1
|
Li Z, Wei H, Li R, Wu B, Xu M, Yang X, Zhang Y, Liu Y. The effects of antihypertensive drugs on glucose metabolism. Diabetes Obes Metab 2024; 26:4820-4829. [PMID: 39140233 DOI: 10.1111/dom.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Abnormal glucose metabolism is a common disease of the endocrine system. The effects of drugs on glucose metabolism have been reported frequently in recent years, and since abnormal glucose metabolism increases the risk of microvascular and macrovascular complications, metabolic disorders, and infection, clinicians need to pay close attention to these effects. A variety of common drugs can affect glucose metabolism and have different mechanisms of action. Hypertension is a common chronic cardiovascular disease that requires long-term medication. Studies have shown that various antihypertensive drugs also have an impact on glucose metabolism. Among them, α-receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers can improve insulin resistance, while β-receptor blockers, thiazides and loop diuretics can impair glucose metabolism. The aim of this review was to discuss the mechanisms underlying the effects of various antihypertensive drugs on glucose metabolism in order to provide reference information for rational clinical drug use.
Collapse
Affiliation(s)
- Zhe Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Baofeng Wu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ming Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xifeng Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Clinical Research Center For Metabolic Diseases Of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Li XT. Beneficial effects of carvedilol modulating potassium channels on the control of glucose. Biomed Pharmacother 2022; 150:113057. [PMID: 35658228 DOI: 10.1016/j.biopha.2022.113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
The increased prevalence of hypertensive patients with type 2 diabetes mellitus (T2DM) is evident worldwide, leading to a higher risk of cardiovascular disease onset, which is substantially associated with disabilities and mortality in the clinic. In order to achieve the satisfyingly clinical outcomes and prognosis, the comprehensive therapies have been conducted with a beneficial effect on both blood pressure and glucose homeostasis, and clinical trials reveal that some kind of antihypertensive drugs such as angiotensin converting enzyme inhibitors (ACE-I) may, at least in part, meet the dual requirement during the disease management. As a nonselective β-blocker, carvedilol is employed for treating many cardiovascular diseases in clinical practice, including hypertension, angina pectoris and heart failure, and also exhibit the effectiveness for glycemic control and insulin resistance. Apart from alleviating sympathetic nervous system activity, several causes, such as lowering oxygen reactive species, may contribute to the effects of carvedilol on controlling plasma glucose levels, suggesting a feature of this drug having multiple targets. Interestingly, numerous distinct K+ channels expressed in pancreatic β-cells and peripheral insulin-sensitive tissues, which play a sentential role in glucose metabolism, are subjected to extensive modulation of carvdilol, establishing a linkage between K+ channels and drug's effects on the control of glucose. A variety of evidence shows that the impact of carvedilol on different K+ channels, including Kv, KAch, KATP and K2 P, can lead to positive influences for glucose homeostasis, contributing to its clinical beneficial effectiveness in treatment of hypertensive patients with T2DM. This review focus on the control of plasma glucose conferred by carvedilol modulation on K+ channels, providing the novel mechanistic explanation for drug's actions.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, Wuhan 430074, China; School of Medicine, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Primary Adipocytes as a Model for Insulin Sensitivity. Methods Mol Biol 2019. [PMID: 31586333 DOI: 10.1007/978-1-4939-9882-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Obesity and its comorbidity insulin resistance lead to the development of chronic metabolic diseases, such as impaired fasted blood glucose and type 2 diabetes. Adipose tissue plays an important role in whole-body glucose homeostasis, particularly in obese individuals; therefore, many in vivo models of type 2 diabetes are obese, such as Lepob/ob and Leprdb/db mice or ZDF rats. Primary adipocytes therefore represent an attractive in vitro model to study insulin-mediated glucose uptake to investigate the mechanisms of insulin resistance and explore the potential insulin-sensitizing properties of new antidiabetic drugs.Primary adipocytes are isolated by collagenase digestion of adipose tissue, Glucose transport is evaluated by the measurement of intracellular uptake of a tracer (D-[U14C] glucose). The uptake of [U-14 C] glucose reflects directly glucose transport.In this chapter, we will describe the protocol for the isolation of primary rodent adipocytes and the measurement of basal and insulin-stimulated glucose uptake.
Collapse
|
4
|
Pérez-Verdaguer M, Capera J, Ortego-Domínguez M, Bielanska J, Comes N, Montoro RJ, Camps M, Felipe A. Caveolar targeting links Kv1.3 with the insulin-dependent adipocyte physiology. Cell Mol Life Sci 2018; 75:4059-4075. [PMID: 29947924 PMCID: PMC11105548 DOI: 10.1007/s00018-018-2851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
Abstract
The voltage-dependent potassium channel Kv1.3 participates in peripheral insulin sensitivity. Genetic ablation of Kv1.3 triggers resistance to diet-induced weight gain, thereby pointing to this protein as a pharmacological target for obesity and associated type II diabetes. However, this role is under intense debate because Kv1.3 expression in adipose tissue raises controversy. We demonstrated that Kv1.3 is expressed in white adipose tissue from humans and rodents. Moreover, other channels, such as Kv1.1, Kv1.2, Kv1.4 and especially Kv1.5, from the same Shaker family are also present. Although elevated insulin levels and adipogenesis remodel the Kv phenotype, which could lead to multiple heteromeric complexes, Kv1.3 markedly participates in the insulin-dependent regulation of glucose uptake in mature adipocytes. Adipocyte differentiation increased the expression of Kv1.3, which is targeted to caveolae by molecular interactions with caveolin 1. Using a caveolin 1-deficient 3T3-L1 adipocyte cell line, we demonstrated that the localization of Kv1.3 in caveolar raft structures is important for proper insulin signaling. Insulin-dependent phosphorylation of the channel occurs at the onset of insulin-mediated signaling. However, when Kv1.3 was spatially outside of these lipid microdomains, impaired phosphorylation was exhibited. Our data shed light on the putative role of Kv1.3 in weight gain and insulin-dependent responses contributing to knowledge about adipocyte physiology.
Collapse
Affiliation(s)
- Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - María Ortego-Domínguez
- Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla, Av. Dr. Fedriani, s/n., 41009, Seville, Spain
| | - Joanna Bielanska
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Max-Planck-Institute of Experimental Medicine, Molecular Biology of Neuronal Signals, AG Oncophysiology, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Núria Comes
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Rafael J Montoro
- Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla, Av. Dr. Fedriani, s/n., 41009, Seville, Spain
| | - Marta Camps
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Nishizuka M, Horinouchi W, Yamada E, Ochiai N, Osada S, Imagawa M. KCNMA1, a pore-forming α-subunit of BK channels, regulates insulin signalling in mature adipocytes. FEBS Lett 2016; 590:4372-4380. [DOI: 10.1002/1873-3468.12465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Makoto Nishizuka
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Wataru Horinouchi
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Eri Yamada
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Natsuki Ochiai
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Shigehiro Osada
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Masayoshi Imagawa
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| |
Collapse
|
6
|
Chen L, Tuo B, Dong H. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters. Nutrients 2016; 8:nu8010043. [PMID: 26784222 PMCID: PMC4728656 DOI: 10.3390/nu8010043] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
7
|
Pérez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opin Ther Targets 2015; 20:577-91. [DOI: 10.1517/14728222.2016.1112792] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|