201
|
Drew KL, Wells M, McGee R, Ross AP, Kelleher-Andersson J. Arctic ground squirrel neuronal progenitor cells resist oxygen and glucose deprivation-induced death. World J Biol Chem 2016; 7:168-177. [PMID: 26981205 PMCID: PMC4768121 DOI: 10.4331/wjbc.v7.i1.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/26/2015] [Accepted: 01/11/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the influence of ischemia/reperfusion on arctic ground squirrel (AGS) neuronal progenitor cells (NPCs), we subjected these cultured cells to oxygen and glucose deprivation.
METHODS: AGS NPCs were expanded and differentiated into NPCs and as an ischemia vulnerable control, commercially available human NPCs (hNPCs) were seeded from thawed NPCs. NPCs, identified by expression of TUJ1 were seen at 14-21 d in vitro (DIV). Cultures were exposed to control conditions, hypoxia, oxygen and glucose deprivation or glucose deprivation alone or following return to normal conditions to model reperfusion. Cell viability and death were assessed from loss of ATP as well as from measures of alamarBlue® and lactate dehydrogenase in the media and from counts of TUJ1 positive cells using immunocytochemistry. Dividing cells were identified by expression of Ki67 and phenotyped by double labeling with GFAP, MAP2ab or TUJ1.
RESULTS: We report that when cultured in NeuraLife™, AGS cells remain viable out to 21 DIV, continue to express TUJ1 and begin to express MAP2ab. Viability of hNPCs assessed by fluorescence alamarBlue (arbitrary units) depends on both glucose and oxygen availability [viability of hNPCs after 24 h oxygen glucose deprivation (OGD) with return of oxygen and glucose decreased from 48151 ± 4551 in control cultures to 43481 ± 2413 after OGD, P < 0.05]. By contrast, when AGS NPCs are exposed to the same OGD with reperfusion at 14 DIV, cell viability assessed by alamarBlue increased from 165305 ± 11719 in control cultures to 196054 ± 13977 after OGD. Likewise AGS NPCs recovered ATP (92766 ± 6089 in control and 92907 ± 4290 after modeled reperfusion; arbitrary luminescence units), and doubled in the ratio of TUJ1 expressing neurons to total dividing cells (0.11 ± 0.04 in control cultures vs 0.22 ± 0.2 after modeled reperfusion, P < 0.05). Maintaining AGS NPCs for a longer time in culture lowered resistance to injury, however, did not impair proliferation of NPCs relative to other cell lineages after oxygen deprivation followed by re-oxygenation.
CONCLUSION: Ischemic-like insults decrease viability and increase cell death in cultures of human NPCs. Similar conditions have less affect on cell death and promote proliferation in AGS NPCs.
Collapse
|
Basic Study |
9 |
6 |
202
|
Lee S, Choi E, Kim SM, Hwang KC. MicroRNAs as mediators of cardiovascular disease: Targets to be manipulated. World J Biol Chem 2015; 6:34-38. [PMID: 26009702 PMCID: PMC4436904 DOI: 10.4331/wjbc.v6.i2.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease has been the leading cause of death worldwide for the last few decades. Even with the rapid progression of the biomedical field, conquering/managing cardiovascular disease is not an easy task because it is multifactorial disease. One of the key players of the development and progression of numerous diseases is microRNA (miRNA). These small, non-coding RNAs bind to target mRNAs to inhibit translations of and/or degrade the target mRNAs, thus acting as negative regulators of gene expressions. Accumulating evidence indicates that non-physiological expressions of miRNAs contribute to both development and progression of cardiovascular diseases. Since even a single miRNA can have multiple targets, dysregulation of miRNAs can lead to catastrophic changes of proteins that may be important for maintaining physiologic conditions of cells, tissues, and organs. Current knowledge on the role of miRNAs in cardiovascular disease is mostly based on the observational data such as microarray of miRNAs in animal disease models, thus relatively lacking insight of how such dysregulation of miRNAs is initiated and regulated. Consequently, future research should aim to elucidate the more comprehensive mechanisms of miRNA dysregulation during pathogenesis of the cardiovascular system so that appropriate counter-measures to prevent/manage cardiovascular disease can be developed.
Collapse
|
Editorial |
10 |
6 |
203
|
Spiller S, Friedrich T. Functional analysis of human Na +/K +-ATPase familial or sporadic hemiplegic migraine mutations expressed in Xenopus oocytes. World J Biol Chem 2014; 5:240-253. [PMID: 24921013 PMCID: PMC4050117 DOI: 10.4331/wjbc.v5.i2.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine (FHM2, SHM).
METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit’s C-terminal region were investigated. Mutants were analyzed by the two-electrode voltage-clamp (TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent pre-steady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes.
RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant differences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced.
CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.
Collapse
|
Original Article |
11 |
6 |
204
|
Cao MT, Feng Y, Zheng YG. Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1. World J Biol Chem 2023; 14:84-98. [PMID: 37901302 PMCID: PMC10600687 DOI: 10.4331/wjbc.v14.i5.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] [Imported: 10/13/2023] Open
Abstract
BACKGROUND Post-translational modifications play key roles in various biological processes. Protein arginine methyltransferases (PRMTs) transfer the methyl group to specific arginine residues. Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types. We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes. AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6. METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs. Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites. RESULTS In this study we investigated the interaction between PRMT1 and PRMT6, and PRMT6 was shown to be a novel substrate of PRMT1. We identified specific arginine residues of PRMT6 that are methylated by PRMT1, with R106 being the major methylation site. Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation. CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1. PRMT1 methylation suppresses the activity of PRMT6.
Collapse
|
Basic Study |
2 |
6 |
205
|
Olayanju OA, Rahamon SK, Joseph IO, Arinola OG. Salivary immunoglobulin classes in Nigerian smokers with periodontitis. World J Biol Chem 2012; 3:180-3. [PMID: 23115655 PMCID: PMC3484323 DOI: 10.4331/wjbc.v3.i10.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine the levels of salivary immunoglobulin classes in Nigerian smokers and non-smokers with periodontitis.
METHODS: Sixty-nine individuals were recruited into this study after obtaining informed consent. They were subdivided into three groups that consisted of 20 (aged 46 ± 11 years) cigarette smokers with periodontitis (S+P); 24 (40 ± 12 years) smokers without periodontitis (S-P); and 25 (53 ± 11 years) non-smokers with periodontitis (NS+P). An oral and maxillofacial surgeon used radiographs for periodontal probing for the diagnosis of periodontitis. The smokers included subjects who smoked at least six cigarettes per day and all the periodontitis patients were newly diagnosed. About 5 mL of unstimulated saliva was expectorated by each subject into plain sample bottles. Salivary immunoglobulin levels were estimated using enzyme linked immunosorbent assay. Student’s t test was used to determine significant differences between the means. Values of P < 0.05 were regarded as significant.
RESULTS: No significant differences were observed in the mean salivary levels of the immunoglobulin classes (IgG, IgA, IgM and IgE) when S+P was compared with S-P. Mean salivary levels of IgA (520.0 ± 155.1 ng/mL vs 670.0 ± 110 ng/mL, P = 0.000) and IgM (644.5 ± 160.0 ng/mL vs 791.4 ± 43.7 ng/mL, P = 0.000) were significantly lower in the S+P compared with NS+P group. Salivary IgA (570.4 ± 145.6 ng/mL vs 670.0 ± 110 ng/mL, P = 0.008) and IgM (703.1 ± 169.3 ng/mL vs 791.4 ± 43.7 ng/mL, P = 0.012) levels were significantly lower in the S-P compared with NS+P group. Only one (5%) periodontal patient had detectable levels of salivary IgE (0.20 IU/mL). Similarly, only one smoker (4.17%) had detectable levels of salivary IgE (0.04 IU/mL) and two non-smokers (9.52%) had detectable levels of IgE (0.24 IU/mL).
CONCLUSION: Our study suggests that reduced salivary IgA and IgM levels in smokers with periodontitis could enhance increased susceptibility to periodontitis.
Collapse
|
Brief Article |
13 |
6 |
206
|
Zhang YW. Promise and challenges on the horizon of MET-targeted cancer therapeutics. World J Biol Chem 2015; 6:16-27. [PMID: 26009700 PMCID: PMC4436902 DOI: 10.4331/wjbc.v6.i2.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/22/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
MET (MNNG HOS transforming gene) is one of the receptor tyrosine kinases whose activities are frequently altered in human cancers, and it is a promising therapeutic target. MET is normally activated by its lone ligand, hepatocyte growth factor (HGF), eliciting its diverse biological activities that are crucial for development and physiology. Alteration of the HGF-MET axis results in inappropriate activation of a cascade of intracellular signaling pathways that contributes to hallmark cancer events including deregulated cell proliferation and survival, angiogenesis, invasion, and metastasis. Aberrant MET activation results from autocrine or paracrine mechanisms due to overexpression of HGF and/or MET or from a ligand-independent mechanism caused by activating mutations or amplification of MET. The literature provides compelling evidence for the role of MET signaling in cancer development and progression. The finding that cancer cells often use MET activation to escape therapies targeting other pathways strengthens the argument for MET-targeted therapeutics. Diverse strategies have been explored to deactivate MET signaling, and compounds and biologics targeting the MET pathway are in clinical development. Despite promising results from various clinical trials, we are still waiting for true MET-targeted therapeutics in the clinic. This review will explore recent progress and hurdles in the pursuit of MET-targeted cancer drugs and discuss the challenges in such development.
Collapse
|
Editorial |
10 |
6 |
207
|
Phadke M, Krynetskaia N, Mishra A, Barrero C, Merali S, Gothe SA, Krynetskiy E. Disruption of NAD(+) binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions. World J Biol Chem 2015; 6:366-78. [PMID: 26629320 PMCID: PMC4657119 DOI: 10.4331/wjbc.v6.i4.366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/01/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD(+) cofactor binding. RESULTS Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD(+) binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD(+) binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD(+) (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD(+) binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD(+) binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION Our results suggest an important functional role of phosphorylated amino acids in the NAD(+) binding center in GAPDH interactions with its intranuclear partners.
Collapse
|
Basic Study |
10 |
6 |
208
|
Elsobky S, Crane AM, Margolis M, Carreon TA, Bhattacharya SK. Review of application of mass spectrometry for analyses of anterior eye proteome. World J Biol Chem 2014; 5:106-114. [PMID: 24921002 PMCID: PMC4050106 DOI: 10.4331/wjbc.v5.i2.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 02/05/2023] Open
Abstract
Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a “mass analyzer” which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article we present the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye.
Collapse
|
Review |
11 |
6 |
209
|
Milionis C, Ilias I, Koukkou E. Progesterone in gender-affirming therapy of trans women. World J Biol Chem 2022; 13:66-71. [PMID: 35721880 PMCID: PMC10558402 DOI: 10.4331/wjbc.v13.i3.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Progesterone is an endogenous steroid hormone with an important role for the physiology of the female reproductive system and the mammary gland. It has additional significant actions in other tissues, such as the cardiovascular system, the central nervous system, and bones. The present article explores potential clinical implications from the addition of bioidentical progesterone to gender-affirming treatment of trans women. For this purpose, it provides an overview of the physiological action of progesterone in target tissues and speculates on possible benefits for gender transitioning. Progesterone is expected to exert moderate anti-androgen action through suppression of the hypothalamic-pituitary-gonadal axis and inhibition of the conversion of testosterone to dihydrotestosterone. It may also contribute to breast maturation. In the long-term, progesterone could prevent bone loss and protect cardiovascular health. The potential benefits are mainly inferred by extrapolating evidence from biological actions in cisgender women and medical assumptions and hence, clinicians need to be cautious when applying these data into practice. Further research is needed to ascertain the efficacy and safety of progesterone in current hormonal regimens.
Collapse
|
Minireviews |
3 |
5 |
210
|
Witzany G. Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 2010; 1:160-80. [PMID: 21541001 PMCID: PMC3083953 DOI: 10.4331/wjbc.v1.i5.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.
Collapse
|
Review |
15 |
5 |
211
|
Khah AN, Hakemi-Vala M, Samavat S, Nasiri MJ. Prevalence, serotyping and drug susceptibility patterns of Escherichia coli isolates from kidney transplanted patients with urinary tract infections. World J Biol Chem 2020; 11:112-118. [PMID: 33274016 PMCID: PMC7672941 DOI: 10.4331/wjbc.v11.i3.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) are among the main pathogens in urinary tract infections (UTIs) among kidney transplant patients (KTPs).
AIM To estimate the prevalence of ESBL-producing E. coli in KTPs and to evaluate the most prevalent serotypes and antibacterial susceptibility patterns of isolated bacteria in Tehran, Iran.
METHODS A total of 60 clinical isolates of uropathogenic E. coli were collected from 3 kidney transplant centers from April to May 2019. Antimicrobial susceptibility testing was performed by the disk diffusion method as recommended by the Clinical Laboratory and Standards Institute. The serotyping of E. coli isolates was performed by the slide agglutination method. The presence of blaTEM, blaSHV, and blaCTX-M genes was evaluated by polymerase chain reaction.
RESULTS The frequency of ESBL-producing E. coli in KTPs was found to be 33.4%. All of the 60 E. coli isolates were found to be susceptible to doripenem (100%) and ertapenem (100%). High resistance rates to ampicillin (86%), cefotaxime (80%), and cefazolin (77%) were also documented. The most frequent serotypes were serotype I (50%), serotype II (15%), serotype III (25%), and serotype VI (10%). The gene most frequently found was blaTEM (55%), followed by blaCTX-M (51%) and blaSHV (41%).
CONCLUSION Molecular analysis showed that blaTEM was the most common ESBL-encoding gene. The high resistance to β-lactams antibiotics (i.e., ampicillin, cefotaxime, and cefazolin) found in E. coli from KTPs with UTIs remains a serious clinical challenge. Further efforts to control ESBL-producing E. coli should include the careful use of all antibiotics as well as barrier precautions to reduce spread.
Collapse
|
Observational Study |
5 |
5 |
212
|
Barbosa EGV, Aburjaile FF, Ramos RTJ, Carneiro AR, Le Loir Y, Baumbach J, Miyoshi A, Silva A, Azevedo V. Value of a newly sequenced bacterial genome. World J Biol Chem 2014; 5:161-168. [PMID: 24921006 PMCID: PMC4050110 DOI: 10.4331/wjbc.v5.i2.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/03/2014] [Indexed: 02/05/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the “scientific value” of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.
Collapse
|
Review |
11 |
5 |
213
|
Maeda N, Uede T. Swine-origin influenza-virus-induced acute lung injury: Novel or classical pathogenesis? World J Biol Chem 2010; 1:85-94. [PMID: 21540994 PMCID: PMC3083955 DOI: 10.4331/wjbc.v1.i5.85] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 02/05/2023] Open
Abstract
Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia. Due to their host-range diversity, genetic and antigenic diversity, and potential to reassort genetically in vivo, influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans. Thus, newly emerging viral diseases are always major threats to public health. In March 2009, a novel influenza virus suddenly emerged and caused a worldwide pandemic. The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses; it was identified to have originated from pigs, and further genetic analysis revealed it as a subtype of A/H1N1, thus later called a swine-origin influenza virus A/H1N1. Since the novel virus emerged, epidemiological surveys and research on experimental animal models have been conducted, and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated. In this editorial, we summarize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.
Collapse
|
Frontier |
15 |
5 |
214
|
Chang YH. Common therapeutic target for both cancer and obesity. World J Biol Chem 2017; 8:102-107. [PMID: 28588753 PMCID: PMC5439161 DOI: 10.4331/wjbc.v8.i2.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/08/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity and cancer are two interrelated conditions of high epidemiological need, with studies showing that obesity is responsible for nearly 25% of the relative contribution to cancer incidence. Given the connection between these conditions, a drug that can operate on both obesity and cancer is highly desirable. Such a drug is accomplishable through the development of potent anti-angiogenesis agents due to the shared underlying role of angiogenesis in the development of both diseases. Prior research has demonstrated a key role of type-2 methionine aminopeptidase (MetAP2) for angiogenesis, which has led to the development of numerous of novel inhibitors. Several irreversible MetAP2 inhibitors have entered clinical trials without great success. Though this lack of success could be attributed to off-target adverse effects, the underlying causes remain unclear. More promising reversible inhibitors have been recently developed with excellent pre-clinical results. However, due to insufficient knowledge of the biological functions of N-terminal protein processing, it is hard to predict whether these novel inhibitors would successfully pass clinical trials and thereby benefit cancer and obesity patients. Significantly more efforts are needed to advance our understanding of the regulation of methionine aminopeptidases and the processes by which they govern the function of proteins.
Collapse
|
Editorial |
8 |
5 |
215
|
Mallis P, Chatzistamatiou T, Dimou Z, Sarri EF, Georgiou E, Salagianni M, Triantafyllia V, Andreakos E, Stavropoulos-Giokas C, Michalopoulos E. Mesenchymal stromal cell delivery as a potential therapeutic strategy against COVID-19: Promising evidence from in vitro results. World J Biol Chem 2022; 13:47-65. [PMID: 35432769 PMCID: PMC8966500 DOI: 10.4331/wjbc.v13.i2.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic, which was initiated in December 2019. COVID-19 is characterized by a low mortality rate (< 6%); however, this percentage is higher in elderly people and patients with underlying disorders. COVID-19 is characterized by mild to severe outcomes. Currently, several therapeutic strategies are evaluated, such as the use of anti-viral drugs, prophylactic treatment, monoclonal antibodies, and vaccination. Advanced cellular therapies are also investigated, thus representing an additional therapeutic tool for clinicians. Mesenchymal stromal cells (MSCs), which are known for their immunoregulatory properties, may halt the induced cytokine release syndrome mediated by SARS-CoV-2, and can be considered as a potential stem cell therapy. AIM To evaluate the immunoregulatory properties of MSCs, upon stimulation with COVID-19 patient serum. METHODS MSCs derived from the human Wharton's Jelly (WJ) tissue and bone marrow (BM) were isolated, cryopreserved, expanded, and defined according to the criteria outlined by the International Society for Cellular Therapies. Then, WJ and BM-MSCs were stimulated with a culture medium containing 15% COVID-19 patient serum, 1% penicillin-streptomycin, and 1% L-glutamine for 48 h. The quantification of interleukin (IL)-1 receptor a (Ra), IL-6, IL-10, IL-13, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-a, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and indoleamine-2,3-dioxygenase (IDO) was performed using commercial ELISA kits. The expression of HLA-G1, G5, and G7 was evaluated in unstimulated and stimulated WJ and BM-MSCs. Finally, the interactions between MSCs and patients' macrophages were established using co-culture experiments. RESULTS Thawed WJ and BM-MSCs exhibited a spindle-shaped morphology, successfully differentiated to "osteocytes", "adipocytes", and "chondrocytes", and in flow cytometric analysis were characterized by positivity for CD73, CD90, and CD105 (> 95%) and negativity for CD34, CD45, and HLA-DR (< 2%). Moreover, stimulated WJ and BM-MSCs were characterized by increased cytoplasmic granulation, in comparison to unstimulated cells. The HLA-G isoforms (G1, G5, and G7) were successfully expressed by the unstimulated and stimulated WJ-MSCs. On the other hand, only weak expression of HLA-G1 was identified in BM-MSCs. Stimulated MSCs secreted high levels of IL-1Ra, IL-6, IL-10, IL-13, TGF-β1, FGF, VEGF, PDGF, and IDO in comparison to unstimulated cells (P < 0.05) after 12 and 24 h. Finally, macrophages derived from COVID-19 patients successfully adapted the M2 phenotype after co-culturing with stimulated WJ and BM-MSCs. CONCLUSION WJ and BM-MSCs successfully produced high levels of immunoregulatory agents, which may efficiently modulate the over-activated immune responses of critically ill COVID-19 patients.
Collapse
|
Basic Study |
3 |
5 |
216
|
Pi L, Chung PY, Sriram S, Rahman MM, Song WY, Scott EW, Petersen BE, Schultz GS. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells. World J Biol Chem 2015; 6:379-388. [PMID: 26629321 PMCID: PMC4657117 DOI: 10.4331/wjbc.v6.i4.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. METHODS The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. RESULTS In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls (P < 0.01). Cells containing the cystine knot of BMP-4 expressed the second most activity, with a 24.77 ± 0.47 fold increase (P < 0.01). Cells that contained the cystine knot of TGF-β1 had a 3.80 ± 0.66 fold increase (P < 0.05) and the ones with the cystine knot of PDGF-B had a 2.64 ± 0.33 fold increase of β-galactosidase activity (P < 0.01). Further SPR analysis showed that the association rate between VEGF-A 165 and CTGF was faster than PDGF-BB and CTGF. The calculated dissociation constant (KD) of CTGF to VEGF165 and PDGF-BB was 1.8 and 43 nmol/L respectively. PDGF-BB ligand and PDGFRβ receptor formed a stable complex with a low dissociation constant 1.4 nmol/L. Increasing the concentration of CTGF up to 263.2 nmol/L significantly the ligand/receptor binding. In addition, CTGF potentiated phosphorylation of PDGFRβ and AKT in rabbit corneal fibroblast cells stimulated by PDGF-BB in tissue culture condition. In contrast, CTGF did not affect PDGF-B induced phosphorylation of ERK1/2. CONCLUSION CTGF has a differential binding affinity to VEGF-A, PDGF-B, BMP-4, and TGF-β. Its weak association with PDGF-B may represent a novel mechanism to enhance PDGF-B signaling.
Collapse
|
Basic Study |
10 |
5 |
217
|
Sirizi MAG, Alizadeh Ghalenoei J, Allahtavakoli M, Forouzanfar H, Bagheri SM. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy. World J Biol Chem 2023; 14:28-39. [PMID: 37034135 PMCID: PMC10080545 DOI: 10.4331/wjbc.v14.i2.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023] [Imported: 07/20/2023] Open
Abstract
Cancer is one of the main challenges of the health system around the world. This disease is increasing in developing countries and imposes heavy costs on patients and governments. On the other hand, despite various drugs, the death rate among cancer patients is still high and the current treatments have many harmful effects. In the traditional medicine of different countries, there are many medicinal plants that can be effective in the treatment of cancer. Ferula plants are traditionally used as spices and food or for medicinal purposes. Ferula assa-foetida is one of the famous plants of this genus, which has been used for the treatment of various diseases since ancient times. Among the main compounds of this plant, we can mention monoterpenes, sulfide compounds and polyphenols, which can show different therapeutic effects. This article has been compiled with the aim of collecting evidence and articles related to the anti-cancer effects of extracts, derived compounds, essential oils and nanoparticles containing Ferula assa-foetida. This review article was prepared by searching the terms Ferula assa-foetida and cancer, and relevant information was collected through searching electronic databases such as ISI Web of Knowledge, PubMed, and Google Scholar. Fortunately, the results of this review showed that relatively comprehensive studies have been conducted in this field and shown that Ferula assa-foetida can be very promising in the treatment of cancer.
Collapse
|
Minireviews |
2 |
5 |
218
|
Malla RR, Farran B, Nagaraju GP. Understanding the function of the tumor microenvironment, and compounds from marine organisms for breast cancer therapy. World J Biol Chem 2021; 12:15-37. [PMID: 33815682 PMCID: PMC8006057 DOI: 10.4331/wjbc.v12.i2.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The pathology and physiology of breast cancer (BC), including metastasis, and drug resistance, is driven by multiple signaling pathways in the tumor microenvironment (TME), which hamper antitumor immunity. Recently, long non-coding RNAs have been reported to mediate pathophysiological develop-ments such as metastasis as well as immune suppression within the TME. Given the complex biology of BC, novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes. In this review, we describe the advances in the biology of breast neoplasia, including cellular and molecular biology, heterogeneity, and TME. We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC. Finally, we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms, crustaceans, and fishes and their synergistic effects in combination with other anticancer drugs. Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development, thus assisting current therapeutic regimens.
Collapse
|
Review |
4 |
5 |
219
|
Kobayashi Y, Kulikova SP, Shibato J, Rakwal R, Satoh H, Pinault D, Masuo Y. DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain. World J Biol Chem 2015; 6:389-408. [PMID: 26629322 PMCID: PMC4657125 DOI: 10.4331/wjbc.v6.i4.389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/20/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions.
METHODS: Rats were treated with an intraperitoneal injection of MK-801 [0.08 (low-dose) and 0.16 (high-dose) mg/kg] or NaCl (vehicle control). In a first series of experiment, the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments, the whole brain of each animal was rapidly removed at 40 min post-injection, and different regions were separated: amygdala, cerebral cortex, hippocampus, hypothalamus, midbrain and ventral striatum on ice followed by DNA microarray (4 × 44 K whole rat genome chip) analysis.
RESULTS: Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency (30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number (up- and down- regulations) of gene expressions in the cerebral cortex (378), midbrain (376), hippocampus (375), ventral striatum (353), amygdala (301), and hypothalamus (201) under low-dose (0.08 mg/kg) of MK-801. Under high-dose (0.16 mg/kg), ventral striatum (811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region.
CONCLUSION: Acute MK-801 treatment increases synchrony of baseline gamma oscillations, and causes very early changes in gene expressions in six individual rat brain regions, a first report.
Collapse
|
Basic Study |
10 |
4 |
220
|
Link W. Nuclear accumulation of β-catenin and forkhead box O3a in colon cancer: Dangerous liaison. World J Biol Chem 2012; 3:175-9. [PMID: 23024836 PMCID: PMC3460219 DOI: 10.4331/wjbc.v3.i9.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/22/2012] [Accepted: 08/29/2012] [Indexed: 02/05/2023] Open
Abstract
The WNT/β-catenin and phosphoinositide 3-kinase (PI3K/AKT) signaling cascades both have been implicated in the formation and progression of colorectal cancer. Oncogenic PI3K/AKT signaling suppresses the activity of forkhead box O3a (FOXO3a) transcription factor through phosphorylation leading to its nuclear exclusion. Inhibition of the PI3K/AKT signaling by PI3K or AKT inhibitors results in the translocation of FOXO3a to the nucleus, and is considered to be a promising therapeutic strategy for many cancers including colon cancer. Now, however, a new study in Nature Medicine has revealed a nuclear interaction of β-catenin with FOXO3a as a promoter of metastatic progression in colon cancer. The work has important implications for the treatment of colon cancers, suggests a companion biomarker strategy to enable a personalized medicine approach, and offers an alternative therapeutic strategy to overcome resistance to PI3K and AKT inhibitors.
Collapse
|
Editorial |
13 |
4 |
221
|
Greif PA, Bohlander SK. Up a lymphoid blind alley: Does CALM/AF10 disturb Ikaros during leukemogenesis? World J Biol Chem 2011; 2:115-8. [PMID: 21765976 PMCID: PMC3159521 DOI: 10.4331/wjbc.v2.i6.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 02/05/2023] Open
Abstract
The Ikaros gene is required for normal development of lymphocytes and frequent intragenic deletions of Ikaros have been identified in acute lymphoblastic leukemia. However, little is known about the role of Ikaros in myeloid malignancies. Here we discuss the role of Ikaros as a lineage master regulator during the onset and progression of myeloid leukemias, namely CALM-AF10 positive acute myeloid leukemia and chronic myeloid leukemia. Alterations of Ikaros at the gene or protein level may act as a bi-directional lineage switch subverting developmental plasticity for malignant transformation. Finally, we propose that promiscuous signaling involving Ikaros and FOXO transcription factors might be a critical link between early lineage fate and uncontrolled proliferation.
Collapse
|
Topic Highlight |
14 |
4 |
222
|
Li X, Pérez L, Fan H. Inhibitory role of TACE/ADAM17 cytotail in protein ectodomain shedding. World J Biol Chem 2011; 2:246-51. [PMID: 22125668 PMCID: PMC3224872 DOI: 10.4331/wjbc.v2.i11.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine if the cytotail of the principal sheddase tumor necrosis factor-α converting enzyme (TACE; ADAM17) controls protein ectodomain shedding.
METHODS: Site-directed mutagenesis was performed to derive TACE variants. The resulting TACE expression plasmids with amino acid substitutions in the extracellular, cysteine-rich disintegrin domain (CRD) and/or deleted cytotail, along with an expression vector for the enhanced green fluorescence protein were transfected into shedding-defective M1 mutants stably expressing transmembrane L-selectin or transforming growth factor (TGF)-α. The expression levels of the TACE substrates at the cell surface were determined by flow cytometry.
RESULTS: Consistent with published data, a single point mutation (C600Y) in the CRD led to shedding deficiency. However, removal of the cytotail from the C600Y TACE variant partially restored ectodomain cleavage of TGF-α and L-selectin. Cytotail-deleted mutants with any other substituting amino acid residues in place of Cys600 displayed similar function compared with tail-less C600Y TACE.
CONCLUSION: The cytotail plays an inhibitory role, which becomes evident when it is removed from an enzyme with another mutation that affects the enzyme function.
Collapse
|
Brief Article |
14 |
4 |
223
|
Perez CF. On the footsteps of Triadin and its role in skeletal muscle. World J Biol Chem 2011; 2:177-83. [PMID: 21909459 PMCID: PMC3165967 DOI: 10.4331/wjbc.v2.i8.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 02/05/2023] Open
Abstract
Calcium is a crucial element for striated muscle function. As such, myoplasmic free Ca2+ concentration is delicately regulated through the concerted action of multiple Ca2+ pathways that relay excitation of the plasma membrane to the intracellular contractile machinery. In skeletal muscle, one of these major Ca2+ pathways is Ca2+ release from intracellular Ca2+ stores through type-1 ryanodine receptor/Ca2+ release channels (RyR1), which positions RyR1 in a strategic cross point to regulate Ca2+ homeostasis. This major Ca2+ traffic point appears to be highly sensitive to the intracellular environment, which senses through a plethora of chemical and protein-protein interactions. Among these modulators, perhaps one of the most elusive is Triadin, a muscle-specific protein that is involved in many crucial aspect of muscle function. This family of proteins mediates complex interactions with various Ca2+ modulators and seems poised to be a relevant modulator of Ca2+ signaling in cardiac and skeletal muscles. The purpose of this review is to examine the most recent evidence and current understanding of the role of Triadin in muscle function, in general, with particular emphasis on its contribution to Ca2+ homeostasis.
Collapse
|
Editorial |
14 |
4 |
224
|
Al-Sowayan BS, Al-Shareeda AT. Stem cells and the pursuit of youth, a tale of limitless possibilities and commercial fraud. World J Biol Chem 2021; 12:52-56. [PMID: 34354805 PMCID: PMC8316836 DOI: 10.4331/wjbc.v12.i4.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
This article examines the hype generated around the term “stem cell”, and the capitalization of the stem cell craze by the cosmetic industry. It started by introducing product lines containing active ingredients derived from plant stem cells. Then, evolved to using own cells for skin regeneration and hair loss treatment, and allogenic cells for the manufacturing of stem cell-derived products. This article also discusses the missing links for safe and reliable stem cell applications in cosmetics, and why local regulatory bodies, members of the industry and consumers must all work together to stop the illegitimate use of the “stem cell” good name in unsafe or fraudulent commercial practices.
Collapse
|
Opinion Review |
4 |
3 |
225
|
Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5:12-25. [PMID: 24600511 PMCID: PMC3942539 DOI: 10.4331/wjbc.v5.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.
Collapse
|
Review |
11 |
3 |