1
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2025; 30:1102-1116. [PMID: 39639174 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
2
|
Krisanits BA, Kaur B, Fahey JW, Turner DP. The Anti-AGEing and RAGEing Potential of Isothiocyanates. Molecules 2024; 29:5986. [PMID: 39770075 PMCID: PMC11677037 DOI: 10.3390/molecules29245986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes the current evidence supporting the observation that the antioxidant and anti-inflammatory activities of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset, progression, and severity. This review debates the potential molecular mechanisms by which ITCs may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory phenotypes. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic disease risk.
Collapse
Affiliation(s)
- Bradley A. Krisanits
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Bhoomika Kaur
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jed W. Fahey
- Departments of Medicine, Pharmacology & Molecular Sciences, Psychiatry & Behavioral Sciences, and iMIND Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - David P. Turner
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Ramakrishnan M, Fahey JW, Zimmerman AW, Zhou X, Panjwani AA. The role of isothiocyanate-rich plants and supplements in neuropsychiatric disorders: a review and update. Front Nutr 2024; 11:1448130. [PMID: 39421616 PMCID: PMC11484503 DOI: 10.3389/fnut.2024.1448130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroinflammation in response to environmental stressors is an important common pathway in a number of neurological and psychiatric disorders. Responses to immune-mediated stress can lead to epigenetic changes and the development of neuropsychiatric disorders. Isothiocyanates (ITC) have shown promise in combating oxidative stress and inflammation in the nervous system as well as organ systems. While sulforaphane from broccoli is the most widely studied ITC for biomedical applications, ITC and their precursor glucosinolates are found in many species of cruciferous and other vegetables including moringa. In this review, we examine both clinical and pre-clinical studies of ITC on the amelioration of neuropsychiatric disorders (neurodevelopmental, neurodegenerative, and other) from 2018 to the present, including documentation of protocols for several ongoing clinical studies. During this time, there have been 16 clinical studies (9 randomized controlled trials), most of which reported on the effect of sulforaphane on autism spectrum disorder and schizophrenia. We also review over 80 preclinical studies examining ITC treatment of brain-related dysfunctions and disorders. The evidence to date reveals ITC have great potential for treating these conditions with minimal toxicity. The authors call for well-designed clinical trials to further the translation of these potent phytochemicals into therapeutic practice.
Collapse
Affiliation(s)
- Monica Ramakrishnan
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jed W. Fahey
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Medicine, University of Maine, Orono, ME, United States
| | - Andrew W. Zimmerman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, United States
| | - Xinyi Zhou
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Anita A. Panjwani
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Zeng J, Zhang W, Lu X, Zhou H, Huang J, Xu Z, Liao H, Liang J, Liang M, Ye C, Sun T, Hu Y, She Q, Chen H, Guo Q, Yan L, Wu R, Li Z. The association of SOD and HsCRP with the efficacy of sulforaphane in schizophrenia patients with residual negative symptoms. Eur Arch Psychiatry Clin Neurosci 2024; 274:1083-1092. [PMID: 37728803 PMCID: PMC11226471 DOI: 10.1007/s00406-023-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES Emerging evidence indicates a connection between oxidative stress, immune-inflammatory processes, and the negative symptoms of schizophrenia. In addition to possessing potent antioxidant and anti-inflammatory properties, sulforaphane (SFN) has shown promise in enhancing cognitive function among individuals with schizophrenia. This study aims to investigate the efficacy of combined treatment with SFN in patients with schizophrenia who experience negative symptoms and its effect on the levels of superoxide dismutase (SOD) and the inflammatory marker, high-sensitivity C-reactive protein (HsCRP). DESIGN Forty-five patients with schizophrenia were recruited, who mainly experienced negative symptoms during a stable period. In addition to the original treatments, the patients received SFN tablets at a daily dose of 90 mg for 24 weeks. At baseline, 12 weeks, and 24 weeks, the participants were interviewed and evaluated. The reduction rate of the Positive and Negative Syndrome Scale (PANSS) was used to assess each participant. The side effects scale of Treatment Emergent Symptom Scale (TESS) was applied to assess the adverse reactions. Additionally, the levels of the SOD, HsCRP, and other indicators were examined. RESULTS The study findings revealed a significant decrease in PANSS negative subscale scores (P < 0.001). Furthermore, there was a significant increase in SOD activity and HsCRP levels (P < 0.001 and P < 0.05). Notably, the group of participants who exhibited a reduction in PANSS negative subscale scores demonstrated a significant improvement in HsCRP levels (P < 0.05). CONCLUSIONS Our study suggests that SFN may potentially serve as a safe adjunctive intervention to improve the negative symptoms of schizophrenia. The potential mechanism by which SFN improves negative symptoms in schizophrenia patients may involve its anti-inflammatory properties, specifically its ability to reduce HsCRP levels. Trial registration ClinicalTrial.gov (ID: NCT03451734).
Collapse
Affiliation(s)
- Jianfei Zeng
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, China
| | - Weizhi Zhang
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
| | - Xiaobing Lu
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Hui Zhou
- Shiyan People's Hospital of Baoan District, Shenzhen, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenyu Xu
- Ganzhou People's Hospital of Jiangxi Province, Ganzhou, China
| | - Hairong Liao
- The Third People's Hospital of Foshan, Foshan, China
| | - Jiaquan Liang
- The Third People's Hospital of Foshan, Foshan, China
| | - Meihong Liang
- The Third People's Hospital of Foshan, Foshan, China
| | - Chan Ye
- University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Ting Sun
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Yutong Hu
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Qi She
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Haixia Chen
- Zhongshan Third People's Hospital, Zhongshan, China
| | - Qian Guo
- Zhaoqing Third People's Hospital, Zhaoqing, China
| | - LiuJiao Yan
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Gebreegziabhere Y, Habatmu K, Cella M, Alem A. Development and Evaluation of a Cognitive Battery for People With Schizophrenia in Ethiopia. Schizophr Bull 2024; 50:931-943. [PMID: 38159078 PMCID: PMC11283194 DOI: 10.1093/schbul/sbad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive difficulties significantly burdened people with schizophrenia (PWS). However, cognitive assessment is often unavailable in low- and middle-income counties (LMICs) due to a lack of validated and culturally adapted cognitive assessment tools. In this study, we developed and evaluated a culturally sensitive cognitive battery for PWS in Ethiopia. STUDY DESIGN This study was conducted in three phases. First, we selected appropriate tests through an instrument selection procedure and created a new battery. Then, we rigorously adapted the tests using culturally competent procedures, including cognitive interviewing and expert meetings. Finally, we tested the new battery in 208 PWS and 208 controls. We evaluated its psychometric properties using advanced statistical techniques, including Item Response Theory (IRT). STUDY RESULTS The Ethiopian Cognitive Assessment battery for Schizophrenia (ECAS) was developed from three different batteries. Participants reported tests were easy to complete, and the raters found them easy to administer. All tests had good inter-rater reliability, and the composite score had very high test-retest reliability (ICC = 0.91). One-factor structure better represented the data with excellent internal consistency (α = .81). ECAS significantly differentiated PWS from controls with 77% sensitivity and 62% specificity at a Z-score ≤0.12 cut-off value. IRT analysis suggested that the battery functions best among moderately impaired participants (difficulty between -0.06 and 0.66). CONCLUSIONS ECAS is a practical, tolerable, reliable, and valid assessment of cognition. ECAS can supplement current assessment tools in LAMICs for PWS and can be used to measure cognitive intervention outcomes.
Collapse
Affiliation(s)
- Yohannes Gebreegziabhere
- Department of Nursing, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
- Department of Psychiatry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Habatmu
- School of Psychology, College of Education and Behavioral Studies, Addis Ababa University, Addis Ababa, Ethiopia
| | - Matteo Cella
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, UK
| | - Atalay Alem
- Department of Psychiatry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Shah A, Varma M, Bhandari R. Exploring sulforaphane as neurotherapeutic: targeting Nrf2-Keap & Nf-Kb pathway crosstalk in ASD. Metab Brain Dis 2024; 39:373-385. [PMID: 37249861 DOI: 10.1007/s11011-023-01224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
Autism spectrum disorders (ASD) are a family of complex neurodevelopmental disorders, characterized mainly through deficits in social behavior and communication. While the causes giving rise to autistic symptoms are numerous and varied, the treatment options and therapeutic avenues are still severely limited. Nevertheless, a number of signalling pathways have been implicated in the pathogenesis of the disease, and targeting these pathways might provide insight into potential treatments and future strategies. Importantly, alterations in inflammation, oxidative stress, and mitochondrial dysfunction have been noted in the brains of ASD patients, and among the pathways involved in these processes is the Nrf2 cascade. This particular pathway has been hypothesized to be involved in inducing both, inflammatory and anti-inflammatory/neuroprotective effects in the brain, sparking an interest in its use in ASD. Sulforaphane, a sulfur-containing phytochemical present mainly in cruciferous plants like broccoli and cabbage, has shown efficacy in activating the Nrf2 signaling pathway, which in turn brings about a protective effect on neuronal cells, especially against mitochondrial dysfunction. Its efficacy against ASD has not yet been evaluated, and in this paper, we attempt to discuss the therapeutic potential of this agent in the therapy of autism, with special emphasis on the role of the Nrf2 pathway in the disorder.
Collapse
Affiliation(s)
- Ali Shah
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, 160 014, Chandigarh, India
| | - Manasi Varma
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, 160 014, Chandigarh, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, 160 014, Chandigarh, India.
| |
Collapse
|
9
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
10
|
Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023; 15:nu15061424. [PMID: 36986155 PMCID: PMC10058295 DOI: 10.3390/nu15061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Mariem Achour
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Claudine Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Cristina García-Viguera
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| |
Collapse
|
11
|
Tucci P, Bove M, Sikora V, Dimonte S, Morgese MG, Schiavone S, Di Cesare Mannelli L, Ghelardini C, Trabace L. Glucoraphanin Triggers Rapid Antidepressant Responses in a Rat Model of Beta Amyloid-Induced Depressive-like Behaviour. Pharmaceuticals (Basel) 2022; 15:ph15091054. [PMID: 36145275 PMCID: PMC9500808 DOI: 10.3390/ph15091054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Glucoraphanin (GRA) is a natural compound that has shown beneficial effects in chronic diseases and in central nervous system disorders. Moreover, GRA displayed antidepressant activity in preclinical models. We have previously demonstrated that a single intracerebroventricular administration of soluble amyloid-beta 1-42 (sAβ 1-42) in rat evokes a depressive-like phenotype by increasing immobility frequency in the forced swimming test (FST). The aim of this work was to investigate the effect of GRA in naïve and in sAβ-1-42-treated rats by using the FST. Behavioural analyses were accompanied by neurochemical and biochemical measurements in the prefrontal cortex (PFC), such as serotonin (5-HT), noradrenaline (NA), kynurenine (KYN), tryptophan (TRP), reactive oxygen species (ROS) and the transcription nuclear factor kappa B (NF-kB) levels. We reported that GRA administration in naïve rats at the dose of 50 mg/kg reduced the immobility frequency in the FST and increased 5-HT and NA levels in the PFC compared to controls. At the same dose, GRA reverted depressive-like effects of sAβ 1-42 administration, restored the 5-HT levels and reduced NF-kB, KYN and ROS levels in PFC. In conclusion, GRA rapidly reverting depressive-like behaviour, together with biochemical and neurochemical alterations, might represent a safe and natural candidate for the treatment of depression.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Department of Pathology, Sumy State University, 40007 Sumy, Ukraine
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, 50139 Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, 50139 Firenze, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
12
|
The Role of the NRF2 Pathway in Maintaining and Improving Cognitive Function. Biomedicines 2022; 10:biomedicines10082043. [PMID: 36009590 PMCID: PMC9405981 DOI: 10.3390/biomedicines10082043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a redox-sensitive transcription factor that binds to the antioxidant response element consensus sequence, decreasing reactive oxygen species and regulating the transcription of a wide array of genes, including antioxidant and detoxifying enzymes, regulating genes involved in mitochondrial function and biogenesis. Moreover, NRF2 has been shown to directly regulate the expression of anti-inflammatory mediators reducing the expression of pro-inflammatory cytokines. In recent years, attention has turned to the role NRF2 plays in the brain in different diseases such Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and others. This review focused on the evidence, derived in vitro, in vivo and from clinical trials, supporting a role for NRF2 activation in maintaining and improving cognitive function and how its activation can be used to elicit neuroprotection and lead to cognitive enhancement. The review also brings a critical discussion concerning the possible prophylactic and/or therapeutic use of NRF2 activators in treating cognitive impairment-related conditions.
Collapse
|
13
|
Nouchi R, Hu Q, Ushida Y, Suganuma H, Kawashima R. Effects of sulforaphane intake on processing speed and negative moods in healthy older adults: Evidence from a randomized controlled trial. Front Aging Neurosci 2022; 14:929628. [PMID: 35966784 PMCID: PMC9372582 DOI: 10.3389/fnagi.2022.929628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have reported that sulforaphane (SFN) intake with cognitive training had positive effects on cognitive functions. However, it is still unknown whether SFN intake alone has beneficial effects on cognition as well as mood. We investigated whether a SFN intake intervention improved cognitive performance and mood states in healthy older adults. Methods In a 12-week, double-blinded, randomized controlled trial (RCT), we randomly assigned 144 older adults to a SFN group or a placebo group. We asked the participants to take a supplement (SFN or placebo) for 12 weeks. We measured several cognitive functions, mood states, and biomarkers before and after the intervention period. Results The SFN group showed improvement in processing speed and a decrease in negative mood compared to the placebo group. In addition, the SFN group exhibited a higher SFN-N-acetyl-L-cysteine (NAC) level compared to the placebo group. However, there were no significant results in other biomarkers of oxidant stress, inflammation, or neural plasticity. Discussion These results indicate that nutrition interventions using SFN can have positive effects on cognitive functioning and mood in healthy older adults.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- *Correspondence: Rui Nouchi,
| | - Qingqiang Hu
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | | | - Ryuta Kawashima
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Long-lasting beneficial effects of maternal intake of sulforaphane glucosinolate on gut microbiota in adult offspring. J Nutr Biochem 2022; 109:109098. [PMID: 35788394 DOI: 10.1016/j.jnutbio.2022.109098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Mounting evidence suggests the impact of maternal diet on the health of offspring. We reported that maternal diet of sulforaphane glucosinolate (SGS) could prevent behavioral abnormalities in offspring after maternal immune activation. The present study was designed to investigate whether the dietary intake of SGS during pregnancy and lactation influences the composition of gut microbiota in the offspring. The dietary intake of SGS during pregnancy and lactation caused significant changes in the α-diversity and β-diversity of gut microbiota in 3-week-old offspring (SGS-3W group) and 10-week-old offspring (SGS-10W group). The LEfSe algorithm identified several microbes as important phylotypes in the SGS-3W or SGS-10W groups. Predictive functional metagenomes showed that the maternal intake of SGS caused several KEGG pathways alterations with respect to the genetic information processing and metabolism. Furthermore, the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SGS-10W group after the injection of lipopolysaccharide (LPS: 0.5 mg/kg) were significantly lower than those of the CON-10W group. It is noteworthy that there were positive correlations between the relative abundance of the genus Blautia and IL-6 (or TNF-α) in adult offspring. Moreover, there were sex differences of gut microbiota composition in offspring. In conclusion, these data suggest that the dietary intake of SGS during pregnancy and lactation might produce long-lasting beneficial effects in adult offspring through the persistent modulation of gut microbiota. It is likely that the modulation of gut microbiota by maternal nutrition may confer resilience versus vulnerability to stress-related psychiatric disorders in the offspring.
Collapse
|
15
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
16
|
Liu Y, Zhang D, Li X, Xiao J, Guo L. Enhancement of ultrasound-assisted extraction of sulforaphane from broccoli seeds via the application of microwave pretreatment. ULTRASONICS SONOCHEMISTRY 2022; 87:106061. [PMID: 35716467 PMCID: PMC9213254 DOI: 10.1016/j.ultsonch.2022.106061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, microwave pretreatment and grinding treatment were used to enhance sulforaphane formation, then ultrasonic-assisted extraction (UAE) was applied to extract sulforaphane using simultaneous hydrolysis and extraction method. The effects of various parameters, which were ultrasonic time,ultrasonic power, solid-water ratio and solid-ethyl acetate ratio on the extraction rate of sulforaphane were investigated. The results showed that microwave pretreatment enhanced sulforaphane formation. Excessive size reduction did not increase or even reduced extraction rate of sulforaphane. Simultaneous hydrolysis and extraction significantly increased extraction rate of sulforaphane compared to hydrolysis followed by extraction. UAE accelerated mass transfer and the solubilization of the targeted compounds due to the acoustic cavitation effect, thus enhanced enzymatic hydrolysis of glucoraphanin and the extraction rate of sulforaphane. The extraction rate of sulforaphane using UAE with simultaneous hydrolysis and extraction was 4.07-fold of the conventional extraction method. UAE was an effective method to extract sulforaphane from broccoli seeds since it led to higher yield of sulforaphane in a much shorter extraction time.
Collapse
Affiliation(s)
- Yanbing Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Di Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China.
| |
Collapse
|
17
|
Zheng W, Li X, Zhang T, Wang J. Biological mechanisms and clinical efficacy of sulforaphane for mental disorders. Gen Psychiatr 2022; 35:e100700. [PMID: 35492261 PMCID: PMC8987744 DOI: 10.1136/gpsych-2021-100700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Current clinical management of major mental disorders, such as autism spectrum disorder, depression and schizophrenia, is less than optimal. Recent scientific advances have indicated that deficits in oxidative and inflammation systems are extensively involved in the pathogenesis of these disorders. These findings have led to expanded considerations for treatment. Sulforaphane (SFN) is a dietary phytochemical extracted from cruciferous vegetables. It is an effective activator of the transcription factor nuclear erythroid-2 like factor-2, which can upregulate multiple antioxidants and protect neurons against various oxidative damages. On the other hand, it can also significantly reduce inflammatory response to pathological states and decrease the damage caused by the immune response via the nuclear factor-κB pathway and other pathways. In this review, we introduce the biological mechanisms of SFN and the pilot evidence from its clinical trials of major mental disorders, hoping to promote an increase in psychiatric clinical studies of SFN.
Collapse
Affiliation(s)
- Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Shenzhen R&D Center, Shenzhen Fushan Biotech, Shenzhen, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
19
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
20
|
|
21
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
22
|
Hei G, Smith RC, Li R, Ou J, Song X, Zheng Y, He Y, Arriaza J, Fahey JW, Cornblatt B, Kang D, Yang Y, Huang J, Wang X, Cadenhead K, Zhang M, Davis JM, Zhao J, Jin H, Wu R. Sulforaphane Effects on Cognition and Symptoms in First and Early Episode Schizophrenia: A Randomized Double-Blind Trial. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac024. [PMID: 39144775 PMCID: PMC11205988 DOI: 10.1093/schizbullopen/sgac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Objective Cognitive symptoms are associated with significant dysfunction in schizophrenia. Oxidative stress and inflammation involving histone deacetylase (HDAC) have been implicated in the pathophysiology of schizophrenia. Sulforaphane has antioxidant properties and is an HDAC inhibitor. The objective of this study was to determine the efficacy of sulforaphane on cognition dysfunction for patients with schizophrenia. Methods This double-blind randomized 22-week trial of patients with first-episode schizophrenia was conducted in four psychiatric institutions in China. Patients were randomized to three groups (two doses of sulforaphane vs. placebo) and symptomatic and cognitive assessments were completed at multiple times. The primary outcome measure was change in the MATRICS Composite score. The secondary outcomes were change in MATRICS Domain scores, PANSS Total Scores and change in side-effects. Results A total of 172 patients were randomized and 151 patients had at least one follow up evaluation. There were no significant effects of sulforaphane, on the primary outcome, MATRICS overall composite score. However, on secondary outcomes, sulforaphane did significantly improve performance scores on MATRICS battery Domains of spatial working memory (F = 5.68, P = 0.004), reasoning-problem solving (F = 2.82, P = 0.063), and verbal learning (F = 3.56, P = 0.031). There were no effects on PANSS symptom scores. Sulforaphane was well tolerated. Conclusion Although the primary outcome was not significant, improvement in three domains of the MATRICS battery, suggests a positive cognitive effect on some cognitive functions, which warrants further clinical trials to further assess whether sulforaphane may be a useful adjunct for treating some types of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Gangrui Hei
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Robert C Smith
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Ranran Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Jianjun Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Xueqing Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yiqun He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jen Arriaza
- School of Professional Studies, New York University, New York, NY, USA
| | - Jed W Fahey
- Center for Human Nutrition, International Health. School of Medicine, John Hopkins University, Baltimore, Maryland, USA
| | | | - Dongyu Kang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Jing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Xiaoyi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego and Psychiatric Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mimei Zhang
- Columbia University Mailman School of Public Health, New York City, NY, USA
| | - John M Davis
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Hua Jin
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
- Department of Psychiatry, University of California San Diego and Psychiatric Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Menon V, Balasubramanian I, Rajkumar R. Association between markers of oxidative stress and cognitive functioning in schizophrenia. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_174_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
24
|
Zhang S, Zhao J, Bai Z, Luo L, Wu F, Li B, Shan Y. Sulforaphane inhibits the production of Aβ partially through the activation of Nrf2-regulated oxidative stress. Food Funct 2021; 12:11482-11490. [PMID: 34699582 DOI: 10.1039/d1fo02651h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, presents a potential role in improving Alzheimer's disease (AD)-specific symptoms. However, the regulation mechanism of SFN in AD is poorly understood. Here, we established AD models both in vitro and in vivo. Animal behaviors were tested by the Morris water maze test. The pathology of the hippocampus and the content of Aβ were detected. SFN (40 mg kg-1) decreased the escape latency (24.96 ± 7.43 s) and increased the target-zone frequency (3.19 ± 1.19) in rats. SFN improved the pathological morphology and the number of neurons in the hippocampus. Additionally, SFN significantly upregulated the contents of thioredoxin and glutathione as well as the activities of antioxidant enzymes, along with the expression of the Nrf2 protein. Conversely, SFN lowered the Aβ content and ROS level in N2a/APP cells. After silencing the Nrf2 by SiRNA, the inhibitory effects of SFN on ROS and Aβ production were partially weakened. In conclusion, the improvement of AD by SFN was closely related with Nrf2 activation.
Collapse
Affiliation(s)
- Shunxi Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiahe Zhao
- Center of Drug Safety and Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Zhihuai Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Lina Luo
- Center of Drug Safety and Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Fan Wu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Baolong Li
- Center of Drug Safety and Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
25
|
Connolly EL, Sim M, Travica N, Marx W, Beasy G, Lynch GS, Bondonno CP, Lewis JR, Hodgson JM, Blekkenhorst LC. Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front Pharmacol 2021; 12:767975. [PMID: 34764875 PMCID: PMC8575925 DOI: 10.3389/fphar.2021.767975] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed.
Collapse
Affiliation(s)
- Emma L Connolly
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Marc Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Nikolaj Travica
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Gemma Beasy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Gordon S Lynch
- Department of Anatomy and Physiology, Centre for Muscle Research, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Lauren C Blekkenhorst
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
26
|
Wu Q, Wang X, Wang Y, Long YJ, Zhao JP, Wu RR. Developments in Biological Mechanisms and Treatments for Negative Symptoms and Cognitive Dysfunction of Schizophrenia. Neurosci Bull 2021; 37:1609-1624. [PMID: 34227057 PMCID: PMC8566616 DOI: 10.1007/s12264-021-00740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
The causal mechanisms and treatment for the negative symptoms and cognitive dysfunction in schizophrenia are the main issues attracting the attention of psychiatrists over the last decade. The first part of this review summarizes the pathogenesis of schizophrenia, especially the negative symptoms and cognitive dysfunction from the perspectives of genetics and epigenetics. The second part describes the novel medications and several advanced physical therapies (e.g., transcranial magnetic stimulation and transcranial direct current stimulation) for the negative symptoms and cognitive dysfunction that will optimize the therapeutic strategy for patients with schizophrenia in future.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ying Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yu-Jun Long
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jing-Ping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
27
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
28
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
29
|
Marino M, Martini D, Venturi S, Tucci M, Porrini M, Riso P, Del Bo' C. An Overview of Registered Clinical Trials on Glucosinolates and Human Health: The Current Situation. Front Nutr 2021; 8:730906. [PMID: 34778334 PMCID: PMC8578719 DOI: 10.3389/fnut.2021.730906] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies suggest a potential role of glucosinolates (GSLs) and isothiocyanates on human health. However, evidence from intervention studies, due to heterogeneity in features of study design, duration, participants, food or food components administered, and outcomes analyzed, is still insufficient. The current review aims to provide an overview of the trials on GSLs and GSL-rich foods registered over the last 20 years with the intention to summarize the main topics and results, but also the existing gaps that still need to be covered. Studies were collected by using ClinicalTrials.gov and the International Standard Randomized Controlled Trial Number (ISRCTN) registry. A total of 87 registered trials were identified with which most of them were performed by using extracts or pure compounds (n = 60) while few were conducted with GSL-rich foods (n = 27). In detail, sulforaphane was the most investigated compound, while broccoli was the most frequent food tested in the trials. The majority of the studies assessed the health effects of GSLs focusing on outcomes related to cancer and cognitive function, even if the current findings are not univocal. Emerging topics also included the study of GSLs and gut microbiota interaction and impact on skin health. Further attention was also drawn to the bioavailability of GSLs and/or derivatives from foods, extracts, and single compounds by also considering the contribution of the different genetic polymorphisms. In conclusion, although considerable efforts have been made to study GSLs and GSL-rich foods, further studies are necessary to provide evidence-based research and to corroborate the findings obtained. The interindividual response due to genetic polymorphisms should be further investigated in order to explore the contribution to the overall beneficial effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
30
|
Sharma P, Kaushik P, Jain S, Sharma BM, Awasthi R, Kulkarni GT, Sharma B. Efficacy of Ulinastatin and Sulforaphane Alone or in Combination in Rat Model of Streptozotocin Diabetes Induced Vascular Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:470-489. [PMID: 34294616 PMCID: PMC8316668 DOI: 10.9758/cpn.2021.19.3.470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Objective Vascular Dementia (VaD), is associated with metabolic conditions. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of ulinastatin (UTI) and sulforaphane (SUL) in streptozotocin (STZ)-diabetes induced vascular endothelium dysfunction and related dementia. Methods Single dose STZ (50 mg/kg i.p.) was administered to Albino Wistar rats (male, 200−250 g). Morris water maze and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains’ oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-a, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, blood brain barrier (BBB) permeability and histopathological changes were also assessed. UTI (10,000 U/kg) and SUL (25 mg/kg) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg/kg) was used as a positive control. Results STZ-administered rats showed reduction in body weight, learning, memory, reversal learning, executive functioning, impairment in endothelial function, BBB permeability, increase in serum glucose, brains’ oxidative stress, inflammation, AChE-activity, BBB permeability and histopathological changes. Administration of UTI and SUL alone as well as in combination, significantly and dose dependently attenuated the STZ-diabetes-induced impairments in the behavioral, endothelial, and biochemical parameters. Conclusion STZ administration caused diabetes and VaD which was attenuated by the administration of UTI and SUL. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Prachi Kaushik
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Swati Jain
- Department of Pharmacology, School of Pharmacy, BIT, Meerut, India
| | | | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | | | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
31
|
Takayanagi Y, Ishizuka K, Laursen TM, Yukitake H, Yang K, Cascella NG, Ueda S, Sumitomo A, Narita Z, Horiuchi Y, Niwa M, Taguchi A, White MF, Eaton WW, Mortensen PB, Sakurai T, Sawa A. From population to neuron: exploring common mediators for metabolic problems and mental illnesses. Mol Psychiatry 2021; 26:3931-3942. [PMID: 33173197 PMCID: PMC8514126 DOI: 10.1038/s41380-020-00939-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
Major mental illnesses such as schizophrenia (SZ) and bipolar disorder (BP) frequently accompany metabolic conditions, but their relationship is still unclear, in particular at the mechanistic level. We implemented an approach of "from population to neuron", combining population-based epidemiological analysis with neurobiological experiments using cell and animal models based on a hypothesis built from the epidemiological study. We characterized high-quality population data, olfactory neuronal cells biopsied from patients with SZ or BP, and healthy subjects, as well as mice genetically modified for insulin signaling. We accessed the Danish Registry and observed (1) a higher incidence of diabetes in people with SZ or BP and (2) higher incidence of major mental illnesses in people with diabetes in the same large cohort. These epidemiological data suggest the existence of common pathophysiological mediators in both diabetes and major mental illnesses. We hypothesized that molecules associated with insulin resistance might be such common mediators, and then validated the hypothesis by using two independent sets of olfactory neuronal cells biopsied from patients and healthy controls. In the first set, we confirmed an enrichment of insulin signaling-associated molecules among the genes that were significantly different between SZ patients and controls in unbiased expression profiling data. In the second set, olfactory neuronal cells from SZ and BP patients who were not pre-diabetic or diabetic showed reduced IRS2 tyrosine phosphorylation upon insulin stimulation, indicative of insulin resistance. These cells also displayed an upregulation of IRS1 protein phosphorylation at serine-312 at baseline (without insulin stimulation), further supporting the concept of insulin resistance in olfactory neuronal cells from SZ patients. Finally, Irs2 knockout mice showed an aberrant response to amphetamine, which is also observed in some patients with major mental illnesses. The bi-directional relationships between major mental illnesses and diabetes suggest that there may be common pathophysiological mediators associated with insulin resistance underlying these mental and physical conditions.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M. Laursen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Denmark
| | - Hiroshi Yukitake
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicola G. Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuhei Ueda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Akiko Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasue Horiuchi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akiko Taguchi
- Department of Integrative Aging Neuroscience, National Center for Geriatrics and Gerontology, Japan
| | - Morris F. White
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - William W. Eaton
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Preben B. Mortensen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Denmark,The Lundbeck Foundation’s Initiative for Integrative Research, iPSYCH,Center for Integrated Register-based Research at Aarhus University, CIRRAU, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Ghazizadeh-Hashemi F, Bagheri S, Ashraf-Ganjouei A, Moradi K, Shahmansouri N, Mehrpooya M, Noorbala AA, Akhondzadeh S. Efficacy and safety of sulforaphane for treatment of mild to moderate depression in patients with history of cardiac interventions: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Clin Neurosci 2021; 75:250-255. [PMID: 34033171 DOI: 10.1111/pcn.13276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
AIM Depression has been recognized as one of the disorders associated with cardiac interventions such as percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery (CABG). In the present study, we evaluated the efficacy and safety of sulforaphane in treatment of depression induced by cardiac interventions. METHODS After initial screening, 66 patients with previous history of at least one cardiac intervention and current mild to moderate depression were randomly assigned to two parallel groups receiving either sulforaphane (n = 33) or placebo (n = 33) for six successive weeks. Efficacy was assessed using the Hamilton Rating Scale for Depression (HAM-D) at baseline and week 2, 4, and 6. Safety of the treatments was checked during the trial period. RESULTS Sixty participants completed the clinical trial (n = 30 in each group). Baseline demographic and clinical parameters were all similar among groups. Repeated measures analysis indicated that the sulforaphane group exhibited greater improvement in HAM-D scores throughout the trial (P < 0.001). Response to treatment (≥50% reduction in the HAM-D score) rate was higher in the sulforaphane group at trial endpoint (30% vs 6.67%, P = 0.042). Remission (HAM-D score ≤ 7) rate was also higher in the sulforaphane group; however, the difference was not significant (23.33% vs 3.33%, P = 0.052). Finally, no significant difference was observed between the two groups in terms of frequency of side effects. CONCLUSIONS Sulforaphane could safely improve depressive symptoms induced by cardiac interventions. Further clinical trials with larger sample sizes and longer follow-up periods are warranted to confirm our results.
Collapse
Affiliation(s)
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Shahmansouri
- Psychosomatic Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mehrpooya
- Cardiovascular Ward, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Ali Noorbala
- Psychosomatic Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
A multimodal approach to studying the relationship between peripheral glutathione, brain glutamate, and cognition in health and in schizophrenia. Mol Psychiatry 2021; 26:3502-3511. [PMID: 33077854 PMCID: PMC9650557 DOI: 10.1038/s41380-020-00901-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Involvement of oxidative stress in the pathophysiology of schizophrenia (SZ) is suggested by studies of peripheral tissue. Nonetheless, it is unclear how such biological changes are linked to relevant, pathological neurochemistry, and brain function. We designed a multi-faceted study by combining biochemistry, neuroimaging, and neuropsychology to test how peripheral changes in a key marker for oxidative stress, glutathione (GSH), may associate with central neurochemicals or neuropsychological performance in health and in SZ. GSH in dorsal anterior cingulate cortex (dACC) was acquired as a secondary 3T 1H-MRS outcome using a MEGA-PRESS sequence. Fifty healthy controls and 46 patients with SZ were studied cross-sectionally, and analyses were adjusted for effects of confounding variables. We observed lower peripheral total GSH in SZ compared to controls in extracellular (plasma) and intracellular (lymphoblast) pools. Total GSH levels in plasma positively correlated with composite neuropsychological performance across the total population and within patients. Total plasma GSH levels were also positively correlated with the levels of Glx in the dACC across the total population, as well as within each individual group (controls, patients). Furthermore, the levels of dACC Glx and dACC GSH positively correlated with composite neuropsychological performance in the patient group. Exploring the relationship between systemic oxidative stress (in particular GSH), central glutamate, and cognition in SZ will benefit further from assessment of patients with more varied neuropsychological performance.
Collapse
|
35
|
Chen Q, Cao T, Li N, Zeng C, Zhang S, Wu X, Zhang B, Cai H. Repurposing of Anti-Diabetic Agents as a New Opportunity to Alleviate Cognitive Impairment in Neurodegenerative and Neuropsychiatric Disorders. Front Pharmacol 2021; 12:667874. [PMID: 34108878 PMCID: PMC8182376 DOI: 10.3389/fphar.2021.667874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment is a shared abnormality between type 2 diabetes mellitus (T2DM) and many neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease (AD) and schizophrenia. Emerging evidence suggests that brain insulin resistance plays a significant role in cognitive deficits, which provides the possibility of anti-diabetic agents repositioning to alleviate cognitive deficits. Both preclinical and clinical studies have evaluated the potential cognitive enhancement effects of anti-diabetic agents targeting the insulin pathway. Repurposing of anti-diabetic agents is considered to be promising for cognitive deficits prevention or control in these neurodegenerative and neuropsychiatric disorders. This article reviewed the possible relationship between brain insulin resistance and cognitive deficits. In addition, promising therapeutic interventions, especially current advances in anti-diabetic agents targeting the insulin pathway to alleviate cognitive impairment in AD and schizophrenia were also summarized.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
36
|
Park HS, Hwang ES, Choi GY, Kim HB, Park KS, Sul JY, Hwang Y, Choi GW, Kim BI, Park H, Maeng S, Park JH. Sulforaphane enhances long-term potentiation and ameliorate scopolamine-induced memory impairment. Physiol Behav 2021; 238:113467. [PMID: 34033847 DOI: 10.1016/j.physbeh.2021.113467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Increases in human life expectancy have led to increases in the prevalence of senile dementia and neurodegenerative diseases. This is a major problem because there are no curative treatments for these diseases, and patients with unmanaged cognitive and neurodegenerative symptoms experience many social problems. Sulforaphane is a type of organosulfur compound known as an isothiocyanate. It is derived from glucoraphanin, a compound found in cruciferous vegetables such as broccoli, brussels sprouts, and cabbages, via an enzymatic reaction that is triggered by plant damage (e.g., chewing). Sulforaphane exhibits activity against cancer, inflammation, depression, and severe cardiac diseases. It can also alleviate oxidative stress and neural dysfunction in the brain. However, there is insufficient knowledge about the electrophysiological and behavioral basis of the effects of sulforaphane on learning and memory. Therefore, we evaluated whether acute sulforaphane administration affected long-term potentiation (LTP) in organotypic cultured rat hippocampal tissues. We also measured the effect of sulforaphane on the performance of three behavioral tests, the Y-maze test, the passive avoidance test, and the Morris water maze, which assess short-term memory, avoidance memory, and short and long-term spatial memory, respectively. We found that sulforaphane increased the total field excitatory postsynaptic potential (fEPSP) in a dose-dependent manner after high frequency stimulation and attenuated scopolamine-induced interference of the fEPSP in the hippocampal CA1 area. Sulforaphane also restored cognitive function and inhibited memory impairment as indicated by the alleviation of the negative neurological effects of scopolamine, i.e, a lowered ratio of spontaneous alternation in the Y-maze, a reduced step-through latency in the passive avoidance test, and an increased navigation time in the Morris water maze. These results indicate that sulforaphane can effectively prevent the attenuation of LTP and cognitive abilities induced by cholinergic and muscarinic receptor blockade. Further research is warranted to explore the potential therapeutic and prophylactic utility of sulforaphane for improving learning and memory, especially in those suffering from neurodegenerative disorders.
Collapse
Affiliation(s)
- Ho-Sub Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Korea
| | - Eun-Sang Hwang
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Korea
| | - Ga-Young Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Hyun-Bum Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Kyun-Seob Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Jai-Yoon Sul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Yoonjin Hwang
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Geun Wook Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Byung Il Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Hyunwoo Park
- Health Park Co., Ltd., #2502, Gangnam-dae-Ro 305, Sucho-gu, Seoul 06628, Korea
| | - Sungho Maeng
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Korea.
| | - Ji-Ho Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea; Research Institute of Medical Nutrition, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si 446-701, Korea.
| |
Collapse
|
37
|
Dickerson F, Origoni A, Katsafanas E, Squire A, Newman T, Fahey J, Xiao JC, Stallings C, Goga J, Khushalani S, Yolken R. Randomized controlled trial of an adjunctive sulforaphane nutraceutical in schizophrenia. Schizophr Res 2021; 231:142-144. [PMID: 33839372 DOI: 10.1016/j.schres.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Faith Dickerson
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America.
| | - Andrea Origoni
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Emily Katsafanas
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Amalia Squire
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Theresa Newman
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Jed Fahey
- Johns Hopkins School of Medicine, Division of Clinical Pharmacology, Department of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States of America
| | - Jian-Chun Xiao
- Johns Hopkins School of Medicine, Stanley Neurovirology Laboratory, 600 North Wolfe St., Baltimore, MD 21205, United States of America
| | - Cassie Stallings
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Joshana Goga
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Sunil Khushalani
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Robert Yolken
- Johns Hopkins School of Medicine, Stanley Neurovirology Laboratory, 600 North Wolfe St., Baltimore, MD 21205, United States of America
| |
Collapse
|
38
|
Fahey JW, Kensler TW. The Challenges of Designing and Implementing Clinical Trials With Broccoli Sprouts… and Turning Evidence Into Public Health Action. Front Nutr 2021; 8:648788. [PMID: 33996874 PMCID: PMC8116591 DOI: 10.3389/fnut.2021.648788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Broccoli sprouts are a convenient and rich source of the glucosinolate glucoraphanin, which can generate the chemopreventive agent sulforaphane through the catalytic actions of plant myrosinase or β-thioglucosidases in the gut microflora. Sulforaphane, in turn, is an inducer of cytoprotective enzymes through activation of Nrf2 signaling, and a potent inhibitor of carcinogenesis in multiple murine models. Sulforaphane is also protective in models of diabetes, neurodegenerative disease, and other inflammatory processes, likely reflecting additional actions of Nrf2 and interactions with other signaling pathways. Translating this efficacy into the design and implementation of clinical chemoprevention trials, especially food-based trials, faces numerous challenges including the selection of the source, placebo, and dose as well as standardization of the formulation of the intervention material. Unlike in animals, purified sulforaphane has had very limited use in clinical studies. We have conducted a series of clinical studies and randomized clinical trials to evaluate the effects of composition (glucoraphanin-rich [± myrosinase] vs. sulforaphane-rich or mixture beverages), formulation (beverage vs. tablet) and dose, on the efficacy of these broccoli sprout-based preparations to evaluate safety, pharmacokinetics, pharmacodynamic action, and clinical benefit. While the challenges for the evaluation of broccoli sprouts in clinical trials are themselves formidable, further hurdles must be overcome to bring this science to public health action.
Collapse
Affiliation(s)
- Jed W. Fahey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Fairfax, VA, United States
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
39
|
Wu Q, Huang J, Wu R. Drugs Based on NMDAR Hypofunction Hypothesis in Schizophrenia. Front Neurosci 2021; 15:641047. [PMID: 33912003 PMCID: PMC8072017 DOI: 10.3389/fnins.2021.641047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Treatments for negative symptoms and cognitive dysfunction in schizophrenia remain issues that psychiatrists around the world are trying to solve. Their mechanisms may be associated with N-methyl-D-aspartate receptors (NMDARs). The NMDAR hypofunction hypothesis for schizophrenia was brought to the fore mainly based on the clinical effects of NMDAR antagonists and anti-NMDAR encephalitis pathology. Drugs targeted at augmenting NMDAR function in the brain seem to be promising in improving negative symptoms and cognitive dysfunction in patients with schizophrenia. In this review, we list NMDAR-targeted drugs and report on related clinical studies. We then summarize their effects on negative symptoms and cognitive dysfunction and analyze the unsatisfactory outcomes of these clinical studies according to the improved glutamate hypothesis that has been revealed in animal models. We aimed to provide perspectives for scientists who sought therapeutic strategies for negative symptoms and cognitive dysfunction in schizophrenia based on the NMDAR hypofunction hypothesis.
Collapse
Affiliation(s)
- Qiongqiong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Kim J. Pre-Clinical Neuroprotective Evidences and Plausible Mechanisms of Sulforaphane in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22062929. [PMID: 33805772 PMCID: PMC7999245 DOI: 10.3390/ijms22062929] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Sulforaphane, a potent dietary bioactive agent obtainable from cruciferous vegetables, has been extensively studied for its effects in disease prevention and therapy. Sulforaphane potently induces transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated expression of detoxification, anti-oxidation, and immune system-modulating enzymes, and possibly acts as an anti-carcinogenic agent. Several clinical trials are in progress to study the effect of diverse types of cruciferous vegetables and sulforaphane on prostate cancer, breast cancer, lung cancer, atopic asthmatics, skin aging, dermatitis, obesity, etc. Recently, the protective effects of sulforaphane on brain health were also considerably studied, where the studies have further extended to several neurological diseases, including Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, autism spectrum disorder, and schizophrenia. Animal and cell studies that employ sulforaphane against memory impairment and AD-related pre-clinical biomarkers on amyloid-β, tau, inflammation, oxidative stress, and neurodegeneration are summarized, and plausible neuroprotective mechanisms of sulforaphane to help prevent AD are discussed. The increase in pre-clinical evidences consistently suggests that sulforaphane has a multi-faceted neuroprotective effect on AD pathophysiology. The anti-AD-like evidence of sulforaphane seen in cells and animals indicates the need to pursue sulforaphane research for relevant biomarkers in AD pre-symptomatic populations.
Collapse
Affiliation(s)
- Jiyoung Kim
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Nouchi R, Hu Q, Saito T, Kawata NYDS, Nouchi H, Kawashima R. Brain Training and Sulforaphane Intake Interventions Separately Improve Cognitive Performance in Healthy Older Adults, Whereas a Combination of These Interventions Does Not Have More Beneficial Effects: Evidence from a Randomized Controlled Trial. Nutrients 2021; 13:nu13020352. [PMID: 33503851 PMCID: PMC7912304 DOI: 10.3390/nu13020352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Earlier studies have demonstrated that a single-domain intervention, such as a brain-training (BT) game alone and a sulforaphane (SFN) intake, positively affects cognition. This study examined whether a combined BT and SFN intake intervention has beneficial effects on cognitive function in older adults. Methods: In a 12-week double-blinded randomized control trial, 144 older adults were randomly assigned to one of four groups: BT with SFN (BT-S), BT with placebo (BT-P), active control game (AT) with SFN (AT-S), and active control game with placebo (AT-P). We used Brain Age in BT and Tetris in AT. Participants were asked to play BT or AT for 15 min a day for 12 weeks while taking a supplement (SFN or placebo). We measured several cognitive functions before and after the intervention period. Results: The BT (BT-S and BT-P) groups showed more improvement in processing speed than the active control groups (AT-S and AT-P). The SFN intake (BT-S and AT-S) groups recorded significant improvements in processing speed and working memory performance unlike the placebo intake groups (BT-P and AT-P). However, we did not find any evidence of the combined intervention’s beneficial effects on cognition. Discussion: We discussed a mechanism to improve cognitive functions in the BT and SFN alone interventions.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryo-Machi 4-1, Sendai 980-8575, Japan;
- Correspondence:
| | - Qingqiang Hu
- Nature and Wellness Research Department, Innovation Division, Kagome Co., Ltd., 17, Nishitomiyama, Nasushiobara 329-2762, Japan;
| | - Toshiki Saito
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; (T.S.); (N.Y.d.S.K.)
| | - Natasha Yuriko dos Santos Kawata
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; (T.S.); (N.Y.d.S.K.)
| | - Haruka Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
| | - Ryuta Kawashima
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryo-Machi 4-1, Sendai 980-8575, Japan;
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; (T.S.); (N.Y.d.S.K.)
| |
Collapse
|
42
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
43
|
Langston-Cox AG, Anderson D, Creek DJ, Palmer KR, Marshall SA, Wallace EM. Sulforaphane Bioavailability and Effects on Blood Pressure in Women with Pregnancy Hypertension. Reprod Sci 2021; 28:1489-1497. [PMID: 33409874 DOI: 10.1007/s43032-020-00439-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
Sulforaphane, an isothiocyanate found in cruciferous vegetables such as broccoli, shows promise as an adjuvant therapy for preeclampsia. To inform future clinical trials, we set out to determine the bioavailability of sulforaphane in non-pregnant and preeclamptic women. In six healthy female volunteers, we performed a crossover trial to compare the bioavailability of sulforaphane and metabolites afforded by an activated and non-activated broccoli extract preparation. We then undertook a dose escalation study of the activated broccoli extract in 12 women with pregnancy hypertension. In non-pregnant women, an equivalent dose of activated broccoli extract gave higher levels of sulforaphane and metabolites than a non-activated extract (p < 0.0001) and greater area under the curve (AUC) (3559 nM vs. 2172 nM, p = 0.03). Compared to non-pregnant women, in women with preeclampsia, the same dose of activated extract gave lower levels of total metabolites (p < 0.000) and AUC (3559 nM vs. 1653 nM, p = 0.007). Doubling the dose of the activated extract in women with preeclampsia doubled levels of sulforaphane and metabolites (p = 0.02) and AUC (1653 nM vs. 3333 nM, p = 0.02). In women with preeclampsia, activated broccoli extract was associated with modest decreases in diastolic blood pressure (p = 0.05) and circulating levels of sFlt-1 (p = 0.0002). A myrosinase-activated sulforaphane formulation affords better sulforaphane bioavailability than a non-activated formulation. Higher doses of sulforaphane are required to achieve likely effective doses in pregnant women than in non-pregnant women. Sulforaphane may improve endothelial function and blood pressure in women with pregnancy hypertension.
Collapse
Affiliation(s)
- A G Langston-Cox
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Level 5, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | - D Anderson
- Monash Proteomics and Metabolomics Facility, Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - D J Creek
- Monash Proteomics and Metabolomics Facility, Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - K R Palmer
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Level 5, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | - S A Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Level 5, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | - E M Wallace
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Level 5, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
44
|
Xiao J, Huang J, Long Y, Wang X, Wang Y, Yang Y, Hei G, Sun M, Zhao J, Li L, Shao T, Wang W, Kang D, Liu C, Xie P, Huang Y, Wu R, Zhao J. Optimizing and Individualizing the Pharmacological Treatment of First-Episode Schizophrenic Patients: Study Protocol for a Multicenter Clinical Trial. Front Psychiatry 2021; 12:611070. [PMID: 33716817 PMCID: PMC7947302 DOI: 10.3389/fpsyt.2021.611070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/22/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction: Affecting ~1% of the world population, schizophrenia is known as one of the costliest and most burdensome diseases worldwide. Antipsychotic medications are the main treatment for schizophrenia to control psychotic symptoms and efficiently prevent new crises. However, due to poor compliance, 74% of patients with schizophrenia discontinue medication within 1.5 years, which severely affects recovery and prognosis. Through research on intra and interindividual variability based on a psychopathology-neuropsychology-neuroimage-genetics-physiology-biochemistry model, our main objective is to investigate an optimized and individualized antipsychotic-treatment regimen and precision treatment for first-episode schizophrenic patients. Methods and Analysis: The study is performed in 20 representative hospitals in China. Three subprojects are included. In subproject 1, 1,800 first-episode patients with schizophrenia are randomized into six different antipsychotic monotherapy groups (olanzapine, risperidone, aripiprazole, ziprasidone, amisulpride, and haloperidol) for an 8-week treatment. By identifying a set of potential biomarkers associated with antipsychotic treatment response, we intend to build a prediction model, which includes neuroimaging, epigenetics, environmental stress, neurocognition, eye movement, electrophysiology, and neurological biochemistry indexes. In subproject 2, apart from verifying the prediction model established in subproject 1 based on an independent cohort of 1,800 first-episode patients with schizophrenia, we recruit patients from a verification cohort who did not get an effective response after an 8-week antipsychotic treatment into a randomized double-blind controlled trial with minocycline (200 mg per day) and sulforaphane (3 tables per day) to explore add-on treatment for patients with schizophrenia. Two hundred forty participants are anticipated to be enrolled for each group. In subproject 3, we tend to carry out one trial to construct an intervention strategy for metabolic syndrome induced by antipsychotic treatment and another one to build a prevention strategy for patients at a high risk of metabolic syndrome, which combines metformin and lifestyle intervention. Two hundred participants are anticipated to be enrolled for each group. Ethics and Dissemination: The study protocol has been approved by the Medical Ethics committee of the Second Xiangya Hospital of Central South University (No. 2017027). Results will be disseminated in peer-reviewed journals and at international conferences. Trial Registration: This trial has been registered on Clinicalrials.gov (NCT03451734). The protocol version is V.1.0 (April 23, 2017).
Collapse
Affiliation(s)
- Jingmei Xiao
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yujun Long
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyi Wang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Wang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ye Yang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gangrui Hei
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengxi Sun
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin Zhao
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Li
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tiannan Shao
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiyan Wang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dongyu Kang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenchen Liu
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Peng Xie
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyan Huang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
45
|
Liu F, Huang J, Hei G, Wu R, Liu Z. Effects of sulforaphane on cognitive function in patients with frontal brain damage: study protocol for a randomised controlled trial. BMJ Open 2020; 10:e037543. [PMID: 33067279 PMCID: PMC7569949 DOI: 10.1136/bmjopen-2020-037543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Many patients with frontal brain damage show serious cognitive function deficits, which hamper their quality of life and result in poor clinical outcomes. Preclinical research has shown that sulforaphane can significantly improve spatial localisation and working memory impairment after brain injury. The primary aim of this double-blind randomised controlled clinical trial is to assess the efficacy of sulforaphane for improving cognitive function in patients with frontal brain damage. METHODS AND ANALYSIS Ninety eligible patients will be randomly allocated to an active treatment or a placebo group in a 2:1 ratio. Participants will undergo a series of cognitive and neuropsychiatric tests at baseline (week 0) and after 12 weeks to determine the effect of sulforaphane on cognition. Magnetic resonance spectrum of the brain will be studied using the 3T MRIs of the brain to detect brain metabolites markers, including N-acetyl aspartate, glutamate (Glu), glutathione (GSH) and γ-aminobutyric acid (GABA). Blood brain-derived neurotrophic factor, Glu, GSH and GABA levels and gut microbiota will also be assessed over this period. This study will also evaluate long-term outcomes of brain trauma, brain tumours and cerebrovascular disease via exploratory analyses. The primary outcome will be the difference in scores of a battery of cognitive tests after 12 weeks of sulforaphane treatment. The secondary outcomes will be changes in the Functional Activities Questionnaire (FAQ), the Patient Health Questionnaire (PHQ-9), the Self-Rating Anxiety Scale, the changes in T1-weighted MRI and resting-state functional MRI findings, and changes in brain and blood metabolic markers and gut microbiota at weeks 0 and 12. We expect that sulforaphane will yield favourable results in treating memory and learning deficits for patients with frontal brain damage. Cognitive functional treatment may also improve brain trauma, brain tumours and cerebrovascular outcomes. ETHICS AND DISSEMINATION The study protocol has been approved by the Medical Ethics committee of the Xiangya Hospital of Central South University (No. 2017121019). The results will be disseminated in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER This trial was registered on Clinicaltrials.gov on 31 January 2020 (NCT04252261). The protocol version is V.1.0 (20 December 2019).
Collapse
Affiliation(s)
- Fangkun Liu
- Department of Neurosurgery, Central South University (CSU), 410008, Changsha, Hunan, China
| | - Jing Huang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, 410011, Changsha, Hunan, China
| | - Gangrui Hei
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, 410011, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, 410011, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Central South University (CSU), 410008, Changsha, Hunan, China
| |
Collapse
|
46
|
Terada K, Murata A, Toki E, Goto S, Yamakawa H, Setoguchi S, Watase D, Koga M, Takata J, Matsunaga K, Karube Y. Atypical Antipsychotic Drug Ziprasidone Protects against Rotenone-Induced Neurotoxicity: An In Vitro Study. Molecules 2020; 25:molecules25184206. [PMID: 32937854 PMCID: PMC7570562 DOI: 10.3390/molecules25184206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/14/2023] Open
Abstract
Schizophrenia is a severe, chronic mental illness characterized by delusions, hallucinations, negative symptoms, and cognitive dysfunction. Recently, several studies have demonstrated that the pathogenesis of schizophrenia involves mitochondrial dysfunction and oxidative stress. However, the effect of antipsychotic drugs for these events has been poorly investigated. In the present study, we evaluated the neuroprotective effect of an atypical antipsychotic drug, ziprasidone (ZPD), on rotenone (ROT)-induced neurotoxicity involving oxidative stress in PC12 cells. Our data showed that ZPD treatment promoted the translocation of NF-E2-related factor-2 (Nrf2) from cytoplasm to nucleus and activated the expression of its target genes NAD(P)H quinone oxidoreductase (NQO-1), catalase (CAT), and heme oxygenase (HO-1). Additionally, ZPD prevented ROT-induced cell death and intracellular reactive oxygen species production. Interestingly, the use of serotonin 5-HT1A receptor antagonist 1-(2-methoxyphenyl)-4 (4-(2-phtalimido) butyl) piperazine (NAN-190) completely blocked the protective effect of ZPD against ROT-induced cell death. Our results demonstrate the neuroprotective effect of ZPD against ROT-induced neurotoxicity and suggest that ZPD may be a potential candidate for the prevention of mitochondrial dysfunction and oxidative stress in schizophrenia.
Collapse
|
47
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
48
|
Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9080716. [PMID: 32784785 PMCID: PMC7464243 DOI: 10.3390/antiox9080716] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) plays a critical role in the maintenance of cellular redox and metabolic homeostasis, as well as the regulation of inflammation and cellular detoxication pathways. The contribution of the NRF2 pathway to organismal homeostasis is seen in many studies using cell lines and animal models, raising intense attention towards targeting its clinical promise. Over the last three decades, an expanding number of clinical studies have examined NRF2 inducers targeting an ever-widening range of diseases. Full understanding of the pharmacokinetic and pharmacodynamic properties of drug candidates rely partly on the identification, validation, and use of biomarkers to optimize clinical applications. This review focuses on results from clinical trials with four agents known to target NRF2 signaling in preclinical studies (dimethyl fumarate, bardoxolone methyl, oltipraz, and sulforaphane), and evaluates the successes and limitations of biomarkers focused on expression of NRF2 target genes and others, inflammation and oxidative stress biomarkers, carcinogen metabolism and adduct biomarkers in unavoidably exposed populations, and targeted and untargeted metabolomics. While no biomarkers excel at defining pharmacodynamic actions in this setting, it is clear that these four lead clinical compounds do touch the NRF2 pathway in humans.
Collapse
|
49
|
McGuinness G, Kim Y. Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI JOURNAL 2020; 19:892-903. [PMID: 33013262 PMCID: PMC7527484 DOI: 10.17179/excli2020-2487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
Abstract
Autism Spectrum Disorder (ASD) is defined as a neurodevelopmental condition characterized by social communication impairment, delayed development, social function deficit, and repetitive behaviors. The Center for Disease Control reports an increase in ASD diagnosis rates every year. This systematic review evaluated the use of sulforaphane (SFN) therapy as a potential treatment option for individuals with ASD. PubMed.gov, PubMed Central, Natural Medicines, BoardVitals, Google Scholar and Medline were searched for studies measuring the effects of SFN on behavior and cognitive function. All five clinical trials included in this systematic review showed a significant positive correlation between SFN use and ASD behavior and cognitive function. The current evidence shows with minimal side effects observed, SFN appears to be a safe and effective treatment option for treating ASD.
Collapse
Affiliation(s)
- Greer McGuinness
- Central Michigan University, 207 Wightman Hall, 1202 S. Washington Street, Mount Pleasant, MI 48859, U S A
| | | |
Collapse
|
50
|
Wu C, Chen X, Lai J, Xu Y, Hu S. The efficacy and safety of sulforaphane as an adjuvant in the treatment of bipolar depressive disorder: Study protocol for a randomized, double-blinded, placebo-controlled, parallel-group clinical trial. Medicine (Baltimore) 2020; 99:e20981. [PMID: 32590809 PMCID: PMC7328924 DOI: 10.1097/md.0000000000020981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic and disabling psychiatric disorder. The treatment of BD still remains a significant clinical challenge due to the complex nature of the disease. Nutraceutical therapy as adjunctive role is a promising therapy for BD. Sulforaphane (SFN), a broccoli extract, was reported to be effective for emotional problems and cognitive impairment. However, clinical research of SFN in the treatment of BD was rare. Therefore, this study is designed to evaluate the adjuvant role of SFN in the treatment of BD. METHODS This is a randomized, double-blinded, placebo-controlled, parallel-group clinical trial. A total of 100 patients who meet inclusion criteria will be assigned to receive quetiapine plus SFN or quetiapine plus placebo in a 1:1 ratio. The total duration of the study will be 12 weeks including 5 follow ups. The primary outcome is in the Montgomery-Asberg depression rating scale. The secondary outcomes are the quick inventory of depressive symptomatology-self report, Hamilton anxiety rating scale, young mania rating scale, cognitive function, inflammatory factors, and intestinal flora. Any adverse events will be recorded throughout the trial. DISCUSSION This trial will provide evidences to evaluate the efficacy and safety of SFN combined with quetiapine in the treatment of BD patients, as well as the adjuvant role of SFN in combination. TRIAL REGISTRATION This study protocol was registered at the Chinese clinical trial registry (ChiCTR2000028706).
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| | | | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
- The Key Laboratory of Mental Disorder Management of Zhejiang Province
- Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
- The Key Laboratory of Mental Disorder Management of Zhejiang Province
- Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
- The Key Laboratory of Mental Disorder Management of Zhejiang Province
- Brain Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|