate to their host, and their role as a part of the seagrass holobiont, which is an important contribution given the current decline of seagrass coverage worldwide.
Collapse
Affiliation(s)
- Margaret A. Vogel
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Olivia U. Mason
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| | - Thomas E. Miller
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
28
|
Mina D, Pereira JA, Lino-Neto T, Baptista P. Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect. MICROBIAL ECOLOGY 2020; 80:145-157. [PMID: 31965223 DOI: 10.1007/s00248-020-01488-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Variation on bacterial communities living in the phyllosphere as epiphytes and endophytes has been attributed to plant host effects. However, there is contradictory or inconclusive evidence regarding the effect of plant genetics (below the species' level) and of plant tissue type on phyllosphere bacterial community assembly, in particular when epiphytes and endophytes are considered simultaneously. Here, both surface and internal bacterial communities of two olive (Olea europaea) cultivars were evaluated in twigs and leaves by molecular identification of cultivable isolates, with an attempt to answer these questions. Overall, Proteobacteria, Actinobacteria and Firmicutes were the dominant phyla, being epiphytes more diverse and abundant than endophytes. Host genotype (at cultivar level) had a structuring effect on the composition of bacterial communities and, in a similar way, for both epiphytes and endophytes. Plant organ (leaf vs. twig) control of the bacterial communities was less evident when compared with plant genotype and with a greater influence on epiphytic than on endophytic community structure. Each olive genotype/plant organ was apparently selective towards specific bacterial operational taxonomic units (OTUs), which may lead to specific feedbacks on fitness of plant genotypes. Bacterial recruitment was observed to happen mainly within epiphytes than in endophytes and in leaves as compared with twigs. Such host specificity suggested that the benefits derived from the plant-bacteria interaction should be considered at genetic levels below the species.
Collapse
Affiliation(s)
- Diogo Mina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Braganca, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Braganca, Portugal
| | - Teresa Lino-Neto
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Braganca, Portugal.
| |
Collapse
|
29
|
Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3878-3901. [PMID: 32157287 PMCID: PMC7450670 DOI: 10.1093/jxb/eraa111] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette Cedex, France
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Carvalho CR, Dias AC, Homma SK, Cardoso EJ. Phyllosphere bacterial assembly in citrus crop under conventional and ecological management. PeerJ 2020; 8:e9152. [PMID: 32547860 PMCID: PMC7274167 DOI: 10.7717/peerj.9152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/17/2020] [Indexed: 11/20/2022] Open
Abstract
Divergences between agricultural management can result in different types of biological interactions between plants and microorganisms, which may affect food quality and productivity. Conventional practices are well-established in the agroindustry as very efficient and lucrative; however, the increasing demand for sustainable alternatives has turned attention towards agroecological approaches. Here we intend to explore microbial dynamics according to the agricultural management used, based on the composition and structure of these bacterial communities on the most environmentally exposed habitat, the phyllosphere. Leaf samples were collected from a Citrus crop (cultivated Orange) in Mogi-Guaçu (SP, Brazil), where either conventional or ecological management systems were properly applied in two different areas. NGS sequencing analysis and quantitative PCR allowed us to comprehend the phyllosphere behavior and µ-XRF (micro X-ray fluorescence) could provide an insight on agrochemical persistence on foliar tissues. Our results demonstrate that there is considerable variation in the phyllosphere community due to the management practices used in the citrus orchard, and it was possible to quantify most of this variation. Equally, high copper concentrations may have influenced bacterial abundance, having a relevant impact on the differences observed. Moreover, we highlight the intricate relationship microorganisms have with crop production, and presumably with crop yield as well.
Collapse
Affiliation(s)
- Carolinne R Carvalho
- Department of Soil Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Armando Cf Dias
- Department of Soil Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Elke Jbn Cardoso
- Department of Soil Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
31
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
32
|
Ulrich K, Becker R, Behrendt U, Kube M, Ulrich A. A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of Hymenoscyphus fraxineus. Front Microbiol 2020; 11:966. [PMID: 32547506 PMCID: PMC7273808 DOI: 10.3389/fmicb.2020.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few years, the alarming spread of Hymenoscyphus fraxineus, the causal agent of ash dieback, has resulted in a substantial threat to native ash stands in central and northern Europe. Since leaves and leaf petioles are the primary infection sites, phyllosphere microorganisms are presumed to interact with the pathogen and are discussed as a source of biocontrol agents. We studied compound leaves from susceptible and visible infection-free trees in four ash stands with a high likelihood of infection to assess a possible variation in the bacterial microbiota, depending on the health status of the trees. The bacterial community was analyzed by culture-independent 16S rRNA gene amplicon sequencing and through the isolation and taxonomic classification of 2,589 isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The bacterial community structure did not show significant differences. However, a set of amplicon sequence variants (ASVs) and MALDI groups belonging to Luteimonas, Aureimonas, Pseudomonas, Bacillus, and Paenibacillus were distinctly increased in tolerant trees, which may be associated with the ability of the tree to resist the pathogen. The most obvious differences were observed for Luteimonas, a genus that is also exclusively present in the healthy core microbiome. In a first in vitro screen of antagonists, approximately 11% of total isolates suppressed the growth of H. fraxineus, but a statistical test with two different H. fraxineus strains confirmed only the antagonistic activity of 8% of these isolates. The antagonistic isolates were assigned to Bacillus velezensis, Pantoea vagans, and Pseudomonas caspiana. Overall, our study provides a set of isolates or phylogenetic groups that might be involved in the process that prevents the penetration and spread of H. fraxineus. In the next step, in planta experiments are required with a longer period of exposure to H. fraxineus to evaluate effective isolates or consortia of isolates acting through direct antagonism or competition or indirectly by inducing resistance.
Collapse
Affiliation(s)
- Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | - Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
33
|
Kobayashi K, Aoyagi H. Microbial community structure analysis in Acer palmatum bark and isolation of novel bacteria IAD-21 of the candidate division FBP. PeerJ 2019; 7:e7876. [PMID: 31681511 PMCID: PMC6824334 DOI: 10.7717/peerj.7876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark. METHODS In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed. RESULTS At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and candidate division FBP, which contain many uncultured microbial species, existed in the A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, some genera belonging to the phyla mentioned were detected. A total of 70 isolates could be isolated and cultured using the low-nutrient agar media DR2A and PE03. Strains belonging to the phylum Actinobacteria were isolated most frequently. In addition, the newly identified bacterial strain IAP-33, presumed to belong to Acidobacteria, was isolated on PE03 medium. Of the isolated bacteria, 44 strains demonstrated less than 97% 16S rDNA sequence-similarity with type strains. Molecular phylogenetic analysis of IAD-21 showed the lowest similarity (79%), and analyses suggested it belongs to candidate division FBP. Culture of the strain IAD-21 was deposited in Japan Collection of Microorganisms (JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as JCM 32665 and DSM 108248, respectively. DISCUSSION Our results suggest that a variety of uncultured microorganisms exist in A. palmatum bark. Microorganisms acquirable from the bark may prove valuable for academic pursuits, such as studying microbial ecology, and the bark might be a promising source of uncultured bacterial isolates.
Collapse
Affiliation(s)
- Kazuki Kobayashi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Aoyagi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun 2019; 10:4135. [PMID: 31515535 PMCID: PMC6742659 DOI: 10.1038/s41467-019-11974-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Perennial grasses are promising feedstocks for biofuel production, with potential for leveraging their native microbiomes to increase their productivity and resilience to environmental stress. Here, we characterize the 16S rRNA gene diversity and seasonal assembly of bacterial and archaeal microbiomes of two perennial cellulosic feedstocks, switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus). We sample leaves and soil every three weeks from pre-emergence through senescence for two consecutive switchgrass growing seasons and one miscanthus season, and identify core leaf taxa based on occupancy. Virtually all leaf taxa are also detected in soil; source-sink modeling shows non-random, ecological filtering by the leaf, suggesting that soil is an important reservoir of phyllosphere diversity. Core leaf taxa include early, mid, and late season groups that were consistent across years and crops. This consistency in leaf microbiome dynamics and core members is promising for microbiome manipulation or management to support crop production. Microbial communities of plant leaf surfaces are ecologically important, but how they assemble and vary in time is unclear. Here, the authors identify core leaf microbiomes and seasonal patterns for two biofuel crops and show with source-sink models that soil is a reservoir of phyllosphere diversity.
Collapse
Affiliation(s)
- Keara L Grady
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Jackson W Sorensen
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Nejc Stopnisek
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - John Guittar
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Dr, Hickory Corners, MI, 49060, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA. .,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA. .,The Plant Resilience Institute, Michigan State University, East Lansing, MI, 48840, USA. .,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
35
|
Schlechter RO, Miebach M, Remus-Emsermann MN. Driving factors of epiphytic bacterial communities: A review. J Adv Res 2019; 19:57-65. [PMID: 31341670 PMCID: PMC6630024 DOI: 10.1016/j.jare.2019.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
Bacteria establish complex, compositionally consistent communities on healthy leaves. Ecological processes such as dispersal, diversification, ecological drift, and selection as well as leaf surface physicochemistry and topology impact community assembly. Since the leaf surface is an oligotrophic environment, species interactions such as competition and cooperation may be major contributors to shape community structure. Furthermore, the plant immune system impacts on microbial community composition, as plant cells respond to bacterial molecules and shape their responses according to the mixture of molecules present. Such tunability of the plant immune network likely enables the plant host to differentiate between pathogenic and non-pathogenic colonisers, avoiding costly immune responses to non-pathogenic colonisers. Plant immune responses are either systemically distributed or locally confined, which in turn affects the colonisation pattern of the associated microbiota. However, how each of these factors impacts the bacterial community is unclear. To better understand this impact, bacterial communities need to be studied at a micrometre resolution, which is the scale that is relevant to the members of the community. Here, current insights into the driving factors influencing the assembly of leaf surface-colonising bacterial communities are discussed, with a special focus on plant host immunity as an emerging factor contributing to bacterial leaf colonisation.
Collapse
Affiliation(s)
- Rudolf O. Schlechter
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Moritz Miebach
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mitja N.P. Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
36
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
37
|
Imperato V, Kowalkowski L, Portillo-Estrada M, Gawronski SW, Vangronsveld J, Thijs S. Characterisation of the Carpinus betulus L. Phyllomicrobiome in Urban and Forest Areas. Front Microbiol 2019; 10:1110. [PMID: 31191469 PMCID: PMC6549492 DOI: 10.3389/fmicb.2019.01110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/01/2019] [Indexed: 11/30/2022] Open
Abstract
Urban green areas are highly valued by citizens for their contribution to the quality of life in cities. Plants play an important role in mitigating airborne pollutants and are assisted in this role by the metabolic capacities of the millions of microbial cells that colonize leaf surfaces (phyllosphere). Many factors influence phyllosphere microbial community composition and function, but to what extent does airborne pollution in cities impact the composition of microbial communities and their functional degradation genes? Here we describe the characterization of the phyllospheric bacterial communities of Carpinus betulus L. trees (hornbeam) across three locations: the city center of Warsaw (Poland), a forest in a UNESCO World Heritage Site (Białowieża), and a forest in one of the world’s oldest operational oil fields (Bóbrka). C. betulus contained higher particulate matter (PM) concentrations, with higher concentrations of palladium and radon in the PM, on leaves in Warsaw than in the forests. Volatile organic compound (VOC) analyses of sampled air revealed higher concentrations of butanone methyl propanal, butylbenzene, and cyclohexane in Bóbrka than Warsaw and Białowieża, while in Warsaw, xylene and toluene were higher. Shotgun microbiome sequencing uncovered a dominance of Gammaproteobacteria (71%), mainly Pseudomonas spp., Actinobacteria, Alpha- and Betaproteobacteria, and Firmicutes. Community composition and function differed significantly between the forests and Warsaw city center. Statistically more hydrocarbon degradation genes were found in Białowieża compared to Warsaw and Bóbrka, and in vitro tests of diesel degradation and plant growth promotion traits of culturable representatives revealed that Białowieża held the highest number of bacteria with plant beneficial properties and degradation genes. This study provides the first detailed insights into the microbiome of C. betulus and sets the stage for developing to a more integrated understanding of phyllosphere microbiota in cities, and their relationships with human health.
Collapse
Affiliation(s)
- Valeria Imperato
- Department of Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lukasz Kowalkowski
- Department of Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Stanislaw W Gawronski
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jaco Vangronsveld
- Department of Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Skłodowska-Curie University, Lublin, Poland
| | - Sofie Thijs
- Department of Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
38
|
Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, Antaky C, Boraks A, Jones CA, Kuehu D, Lensing BR, Pejhanmehr M, Richardson DT, Riley PP. Phytobiomes are compositionally nested from the ground up. PeerJ 2019; 7:e6609. [PMID: 30918757 PMCID: PMC6428039 DOI: 10.7717/peerj.6609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/04/2019] [Indexed: 11/29/2022] Open
Abstract
Plant-associated microbes are critical players in host health, fitness and productivity. Despite microbes’ importance in plants, seeds are mostly sterile, and most plant microbes are recruited from an environmental pool. Surprisingly little is known about the processes that govern how environmental microbes assemble on plants in nature. In this study we examine how bacteria are distributed across plant parts, and how these distributions interact with spatial gradients. We sequenced amplicons of bacteria from the surfaces of six plant parts and adjacent soil of Scaevola taccada, a common beach shrub, along a 60 km transect spanning O’ahu island’s windward coast, as well as within a single intensively-sampled site. Bacteria are more strongly partitioned by plant part as compared with location. Within S. taccada plants, microbial communities are highly nested: soil and rhizosphere communities contain much of the diversity found elsewhere, whereas reproductive parts fall at the bottom of the nestedness hierarchy. Nestedness patterns suggest either that microbes follow a source/sink gradient from the ground up, or else that assembly processes correlate with other traits, such as tissue persistence, that are vertically stratified. Our work shines light on the origins and determinants of plant-associated microbes across plant and landscape scales.
Collapse
Affiliation(s)
- Anthony S Amend
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Gerald M Cobian
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Aki J Laruson
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Kristina Remple
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Sarah J Tucker
- Marine Biology Program, University of Hawaii at Manoa, Honolulu, HI, United States of America.,Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Kirsten E Poff
- Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Carmen Antaky
- Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Andre Boraks
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Casey A Jones
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Donna Kuehu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Becca R Lensing
- Marine Biology Program, University of Hawaii at Manoa, Honolulu, HI, United States of America.,Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Mersedeh Pejhanmehr
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Daniel T Richardson
- Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Paul P Riley
- Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
39
|
Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Sci Rep 2019; 9:492. [PMID: 30679567 PMCID: PMC6345786 DOI: 10.1038/s41598-018-36967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Based on the bilateral relationship between the gut microbiota and formation/function of the enteric nervous system (ENS), we sought to determine whether antibiotics-induced dysbiosis might impact the expressivity of genetically-induced ENS abnormalities. To address this, we took advantage of the TashT mouse model of Hirschsprung disease, in which colonic aganglionosis and hypoganglionosis are both much more severe in males. These defects result into two male-biased colon motility phenotypes: either megacolon that is lethal around weaning age or chronic constipation in adults, the latter being also associated with an increased proportion of nitrergic neurons in the distal ENS. Induction of dysbiosis using a cocktail of broad-spectrum antibiotics specifically impacted the colonic ENS of TashTTg/Tg mice in a stage-dependent manner. It further decreased the neuronal density at post-weaning age and differentially modulated the otherwise increased proportion of nitrergic neurons, which appeared normalized around weaning age and further increased at post-weaning age. These changes delayed the development of megacolon around weaning age but led to premature onset of severe constipation later on. Finally, local inhibition of nitric oxide signaling improved motility and prevented death by megacolon. We thus conclude that exposure to antibiotics can negatively influence the expressivity of a genetically-induced enteric neuropathy.
Collapse
|
40
|
Rogers TJ, Leppanen C, Brown V, Fordyce JA, LeBude A, Ranney T, Simberloff D, Cregger MA. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere 2018. [DOI: 10.1002/ecs2.2524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Timothy J. Rogers
- Biosciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Veronica Brown
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - James A. Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Anthony LeBude
- Department of Horticultural Science North Carolina State University Mills River North Carolina 28759 USA
| | - Thomas Ranney
- Department of Horticultural Science North Carolina State University Mills River North Carolina 28759 USA
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Melissa A. Cregger
- Biosciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
41
|
Abstract
Isoprene is a climate-active gas, produced in huge amounts by trees, yet we know little about its biogeochemical cycle. Bacteria able to grow on isoprene have been isolated from soils and sediments, but the phyllosphere, the principal isoprene source, has remained unexplored. Using targeted cultivation-independent techniques, we show that the phyllosphere of an isoprene-emitting tree contains a diverse and active isoprene-degrading population. We reconstruct the genome of an isoprene-degrading Variovorax strain and show that it contains a functional isoprene monooxygenase. This detailed study targets isoprene degraders from the phyllosphere, applies metaomics to isoprene degradation, and isolates and sequences an isoprene-degrading member of the Proteobacteria. The climate-active gas isoprene (2-methyl-1,3-butadiene) is released to the atmosphere in huge quantities, almost equaling that of methane, yet we know little about the biological cycling of isoprene in the environment. Although bacteria capable of growth on isoprene as the sole source of carbon and energy have previously been isolated from soils and sediments, no microbiological studies have targeted the major source of isoprene and examined the phyllosphere of isoprene-emitting trees for the presence of degraders of this abundant carbon source. Here, we identified isoprene-degrading bacteria in poplar tree-derived microcosms by DNA stable isotope probing. The genomes of isoprene-degrading taxa were reconstructed, putative isoprene metabolic genes were identified, and isoprene-related gene transcription was analyzed by shotgun metagenomics and metatranscriptomics. Gram-positive bacteria of the genus Rhodococcus proved to be the dominant isoprene degraders, as previously found in soil. However, a wider diversity of isoprene utilizers was also revealed, notably Variovorax, a genus not previously associated with this trait. This finding was confirmed by expression of the isoprene monooxygenase from Variovorax in a heterologous host. A Variovorax strain that could grow on isoprene as the sole carbon and energy source was isolated. Analysis of its genome confirmed that it contained isoprene metabolic genes with an identical layout and high similarity to those identified by DNA-stable isotope probing and metagenomics. This study provides evidence of a wide diversity of isoprene-degrading bacteria in the isoprene-emitting tree phyllosphere and greatly enhances our understanding of the biodegradation of this important metabolite and climate-active gas.
Collapse
|
42
|
Antwis RE, Lea JMD, Unwin B, Shultz S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. MICROBIOME 2018; 6:207. [PMID: 30466491 PMCID: PMC6251106 DOI: 10.1186/s40168-018-0593-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbiome composition is linked to host functional traits including metabolism and immune function. Drivers of microbiome composition are increasingly well-characterised; however, evidence of group-level microbiome convergence is limited and may represent a multi-level trait (i.e. across individuals and groups), whereby heritable phenotypes are influenced by social interactions. Here, we investigate the influence of spatial structuring and social interactions on the gut microbiome composition of Welsh mountain ponies. RESULTS We show that semi-feral ponies exhibit variation in microbiome composition according to band (group) membership, in addition to considerable within-individual variation. Spatial structuring was also identified within bands, suggesting that despite communal living, social behaviours still influence microbiome composition. Indeed, we show that specific interactions (i.e. mother-offspring and stallion-mare) lead to more similar microbiomes, further supporting the notion that individuals influence the microbiome composition of one another and ultimately the group. Foals exhibited different microbiome composition to sub-adults and adults, most likely related to differences in diet. CONCLUSIONS We provide novel evidence that microbiome composition is structured at multiple levels within populations of social mammals and thus may form a unit on which selection can act. High levels of within-individual variation in microbiome composition, combined with the potential for social interactions to influence microbiome composition, suggest the direction of microbiome selection may be influenced by the individual members present in the group. Although the functional implications of this require further research, these results lend support to the idea that multi-level selection can act on microbiomes.
Collapse
Affiliation(s)
- Rachael E. Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Jessica M. D. Lea
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Bryony Unwin
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Susanne Shultz
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P. Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem. MICROBIAL ECOLOGY 2018; 76:668-679. [PMID: 29500493 DOI: 10.1007/s00248-018-1161-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The diversity and factors influencing fungal assemblages in phyllosphere of Mediterranean tree species have been barely studied, especially when endophytic and epiphytic communities are simultaneously considered. In this work, the endophytic and epiphytic fungal communities from olive tree phyllosphere were studied. This tree species is natural from the Mediterranean region and adapted to grow under adverse climatic conditions. The main objectives were to determine whether there are differences between both fungal communities and to examine whether different abiotic (climate-related) and biotic (plant organs) factors play a pivotal role in structuring these communities. Both communities differed in size and composition, with epiphytic community being richer and more abundant, displaying also a dominance of melanized fungi. Season was the major driver of community composition, especially of epiphytes. Other drivers shaping epiphytes were wind speed and temperature, while plant organ, rainfall, and temperature were the major drivers for endophytic composition. In contrast, canopy orientation caused slight variations in community composition of fungi, but with distinct effects in spring and autumn seasons. In conclusion, epiphytic and endophytic communities are not driven by the same factors. Several sources of variation undergo complex interactions to form and maintain phyllosphere fungal community in Mediterranean climates. Climatic parameters have influence on these fungal communities, suggesting that they are likely to be affected by climate changes in a near future.
Collapse
Affiliation(s)
- Teresa Gomes
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - José Alberto Pereira
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal
| | - Jacinto Benhadi
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal
| | - Teresa Lino-Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Paula Baptista
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
44
|
Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, Fierer N. Novel bacterial lineages associated with boreal moss species. Environ Microbiol 2018; 20:2625-2638. [PMID: 29901277 DOI: 10.1111/1462-2920.14288] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
Mosses are critical components of boreal ecosystems where they typically account for a large proportion of net primary productivity and harbour diverse bacterial communities that can be the major source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have limited understanding of how microbial communities vary across boreal moss species and the extent to which local site conditions may influence the composition of these bacterial communities. We used marker gene sequencing to analyze bacterial communities associated with seven boreal moss species collected near Fairbanks, AK, USA. We found that host identity was more important than site in determining bacterial community composition and that mosses harbour diverse lineages of potential N2 -fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including candidate phylum WPS-2). We performed shotgun metagenomic sequencing to assemble genomes from the WPS-2 candidate phylum and found that these moss-associated bacteria are likely anoxygenic phototrophs capable of carbon fixation via RuBisCo with an ability to utilize byproducts of photorespiration from hosts via a glyoxylate shunt. These results give new insights into the metabolic capabilities of understudied bacterial lineages that associate with mosses and the importance of plant hosts in shaping their microbiomes.
Collapse
Affiliation(s)
- Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Julia Stuart
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Lily R Lewis
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Samantha Miller
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
45
|
Remus-Emsermann MNP, Schlechter RO. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. THE NEW PHYTOLOGIST 2018; 218:1327-1333. [PMID: 29504646 DOI: 10.1111/nph.15054] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/12/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1327 I. Introduction 1327 II. Individuality and the relevance of scales for the investigation of bacteria 1328 III. Bacterial aggregation and community patterning at the single-cell resolution 1329 IV. What are the effects on the plant host? 1330 V. Future directions and current questions 1331 Acknowledgements 1332 ORCID 1332 References 1332 SUMMARY: Leaf surfaces are home to diverse bacterial communities. Within these communities, every individual cell perceives its unique environment and responds accordingly. In this insight article, the perspective of the bacterial individual is assumed in an attempt to describe how the spatially heterogeneous leaf surface determines the fate of bacteria. To investigate behaviour at scales relevant to bacteria, single-cell approaches are essential. Single-cell studies provide important lessons about how current 'omics' approaches fail to give an accurate picture of the behaviour of bacterial populations in heterogeneous environments. Upcoming techniques will soon allow us to combine the power of single-cell and omics approaches.
Collapse
Affiliation(s)
- Mitja N P Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Rudolf O Schlechter
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
46
|
Phalnikar K, Kunte K, Agashe D. Dietary and developmental shifts in butterfly-associated bacterial communities. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171559. [PMID: 29892359 PMCID: PMC5990769 DOI: 10.1098/rsos.171559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts.
Collapse
Affiliation(s)
| | | | - Deepa Agashe
- Authors for correspondence: Deepa Agashe e-mail:
| |
Collapse
|
47
|
|
48
|
Flues S, Blokker M, Dumack K, Bonkowski M. Diversity of Cercomonad Species in the Phyllosphere and Rhizosphere of Different Plant Species with a Description of Neocercomonas epiphylla (Cercozoa, Rhizaria) a Leaf-Associated Protist. J Eukaryot Microbiol 2018; 65:587-599. [PMID: 29377417 DOI: 10.1111/jeu.12503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Cercomonads are among the most abundant and diverse groups of heterotrophic flagellates in terrestrial systems and show an affinity to plants. However, we still lack basic knowledge of plant-associated protists. We isolated 75 Cercomonadida strains from the phyllosphere and rhizosphere of plants from three functional groups: grasses (Poa sp.), legumes (Trifolium sp.) and forbs (Plantago sp.), representing 28 OTUs from the genera Cercomonas, Neocercomonas and Paracercomonas. The community composition differed clearly between phyllosphere and rhizosphere, but was not influenced by plant species identity. From these isolates we describe three novel cercomonad species including Neocercomonas epiphylla that was consistently and exclusively isolated from the phyllosphere. For each new species we provide a detailed morphological description as well as an 18S rDNA gene sequence as a distinct marker of species identity. Our data contribute to a better resolution of the systematics of cercomonads and their association with plants, by describing three novel species and adding gene sequences of 10 new cercomonad genotypes and of nine previously described species. In view of the functional importance of cercozoan communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of their composition, function and predator-prey interactions are clearly required.
Collapse
Affiliation(s)
- Sebastian Flues
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany
| | - Malte Blokker
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany
| | - Kenneth Dumack
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
49
|
Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity. mSystems 2017; 2:mSystems00087-17. [PMID: 29238751 PMCID: PMC5715107 DOI: 10.1128/msystems.00087-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.
Collapse
|
50
|
Manching HC, Carlson K, Kosowsky S, Smitherman CT, Stapleton AE. Maize Phyllosphere Microbial Community Niche Development Across Stages of Host Leaf Growth. F1000Res 2017; 6:1698. [PMID: 29623190 PMCID: PMC5861518 DOI: 10.12688/f1000research.12490.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
Background: The phyllosphere hosts a variety of microorganisms, including bacteria, which can play a positive role in the success of the host plant. Bacterial communities in the phylloplane are influenced by both biotic and abiotic factors, including host plant surface topography and chemistry, which change in concert with microbial communities as the plant leaves develop and age. Methods: We examined how the
Zea mays L. leaf microbial community structure changed with plant age. Ribosomal spacer length and scanning electron microscopic imaging strategies were used to assess microbial community composition across maize plant ages, using a novel staggered experimental design. Results: Significant changes in community composition were observed for both molecular and imaging analyses, and the two analysis methods provided complementary information about bacterial community structure within each leaf developmental stage. Conclusions: Both taxonomic and cell-size trait patterns provided evidence for niche-based contributions to microbial community development on leaves.
Collapse
Affiliation(s)
- Heather C Manching
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Kara Carlson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.,North Carolina Museum of Science, Raleigh, NC, USA
| | - Sean Kosowsky
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - C Tyler Smitherman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.,Nestlé, Inc., Danville, NC, USA
| | - Ann E Stapleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|