1
|
Agarwal S, Saxena S, Carriero A, Chabert GL, Ravindran G, Paul S, Laird JR, Garg D, Fatemi M, Mohanty L, Dubey AK, Singh R, Fouda MM, Singh N, Naidu S, Viskovic K, Kukuljan M, Kalra MK, Saba L, Suri JS. COVLIAS 3.0: cloud-based quantized hybrid UNet3+ deep learning for COVID-19 lesion detection in lung computed tomography. Front Artif Intell 2024; 7:1304483. [PMID: 39006802 PMCID: PMC11240867 DOI: 10.3389/frai.2024.1304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background and novelty When RT-PCR is ineffective in early diagnosis and understanding of COVID-19 severity, Computed Tomography (CT) scans are needed for COVID diagnosis, especially in patients having high ground-glass opacities, consolidations, and crazy paving. Radiologists find the manual method for lesion detection in CT very challenging and tedious. Previously solo deep learning (SDL) was tried but they had low to moderate-level performance. This study presents two new cloud-based quantized deep learning UNet3+ hybrid (HDL) models, which incorporated full-scale skip connections to enhance and improve the detections. Methodology Annotations from expert radiologists were used to train one SDL (UNet3+), and two HDL models, namely, VGG-UNet3+ and ResNet-UNet3+. For accuracy, 5-fold cross-validation protocols, training on 3,500 CT scans, and testing on unseen 500 CT scans were adopted in the cloud framework. Two kinds of loss functions were used: Dice Similarity (DS) and binary cross-entropy (BCE). Performance was evaluated using (i) Area error, (ii) DS, (iii) Jaccard Index, (iii) Bland-Altman, and (iv) Correlation plots. Results Among the two HDL models, ResNet-UNet3+ was superior to UNet3+ by 17 and 10% for Dice and BCE loss. The models were further compressed using quantization showing a percentage size reduction of 66.76, 36.64, and 46.23%, respectively, for UNet3+, VGG-UNet3+, and ResNet-UNet3+. Its stability and reliability were proved by statistical tests such as the Mann-Whitney, Paired t-Test, Wilcoxon test, and Friedman test all of which had a p < 0.001. Conclusion Full-scale skip connections of UNet3+ with VGG and ResNet in HDL framework proved the hypothesis showing powerful results improving the detection accuracy of COVID-19.
Collapse
Affiliation(s)
- Sushant Agarwal
- Advanced Knowledge Engineering Center, GBTI, Roseville, CA, United States
- Department of CSE, PSIT, Kanpur, India
| | | | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Gobinath Ravindran
- Department of Civil Engineering, SR University, Warangal, Telangana, India
| | - Sudip Paul
- Department of Biomedical Engineering, NEHU, Shillong, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, United States
| | - Deepak Garg
- School of CS and AI, SR University, Warangal, Telangana, India
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad, UP, India
- Department of Computer science, Bennett University, Greater Noida, UP, India
| | - Arun K. Dubey
- Bharati Vidyapeeth’s College of Engineering, New Delhi, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Mostafa M. Fouda
- Department of ECE, Idaho State University, Pocatello, ID, United States
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| | - Subbaram Naidu
- Department of EE, University of Minnesota, Duluth, MN, United States
| | | | - Melita Kukuljan
- Department of Interventional and Diagnostic Radiology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Luca Saba
- Department of Radiology, A.O.U., Cagliari, Italy
| | - Jasjit S. Suri
- Department of ECE, Idaho State University, Pocatello, ID, United States
- Department of Computer Science, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India
- Stroke and Monitoring Division, AtheroPoint LLC, Roseville, CA, United States
| |
Collapse
|
2
|
Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics (Basel) 2023; 13:diagnostics13030481. [PMID: 36766587 PMCID: PMC9914433 DOI: 10.3390/diagnostics13030481] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The biopsy is a gold standard method for tumor grading. However, due to its invasive nature, it has sometimes proved fatal for brain tumor patients. As a result, a non-invasive computer-aided diagnosis (CAD) tool is required. Recently, many magnetic resonance imaging (MRI)-based CAD tools have been proposed for brain tumor grading. The MRI has several sequences, which can express tumor structure in different ways. However, a suitable MRI sequence for brain tumor classification is not yet known. The most common brain tumor is 'glioma', which is the most fatal form. Therefore, in the proposed study, to maximize the classification ability between low-grade versus high-grade glioma, three datasets were designed comprising three MRI sequences: T1-Weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion recovery (FLAIR). Further, five well-established convolutional neural networks, AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 were adopted for tumor classification. An ensemble algorithm was proposed using the majority vote of above five deep learning (DL) models to produce more consistent and improved results than any individual model. Five-fold cross validation (K5-CV) protocol was adopted for training and testing. For the proposed ensembled classifier with K5-CV, the highest test accuracies of 98.88 ± 0.63%, 97.98 ± 0.86%, and 94.75 ± 0.61% were achieved for FLAIR, T2W, and T1W-MRI data, respectively. FLAIR-MRI data was found to be most significant for brain tumor classification, where it showed a 4.17% and 0.91% improvement in accuracy against the T1W-MRI and T2W-MRI sequence data, respectively. The proposed ensembled algorithm (MajVot) showed significant improvements in the average accuracy of three datasets of 3.60%, 2.84%, 1.64%, 4.27%, and 1.14%, respectively, against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50.
Collapse
|
4
|
Johri AM, Singh KV, Mantella LE, Saba L, Sharma A, Laird JR, Utkarsh K, Singh IM, Gupta S, Kalra MS, Suri JS. Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization. Comput Biol Med 2022; 150:106018. [PMID: 36174330 DOI: 10.1016/j.compbiomed.2022.106018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system. METHODS Data was collected on 500 patients having both carotid ultrasound and corresponding coronary angiography scores (CAS), measured as stenosis in coronary arteries and considered as the gold standard. A total of 39 covariates were used, clubbed into three clusters, namely (i) Office-based: age, gender, body mass index, smoker, hypertension, systolic blood pressure, and diastolic blood pressure; (ii) Laboratory-based: Hyperlipidemia, hemoglobin A1c, and estimated glomerular filtration rate; and (iii) Carotid ultrasound image phenotypes: maximum plaque height, total plaque area, and intra-plaque neovascularization. Baseline characteristics for four classes (target labels) having significant (p < 0.0001) values were calculated using Chi-square and ANOVA. For handling the cohort's imbalance in the risk classes, AE3.0DL used the synthetic minority over-sampling technique (SMOTE). AE3.0DL used Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) DL models and the performance (accuracy and area-under-the-curve) was computed using 10-fold cross-validation (90% training, 10% testing) frameworks. AE3.0DL was validated and benchmarked. RESULTS The AE3.0DL using RNN and LSTM showed an accuracy and AUC (p < 0.0001) pairs as (95.00% and 0.98), and (95.34% and 0.99), respectively, and showed an improvement of 32.93% and 9.94% against CCVRC and ML, respectively. AE3.0DL runs in <1 s. CONCLUSION DL algorithms are a powerful paradigm for coronary artery disease (CAD) risk prediction and CVD risk stratification.
Collapse
Affiliation(s)
- Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | | | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | | | | | - Suneet Gupta
- Department of Computer Science, Bennett University, Gr. Noida, India
| | - Manudeep S Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
5
|
Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment. Comput Biol Med 2022; 149:106017. [DOI: 10.1016/j.compbiomed.2022.106017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 12/18/2022]
|
6
|
Suri JS, Agarwal S, Saba L, Chabert GL, Carriero A, Paschè A, Danna P, Mehmedović A, Faa G, Jujaray T, Singh IM, Khanna NN, Laird JR, Sfikakis PP, Agarwal V, Teji JS, R Yadav R, Nagy F, Kincses ZT, Ruzsa Z, Viskovic K, Kalra MK. Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation. J Med Syst 2022; 46:62. [PMID: 35988110 PMCID: PMC9392994 DOI: 10.1007/s10916-022-01850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, “COVLIAS 1.0-Unseen” proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations—two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.
Collapse
|
7
|
Teji JS, Jain S, Gupta SK, Suri JS. NeoAI 1.0: Machine learning-based paradigm for prediction of neonatal and infant risk of death. Comput Biol Med 2022; 147:105639. [DOI: 10.1016/j.compbiomed.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
|
8
|
Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, Pasche A, Danna P, Mehmedovic A, Faa G, Shrivastava S, Jain K, Jain H, Jujaray T, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Sobel DW, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Yadav RR, Nagy F, Kincses ZT, Ruzsa Z, Naidu S, Viskovic K, Kalra MK, Suri JS. Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0. Comput Biol Med 2022; 146:105571. [PMID: 35751196 PMCID: PMC9123805 DOI: 10.1016/j.compbiomed.2022.105571] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Computer Science Engineering, Bennett University, India
| | - Sushant Agarwal
- Department of Computer Science Engineering, PSIT, Kanpur, India; Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet Gupta
- Department of Computer Science Engineering, Bennett University, India
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Alessio Pasche
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Pietro Danna
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | | | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Saurabh Shrivastava
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Kanishka Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Harsh Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Tanay Jujaray
- Dept of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | - Amer M Johri
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and Univ. of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | | | | | - Frence Nagy
- Department of Radiology, University of Szeged, 6725, Hungary
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Budapest, Hungary
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | | | - Manudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jasjit S Suri
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India; Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
9
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
10
|
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans. Diagnostics (Basel) 2022; 12:diagnostics12061482. [PMID: 35741292 PMCID: PMC9221733 DOI: 10.3390/diagnostics12061482] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.
Collapse
|
11
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
12
|
Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PSC, Saba L, Mehmedović A, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Fouda MM, Naidu S, Viskovic K, Kalra MK. COVLIAS 1.0 Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans. Diagnostics (Basel) 2022; 12:1283. [PMID: 35626438 PMCID: PMC9141749 DOI: 10.3390/diagnostics12051283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann−Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Armin Mehmedović
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95661, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Klaudija Viskovic
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
13
|
Khanna NN, Maindarkar M, Saxena A, Ahluwalia P, Paul S, Srivastava SK, Cuadrado-Godia E, Sharma A, Omerzu T, Saba L, Mavrogeni S, Turk M, Laird JR, Kitas GD, Fatemi M, Barqawi AB, Miner M, Singh IM, Johri A, Kalra MM, Agarwal V, Paraskevas KI, Teji JS, Fouda MM, Pareek G, Suri JS. Cardiovascular/Stroke Risk Assessment in Patients with Erectile Dysfunction-A Role of Carotid Wall Arterial Imaging and Plaque Tissue Characterization Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:1249. [PMID: 35626404 PMCID: PMC9141739 DOI: 10.3390/diagnostics12051249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The role of erectile dysfunction (ED) has recently shown an association with the risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease (CTAD), a surrogate biomarker for CHD. The proposed study emphasizes artificial intelligence-based frameworks such as machine learning (ML) and deep learning (DL) that can accurately predict the severity of CVD/stroke risk using carotid wall arterial imaging in ED patients. METHODS Using the PRISMA model, 231 of the best studies were selected. The proposed study mainly consists of two components: (i) the pathophysiology of ED and its link with coronary artery disease (COAD) and CHD in the ED framework and (ii) the ultrasonic-image morphological changes in the carotid arterial walls by quantifying the wall parameters and the characterization of the wall tissue by adapting the ML/DL-based methods, both for the prediction of the severity of CVD risk. The proposed study analyzes the hypothesis that ML/DL can lead to an accurate and early diagnosis of the CVD/stroke risk in ED patients. Our finding suggests that the routine ED patient practice can be amended for ML/DL-based CVD/stroke risk assessment using carotid wall arterial imaging leading to fast, reliable, and accurate CVD/stroke risk stratification. SUMMARY We conclude that ML and DL methods are very powerful tools for the characterization of CVD/stroke in patients with varying ED conditions. We anticipate a rapid growth of these tools for early and better CVD/stroke risk management in ED patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Mahesh Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (M.M.); (S.P.)
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA 95661, USA;
| | - Ajit Saxena
- Department of Urology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (M.M.); (S.P.)
| | - Saurabh K. Srivastava
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad 244001, India;
| | - Elisa Cuadrado-Godia
- Department of Neurology, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (T.O.); (M.T.)
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (T.O.); (M.T.)
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, NY 55905, USA;
| | - Al Baha Barqawi
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA 95661, USA;
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | | | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA;
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA 95661, USA;
| |
Collapse
|
14
|
Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022; 12:metabo12040312. [PMID: 35448500 PMCID: PMC9033076 DOI: 10.3390/metabo12040312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Maheshrao A. Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Annu’s Hospitals for Skin & Diabetes, Gudur 524101, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India;
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy;
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India;
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| |
Collapse
|
15
|
Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Paraskevas KI, Laird JR, Johri AM, Saba L, Kalra M. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput Biol Med 2022; 142:105204. [DOI: 10.1016/j.compbiomed.2021.105204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/09/2023]
|
16
|
Gupta N, Gupta SK, Pathak RK, Jain V, Rashidi P, Suri JS. Human activity recognition in artificial intelligence framework: a narrative review. Artif Intell Rev 2022; 55:4755-4808. [PMID: 35068651 PMCID: PMC8763438 DOI: 10.1007/s10462-021-10116-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human activity recognition (HAR) has multifaceted applications due to its worldly usage of acquisition devices such as smartphones, video cameras, and its ability to capture human activity data. While electronic devices and their applications are steadily growing, the advances in Artificial intelligence (AI) have revolutionized the ability to extract deep hidden information for accurate detection and its interpretation. This yields a better understanding of rapidly growing acquisition devices, AI, and applications, the three pillars of HAR under one roof. There are many review articles published on the general characteristics of HAR, a few have compared all the HAR devices at the same time, and few have explored the impact of evolving AI architecture. In our proposed review, a detailed narration on the three pillars of HAR is presented covering the period from 2011 to 2021. Further, the review presents the recommendations for an improved HAR design, its reliability, and stability. Five major findings were: (1) HAR constitutes three major pillars such as devices, AI and applications; (2) HAR has dominated the healthcare industry; (3) Hybrid AI models are in their infancy stage and needs considerable work for providing the stable and reliable design. Further, these trained models need solid prediction, high accuracy, generalization, and finally, meeting the objectives of the applications without bias; (4) little work was observed in abnormality detection during actions; and (5) almost no work has been done in forecasting actions. We conclude that: (a) HAR industry will evolve in terms of the three pillars of electronic devices, applications and the type of AI. (b) AI will provide a powerful impetus to the HAR industry in future. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-021-10116-x.
Collapse
Affiliation(s)
- Neha Gupta
- CSE Department, Bennett University, Greater Noida, UP India
- Bharati Vidyapeeth’s College of Engineering, Paschim Vihar, New Delhi, India
| | | | | | - Vanita Jain
- Bharati Vidyapeeth’s College of Engineering, Paschim Vihar, New Delhi, India
| | - Parisa Rashidi
- Intelligent Health Laboratory, Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPointTM, Roseville, CA 95661 USA
- Global Biomedical Technologies, Inc., Roseville, CA USA
| |
Collapse
|
17
|
Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, Krishnan PR, Suri JS. Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson's Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:166. [PMID: 35054333 PMCID: PMC8774851 DOI: 10.3390/diagnostics12010166] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Motivation: Diagnosis of Parkinson's disease (PD) is often based on medical attention and clinical signs. It is subjective and does not have a good prognosis. Artificial Intelligence (AI) has played a promising role in the diagnosis of PD. However, it introduces bias due to lack of sample size, poor validation, clinical evaluation, and lack of big data configuration. The purpose of this study is to compute the risk of bias (RoB) automatically. METHOD The PRISMA search strategy was adopted to select the best 39 AI studies out of 85 PD studies closely associated with early diagnosis PD. The studies were used to compute 30 AI attributes (based on 6 AI clusters), using AP(ai)Bias 1.0 (AtheroPointTM, Roseville, CA, USA), and the mean aggregate score was computed. The studies were ranked and two cutoffs (Moderate-Low (ML) and High-Moderate (MH)) were determined to segregate the studies into three bins: low-, moderate-, and high-bias. RESULT The ML and HM cutoffs were 3.50 and 2.33, respectively, which constituted 7, 13, and 6 for low-, moderate-, and high-bias studies. The best and worst architectures were "deep learning with sketches as outcomes" and "machine learning with Electroencephalography," respectively. We recommend (i) the usage of power analysis in big data framework, (ii) that it must undergo scientific validation using unseen AI models, and (iii) that it should be taken towards clinical evaluation for reliability and stability tests. CONCLUSION The AI is a vital component for the diagnosis of early PD and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Maheshrao Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia
| | - Manudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
18
|
Suri JS, Agarwal S, Carriero A, Paschè A, Danna PSC, Columbu M, Saba L, Viskovic K, Mehmedović A, Agarwal S, Gupta L, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Gupta A, Naidu S, Paraskevas KI, Kalra MK. COVLIAS 1.0 vs. MedSeg: Artificial Intelligence-Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts. Diagnostics (Basel) 2021; 11:diagnostics11122367. [PMID: 34943603 PMCID: PMC8699928 DOI: 10.3390/diagnostics11122367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020–2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland–Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Armin Mehmedović
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Samriddhi Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Lakshya Gupta
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | | | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| |
Collapse
|
19
|
A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework. Comput Biol Med 2021; 141:105131. [PMID: 34922173 DOI: 10.1016/j.compbiomed.2021.105131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Early and automated detection of carotid plaques prevents strokes, which are the second leading cause of death worldwide according to the World Health Organization. Artificial intelligence (AI) offers automated solutions for plaque tissue characterization. Recently, solo deep learning (SDL) models have been used, but they do not take advantage of the tandem connectivity offered by AI's hybrid nature. Therefore, this study explores the use of hybrid deep learning (HDL) models in a multicenter framework, making this study the first of its kind. METHODS We hypothesize that HDL techniques perform better than SDL and transfer learning (TL) techniques. We propose two kinds of HDL frameworks: (i) the fusion of two SDLs (Inception with ResNet) or (ii) 10 other kinds of tandem models that fuse SDL with ML. The system Atheromatic™ 2.0HDL (AtheroPoint, CA, USA) was designed on an augmentation framework and three kinds of loss functions (cross-entropy, hinge, and mean-square-error) during training to determine the best optimization paradigm. These 11 combined HDL models were then benchmarked against one SDL model and five types of TL models; thus, this study considers a total of 17 AI models. RESULTS Among the 17 AI models, the best performing HDL system was that comprising CNN and decision tree (DT), as its accuracy and area-under-the-curve were 99.78 ± 1.05% and 0.99 (p<0.0001), respectively. These values are 6.4% and 3.2% better than those recorded for the SDL and TL models, respectively. We validated the performance of the HDL models with diagnostics odds ratio (DOR) and Cohen and Kappa statistics; here, HDL outperformed DL and TL by 23% and 7%, respectively. The online system ran in <2 s. CONCLUSION HDL is a fast, reliable, and effective tool for characterizing the carotid plaque for early stroke risk stratification.
Collapse
|
20
|
Sanagala SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Agarwal S, Johri AM, Kalra MS, Suri JS. Ten Fast Transfer Learning Models for Carotid Ultrasound Plaque Tissue Characterization in Augmentation Framework Embedded with Heatmaps for Stroke Risk Stratification. Diagnostics (Basel) 2021; 11:2109. [PMID: 34829456 PMCID: PMC8622690 DOI: 10.3390/diagnostics11112109] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose: Only 1-2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based, which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study shows the role of transfer learning (TL)-based deep learning models for PTC. Methods: As pertained weights were used in the supercomputer framework, we hypothesize that transfer learning (TL) provides improved performance compared with deep learning. We applied 11 kinds of artificial intelligence (AI) models, 10 of them were augmented and optimized using TL approaches-a class of Atheromatic™ 2.0 TL (AtheroPoint™, Roseville, CA, USA) that consisted of (i-ii) Visual Geometric Group-16, 19 (VGG16, 19); (iii) Inception V3 (IV3); (iv-v) DenseNet121, 169; (vi) XceptionNet; (vii) ResNet50; (viii) MobileNet; (ix) AlexNet; (x) SqueezeNet; and one DL-based (xi) SuriNet-derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural network (DCNN) model. Results: The best performing TL was MobileNet, with accuracy and area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 (p < 0.0001), respectively. In DL, DCNN was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956 (p < 0.0001) and 0.927 (p < 0.0001), respectively. We validated the performance of the AI architectures with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™ 1.0 ML and showed an improvement of 12.9%. Conclusions: TL is a powerful AI tool for PTC into symptomatic and asymptomatic plaques.
Collapse
Affiliation(s)
- Skandha S. Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad 501401, TS, India; (S.S.S.); (V.K.K.)
- CSE Department, Bennett University, Greater Noida 203206, UP, India;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 1700, Cyprus;
| | - Suneet K. Gupta
- CSE Department, Bennett University, Greater Noida 203206, UP, India;
| | - Vijaya K. Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad 501401, TS, India; (S.S.S.); (V.K.K.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | | | - Amer M. Johri
- Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep S. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA 95661, USA
| |
Collapse
|
21
|
Suri JS, Agarwal S, Elavarthi P, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Ferenc N, Ruzsa Z, Gupta A, Naidu S, Kalra MK. Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography. Diagnostics (Basel) 2021; 11:2025. [PMID: 34829372 PMCID: PMC8625039 DOI: 10.3390/diagnostics11112025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Pranav Elavarthi
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492001, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 10558 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National & Kapodistrian University of Athens, 10679 Athens, Greece;
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PT, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2368, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Ferenc
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Zoltan Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
22
|
Agarwal M, Saba L, Gupta SK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Sharma AM, Viswanathan V, Kitas GD, Nicolaides A, Suri JS. Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application. Med Biol Eng Comput 2021; 59:511-533. [PMID: 33547549 DOI: 10.1007/s11517-021-02322-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Wilson's disease (WD) is caused by copper accumulation in the brain and liver, and if not treated early, can lead to severe disability and death. WD has shown white matter hyperintensity (WMH) in the brain magnetic resonance scans (MRI) scans, but the diagnosis is challenging due to (i) subtle intensity changes and (ii) weak training MRI when using artificial intelligence (AI). Design and validate seven types of high-performing AI-based computer-aided design (CADx) systems consisting of 3D optimized classification, and characterization of WD against controls. We propose a "conventional deep convolution neural network" (cDCNN) and an "improved DCNN" (iDCNN) where rectified linear unit (ReLU) activation function was modified ensuring "differentiable at zero." Three-dimensional optimization was achieved by recording accuracy while changing the CNN layers and augmentation by several folds. WD was characterized using (i) CNN-based feature map strength and (ii) Bispectrum strengths of pixels having higher probabilities of WD. We further computed the (a) area under the curve (AUC), (b) diagnostic odds ratio (DOR), (c) reliability, and (d) stability and (e) benchmarking. Optimal results were achieved using 9 layers of CNN, with 4-fold augmentation. iDCNN yields superior performance compared to cDCNN with accuracy and AUC of 98.28 ± 1.55, 0.99 (p < 0.0001), and 97.19 ± 2.53%, 0.984 (p < 0.0001), respectively. DOR of iDCNN outperformed cDCNN fourfold. iDCNN also outperformed (a) transfer learning-based "Inception V3" paradigm by 11.92% and (b) four types of "conventional machine learning-based systems": k-NN, decision tree, support vector machine, and random forest by 55.13%, 28.36%, 15.35%, and 14.11%, respectively. The AI-based systems can potentially be useful in the early WD diagnosis. Graphical Abstract.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Ontario, Kingston, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Athens, Greece
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
23
|
Agarwal M, Saba L, Gupta SK, Carriero A, Falaschi Z, Paschè A, Danna P, El-Baz A, Naidu S, Suri JS. A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort. J Med Syst 2021; 45:28. [PMID: 33496876 PMCID: PMC7835451 DOI: 10.1007/s10916-021-01707-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023]
Abstract
Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41 ± 5.12%, 0.991 (p < 0.0001), and 99.41 ± 0.62%, 0.988 (p < 0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p < 0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, India
| | - Alessandro Carriero
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Zeno Falaschi
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Alessio Paschè
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Pietro Danna
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Ayman El-Baz
- Biomedical Engineering Department, Louisville, KY, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
24
|
Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system. Int J Cardiovasc Imaging 2021; 37:1511-1528. [DOI: 10.1007/s10554-020-02124-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
|
25
|
Jamthikar AD, Gupta D, Saba L, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Sattar N, Johri AM, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Sharma A, Kitas GD, Nicolaides A, Kolluri R, Suri JS. Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: A narrative review of integrated approaches using carotid ultrasound. Comput Biol Med 2020; 126:104043. [PMID: 33065389 DOI: 10.1016/j.compbiomed.2020.104043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
RECENT FINDINGS Cardiovascular disease (CVD) is the leading cause of mortality and poses challenges for healthcare providers globally. Risk-based approaches for the management of CVD are becoming popular for recommending treatment plans for asymptomatic individuals. Several conventional predictive CVD risk models based do not provide an accurate CVD risk assessment for patients with different baseline risk profiles. Artificial intelligence (AI) algorithms have changed the landscape of CVD risk assessment and demonstrated a better performance when compared against conventional models, mainly due to its ability to handle the input nonlinear variations. Further, it has the flexibility to add risk factors derived from medical imaging modalities that image the morphology of the plaque. The integration of noninvasive carotid ultrasound image-based phenotypes with conventional risk factors in the AI framework has further provided stronger power for CVD risk prediction, so-called "integrated predictive CVD risk models." PURPOSE of the review: The objective of this review is (i) to understand several aspects in the development of predictive CVD risk models, (ii) to explore current conventional predictive risk models and their successes and challenges, and (iii) to refine the search for predictive CVD risk models using noninvasive carotid ultrasound as an exemplar in the artificial intelligence-based framework. CONCLUSION Conventional predictive CVD risk models are suboptimal and could be improved. This review examines the potential to include more noninvasive image-based phenotypes in the CVD risk assessment using powerful AI-based strategies.
Collapse
Affiliation(s)
- Ankush D Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Naveed Sattar
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Scotland, UK
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Greece
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
26
|
|
27
|
Shao Y, Wang J, Wodlinger B, Salcudean SE. Improving Prostate Cancer (PCa) Classification Performance by Using Three-Player Minimax Game to Reduce Data Source Heterogeneity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3148-3158. [PMID: 32305907 DOI: 10.1109/tmi.2020.2988198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
PCa is a disease with a wide range of tissue patterns and this adds to its classification difficulty. Moreover, the data source heterogeneity, i.e. inconsistent data collected using different machines, under different conditions, by different operators, from patients of different ethnic groups, etc., further hinders the effectiveness of training a generalized PCa classifier. In this paper, for the first time, a Generative Adversarial Network (GAN)-based three-player minimax game framework is used to tackle data source heterogeneity and to improve PCa classification performance, where a proposed modified U-Net is used as the encoder. Our dataset consists of novel high-frequency ExactVu ultrasound (US) data collected from 693 patients at five data centers. Gleason Scores (GSs) are assigned to the 12 prostatic regions of each patient. Two classification tasks: benign vs. malignant and low- vs. high-grade, are conducted and the classification results of different prostatic regions are compared. For benign vs. malignant classification, the three-player minimax game framework achieves an Area Under the Receiver Operating Characteristic (AUC) of 93.4%, a sensitivity of 95.1% and a specificity of 87.7%, respectively, representing significant improvements of 5.0%, 3.9%, and 6.0% compared to those of using heterogeneous data, which confirms its effectiveness in terms of PCa classification.
Collapse
|
28
|
Skandha SS, Gupta SK, Saba L, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Nicolaides A, Suri JS. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0. Comput Biol Med 2020; 125:103958. [PMID: 32927257 DOI: 10.1016/j.compbiomed.2020.103958] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. METHODS We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. RESULTS After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. CONCLUSIONS The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Collapse
Affiliation(s)
- Sanagala S Skandha
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India; CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Greece
| | - Durga P Misra
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
29
|
Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Sharma A, Nicolaides A, Kitas GD, Suri JS. Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 2020; 10:919-938. [PMID: 32968651 DOI: 10.21037/cdt.2020.01.07] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). Methods The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; (III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using combination of predicted class and endpoint equivalent to CVD/stroke events. Results An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM (AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 92.52% which was higher compared all the other CVRCStat. Conclusions ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/stroke compared to the 13 different types of statistically derived risk calculators including integrated model AECRS 2.0.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
30
|
Klingensmith JD, Haggard AL, Ralston JT, Qiang B, Fedewa RJ, Elsharkawy H, Geoffrey Vince D. Tissue classification in intercostal and paravertebral ultrasound using spectral analysis of radiofrequency backscatter. J Med Imaging (Bellingham) 2019; 6:047001. [PMID: 31720315 DOI: 10.1117/1.jmi.6.4.047001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Paravertebral and intercostal nerve blocks have experienced a resurgence in popularity. Ultrasound has become the gold standard for visualization of the needle during injection of the analgesic, but the intercostal artery and vein can be difficult to visualize. We investigated the use of spectral analysis of raw radiofrequency (RF) ultrasound signals for identification of the intercostal vessels and six other tissue types in the intercostal and paravertebral spaces. Features derived from the one-dimensional spectrum, two-dimensional spectrum, and cepstrum were used to train four different machine learning algorithms. In addition, the use of the average normalized spectrum as the feature set was compared with the derived feature set. Compared to a support vector machine (SVM) (74.2%), an artificial neural network (ANN) (68.2%), and multinomial analysis (64.1%), a random forest (84.9%) resulted in the most accurate classification. The accuracy using a random forest trained with the first 15 principal components of the average normalized spectrum was 87.0%. These results demonstrate that using a machine learning algorithm with spectral analysis of raw RF ultrasound signals has the potential to provide tissue characterization in intercostal and paravertebral ultrasound.
Collapse
Affiliation(s)
- Jon D Klingensmith
- Southern Illinois University Edwardsville, Department of Electrical and Computer Engineering, Edwardsville, Illinois, United States
| | - Asher L Haggard
- Southern Illinois University Edwardsville, Department of Electrical and Computer Engineering, Edwardsville, Illinois, United States
| | - Jack T Ralston
- Southern Illinois University Edwardsville, Department of Electrical and Computer Engineering, Edwardsville, Illinois, United States
| | - Beidi Qiang
- Southern Illinois University Edwardsville, Department of Mathematics and Statistics, Edwardsville, Illinois, United States
| | - Russell J Fedewa
- Cleveland Clinic Foundation, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Hesham Elsharkawy
- Cleveland Clinic Foundation, Department of General Anesthesia and Pain Management, Outcomes Research, and Anesthesiology Institute, Cleveland, Ohio, United States
| | - David Geoffrey Vince
- Cleveland Clinic Foundation, Department of Biomedical Engineering, Cleveland, Ohio, United States
| |
Collapse
|
31
|
Jamthikar A, Gupta D, Khanna NN, Araki T, Saba L, Nicolaides A, Sharma A, Omerzu T, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Protogerou A, Sfikakis PP, Kitas GD, Viswanathan V, Pareek G, Miner M, Suri JS. A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography. Curr Atheroscler Rep 2019; 21:25. [PMID: 31041615 DOI: 10.1007/s11883-019-0788-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of traditional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive carotid ultrasonography. RECENT FINDINGS In this review, ML-based strategies are categorized into two types: non-image (or conventional ML-based) and image-based (or integrated ML-based). The success of conventional (non-image-based) ML-based algorithms lies in the different data-driven patterns or features which are used to train the ML systems. Typically these features are the patients' demographics, serum biomarkers, and multiple clinical parameters. The integrated (image-based) ML-based algorithms integrate the features derived from the ultrasound scans of the arterial walls (such as morphological measurements) with conventional risk factors in ML frameworks. Even though the review covers ML-based system designs for carotid and coronary ultrasonography, the main focus of the review is on CVD/stroke risk scores based on carotid ultrasound. There are two key conclusions from this review: (i) fusion of image-based features with conventional cardiovascular risk factors can lead to more accurate CVD/stroke risk stratification; (ii) the ability to handle multiple sources of information in big data framework using artificial intelligence-based paradigms (such as ML and DL) is likely to be the future in preventive CVD/stroke risk assessment.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Aditya Sharma
- Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | | | - Ajay Gupta
- Department of Radiology, Cornell Medical Center, New York, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology
- , National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- R&D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
32
|
Cuadrado-Godia E, Srivastava SK, Saba L, Araki T, Suri HS, Giannopolulos A, Omerzu T, Laird J, Khanna NN, Mavrogeni S, Kitas GD, Nicolaides A, Suri JS. Geometric Total Plaque Area Is an Equally Powerful Phenotype Compared With Carotid Intima-Media Thickness for Stroke Risk Assessment: A Deep Learning Approach. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/1544316718806421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, carotid intima-media thickness (cIMT) and geometric total plaque area (gTPA) are computed manually and thus are tedious and prone to interobserver and intraobserver variabilities. This study presents an intelligence-based automated deep learning (DL)–based technique for carotid wall interface detection, cIMT, and lumen diameter (LD) measurements, followed by a 3D cylindrical approach for TPA measurement. The observers were used for manual tracings of which were then used for the design of two DL-based systems. The DL boundaries for inner lumen wall and outer interadventitial borders were used for computing the cIMT and LD. Using cylindrical approach, we computed the gTPA. Furthermore, we compute the 10-year image-based cIMT and gTPA, using the progression rates. A total of 396 B-mode ultrasound right and left common carotid artery images were taken from 203 patients. The mean cIMT and gTPA using DL1 and DL2 is 0.91 mm, 20.52 mm2 and 0.88 mm, 19.44 mm2, respectively. The coefficient of correlation between gTPA and cIMT using DL1 and DL2 is 0.92 ( P < .001) and 0.94 ( P < .001), respectively. The area under the curve (AUC) for gTPA showed an improvement over cIMT by 14.36% and 12.57% for DL1 and DL2, respectively. The corresponding 10-year risk improvements were 9.09% and 6.26%. Our statistical significance tests successfully passed t test, Mann-Whitney, Wilcoxon, Kolmogorov-Smirnov, and Friedman. The study shows gTPA as an equally powerful carotid risk biomarker like cIMT. Given the cIMT and LD, cylindrical fitting is a fast method for gTPA measurements.
Collapse
Affiliation(s)
| | | | - Luca Saba
- Azienda Ospedaliero Universitaria, Cagliari, Italy
| | | | | | | | | | | | | | | | - George D. Kitas
- The University of Manchester, UK
- The Dudley Group NHS Foundation Trust, UK
| | | | | |
Collapse
|
33
|
Klingensmith JD, Haggard A, Fedewa RJ, Qiang B, Cummings K, DeGrande S, Vince DG, Elsharkawy H. Spectral Analysis of Ultrasound Radiofrequency Backscatter for the Detection of Intercostal Blood Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1411-1422. [PMID: 29681422 DOI: 10.1016/j.ultrasmedbio.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Spectral analysis of ultrasound radiofrequency backscatter has the potential to identify intercostal blood vessels during ultrasound-guided placement of paravertebral nerve blocks and intercostal nerve blocks. Autoregressive models were used for spectral estimation, and bandwidth, autoregressive order and region-of-interest size were evaluated. Eight spectral parameters were calculated and used to create random forests. An autoregressive order of 10, bandwidth of 6 dB and region-of-interest size of 1.0 mm resulted in the minimum out-of-bag error. An additional random forest, using these chosen values, was created from 70% of the data and evaluated independently from the remaining 30% of data. The random forest achieved a predictive accuracy of 92% and Youden's index of 0.85. These results suggest that spectral analysis of ultrasound radiofrequency backscatter has the potential to identify intercostal blood vessels. (jokling@siue.edu) © 2018 World Federation for Ultrasound in Medicine and Biology.
Collapse
Affiliation(s)
- Jon D Klingensmith
- Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA.
| | - Asher Haggard
- Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Russell J Fedewa
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Beidi Qiang
- Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Kenneth Cummings
- Anesthesiology Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sean DeGrande
- Anesthesiology Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - D Geoffrey Vince
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Hesham Elsharkawy
- Anesthesiology Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort. Comput Biol Med 2018; 98:100-117. [DOI: 10.1016/j.compbiomed.2018.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023]
|
35
|
Biswas M, Kuppili V, Edla DR, Suri HS, Saba L, Marinhoe RT, Sanches JM, Suri JS. Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 155:165-177. [PMID: 29512496 DOI: 10.1016/j.cmpb.2017.12.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/11/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
Background and Objective Fatty Liver Disease (FLD) - a disease caused by deposition of fat in liver cells, is predecessor to terminal diseases such as liver cancer. The machine learning (ML) techniques applied for FLD detection and risk stratification using ultrasound (US) have limitations in computing tissue characterization features, thereby limiting the accuracy. Methods Under the class of Symtosis for FLD detection and risk stratification, this study presents a Deep Learning (DL)-based paradigm that computes nearly seven million weights per image when passed through a 22 layered neural network during the cross-validation (training and testing) paradigm. The DL architecture consists of cascaded layers of operations such as: convolution, pooling, rectified linear unit, dropout and a special block called inception model that provides speed and efficiency. All data analysis is performed in optimized tissue region, obtained by removing background information. We benchmark the DL system against the conventional ML protocols: support vector machine (SVM) and extreme learning machine (ELM). Results The liver US data consists of 63 patients (27 normal/36 abnormal). Using the K10 cross-validation protocol (90% training and 10% testing), the detection and risk stratification accuracies are: 82%, 92% and 100% for SVM, ELM and DL systems, respectively. The corresponding area under the curve is: 0.79, 0.92 and 1.0, respectively. We further validate our DL system using two class biometric facial data that yields an accuracy of 99%. Conclusion DL system shows a superior performance for liver detection and risk stratification compared to conventional machine learning systems: SVM and ELM.
Collapse
Affiliation(s)
- Mainak Biswas
- Department of Computer Science and Engineering, NIT, Goa, India
| | | | | | - Harman S Suri
- Brown University, Providence, RI, USA; Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, A.O.U., Italy
| | - Rui Tato Marinhoe
- Liver Unit, Department of Gastroenterology and Hepatology, Hospital de Santa Maria, Medical School of Lisbon, Lisbon 1629-049, Portugal
| | | | - Jasjit S Suri
- Advanced Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
36
|
Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Sanches J, Kumar D, Marinho R, Suri JS. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:118-134. [PMID: 27208527 DOI: 10.1016/j.cmpb.2016.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE Fatty liver disease (FLD) is one of the most common diseases in liver. Early detection can improve the prognosis considerably. Using ultrasound for FLD detection is highly desirable due to its non-radiation nature, low cost and easy use. However, the results can be slow and ambiguous due to manual detection. The lack of computer trained systems leads to low image quality and inefficient disease classification. Thus, the current study proposes novel, accurate and reliable detection system for the FLD using computer-based training system. MATERIALS AND METHODS One hundred twenty-four ultrasound sample images were selected retrospectively from a database of 62 patients consisting of normal and cancerous. The proposed training system was generated offline parameters using training liver image database. The classifier applied transformation parameters to an online system in order to facilitate real-time detection during the ultrasound scan. The system utilized six sets of features (a total of 128 features), namely Haralick, basic geometric, Fourier transform, discrete cosine transform, Gupta transform and Gabor transform. These features were extracted for both offline training and online testing. Levenberg-Marquardt back propagation network (BPN) classifier was used to classify the liver disease into normal and abnormal categories. RESULTS Random partitioning approach was adapted to evaluate the classifier performance and compute its accuracy. Utilizing all the six sets of 128 features, the computer aided diagnosis (CAD) system achieved classification accuracy of 97.58%. Furthermore, the four performance metrics consisting of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) realized 98.08%, 97.22%, 96.23%, and 98.59%, respectively. CONCLUSION The proposed system was successfully able to detect and classify the FLD. Furthermore, the proposed system was benchmarked against previous methods. The comparison established an advanced set of features in the Levenberg-Marquardt back propagation network reports a significant improvement compared to the existing techniques.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, Italy
| | - Nilanjan Dey
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Amira S Ashour
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Egypt
| | - Sourav Samanta
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | - Sayan Chakraborty
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - João Sanches
- Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisbon, Portugal
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - RuiTato Marinho
- Liver Unit, Department of Gastroenterology and Hepatology, Hospital de Santa Maria, Medical School of Lisbon, Portugal
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Electrical Engineering Department (Affl.), Idaho State University, ID, USA.
| |
Collapse
|
37
|
Dey N, Bose S, Das A, Chaudhuri SS, Saba L, Shafique S, Nicolaides A, Suri JS. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine. J Med Syst 2016; 40:91. [PMID: 26860914 DOI: 10.1007/s10916-016-0451-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India.,Department of Information Technology, Techno India College of Technology, Kolkata, India.,Point of Care Devices, Global Biomedical Technologies, Inc, Roseville, CA, USA
| | - Soumyo Bose
- Department of Information Technology, Techno India College of Technology, Kolkata, India
| | - Achintya Das
- Department of ECE, Kalyani Government Engineering College, Bengal, India
| | - Sheli Sinha Chaudhuri
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
| | - Luca Saba
- Radiology Department, zienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Via Roma, 67, 56126, Pisa, PI, Italy
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK.,Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Point of Care Devices, Global Biomedical Technologies, Inc, Roseville, CA, USA. .,Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA. .,Electrical Engineering Department (Affl.), Idaho State University, 921 S 8th Ave, Pocatello, ID, 83201, USA.
| |
Collapse
|
38
|
Sudarshan VK, Mookiah MRK, Acharya UR, Chandran V, Molinari F, Fujita H, Ng KH. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review. Comput Biol Med 2015; 69:97-111. [PMID: 26761591 DOI: 10.1016/j.compbiomed.2015.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/12/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023]
Abstract
Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.
Collapse
Affiliation(s)
- Vidya K Sudarshan
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
| | | | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Malaysia; Department of Biomedical Engineering, School of Science and Technology, SIM University, 599491, Singapore
| | - Vinod Chandran
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane QLD 4000, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
| | - Hamido Fujita
- Faculty of Software and Information Science, Iwate Prefectural University (IPU), Iwate 020-0693, Japan
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603, Malaysia
| |
Collapse
|
39
|
Computer-aided diagnosis of Myocardial Infarction using ultrasound images with DWT, GLCM and HOS methods: A comparative study. Comput Biol Med 2015; 62:86-93. [DOI: 10.1016/j.compbiomed.2015.03.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/23/2022]
|