1
|
Simon SA, Aschmann V, Behrendt A, Hügler M, Engl LM, Pohlner M, Rolfes S, Brinkhoff T, Engelen B, Könneke M, Rodriguez-R LM, Bornemann TLV, Nuy JK, Rothe L, Stach TL, Beblo-Vranesevic K, Leuko S, Runzheimer K, Möller R, Conrady M, Huth M, Trabold T, Herkendell K, Probst AJ. Earth's most needed uncultivated aquatic prokaryotes. WATER RESEARCH 2024; 273:122928. [PMID: 39724798 DOI: 10.1016/j.watres.2024.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Aquatic ecosystems house a significant fraction of Earth's biosphere, yet most prokaryotes inhabiting these environments remain uncultivated. While recently developed genome-resolved metagenomics and single-cell genomics techniques have underscored the immense genetic breadth and metabolic potential residing in uncultivated Bacteria and Archaea, cultivation of these microorganisms is required to study their physiology via genetic systems, confirm predicted biochemical pathways, exploit biotechnological potential, and accurately appraise nutrient turnover. Over the past two decades, the limitations of culture-independent investigations highlighted the importance of cultivation in bridging this vast knowledge gap. Here, we collected more than 80 highly sought-after uncultivated lineages of aquatic Bacteria and Archaea with global ecological impact. In addition to fulfilling critical roles in global carbon, nitrogen, and sulfur cycling, many of these organisms are thought to partake in key symbiotic relationships. This review highlights the vital contributions of uncultured microbes in aquatic ecosystems, from lakes and groundwater to the surfaces and depths of the oceans and will guide current and future initiatives tasked with cultivating our planet's most elusive, yet highly consequential aquatic microflora.
Collapse
Affiliation(s)
- Sophie A Simon
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Vera Aschmann
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Annika Behrendt
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Michael Hügler
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Lisa M Engl
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Marion Pohlner
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sönke Rolfes
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Martin Könneke
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Austria
| | - Till L V Bornemann
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Julia K Nuy
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa Rothe
- Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Tom L Stach
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | | | - Stefan Leuko
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | - Ralf Möller
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Marius Conrady
- Faculty of Life Sciences, Biosystemtechnik, Humboldt University Berlin, Berlin, Germany
| | - Markus Huth
- Faculty of Life Sciences, Biosystemtechnik, Humboldt University Berlin, Berlin, Germany
| | - Thomas Trabold
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany
| | - Katharina Herkendell
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany; Department of Energy Process Engineering and Conversion Technologies for Renewable Energies, Technische Universität Berlin, Berlin, Germany
| | - Alexander J Probst
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Ou XL, Ou LJ, Yang YF. Bioavailability of dissolved organic matter (DOM) derived from seaweed Gracilaria lemaneiformis meditated by microorganisms. MARINE POLLUTION BULLETIN 2024; 209:117243. [PMID: 39522397 DOI: 10.1016/j.marpolbul.2024.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Seaweed Gracilaria lemaneiformis, a significant oceanic primary producer, releases substantial dissolved organic matter (DOM) during growth and decay, potentially impacting coastal organic carbon reservoirs and microbial communities. This study aimed to investigate the bioavailability of Gracilaria-derived DOM and its interactions with microbial communities. Laboratory experiments introduced Gracilaria-derived DOM into natural seawater, tracking variations in DOM composition, microbial structure, and eight extracellular enzyme activities over 168 h. The results indicated a rapid breakdown of dissolved organic carbon, nitrogen, and phosphorus, representing 48 % to 90 % of their total concentrations within 168 h, highlighting the high DOM bioavailability. Tryptophan substances were identified as the primary components of Gracilaria-derived DOM, being highly labile and utilized by microorganisms. Within the initial 0-12 h of DOM influx, Proteobacteria significantly increased and dominated in bacterial community, while after 48 h, as DOM decomposed, Desulfobacterota became the dominant group. The labile DOM stimulated bacteria, particularly Proteobacteria, to release substantial extracellular enzymes that peaked within the first 12 h. Subsequent substrate depletion led to decreased enzyme activities. Positive correlations were observed among bacterial abundance, enzyme activities, and tryptophan substances, emphasizing the intricate interplay among microbial communities, labile DOM, and extracellular enzymes. This study underscores the high bioavailability of Gracilaria-derived DOM and its interactions with microbial communities in nearshore environments.
Collapse
Affiliation(s)
- Xiao-Li Ou
- College of Life Science and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510632, China
| | - Lin-Jian Ou
- College of Life Science and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510632, China.
| | - Yu-Feng Yang
- College of Life Science and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Chen Y, Zhu S, Liu F, Gao B. Flagellar evolution and flagella-independent motility in Actinobacteria. Trends Microbiol 2024; 32:1049-1052. [PMID: 39153868 DOI: 10.1016/j.tim.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.
Collapse
Affiliation(s)
- Yuanyuan Chen
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Fan Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
4
|
Lee SJ, Yang J, Keum GB, Kwak J, Doo H, Choi S, Park DG, Kim CH, Kim HB, Lee JH. Therapeutic Potential of Lactiplantibacillus plantarum FB091 in Alleviating Alcohol-Induced Liver Disease through Gut-Liver Axis. J Microbiol Biotechnol 2024; 34:2100-2111. [PMID: 39300956 PMCID: PMC11540612 DOI: 10.4014/jmb.2407.07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
Alcoholic liver disease (ALD) poses a significant global health burden, often requiring liver transplantation and resulting in fatalities. Current treatments, like corticosteroids, effectively reduce inflammation but carry significant immunosuppressive risks. This study evaluates Lactiplantibacillus plantarum FB091, a newly isolated probiotic strain, as a safer alternative for ALD treatment. Using an in vivo mouse model, we assessed the effects of L. plantarum FB091 on alcohol-induced liver damage and gut microbiota composition. Alcohol and probiotics administration did not significantly impact water/feed intake or body weight. Histopathological analysis showed that L. plantarum FB091 reduced hepatocellular ballooning and inflammatory cell infiltration in liver tissues and mitigated structural damage in colon tissues, demonstrating protective effects against alcohol-induced damage. Biomarker analysis indicated that L. plantarum FB091 decreased aspartate aminotransferase levels, suggesting reduced liver damage, and increased alcohol dehydrogenase activity, indicating enhanced alcohol metabolism. Additionally, cytokine assays revealed a reduction in pro-inflammatory TNF-α and an increase in anti-inflammatory IL-10 levels in colon tissues of the L. plantarum FB091 group, suggesting an anti-inflammatory effect. Gut microbiota analysis showed changes in the L. plantarum FB091 group, including a reduction in Cyanobacteria and an increase in beneficial bacteria such as Akkermansia and Lactobacillus. These changes correlated with the recovery and protection of liver and colon health. Overall, L. plantarum FB091 shows potential as a therapeutic probiotic for managing ALD through its protective effects on liver and colon tissues, enhancement of alcohol metabolism, and beneficial modulation of gut microbiota. Further clinical studies are warranted to confirm these findings in humans.
Collapse
Affiliation(s)
- Soo-Jeong Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Yang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Sungwoo Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Geun Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Hong Kim
- Binggrae Company, Namyangju 12253, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
6
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Li B, Liang J, Phillips MA, Michael AJ. Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea. J Biol Chem 2023; 299:105005. [PMID: 37399976 PMCID: PMC10407285 DOI: 10.1016/j.jbc.2023.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
9
|
Kamada S, Wakabayashi R, Naganuma T. Phylogenetic Revisit to a Review on Predatory Bacteria. Microorganisms 2023; 11:1673. [PMID: 37512846 PMCID: PMC10385382 DOI: 10.3390/microorganisms11071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory bacteria, along with the biology of their predatory behavior, have attracted interest in terms of their ecological significance and industrial applications, a trend that has been even more pronounced since the comprehensive review in 2016. This mini-review does not cover research trends, such as the role of outer membrane vesicles in myxobacterial predation, but provides an overview of the classification and newly described taxa of predatory bacteria since 2016, particularly with regard to phylogenetic aspects. Among them, it is noteworthy that in 2020 there was a major phylogenetic reorganization that the taxa hosting Bdellovibrio and Myxococcus, formerly classified as Deltaproteobacteria, were proposed as the new phyla Bdellovibrionota and Myxococcota, respectively. Predatory bacteria have been reported from other phyla, especially from the candidate divisions. Predatory bacteria that prey on cyanobacteria and predatory cyanobacteria that prey on Chlorella have also been found. These are also covered in this mini-review, and trans-phylum phylogenetic trees are presented.
Collapse
Affiliation(s)
- Saki Kamada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Ryoka Wakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| |
Collapse
|
10
|
Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. JOURNAL OF PHYCOLOGY 2023; 59:12-51. [PMID: 36443823 DOI: 10.1111/jpy.13304] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial taxonomy is facing a period of rapid changes thanks to the ease of 16S rRNA gene sequencing and established workflows for description of new taxa. Since the last comprehensive review of the cyanobacterial system in 2014 until 2021, at least 273 species in 140 genera were newly described. These taxa were mainly placed into previously defined orders and families although several new families were proposed. However, the classification of most taxa still relied on hierarchical relationships inherited from the classical morphological taxonomy. Similarly, the obviously polyphyletic orders such as Synechococcales and Oscillatoriales were left unchanged. In this study, the rising number of genomic sequences of cyanobacteria and well-described reference strains allowed us to reconstruct a robust phylogenomic tree for taxonomic purposes. A less robust but better sampled 16S rRNA gene phylogeny was mapped to the phylogenomic backbone. Based on both these phylogenies, a polyphasic classification throughout the whole phylum of Cyanobacteria was created, with ten new orders and fifteen new families. The proposed system of cyanobacterial orders and families relied on a phylogenomic tree but still employed phenotypic apomorphies where possible to make it useful for professionals in the field. It was, however, confirmed that morphological convergence of phylogenetically distant taxa was a frequent phenomenon in cyanobacteria. Moreover, the limited phylogenetic informativeness of the 16S rRNA gene, resulting in ambiguous phylogenies above the genus level, emphasized the integration of genomic data as a prerequisite for the conclusive taxonomic placement of a vast number of cyanobacterial genera in the future.
Collapse
Affiliation(s)
- Otakar Strunecký
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Anna Pavlovna Ivanova
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jan Mareš
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Department of Botany, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Chuvochina M, Mussig AJ, Chaumeil PA, Skarshewski A, Rinke C, Parks DH, Hugenholtz P. Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes. FEMS Microbiol Lett 2023; 370:fnad071. [PMID: 37480240 PMCID: PMC10408702 DOI: 10.1093/femsle/fnad071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above the rank of genus that were only made publicly available via the GTDB website without associated published taxonomic descriptions. This has sometimes led to confusion in the literature and databases. A number of the provisional GTDB names were later published in other studies, while many still lack authorships. To reduce further confusion, here we propose names and descriptions for 329 GTDB-defined prokaryotic taxa, 223 of which are suitable for validation under the International Code of Nomenclature of Prokaryotes (ICNP) and 49 under the Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode). For the latter, we designated 23 genomes as type material. An additional 57 taxa that do not currently satisfy the validation criteria of either code are proposed as Candidatus.
Collapse
Affiliation(s)
- Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Aaron J Mussig
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Pierre-Alain Chaumeil
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Adam Skarshewski
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Christian Rinke
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Donovan H Parks
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| |
Collapse
|
12
|
Nuccio DA, Normann MC, Zhou H, Grippo AJ, Singh P. Microbiome and Metabolome Variation as Indicator of Social Stress in Female Prairie Voles. Int J Mol Sci 2023; 24:1677. [PMID: 36675193 PMCID: PMC9861106 DOI: 10.3390/ijms24021677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Social isolation is detrimental to the health of social mammals inducing neurochemical and hormonal changes related to depression and anxiety, as well as impairments of cardiovascular and immune functioning. Likewise, perceptions of loneliness are increasingly recognized as detrimental to human psychological well-being, cognitive functioning, and physical health. Few studies, however, have examined the impact of social isolation on the intestinal microbiome and metabolome. To better understand the impact of social isolation on these systems, intestinal microbiota, and the systemic impact via the gut-brain axis, we employed prairie voles. Physiological stress on female prairie voles (n = 22) either with a same-sex sibling (n = 11) or in isolation (n = 11) for four weeks demonstrated behavioral indicators of increased anxiety and depression in isolated voles (p ≤ 0.01). Bacterial DNA from fecal and colon samples, collected at five time points (T0-4), were sequenced for all nine hypervariable regions of the 16S rRNA gene. Microbiome analyses revealed several differences in gut communities of paired and isolated voles with greater differences at T4. Notably, several taxa associated with host health including Anaerostipes and Lactobacillaceae were more prevalent in paired voles, whereas several taxa associated with known pathogens (e.g., Staphylococcaceae and Enterococcus) or disease were elevated in isolated animals. Similarly, metabolome analyses suggested isolated voles, when compared to paired animals, exhibited differences in metabolites associated with diabetes and colitis. These findings further contribute to our understanding of the harmful effects of social isolation, which cause perturbations in the gut microbiome and serum metabolites.
Collapse
Affiliation(s)
- Daniel A. Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Marigny C. Normann
- Department of Psychology, Northern Illinois University, Dekalb, IL 60115, USA
| | - Haiming Zhou
- Department of Statistics and Actuarial Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, Dekalb, IL 60115, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
13
|
Butarelli ACDA, Ferreira LSDS, Riyuzo R, Dall'Agnol HMB, Piroupo CM, da Silva AM, Setubal JC, Dall'Agnol LT. Diversity assessment of photosynthesizers: comparative analysis of pre-cultivated and natural microbiome of sediments from Cerrado biome in Maranhão, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77359-77374. [PMID: 35675015 DOI: 10.1007/s11356-022-21229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microorganisms are important components of most ecosystems and have important roles regarding biogeochemical cycles and the basis of the trophic chain. However, they sometimes are present in low abundance compared to other heterotrophic organisms. The Chapada das Mesas National Park (PNCM) is a Conservation Unit in Brazilian Cerrado biome, which is considered a hotspot for biodiversity conservation and possesses important rivers, waterfalls, and springs with economical and touristic importance. The aim of this study was to perform a comparative analysis of enriched and total microbiome of sediments to understand the impact of pre-cultivation in discovery of underrepresented groups like photosynthesizers. All sediment samples were cultivated in BG-11 medium under illumination to enrich for photosynthetic microorganisms and both the raw samples and the enriched ones were submitted to DNA extraction and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene on the Ion Torrent platform. The reads were analyzed using QIIME2 software and the Phyloseq package. The enrichment allowed detection and identification of many genera of cyanobacteria in the Chapada das Mesas National Park (PNCM), which would probably not be possible without the combination of approaches. A total of 58 groups of photosynthetic microorganisms were classified in the samples from the enrichments and their relative abundance based on amplified 16S rRNA sequences were estimated, highlighting the genus Synechocystis which represented 10.10% of the abundance of the phylum Cyanobacteria and the genus Dunaliella, which represented 45.66% of the abundance of algae as the most abundant groups at the PNCM. In the enrichments, microorganisms from the phyla Proteobacteria (45.2%), Bacteroidetes (18%), and Planctomycetes (3.3%) were also identified, since there are ecological associations between the photosynthetic community and other groups of heterotrophic microorganisms. As for the functional analysis, metabolic functions associated with methanotrophy and methylotrophy, hydrocarbon degradation, phototrophy, and nitrogen fixation were predicted. The results highlight a great diversity of photosynthetic microorganisms in Cerrado and the importance of using a combination of approaches when analyzing target groups which are usually underrepresented such as cyanobacteria and microalgae.
Collapse
Affiliation(s)
- Ana Carolina de Araújo Butarelli
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, 05508-120, Brazil
| | - Lucas Salomão de Sousa Ferreira
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, 05508-120, Brazil
| | - Raquel Riyuzo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Hivana Melo Barbosa Dall'Agnol
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65080-805, Brazil
| | - Carlos Morais Piroupo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Leonardo Teixeira Dall'Agnol
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil.
| |
Collapse
|
14
|
Changes in Soil Microbial Community and Carbon Flux Regime across a Subtropical Montane Peatland-to-Forest Successional Series in Taiwan. FORESTS 2022. [DOI: 10.3390/f13060958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subtropical montane peatland is among several rare ecosystems that continue to receive insufficient scientific exploration. We analyzed the vegetation types and soil bacterial composition, as well as surface carbon dioxide and methane fluxes along a successional peatland-to-upland-forest series in one such ecosystem in Taiwan. The Yuanyang Lake (YYL) study site is characterized by low temperature, high precipitation, prevailing fog, and acidic soil, which are typical conditions for the surrounding dominant Chamaecyparis obtusa var. formosana forest. Bacterial communities were dominated by Acidobacteriota and Proteobacteria. Along the bog-to-forest gradient, Proteobacteria decreased and Acidobacteriota increased while CO2 fluxes increased and CH4 fluxes decreased. Principal coordinate analysis allowed separating samples into four clusters, which correspond to samples from the bog, marsh, forest, and forest outside of the watershed. The majority of bacterial genera were found in all plots, suggesting that these communities can easily switch to other types. Variation among samples from the same vegetation type suggests influence of habitat heterogeneity on bacterial community composition. Variations of soil water content and season caused the variations of carbon fluxes. While CO2 flux decreased exponentially with increasing soil water content, the CH4 fluxes exhibited an exponential increase together with soil water content. Because YYL is in a process of gradual terrestrialization, especially under the warming climate, we expect changes in microbial composition and the greenhouse gas budget at the landscape scale within the next decades.
Collapse
|
15
|
Cano-Díaz C, Maestre FT, Wang J, Li J, Singh BK, Ochoa V, Gozalo B, Delgado-Baquerizo M. Effects of vegetation on soil cyanobacterial communities through time and space. THE NEW PHYTOLOGIST 2022; 234:435-448. [PMID: 35088410 DOI: 10.1111/nph.17996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Photoautotrophic soil cyanobacteria play essential ecological roles and are known to exhibit large changes in their diversity and abundance throughout early succession. However, much less is known about how and why soil cyanobacterial communities change as soil develops over centuries and millennia, and the effects that vegetation have on such communities. We combined an extensive field survey, including 16 global soil chronosequences across contrasting ecosystems (from deserts to tropical forests), with molecular analyses to investigate how the diversity and abundance of photosynthetic and nonphotosynthetic soil cyanobacteria are affected by vegetation change during soil development, over time periods from hundreds to thousands of years. We show that, in most chronosequences, the abundance, species richness and community composition of soil cyanobacteria are relatively stable as soil develops (from centuries to millennia). Regardless of soil age, forest chronosequences were consistently dominated by nonphotosynthetic cyanobacteria (Vampirovibrionia), while grasslands and shrublands were dominated by photosynthetic cyanobacteria. Chronosequences undergoing drastic vegetation shifts (e.g. transitions from grasslands to forests) experienced significant changes in the composition of soil cyanobacterial communities. Our results advance our understanding of the ecology of cyanobacterial classes, and of the understudied nonphotosynthetic cyanobacteria in particular, and highlight the key role of vegetation as a major driver of their temporal dynamics as soil develops.
Collapse
Affiliation(s)
- Concha Cano-Díaz
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
- CISAS - Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Juntao Wang
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Jing Li
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
- Beijing Key Laboratory of Wetland Ecological Function and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Brajesh K Singh
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, E-41012, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, 41013, Spain
| |
Collapse
|
16
|
Hu C, Rzymski P. Non-Photosynthetic Melainabacteria (Cyanobacteria) in Human Gut: Characteristics and Association with Health. Life (Basel) 2022; 12:life12040476. [PMID: 35454968 PMCID: PMC9029806 DOI: 10.3390/life12040476] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
Gut microorganisms are comprised of thousands of species and play an important role in the host’s metabolism, overall health status, and risk of disease. Recently, the discovery of non-photosynthetic cyanobacteria (class “Melainabacteria”) in the human and animal gut triggered a broad interest in studying cyanobacteria’s evolution, physiology, and ecological relevance of the Melainabacteria members. In the present paper, we review the general characteristics of Melainabacteria, their phylogeny, distribution, and ecology. The potential link between these microorganisms and human health is also discussed based on available human-microbiome studies. Their abundance tends to increase in patients with selected neurodegenerative, gastrointestinal, hepatic, metabolic, and respiratory diseases. However, the available evidence is correlative and requires further longitudinal studies. Although the research on Melainabacteria in the human gut is still in its infancy, elucidation of their role appears important in better understanding microbiome–human health interactions. Further studies aiming to identify particular gut cyanobacteria species, culture them in vitro, and characterize them on the molecular, biochemical, and physiological levels are encouraged.
Collapse
Affiliation(s)
- Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Correspondence: (C.H.); (P.R.)
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
- Correspondence: (C.H.); (P.R.)
| |
Collapse
|
17
|
Abstract
The phylum "Candidatus Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic Methanosaeta, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to Bacteria and to Archaea indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "Candidatus Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM. IMPORTANCE Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on Archaea and Bacteria. We detected sick and dead cells of the filamentous archaeon Methanosaeta in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "Candidatus Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "Candidatus Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "Candidatus Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.
Collapse
|
18
|
Wang N, Li H, Wang B, Ding J, Liu Y, Wei Y, Li J, Ding GC. Taxonomic and Functional Diversity of Rhizosphere Microbiome Recruited From Compost Synergistically Determined by Plant Species and Compost. Front Microbiol 2022; 12:798476. [PMID: 35095808 PMCID: PMC8792965 DOI: 10.3389/fmicb.2021.798476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022] Open
Abstract
Compost is frequently served as the first reservoir for plants to recruit rhizosphere microbiome when used as growing substrate in the seedling nursery. In the present study, recruitment of rhizosphere microbiome from two composts by tomato, pepper, or maize was addressed by shotgun metagenomics and 16S rRNA amplicon sequencing. The 16S rRNA amplicon sequencing analysis showed that 41% of variation in the rhizosphere bacterial community was explained by compost, in contrast to 23% by plant species. Proteobacterial genera were commonly recruited by all three plant species with specific selections for Ralstonia by tomato and Enterobacteria by maize. These findings were confirmed by analysis of 16S rRNA retrieved from the shotgun metagenomics library. Approximately 70% of functional gene clusters differed more than sevenfold in abundance between rhizosphere and compost. Functional groups associated with the sensing and up-taking of C3 and C4 carboxylic acids, amino acids, monosaccharide, production of antimicrobial substances, and antibiotic resistance were over-represented in the rhizosphere. In summary, compost and plant species synergistically shaped the composition of the rhizosphere microbiome and selected for functional traits associated with the competition on root exudates.
Collapse
Affiliation(s)
- Ning Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Huixiu Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Tangshan Normal University, Tangshan, China
| | - Bo Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Jia Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yingjie Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Guo-Chun Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- *Correspondence: Guo-Chun Ding,
| |
Collapse
|
19
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
20
|
Shen X, Wang B, Yang N, Zhang L, Shen D, Wu H, Dong Y, Niu B, Chou SH, Puopolo G, Fan J, Qian G. Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system. Environ Microbiol 2021; 23:4673-4688. [PMID: 34227200 DOI: 10.1111/1462-2920.15662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/03/2021] [Indexed: 12/23/2022]
Abstract
Soil microbiome comprises numerous microbial species that continuously interact with each other. Among the modes of diverse interactions, cell-cell killing may play a key role in shaping the microbiome composition. Bacteria deploy various secretion systems to fend off other microorganisms and Type IV Secretion System (T4SS) in pathogenic bacteria was shown to function as a contact-dependent, inter-bacterial killing system only recently. The present study investigated the role played by T4SS in the killing behaviour of the soilborne biocontrol bacterium Lysobacter enzymogenes OH11. Results showed that L. enzymogenes OH11 genome encompasses genes encoding all the components of T4SS and effectors potentially involved in inter-bacterial killing system. Generation of knock-out mutants revealed that L. enzymogenes OH11 uses T4SS as the main contact-dependent weapon against other soilborne bacteria. The T4SS-mediated killing behaviour of L. enzymogenes OH11 decreased the antibacterial and antifungal activity of two Pseudomonas spp. but at the same time, protected carrot from infection by Pectobacterium carotovorum. Overall, this study showed for the first time the involvement of T4SS in the killing behaviour of L. enzymogenes and its impact on the multiple interactions occurring in the soil microbiome.
Collapse
Affiliation(s)
- Xi Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxin Wang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianda Yang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Dong
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ben Niu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Gerardo Puopolo
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige, 38098, Italy.,Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, San Michele all'Adige, 38098, Italy
| | - Jiaqin Fan
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Oliver T, Sánchez-Baracaldo P, Larkum AW, Rutherford AW, Cardona T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148400. [PMID: 33617856 PMCID: PMC8047818 DOI: 10.1016/j.bbabio.2021.148400] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Oxygenic photosynthesis starts with the oxidation of water to O2, a light-driven reaction catalysed by photosystem II. Cyanobacteria are the only prokaryotes capable of water oxidation and therefore, it is assumed that the origin of oxygenic photosynthesis is a late innovation relative to the origin of life and bioenergetics. However, when exactly water oxidation originated remains an unanswered question. Here we use phylogenetic analysis to study a gene duplication event that is unique to photosystem II: the duplication that led to the evolution of the core antenna subunits CP43 and CP47. We compare the changes in the rates of evolution of this duplication with those of some of the oldest well-described events in the history of life: namely, the duplication leading to the Alpha and Beta subunits of the catalytic head of ATP synthase, and the divergence of archaeal and bacterial RNA polymerases and ribosomes. We also compare it with more recent events such as the duplication of Cyanobacteria-specific FtsH metalloprotease subunits and the radiation leading to Margulisbacteria, Sericytochromatia, Vampirovibrionia, and other clades containing anoxygenic phototrophs. We demonstrate that the ancestral core duplication of photosystem II exhibits patterns in the rates of protein evolution through geological time that are nearly identical to those of the ATP synthase, RNA polymerase, or the ribosome. Furthermore, we use ancestral sequence reconstruction in combination with comparative structural biology of photosystem subunits, to provide additional evidence supporting the premise that water oxidation had originated before the ancestral core duplications. Our work suggests that photosynthetic water oxidation originated closer to the origin of life and bioenergetics than can be documented based on phylogenetic or phylogenomic species trees alone.
Collapse
Affiliation(s)
- Thomas Oliver
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
22
|
Hungate BA, Marks JC, Power ME, Schwartz E, van Groenigen KJ, Blazewicz SJ, Chuckran P, Dijkstra P, Finley BK, Firestone MK, Foley M, Greenlon A, Hayer M, Hofmockel KS, Koch BJ, Mack MC, Mau RL, Miller SN, Morrissey EM, Propster JR, Purcell AM, Sieradzki E, Starr EP, Stone BWG, Terrer C, Pett-Ridge J. The Functional Significance of Bacterial Predators. mBio 2021; 12:e00466-21. [PMID: 33906922 PMCID: PMC8092244 DOI: 10.1128/mbio.00466-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to nonpredatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than nonpredatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolf-pack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than those of nonpredators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from those of nonpredators. This finding supports the ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow and that predatory bacteria influence element flow through microbial food webs.IMPORTANCE The word "predator" may conjure images of leopards killing and eating impala on the African savannah or of great white sharks attacking elephant seals off the coast of California. But microorganisms are also predators, including bacteria that kill and eat other bacteria. While predatory bacteria have been found in many environments, it has been challenging to document their importance in nature. This study quantified the growth of predatory and nonpredatory bacteria in soils (and one stream) by tracking isotopically labeled substrates into newly synthesized DNA. Predatory bacteria were more active than nonpredators, and obligate predators, such as Bdellovibrionales and Vampirovibrionales, increased in growth rate in response to added substrates at the base of the food chain, strong evidence of trophic control. This work provides quantitative measures of predator activity and suggests that predatory bacteria-along with protists, nematodes, and phages-are active and important in microbial food webs.
Collapse
Affiliation(s)
- Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jane C Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mary E Power
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter Chuckran
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Brianna K Finley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Megan Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alex Greenlon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Samantha N Miller
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Jeffrey R Propster
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ella Sieradzki
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Evan P Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Bram W G Stone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
23
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
24
|
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972-6016. [DOI: 10.1099/ijsem.0.004213] [Citation(s) in RCA: 696] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class
Deltaproteobacteria
comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum
Proteobacteria
, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class
Deltaproteobacteria
encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the
Oligoflexia
. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes
Deltaproteobacteria
and
Oligoflexia
in the phylum
Proteobacteria
. Instead, the great majority of currently recognized members of the class
Deltaproteobacteria
are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class
Oligoflexia
represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum
Thermodesulfobacteria
, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the
Thermodesulfobacteria
rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.
Collapse
Affiliation(s)
- David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Maria Chuvochina
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claus Pelikan
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Alexander Loy
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
25
|
Chen J, Li H, Zhang Z, He C, Shi Q, Jiao N, Zhang Y. DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater. WATER RESEARCH 2020; 185:116268. [PMID: 32784034 DOI: 10.1016/j.watres.2020.116268] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Under climate warming and coastal eutrophication, outbreaks of green tides have increased in recent decades; e.g., the world's largest green tide caused by Ulva prolifera has occurred in the Yellow Sea for 13 consecutive years. The massive assemblage of macroalgae absorbs large amounts of atmospheric CO2 and converts it into biomass. After the green tide, millions of tons of the macroalgal biomass sink to the seabed to be degraded eventually; this inevitably has a significant impact on the coastal organic carbon pool and microbial community. However, this impact is poorly understood. Here, the degradation of Ulva prolifera over 520 days revealed that relatively sufficient degradation of the macroalgae occurred at ca. 7 months. The rapid release of dissolved organic carbon (DOC) mainly occurred in the first week, which not only increased the size and diversity of the DOC pool in a short time but also promoted the rapid growth of bacteria and led to hypoxia and acidification of the seawater. After that, the labile portion of DOC was gradually used up by bacteria within one month, while the degradation of semi-labile or semi-refractory DOC occurred in half a year. The remaining DOC existed in the form of refractory DOC (RDOC), resisting bacterial consumption and remaining stable for 10 months. During the long-term degradation process, bacterial community structure and metabolic function showed obvious successional characteristics, driving the gradual transformation of DOC from labile to refractory through the microbial carbon pump mechanism. After the long-term degradation, the remaining RDOC accounted for approximately 1.6% of the macroalgal carbon biomass. As RDOC can maintain long-term stability, we propose that the frequent outbreaks of green tides not only affect microbial processes but also may have an important cumulative effect on the coastal RDOC pool.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Xiamen University, Xiamen, 361100, China.
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, Moraleda-Muñoz A, Muñoz-Dorado J. The antibiotic crisis: How bacterial predators can help. Comput Struct Biotechnol J 2020; 18:2547-2555. [PMID: 33033577 PMCID: PMC7522538 DOI: 10.1016/j.csbj.2020.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Discovery of antimicrobials in the past century represented one of the most important advances in public health. Unfortunately, the massive use of these compounds in medicine and other human activities has promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic crisis is creating an urgent need for research into new biological weapons with the ability to kill these superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell therapeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axenic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In this review we discuss potential of the studies on predator-prey interaction to provide alternative solutions to the problem of antibiotic resistance.
Collapse
Key Words
- AR, antibiotic resistance
- ARB, antibiotic-resistant bacteria
- ARG, antibiotic-resistant gene
- Antibiotic crisis
- BALOs
- BALOs, Bdellovibrio and like organisms
- BGC, biosynthetic gene cluster
- Bacterial predators
- HGT, horizontal gene transfer
- MDRB, multi-drug resistant bacteria
- Myxobacteria
- NRPS, nonribosomal peptide synthetase
- OMV, outer membrane vesicle
- OSMAC, one strain many compounds
- PKS, polyketide synthase
- SM, secondary metabolite
- WHO, World Health Organization
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
27
|
Steichen SA, Gao S, Waller P, Brown JK. Association between algal productivity and phycosphere composition in an outdoor Chlorella sorokiniana reactor based on multiple longitudinal analyses. Microb Biotechnol 2020; 13:1546-1561. [PMID: 32449601 PMCID: PMC7415377 DOI: 10.1111/1751-7915.13591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae as a biofuel source are of great interest. Bacterial phycosphere inhabitants of algal cultures are hypothesized to contribute to productivity. In this study, the bacterial composition of the Chlorella sorokiniana phycosphere was determined over several production cycles in different growing seasons by 16S rRNA gene sequencing and identification. The diversity of the phycosphere increased with time during each individual reactor run, based on Faith's phylogenetic diversity metric versus days post-inoculation (R = 0.66, P < 0.001). During summer months, Vampirovibrio chlorellavorus, an obligate predatory bacterium, was prevalent. Bacterial sequences assigned to the Rhizobiales, Betaproteobacteriales and Chitinophagales were positively associated with algal biomass productivity. Applications of the general biocide, benzalkonium chloride, to a subset of experiments intended to abate V. chlorellavorus appeared to temporarily suppress phycosphere bacterial growth, however, there was no relationship between those bacterial taxa suppressed by benzalkonium chloride and their association with algal productivity, based on multinomial model correlations. Algal health was approximated using a model-based metric, or the 'Health Index' that indicated a robust, positive relationship between C. sorokiniana fitness and presence of members belonging to the Burholderiaceae and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade. Bacterial community composition was linked to the efficiency of microalgal biomass production and algal health.
Collapse
Affiliation(s)
- Seth A. Steichen
- School of Plant SciencesThe University of Arizona1140 E South Campus DrTucsonAZ85721USA
| | - Song Gao
- Pacific Northwest National Laboratory1529 West Sequim Bay RoadSequimWA98382USA
| | - Peter Waller
- Biosystems EngineeringThe University of Arizona1177 E 4th StTucsonAZ85721USA
| | - Judith K. Brown
- School of Plant SciencesThe University of Arizona1140 E South Campus DrTucsonAZ85721USA
| |
Collapse
|
28
|
A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME JOURNAL 2020; 14:2142-2152. [PMID: 32424249 PMCID: PMC7368068 DOI: 10.1038/s41396-020-0668-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Clues to the evolutionary steps producing innovations in oxygenic photosynthesis may be preserved in the genomes of organisms phylogenetically placed between non-photosynthetic Vampirovibrionia (formerly Melainabacteria) and the thylakoid-containing Cyanobacteria. However, only two species with published genomes are known to occupy this phylogenetic space, both within the genus Gloeobacter. Here, we describe nearly complete, metagenome-assembled genomes (MAGs) of an uncultured organism phylogenetically placed near Gloeobacter, for which we propose the name Candidatus Aurora vandensis {Au’ro.ra. L. fem. n. aurora, the goddess of the dawn in Roman mythology; van.de’nsis. N.L. fem. adj. vandensis of Lake Vanda, Antarctica}. The MAG of A. vandensis contains homologs of most genes necessary for oxygenic photosynthesis including key reaction center proteins. Many accessory subunits associated with the photosystems in other species either are missing from the MAG or are poorly conserved. The MAG also lacks homologs of genes associated with the pigments phycocyanoerethrin, phycoeretherin and several structural parts of the phycobilisome. Additional characterization of this organism is expected to inform models of the evolution of oxygenic photosynthesis.
Collapse
|
29
|
Wang S, Mu D, Du ZJ. Persicimonas caeni gen. nov., sp. nov., the Representative of a Novel Wide-Ranging Predatory Taxon in Bradymonadales. Front Microbiol 2020; 11:698. [PMID: 32390976 PMCID: PMC7188933 DOI: 10.3389/fmicb.2020.00698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
A novel bacterial strain, designated YN101T, was isolated from a marine solar saltern in the coast of Weihai, Shandong Province, China. Strain YN101T was Gram-stain negative, facultatively anaerobic, oxidase and catalase negative bacterium with the ability to prey on other microbes. A cross-streaking culture method was utilized to analyze the predatory activity of strain YN101T. The results showed strain YN101T could prey on various bacteria, either Gram-stain negative or Gram-stain positive. According to the predatory assays, different species in the same genus may behave differently when attacked by strain YN101T. The predatory behavior of strain YN101T to four typical species was analyzed, and furthermore, predation to Algoriphagus marinus am2T were quantitatively studied by fluorogenic quantitative PCR, and the gene copies decreased over two magnitudes. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YN101T shared the greatest sequence similarity of 93.9% to Bradymonas sediminis FA350T. The complete genome sequence of strain YN101T was 8,047,306 bp in size and the genomic DNA G + C content was 63.8 mol%. The digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) values between strain YN101T and B. sediminis FA350T were 13.9 and 74.0%. The genetic features showed that the biosynthesis of many important compounds was deficient in genome of strain YN101T, which may lead to its predation. Moreover, its genome encoded many genes affiliated with type IV pili, secretion system, membrane proteins and transduction proteins. Similar with myxobacteria and Bdellovibrio and like organisms (BALOs), these genes should play important roles in motility, adhesion or virulence to attack prey cells during predation. The predominant polar lipid profile of strain YN101T consisted of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), and one unidentified aminophospholipid (APL). The major cellular fatty acid of strain YN101T was iso-C17:0, and the sole respiratory quinone was MK-7. Based on the chemotaxonomic, physiological and biochemical characteristics, strain YN101T represents a novel species of a novel genus in the family Bradymonadaceae, for which the name Persicimonas caeni gen. nov., sp. nov. is proposed. The type strain is YN101T (=KCTC 72083T = MCCC 1H00374T).
Collapse
Affiliation(s)
- Shuo Wang
- Marine College, Shandong University, Weihai, China
| | - Dashuai Mu
- Marine College, Shandong University, Weihai, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
31
|
Peterson VL, Richards JB, Meyer PJ, Cabrera-Rubio R, Tripi JA, King CP, Polesskaya O, Baud A, Chitre AS, Bastiaanssen TFS, Woods LS, Crispie F, Dinan TG, Cotter PD, Palmer AA, Cryan JF. Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine 2020; 55:102769. [PMID: 32403084 PMCID: PMC7218262 DOI: 10.1016/j.ebiom.2020.102769] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. METHODS Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. RESULTS Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. CONCLUSIONS These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex.
Collapse
Affiliation(s)
- Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Raul Cabrera-Rubio
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Amelie Baud
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, CA, USA; Center for Microbiome Innovation, University of California San Diego, CA, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
32
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
33
|
Mitchell RJ, Mun W, Mabekou SS, Jang H, Choi SY. Compounds affecting predation by and viability of predatory bacteria. Appl Microbiol Biotechnol 2020; 104:3705-3713. [DOI: 10.1007/s00253-020-10530-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
|
34
|
Chun SJ, Cui Y, Lee JJ, Choi IC, Oh HM, Ahn CY. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. WATER RESEARCH 2020; 170:115326. [PMID: 31838363 DOI: 10.1016/j.watres.2019.115326] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 05/26/2023]
Abstract
Every member of the ecological community is connected via a network of vital and complex relationships, called the web of life. To elucidate the ecological network and interactions among producers, consumers, and decomposers in the Daechung Reservoir, Korea, during cyanobacterial harmful algal blooms (cyanoHAB), especially those involving Microcystis, we investigated the diversity and compositions of the cyanobacterial (16S rRNA gene), including the genotypes of Microcystis (cpcBA-IGS gene), non-cyanobacterial (16S), and eukaryotic (18S) communities through high-throughput sequencing. Microcystis blooms were divided into the Summer Major Bloom and Autumn Minor Bloom with different dominant genotypes of Microcystis. Network analysis demonstrated that the modules involved in the different phases of the Microcystis blooms were categorized into the Pre-Bloom, Bloom, Post-Bloom, and Non-Bloom Groups at all sampling stations. In addition, the non-cyanobacterial components of each Group were classified, while the same Group showed similarity across all stations, suggesting that Microcystis and other microbes were highly interdependent and organized into cyanoHAB-related module units. Importantly, the Microcystis genotype-based sub-network uncovered that Pirellula, Pseudanabaena, and Vampirovibrionales preferred to interact with specific Microcystis genotypes in the Summer Major Bloom than with other genotypes in the Autumn Minor Bloom, while the copepod Skistodiaptomus exhibited the opposite pattern. In conclusion, the transition patterns of cyanoHAB-related modules and their key components could be crucial in the succession of Microcystis genotypes and to enhance the understanding of microbial ecology in an aquatic environment.
Collapse
Affiliation(s)
- Seong-Jun Chun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yingshun Cui
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
35
|
Abstract
Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA. Flagellin, the agent of prokaryotic flagellar motion, is very widely distributed and is the H antigen of serology. Flagellin molecules have a variable region that confers serotype specificity, encoded by the middle of the gene, and also conserved regions encoded by the two ends of the gene. We collected all available prokaryotic flagellin protein sequences and found the variable region diversity to be at two levels. In each species investigated, there are hypervariable region (HVR) forms without detectable homology in protein sequences between them. There is also considerable variation within HVR forms, indicating that some have been diverging for thousands of years and that interphylum horizontal gene transfers make a major contribution to the evolution of such atypical diversity. IMPORTANCE Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA.
Collapse
|
36
|
Salmaso N. Effects of Habitat Partitioning on the Distribution of Bacterioplankton in Deep Lakes. Front Microbiol 2019; 10:2257. [PMID: 31636614 PMCID: PMC6788347 DOI: 10.3389/fmicb.2019.02257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/17/2019] [Indexed: 12/04/2022] Open
Abstract
In deep lakes, many investigations highlighted the existence of exclusive groups of bacteria adapted to deep oxygenated and hypoxic and anoxic hypolimnia. Nevertheless, the extent of bacterial strain diversity has been much less scrutinized. This aspect is essential for an unbiased estimation of genetic variation, biodiversity, and population structure, which are essential for studying important research questions such as biogeographical patterns, temporal and spatial variability and the environmental factors affecting this variability. This study investigated the bacterioplankton community in the epilimnetic layers and in the oxygenated and hypoxic/anoxic hypolimnia of five large and deep lakes located at the southern border of the Alps using high throughput sequencing (HTS) analyses (16S rDNA) and identification of amplicon sequence variants (ASVs) resolving reads differing by as little as one nucleotide. The study sites, which included two oligomictic (Garda and Como) and three meromictic lakes (Iseo, Lugano, and Idro) with maximum depths spanning from 124 to 410 m, were chosen among large lakes to represent an oxic-hypoxic gradient. The analyses showed the existence of several unique ASVs in the three layers of the five lakes. In the case of cyanobacteria, this confirmed previous analyses made at the level of strains or based on oligotyping methods. As expected, the communities in the hypoxic/anoxic monimolimnia showed a strong differentiation from the oxygenated layer, with the exclusive presence in single lakes of several unique ASVs. In the meromictic lakes, results supported the hypothesis that the formation of isolated monimolimnia sustained the development of highly diversified bacterial communities through ecological selection, leading to the establishment of distinctive biodiversity zones. The genera identified in these layers are well-known to activate a wide range of redox reactions at low O2 conditions. As inferred from 16S rDNA data, the highly diversified and coupled processes sustained by the monimolimnetic microbiota are essential ecosystem services that enhance mineralization of organic matter and formation of reduced compounds, and also abatement of undesirable greenhouse gasses.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
37
|
Impaired glucose metabolism and altered gut microbiome despite calorie restriction of ob/ob mice. Anim Microbiome 2019; 1:11. [PMID: 33499919 PMCID: PMC7807779 DOI: 10.1186/s42523-019-0007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Growing evidence supports the role of gut microbiota in obesity and its related disorders including type 2 diabetes. Ob/ob mice, which are hyperphagic due to leptin deficiency, are commonly used models of obesity and were instrumental in suggesting links between gut microbiota and obesity. Specific changes in their gut microbiota such as decreased microbial diversity and increased Firmicutes to Bacteroidetes ratio have been suggested to contribute to obesity via increased microbiota capacity to harvest energy. However, the differential development of ob/ob mouse gut microbiota compared to wild type microbiota and the role of hyperphagia in their metabolic impairment have not been investigated thoroughly. RESULTS We performed a 10-week long study in ob/ob (n = 12) and wild type control (n = 12) mice fed ad libitum. To differentiate effects of leptin deficiency from hyperphagia, we pair-fed an additional group of ob/ob mice (n = 11) based on the food consumption of control mice. Compared to control mice, ob/ob mice fed ad libitum exhibited compromised glucose metabolism and increased body fat percentage. Pair-fed ob/ob mice exhibited even more compromised glucose metabolism and maintained strikingly similar high body fat percentage at the cost of lean body mass. Acclimatization of the microbiota to our facility took up to 5 weeks. Leptin deficiency impacted gut microbial composition, explaining 18.3% of the variance. Pair-feeding also altered several taxa, although the overall community composition at the end of the study was not significantly different. We found 24 microbial taxa associations with leptin deficiency, notably enrichment of members of Lactobacillus and depletion of Akkermansia muciniphila. Microbial metabolic functions related to energy harvest, including glycan degradation, phosphotransferase systems and ABC transporters, were enriched in the ob/ob mice. Taxa previously reported as relevant for obesity were associated with body weight, including Oscillibacter and Alistipes (both negatively correlated) and Prevotella (positively correlated). CONCLUSIONS Leptin deficiency caused major changes in the mouse gut microbiota composition. Several microbial taxa were associated with body composition. Pair-fed mice maintained a pre-set high proportion of body fat despite reduced calorie intake, and exhibited more compromised glucose metabolism, with major implications for treatment options for genetically obese individuals.
Collapse
|
38
|
Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM, Gaiarsa S, Benken K, Modeo L, Bandi C, Potekhin A, Sassera D, Petroni G. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. THE ISME JOURNAL 2019; 13:2280-2294. [PMID: 31073215 PMCID: PMC6776064 DOI: 10.1038/s41396-019-0433-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
Rickettsiales are a lineage of obligate intracellular Alphaproteobacteria, encompassing important human pathogens, manipulators of host reproduction, and mutualists. Here we report the discovery of a novel Rickettsiales bacterium associated with Paramecium, displaying a unique extracellular lifestyle, including the ability to replicate outside host cells. Genomic analyses show that the bacterium possesses a higher capability to synthesise amino acids, compared to all investigated Rickettsiales. Considering these observations, phylogenetic and phylogenomic reconstructions, and re-evaluating the different means of interaction of Rickettsiales bacteria with eukaryotic cells, we propose an alternative scenario for the evolution of intracellularity in Rickettsiales. According to our reconstruction, the Rickettsiales ancestor would have been an extracellular and metabolically versatile bacterium, while obligate intracellularity would have evolved later, in parallel and independently, in different sub-lineages. The proposed new scenario could impact on the open debate on the lifestyle of the last common ancestor of mitochondria within Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna Maria Floriano
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Stefano Gaiarsa
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Konstantin Benken
- Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Claudio Bandi
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy.
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.
| |
Collapse
|
39
|
Attalah S, Waller P, Steichen S, Brown C, Mehdipour Y, Ogden K, Brown J. Cost minimization of deoxygenation for control of Vampirovibrio chlorellavorus in Chlorella sorokiniana cultures. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Soo RM, Hemp J, Hugenholtz P. Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radic Biol Med 2019; 140:200-205. [PMID: 30930297 DOI: 10.1016/j.freeradbiomed.2019.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
For well over a hundred years, members of the bacterial phylum Cyanobacteria have been considered strictly photosynthetic microorganisms, reflected in their classification as "blue-green algae" in the botanical code. Recently, genomes recovered from environmental sequencing surveys representing two major uncultured basal lineages (classes) of Cyanobacteria have been found to completely lack photosynthetic and CO2 fixation genes. The most likely explanation for this finding is that oxygenic photosynthesis was not an ancestral feature of the Cyanobacteria, and rather originated following divergence of the primary lines of descent. Here we describe recent findings on the evolution of aerobic respiration in the non-photosynthetic cyanobacterial classes, and how this has been interpreted by researchers interested in the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia.
| | - James Hemp
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
41
|
Cho G, Kwon J, Soh SM, Jang H, Mitchell RJ. Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation. Appl Microbiol Biotechnol 2019; 103:8169-8178. [PMID: 31407038 DOI: 10.1007/s00253-019-10069-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
We evaluated the toxicity of surfactants against different predatory bacteria. Tests with Bdellovibrio bacteriovorus HD100 and SDS, an anionic surfactant, showed the predator was very sensitive; 0.02% SDS completely killed the predatory population (7-log loss; < 10 PFU/ml remaining) both when free-swimming or within the bdelloplast, i.e., intraperiplasmic. Similar results were also observed with B. bacteriovorus 109J and Peredibacter starrii. In contrast, none of the prey (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, or Pseudomonas sp. DSM 50906) viabilities were negatively affected by SDS. Triton X-100, a nonionic surfactant, was slightly less toxic towards B. bacteriovorus HD100 (viability loss of only 4-log), while two cationic surfactants, i.e., benzalkonium chloride (BZC) and cetyltrimethylammonium bromide (CTAB), were toxic towards both the predator and prey. Based on the above findings, we tested the potential use of SDS as a means to control predation. Addition of 0.02% SDS immediately halted predation based upon the prey bioluminescence, which leveled off and remained steady. This was confirmed using the predator viabilities; no predators were found in any of the samples where SDS was added. Consequently, low concentrations of SDS can be used as a simple means to control B. bacteriovorus HD100 activities.
Collapse
Affiliation(s)
- Gayoung Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sandrine Mabekou Soh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
42
|
Attalah S, Waller P, Steichen S, Gao S, Brown C, Ogden K, Brown J. Application of deoxygenation-aeration cycling to control the predatory bacterium Vampirovibrio chlorellavorus in Chlorella sorokiniana cultures. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Seger M, Unc A, Starkenburg SR, Holguin FO, Lammers PJ. Nutrient-driven algal-bacterial dynamics in semi-continuous, pilot-scale photobioreactor cultivation of Nannochloropsis salina CCMP1776 with municipal wastewater nutrients. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Westerwalbesloh C, Brehl C, Weber S, Probst C, Widzgowski J, Grünberger A, Pfaff C, Nedbal L, Kohlheyer D. A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PLoS One 2019; 14:e0216093. [PMID: 31034529 PMCID: PMC6488086 DOI: 10.1371/journal.pone.0216093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Microalgae are an ubiquitous and powerful driver of geochemical cycles which have formed Earth’s biosphere since early in the evolution. Lately, microalgal research has been strongly stimulated by economic potential expected in biofuels, wastewater treatment, and high-value products. Similar to bacteria and other microorganisms, most work so far has been performed on the level of suspensions which typically contain millions of algal cells per millilitre. The thus obtained macroscopic parameters average cells, which may be in various phases of their cell cycle or even, in the case of microbial consortia, cells of different species. This averaging may obscure essential features which may be needed for the correct understanding and interpretation of investigated processes. In contrast to these conventional macroscopic cultivation and measuring tools, microfluidic single-cell cultivation systems represent an excellent alternative to study individual cells or a small number of mutually interacting cells in a well-defined environment. A novel microfluidic photobioreactor was developed and successfully tested by the photoautotrophic cultivation of Chlorella sorokiniana. The reported microbioreactor facilitates automated long-term cultivation of algae with controlled temperature and with an illumination adjustable over a wide range of photon flux densities. Chemical composition of the medium in the microbioreactor can be stabilised or modulated rapidly to study the response of individual cells. Furthermore, the algae are cultivated in one focal plane and separate chambers, enabling single-cell level investigation of over 100 microcolonies in parallel. The developed platform can be used for systematic growth studies, medium screening, species interaction studies, and the thorough investigation of light-dependent growth kinetics.
Collapse
Affiliation(s)
- Christoph Westerwalbesloh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carl Brehl
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sophie Weber
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christopher Probst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janka Widzgowski
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Christian Pfaff
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachener Verfahrenstechnik (AVT.MSB), Aachen, Germany
- * E-mail:
| |
Collapse
|
45
|
Wang J, Goh KM, Salem DR, Sani RK. Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. WSUCF1. Sci Rep 2019; 9:1608. [PMID: 30733471 PMCID: PMC6367360 DOI: 10.1038/s41598-018-36983-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022] Open
Abstract
Geobacillus sp. WSUCF1 is a Gram-positive, spore-forming, aerobic and thermophilic bacterium, isolated from a soil sample obtained from a compost facility. Strain WSUCF1 demonstrated EPS producing capability using different sugars as the carbon source. The whole-genome analysis of WSUCF1 was performed to disclose the essential genes correlated with nucleotide sugar precursor biosynthesis, assembly of monosaccharide units, export of the polysaccharide chain, and regulation of EPS production. Both the biosynthesis pathway and export mechanism of EPS were proposed based on functional annotation. Additionally, the genome description of strain WSUCF1 suggests sophisticated systems for its adaptation under thermophilic conditions. The presence of genes associated with CRISPR-Cas system, quorum quenching lactonase, polyketide synthesis and arsenic resistance makes this strain a potential candidate for various applications in biotechnology and biomedicine. The present study indicates that strain WSUCF1 has promise as a thermophilic EPS producer for a broad range of industrial applications. To the best of our knowledge, this is the first report on genome analysis of a thermophilic Geobacillus species focusing on its EPS biosynthesis and transportation, which will likely pave the way for both enhanced yield and tailor-made EPS production by thermophilic bacteria.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, 81300, Malaysia
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD, 57701, USA.
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
46
|
Monchamp ME, Spaak P, Pomati F. Long Term Diversity and Distribution of Non-photosynthetic Cyanobacteria in Peri-Alpine Lakes. Front Microbiol 2019; 9:3344. [PMID: 30692982 PMCID: PMC6340189 DOI: 10.3389/fmicb.2018.03344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/27/2018] [Indexed: 02/01/2023] Open
Abstract
The phylum Cyanobacteria comprises a non-photosynthetic lineage. The diversity and distribution of non-photosynthetic cyanobacteria (NCY) across aquatic environments are currently unknown, including their ecology. Here, we report about composition and phylogenetic diversity of two clades of NCY in ten lakes of the European peri-Alpine region, over the past ∼100 years. Using 16S rDNA sequences obtained from dated sediment cores, we found almost equal proportion of taxa assigned to Melainabacteria and the deepest-branching group Sericytochromatia (ML635J-21) (63 total detected taxa). The topology of our reconstructed phylogenies reflected evolutionary relationships expected from previous work, that is, a clear separation between the deepest branching Sericytochromatia, the Melainabacteria, and the photosynthetic cyanobacteria clades. While different lakes harbored distinct NCY communities, the diversity of NCY assemblages within and between lakes (alpha and beta diversity) did not significantly change over the last century. This is in contrast with what was previously reported for photosynthetic cyanobacteria. Unchanged community phylogenetic similarity over geographic distance indicated no dispersal limitation of NCY at the regional scale. Our results solicit studies linking in-lake environmental factors to the composition of these microorganisms' communities, whose assembly appeared not to have been influenced by large-scale anthropogenic environmental changes. This is the first attempt to study the diversity and distribution of NCY taxa across temperate lakes. It provides a first step towards understanding their distribution and ecological function in pelagic aquatic habitats, where these organisms seem to be prevalent.
Collapse
Affiliation(s)
- Marie-Eve Monchamp
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- Swiss Federal Institute of Technology, Institute of Integrative Biology, Zurich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- Swiss Federal Institute of Technology, Institute of Integrative Biology, Zurich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- Swiss Federal Institute of Technology, Institute of Integrative Biology, Zurich, Switzerland
| |
Collapse
|
47
|
Bor B, McLean JS, Foster KR, Cen L, To TT, Serrato-Guillen A, Dewhirst FE, Shi W, He X. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. Proc Natl Acad Sci U S A 2018; 115:12277-12282. [PMID: 30442671 PMCID: PMC6275545 DOI: 10.1073/pnas.1810625115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Around one-quarter of bacterial diversity comprises a single radiation with reduced genomes, known collectively as the Candidate Phyla Radiation. Recently, we coisolated TM7x, an ultrasmall strain of the Candidate Phyla Radiation phylum Saccharibacteria, with its bacterial host Actinomyces odontolyticus strain XH001 from human oral cavity and stably maintained as a coculture. Our current work demonstrates that within the coculture, TM7x cells establish a long-term parasitic association with host cells by infecting only a subset of the population, which stay viable yet exhibit severely inhibited cell division. In contrast, exposure of a naïve A. odontolyticus isolate, XH001n, to TM7x cells leads to high numbers of TM7x cells binding to each host cell, massive host cell death, and a host population crash. However, further passaging reveals that XH001n becomes less susceptible to TM7x over time and enters a long-term stable relationship similar to that of XH001. We show that this reduced susceptibility is driven by rapid host evolution that, in contrast to many forms of phage resistance, offers only partial protection. The result is a stalemate where infected hosts cannot shed their parasites; nevertheless, parasite load is sufficiently low that the host population persists. Finally, we show that TM7x can infect and form stable long-term relationships with other species in a single clade of Actinomyces, displaying a narrow host range. This system serves as a model to understand how parasitic bacteria with reduced genomes such as those of the Candidate Phyla Radiation have persisted with their hosts and ultimately expanded in their diversity.
Collapse
Affiliation(s)
- Batbileg Bor
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA 98119
| | - Kevin R Foster
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
| | - Lujia Cen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Thao T To
- Department of Periodontics, University of Washington, Seattle, WA 98119
| | - Alejandro Serrato-Guillen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142;
| |
Collapse
|
48
|
Lee PA, Martinez KJ, Letcher PM, Corcoran AA, Ryan RA. A novel predatory bacterium infecting the eukaryotic alga Nannochloropsis. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K, Kihara K, Yuki M, Lo N, Deevong P, Hasin S, Boonriam W, Inoue T, Yamada A, Ohkuma M, Hongoh Y. Phylogenetic Diversity and Single-Cell Genome Analysis of "Melainabacteria", a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut. Microbes Environ 2018; 33:50-57. [PMID: 29415909 PMCID: PMC5877343 DOI: 10.1264/jsme2.me17137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class "Melainabacteria". We herein reported the phylogenetic diversity of "Melainabacteria" in the guts of diverse termites and conducted a single-cell genome analysis of a melainabacterium obtained from the gut of the termite Termes propinquus. We performed amplicon sequencing of 16S rRNA genes from the guts of 60 termite and eight cockroach species, and detected melainabacterial sequences in 48 out of the 68 insect species, albeit with low abundances (0.02-1.90%). Most of the melainabacterial sequences obtained were assigned to the order "Gastranaerophilales" and appeared to form clusters unique to termites and cockroaches. A single-cell genome of a melainabacterium, designated phylotype Tpq-Mel-01, was obtained using a fluorescence-activated cell sorter and whole genome amplification. The genome shared basic features with other melainabacterial genomes previously reconstructed from the metagenomes of human and koala feces. The bacterium had a small genome (~1.6 Mb) and possessed fermentative pathways possibly using sugars and chitobiose as carbon and energy sources, while the pathways for photosynthesis and carbon fixation were not found. The genome contained genes for flagellar components and chemotaxis; therefore, the bacterium is likely motile. A fluorescence in situ hybridization analysis showed that the cells of Tpq-Mel-01 and/or its close relatives are short rods with the dimensions of 1.1±0.2 μm by 0.5±0.1 μm; for these bacteria, we propose the novel species, "Candidatus Gastranaerophilus termiticola". Our results provide fundamental information on "Melainabacteria" in the termite gut and expand our knowledge on this underrepresented, non-photosynthetic cyanobacterial group.
Collapse
Affiliation(s)
| | | | - Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology
| | | | - Kaito Sugaya
- Department of Biological Sciences, Tokyo Institute of Technology
| | - Kumiko Kihara
- Department of Biological Sciences, Tokyo Institute of Technology
| | - Masahiro Yuki
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science
| | - Nathan Lo
- School of Biological Sciences, University of Sydney
| | | | - Sasitorn Hasin
- College of Innovative Management, Valaya Alongkorn Rajabhat University under the Royal Patronage
| | | | - Tetsushi Inoue
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Akinori Yamada
- Department of Biological Sciences, Tokyo Institute of Technology.,Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Moriya Ohkuma
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science.,Japan Collection of Microorganisms, RIKEN BioResource Center
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology.,Japan Collection of Microorganisms, RIKEN BioResource Center
| |
Collapse
|
50
|
Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC. Ecogenomics and Taxonomy of Cyanobacteria Phylum. Front Microbiol 2017; 8:2132. [PMID: 29184540 PMCID: PMC5694629 DOI: 10.3389/fmicb.2017.02132] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023] Open
Abstract
Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.
Collapse
Affiliation(s)
- Juline M Walter
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Felipe H Coutinho
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Bas E Dutilh
- Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jean Swings
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Center of Technology - CT2, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|