51
|
Lee S, Ayrapetov MK, Kemble DJ, Parang K, Sun G. Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk). J Biol Chem 2006; 281:8183-8189. [PMID: 16439366 DOI: 10.1074/jbc.m508120200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 05/05/2024] Open
Abstract
Protein tyrosine kinases are key enzymes of mammalian signal transduction. Substrate specificity is a fundamental property that determines the specificity and fidelity of signaling by protein tyrosine kinases. However, how protein tyrosine kinases recognize the protein substrates is not well understood. C-terminal Src kinase (Csk) specifically phosphorylates Src family kinases on a C-terminal Tyr residue, which down-regulates their activities. We have previously determined that Csk recognizes Src using a substrate-docking site away from the active site. In the current study, we identified the docking determinants in Src recognized by the Csk substrate-docking site and demonstrated an interaction between the docking determinants of Src and the Csk substrate-docking site for this recognition. A similar mechanism was confirmed for Csk recognition of another Src family kinase, Yes. Although both Csk and MAP kinases used docking sites for substrate recognition, their docking sites consisted of different substructures in the catalytic domain. These results helped establish a docking-based substrate recognition mechanism for Csk. This model may provide a framework for understanding substrate recognition and specificity of other protein tyrosine kinases.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
31 |
52
|
Shirazi AN, Tiwari RK, Oh D, Sullivan B, McCaffrey K, Mandal D, Parang K. Surface decorated gold nanoparticles by linear and cyclic peptides as molecular transporters. Mol Pharm 2013; 10:3137-3151. [PMID: 23834324 PMCID: PMC3810956 DOI: 10.1021/mp400199e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] [Imported: 05/05/2024]
Abstract
Gold nanoparticles (AuNPs) were synthesized in situ in a green and rapid method from the reaction of reducing linear and cyclic peptides containing tryptophan and lysine residues, (KW)5 and cyclic [KW]5, with an aqueous solution of HAuCl4 and were evaluated as cellular nanodrug delivery systems. The cyclic or linear nature of the peptide was found to determine the morphology and size of the formed peptide-AuNPs and their in vitro molecular transporting efficiency. While cyclic [KW]5-AuNPs formed sponge-like agglomerates, linear (KW)5-AuNPs demonstrated ball-shaped structures. A comparative flow cytometry study showed that the cellular uptake of fluorescence-labeled anti-HIV drugs (emtricitabine (FTC) and lamivudine (3TC)) in human leukemia (CCRF-CEM) cells, and a negatively charged cell-impermeable phosphopeptide (GpYEEI) in human ovarian adecarcinoma (SK-OV-3) cells was significantly higher in the presence of cyclic [KW]5-AuNPs than that of linear (KW)5-AuNPs, parent cyclic [KW]5, and linear (KW)5 peptides. For example, the cellular uptake of F'-GpYEEI was enhanced 12.8-fold by c[KW]5-AuNPs. Confocal microscopy revealed the localization of fluorescence-labeled-3TC in the presence of c[KW]5-AuNPs mostly in nucleus in SK-OV-3 cells after 1 h. On the other hand, l(KW)5-AuNPs delivered fluorescence-labeled-3TC in cytoplasm. These data suggest that noncell penetrating peptides can be converted to efficient molecular transporters through peptide-capped AuNPs formation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
31 |
53
|
Agarwal HK, Chhikara BS, Bhavaraju S, Mandal D, Doncel GF, Parang K. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake. Mol Pharm 2013; 10:467-476. [PMID: 22917277 DOI: 10.1021/mp300361a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 08/09/2024]
Abstract
Three fatty acyl conjugates of (-)-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC, emtricitabine) were synthesized and evaluated against HIV-1 cell-free and cell-associated virus and compared with the corresponding parent nucleoside and physical mixtures of FTC and fatty acids. Among all the compounds, the myristoylated conjugate of FTC (5, EC(50) = 0.07-3.7 μM) displayed the highest potency. Compound 5 exhibited 10-24 and 3-13-times higher anti-HIV activity than FTC alone (EC(50) = 0.7-88.6 μM) and the corresponding physical mixtures of FTC and myristic acid (14, EC(50) = 0.2-20 μM), respectively. Cellular uptake studies confirmed that compound 5 accumulated intracellularly after 1 h of incubation and underwent intracellular hydrolysis in CCRF-CEM cells. Alternative studies were conducted using the carboxyfluorescein conjugated with FTC though β-alanine (12) and 12-aminododecanoic acid (13). Acylation of FTC with a long-chain fatty acid in 13 improved its cellular uptake by 8.5-20 fold in comparison to 12 with a short-chain β-alanine. Compound 5 (IC(90) = 15.7-16.1 nM) showed 6.6- and 35.2 times higher activity than FTC (IC(90) = 103-567 nM) against multidrug resistant viruses B-NNRTI and B-K65R, indicating that FTC conjugation with myristic acid generates a more potent analogue with a better resistance profile than its parent compound.
Collapse
|
|
12 |
30 |
54
|
Agarwal HK, Chhikara BS, Hanley MJ, Ye G, Doncel GF, Parang K. Synthesis and biological evaluation of fatty acyl ester derivatives of (-)-2',3'-dideoxy-3'-thiacytidine. J Med Chem 2012; 55:4861-4871. [PMID: 22533850 DOI: 10.1021/jm300492q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 08/09/2024]
Abstract
A number of fatty acyl derivatives of (-)-2',3'-dideoxy-3'-thiacytidine (lamivudine, 3TC, 1) were synthesized and evaluated for their anti-HIV activity. The monosubstituted 5'-O-fatty acyl derivatives of 3TC (EC(50) = 0.2-2.3 μM) were more potent than the corresponding monosubstituted N(4)-fatty acyl (EC(50) = 0.4-29.4 μM) and 5'-O-N(4)-disubstituted (EC(50) = 72.6 to >154.0 μM) derivatives of the nucleoside. 5'-O-Myristoyl (16) and 5'-O-12-azidododecanoyl derivatives (17) were found to be the most potent compounds (EC(50) = 0.2-0.9 μM) exhibiting at least 16-36-fold higher anti-HIV activity against cell-free virus than 1 (EC(50) = 11.4-32.7 μM). The EC(90) values for 16 against B-subtype and C-subtype clinical isolates were several folds lower than those of 1. The cellular uptake studies confirmed that compound 16 accumulated intracellularly after 1 h of incubation with CCRF-CEM cells and underwent intracellular hydrolysis. 5'-O-Fatty acyl derivatives of 1 showed significantly higher anti-HIV activity than the corresponding physical mixtures against the B-subtype virus.
Collapse
|
|
13 |
30 |
55
|
Chhikara BS, Mandal D, Parang K. Synthesis and evaluation of fatty acyl ester derivatives of cytarabine as anti-leukemia agents. Eur J Med Chem 2010; 45:4601-4608. [PMID: 20692740 DOI: 10.1016/j.ejmech.2010.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022] [Imported: 08/09/2024]
Abstract
Cytarabine is a chemotherapeutic agent predominately used for the treatment of acute myeloid leukemia and lymphoblastic leukemia. Cytarabine is a polar nucleoside, has a short plasma half-life, and its use is associated with severe side effects. Fatty acyl derivatives of cytarabine were synthesized with the expectation to improve cellular uptake and generate derivatives with a longer duration of action. Multi-step protection and deprotection reactions of hydroxyl and amino groups and conjugation with a fatty acid (i.e., myristic acid and 12-thioethyldodecanoic acid) afforded 5'-O-substituted, 2'-O-substituted, and 2',5'-disubstituted fatty acyl derivatives of cytarabine. 2',5'-Dimyristoyl derivative of cytarabine was found to inhibit the growth of CCRF-CEM cells by approximately 76% at concentration of 1 microM after 96 h incubation.
Collapse
|
|
15 |
29 |
56
|
El-Sayed NS, Shirazi AN, El-Meligy MG, El-Ziaty AK, Nagib ZA, Parang K. Synthesis of 4-aryl-6-indolylpyridine-3-carbonitriles and evaluation of their antiproliferative activity. Tetrahedron Lett 2014; 55:1154-1158. [PMID: 24678129 PMCID: PMC3963174 DOI: 10.1016/j.tetlet.2013.12.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 05/05/2024]
Abstract
A novel class of 6-indolypyridine-3-carbonitrilile derivatives were synthesized and evaluated for antiproliferative activities to establish structure-activity relationship. The synthesis was carried out through one-pot multicomponent reaction of 3-acetylindole, aromatic aldehydes, ethyl cyanoacetate, and ammonium acetate in the presence of piperidine as a catalyst, using a microwave irradiation method or a traditional thermal method. This was followed by chlorination for compounds 13a-e and subsequent nucleophilic substitution of the chlorine group by ethylenediamine at C2 position of the pyridine ring. The antiproliferative activity of these new nicotinonitriles was evaluated against human ovarian adenocarcinoma (SK-OV-3), breast adenocarcinoma (MCF-7), and cervix adenocarcinoma (HeLa) cells. Among all compounds, 2-((2-aminoethyl)amino)-4-aryl-6-indolylnicotinonitriles series (15a, 15b, 15d, and 15e) exhibited higher antiproliferative activity cells with IC50 values of 4.1-13.4 μM.
Collapse
|
research-article |
11 |
28 |
57
|
Verma AK, Patel M, Joshi M, Likhar PR, Tiwari RK, Parang K. Base-mediated chemo- and stereoselective addition of 5-aminoindole/tryptamine and histamines onto alkynes. J Org Chem 2014; 79:172-186. [PMID: 24215621 DOI: 10.1021/jo402352v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] [Imported: 05/05/2024]
Abstract
Transition-metal-free chemo- and stereoselective addition of 5-aminoindole (1a), tryptamine (1b), and histamine (1c) to alkynes 2a-s to synthesize the indolyl/imidazolyl enamines 3a-p, 5a-o, and 6a-e using superbasic solutions of alkali-metal hydroxides in DMSO is described. The addition of N-heterocycles onto alkynes takes places chemoselectively without affecting the 1° amino groups (aromatic and aliphatic) of 5-aminoindole, tryptamine, and histamine. The stereochemistry of the products was found to be dependent upon reaction time; an increase in reaction time leads to the formation of a mixture of E/Z isomers and the thermodynamically stable E addition product. The chemoselective addition of N-heterocycle 1a onto alkyne over thiophenol 7 and phenol 8 is supported by control experiments. Competitive experiments showed that 5-aminoindole was more reactive than tryptamine, and histamine was found to be the least reactive. The present methodology provides an efficient chemoselective method to synthesize a variety of (Z)-enamines of 5-aminoindole, tryptamine, and histamine without affecting the 1° amino group. The presence of the free amino group in enamines could be further used for synthetic elaboration, which proved to be highly advantageous for structural and biological activity assessments.
Collapse
|
|
11 |
27 |
58
|
Parang K, Fournier EJ, Hindsgaul O. A solid phase reagent for the capture phosphorylation of carbohydrates and nucleosides. Org Lett 2001; 3:307-309. [PMID: 11430061 DOI: 10.1021/ol0069498] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] [Imported: 05/05/2024]
Abstract
[figure: see text] A 1% cross-linked divinylbenzene-polystyrene copolymer, containing cyanoethoxy N,N-diisopropylamine phosphine was prepared as a phosphitylating agent. The polymer-bound phosphitylated precursor was subjected to reaction with alcohols in the presence of 1H-tetrazole to produce the corresponding polymer-bound phosphite triesters. These were then oxidized with tert-butyl hydroperoxide to give the polymer-bound monophosphate triesters. Removal of cyanoethoxy on the resin with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) followed by basic cleavage of the p-hydroxybenzyl linker products yielded monophosphate derivatives.
Collapse
|
|
24 |
27 |
59
|
Gupta A, Mandal D, Ahmadibeni Y, Parang K, Bothun G. Hydrophobicity drives the cellular uptake of short cationic peptide ligands. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:727-736. [PMID: 21409455 DOI: 10.1007/s00249-011-0685-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/02/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022] [Imported: 08/09/2024]
Abstract
Short cationic linear peptide analogs (LPAs, prepared as Arg-C( n )-Arg-C( n )-Lys, where C( n ) represents an alkyl linkage with n = 4, 7 or 11) were synthesized and tested in human breast carcinoma BT-20 and CCRF-CEM leukemia cells for their application as targeting ligands. With constant LPA charge (+4), increasing the alkyl linkage increases the hydrophobic/hydrophilic balance and provides a systematic means of examining combined electrostatic and hydrophobic peptide-membrane interactions. Fluorescently conjugated LPA-C(11) (F-LPA-C(11)) demonstrated significant uptake, whereas there was negligible uptake of the shorter LPAs. By varying temperature (4°C and 37°C) and cell type, the results suggest that LPA-C(11) internalization is nonendocytic and nonspecific. The effect of LPA binding on the phase behavior, structure, and permeability of model membranes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine (DPPC/DPPS, 85/15) was studied using differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and fluorescence leakage studies to gain insight into the LPA uptake mechanism. While all LPAs led to phase separation, LPA-C(11), possessing the longest alkyl linkage, was able to penetrate into the bilayer and caused holes to form, which led to membrane disintegration. This was confirmed by rapid and complete dye release by LPA-C(11). We propose that LPA-C(11) achieves uptake by anchoring to the membrane via hydrophobicity and forming transient membrane voids. LPAs may be advantageous as drug transporter ligands because they are small, water soluble, and easy to prepare.
Collapse
|
|
14 |
27 |
60
|
Ablooglu AJ, Till JH, Kim K, Parang K, Cole PA, Hubbard SR, Kohanski RA. Probing the catalytic mechanism of the insulin receptor kinase with a tetrafluorotyrosine-containing peptide substrate. J Biol Chem 2000; 275:30394-30398. [PMID: 10869355 DOI: 10.1074/jbc.m003524200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 05/05/2024] Open
Abstract
The interaction of a synthetic tetrafluorotyrosyl peptide substrate with the activated tyrosine kinase domain of the insulin receptor was studied by steady-state kinetics and x-ray crystallography. The pH-rate profiles indicate that the neutral phenol, rather than the chemically more reactive phenoxide ion, is required for enzyme-catalyzed phosphorylation. The pK(a) of the tetrafluorotyrosyl hydroxyl is elevated 2 pH units on the enzyme compared with solution, whereas the phenoxide anion species behaves as a weak competitive inhibitor of the tyrosine kinase. A structure of the binary enzyme-substrate complex shows the tetrafluorotyrosyl OH group at hydrogen bonding distances from the side chains of Asp(1132) and Arg(1136), consistent with elevation of the pK(a). These findings strongly support a reaction mechanism favoring a dissociative transition state.
Collapse
|
|
25 |
26 |
61
|
Saunthwal RK, Patel M, Tiwari RK, Parang K, Verma AK. On water: catalyst-free chemoselective synthesis of highly functionalized tetrahydroquinazolines from 2-aminophenylacrylate. GREEN CHEMISTRY 2015; 17:1434-1441. [DOI: 10.1039/c4gc02154a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024]
Abstract
A green and catalyst free atom-ecomonic straightforward tandem approach for the synthesis of highly functionalized tetrahydroquinazolines by the reaction of 2-aminophenylacrylate1with isothiocyanates2using water as an environmental friendly solvent is described.
Collapse
|
|
10 |
26 |
62
|
El-Sayed NS, Shirazi AN, El-Meligy MG, El-Ziaty AK, Nagieb ZA, Parang K, Tiwari RK. Design, synthesis, and evaluation of chitosan conjugated GGRGDSK peptides as a cancer cell-targeting molecular transporter. Int J Biol Macromol 2016; 87:611-622. [PMID: 26976071 DOI: 10.1016/j.ijbiomac.2016.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/26/2022] [Imported: 05/05/2024]
Abstract
Targeting cancer cells using integrin receptor is one of the promising targeting strategies in drug delivery. In this study, we conjugated an integrin-binding ligand (GGRGDSK) peptide to chitosan oligosaccharide (COS) using sulfo-SMCC as a bifunctional linker to afford COS-SMCC-GGRGDSK. The conjugated polymer was characterized by FT-IR, (1)H NMR, (13)C NMR, and SEM. COS-SMCC-GGRGDSK did not show cytotoxicity up to a concentration of 1mg/mL in the human leukemia cell line (CCRF-CEM). The conjugate was evaluated for its ability to enhance the cellular uptake of a cell-impermeable cargo (e.g., F'-G(pY)EEI phosphopeptide) in CCRF-CEM, and human ovarian carcinoma (SK-OV-3) cancer cell lines. Additionally, RGD modified and unmodified COS polymers were used to prepare nanoparticles by ionic gelation and showed particle size ranging from 187 to 338nm, and zeta potential of 12.2-18.3mV using dynamic light scattering. The efficiency of COS-NPs and COS-SMCC-RGDSK NPs was assayed for translocation of two synthetic cytotoxic agents ((2-(2-aminoethylamino)-4-(4-chlorophenyl)-6-(1H-indol-3-yl) nicotinonitrile (ACIN), and 2-(2-aminoethylamino)-6-(1H-indol-3-yl)-4-(4-methoxyphenyl)-nicotinonitrile (AMIN)) into CCRF-CEM and human prostate (DU-145) cancer cell lines. The results showed a dramatic reduction in the cell viability on their treatment with RGD targeted COS NPs in comparison to paclitaxel (PTX), free drug, and drug-loaded COS NPs.
Collapse
|
|
9 |
26 |
63
|
Nam NH, Sardari S, Parang K. Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. JOURNAL OF COMBINATORIAL CHEMISTRY 2003; 5:479-546. [PMID: 12959554 DOI: 10.1021/cc020106l] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 05/05/2024]
|
Review |
22 |
26 |
64
|
Mandal D, Tiwari RK, Shirazi AN, Oh D, Ye G, Banerjee A, Yadav A, Parang K. Self-Assembled Surfactant Cyclic Peptide Nanostructures as Stabilizing Agents. SOFT MATTER 2013; 9:10.1039/C3SM50764E. [PMID: 24187575 PMCID: PMC3811951 DOI: 10.1039/c3sm50764e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] [Imported: 05/05/2024]
Abstract
A number of cyclic peptides including [FR]4, [FK]4, [WR]4, [CR]4, [AK]4, and [WK]n (n = 3-5) containing L-amino acids were produced using solid-phase peptide synthesis. We hypothesized that an optimal balance of hydrophobicity and charge could generate self-assembled nanostructures in aqueous solution by intramolecular and/or intermolecular interactions. Among all the designed peptides, [WR]n (n = 3-5) generated self-assembled vesicle-like nanostructures at room temperature as shown by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and/or dynamic light scattering (DLS). This class of peptides represents the first report of surfactant-like cyclic peptides that self-assemble into nanostructures. A plausible mechanistic insight into the self-assembly of [WR]5 was obtained by molecular modeling studies. Modified [WR]5 analogues, such as [WMeR]5, [WR(Me)2]5, [WMeR(Me)2]5, and [WdR]5, exhibited different morphologies to [WR]5 as shown by TEM observations. [WR]5 exhibited a significant stabilizing effect for generated silver nanoparticles and glyceraldehyde-3-phosphate dehydrogenase activity. These studies established a new class of surfactant-like cyclic peptides that self-assembled into nanostructures and could have potential applications for the stabilization of silver nanoparticles and protein biomolecules.
Collapse
|
research-article |
12 |
25 |
65
|
Ramos-Molina B, Lick AN, Nasrolahi Shirazi A, Oh D, Tiwari R, El-Sayed NS, Parang K, Lindberg I. Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors. PLoS One 2015; 10:e0130417. [PMID: 26110264 PMCID: PMC4482483 DOI: 10.1371/journal.pone.0130417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022] [Imported: 05/05/2024] Open
Abstract
Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
25 |
66
|
Parang K, El-Sayed NS, Kazeminy AJ, Tiwari RK. Comparative Antiviral Activity of Remdesivir and Anti-HIV Nucleoside Analogs Against Human Coronavirus 229E (HCoV-229E). Molecules 2020; 25:2343. [PMID: 32429580 PMCID: PMC7287735 DOI: 10.3390/molecules25102343] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] [Imported: 05/05/2024] Open
Abstract
Remdesivir is a nucleotide prodrug that is currently undergoing extensive clinical trials for the treatment of COVID-19. The prodrug is metabolized to its active triphosphate form and interferes with the action of RNA-dependent RNA polymerase of SARS-COV-2. Herein, we report the antiviral activity of remdesivir against human coronavirus 229E (HCoV-229E) compared to known anti-HIV agents. These agents included tenofovir (TFV), 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC), known as nucleoside reverse-transcriptase inhibitors (NRTIs), and a number of 5'-O-fatty acylated anti-HIV nucleoside conjugates. The anti-HIV nucleosides interfere with HIV RNA-dependent DNA polymerase and/or act as chain terminators. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. The study revealed that remdesivir exhibited an EC50 value of 0.07 µM against HCoV-229E with TC50 of > 2.00 µM against MRC-5 cells. Parent NRTIs were found to be inactive against (HCoV-229E) at tested concentrations. Among all the NRTIs and 5'-O-fatty acyl conjugates of NRTIs, 5'-O-tetradecanoyl ester conjugate of FTC showed modest activity with EC50 and TC50 values of 72.8 µM and 87.5 µM, respectively. These data can be used for the design of potential compounds against other coronaviruses.
Collapse
|
brief-report |
5 |
24 |
67
|
Weerakkody D, Moshnikova A, El-Sayed NS, Adochite RC, Slaybaugh G, Golijanin J, Tiwari RK, Andreev OA, Parang K, Reshetnyak YK. Novel pH-Sensitive Cyclic Peptides. Sci Rep 2016; 6:31322. [PMID: 27515582 PMCID: PMC4981864 DOI: 10.1038/srep31322] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/18/2016] [Indexed: 02/01/2023] [Imported: 05/05/2024] Open
Abstract
A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
24 |
68
|
Muthayala MK, Chhikara BS, Parang K, Kumar A. Ionic liquid-supported synthesis of sulfonamides and carboxamides. ACS COMBINATORIAL SCIENCE 2012; 14:60-65. [PMID: 22013985 DOI: 10.1021/co200149m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 08/09/2024]
Abstract
An ionic liquid-supported aldehyde was designed and converted to ionic liquid-supported secondary aryl amines through reductive amination. The reaction of ionic liquid-supported aryl amines with sulfonyl chlorides and acid chlorides, respectively, followed by cleavage using trifluoroacetic acid (TFA) afforded sulfonamides and caboxamides. To introduce additional diversity in the synthesis of sulfonamides and caboxamides, ionic liquid-supported iodosubstituted aryl amine was synthesized using the same strategy, and underwent Suzuki coupling reaction, followed by reaction with a methanesulfonyl chloride to generate the corresponding biaryl sulfonamide. The advantages of the protocol over solid-phase synthesis are homogeneous reaction medium, high loading, easy separation of products, and characterization of intermediates.
Collapse
|
|
13 |
23 |
69
|
Marshall J, Szmydynger-Chodobska J, Rioult-Pedotti MS, Lau K, Chin AT, Kotla SKR, Tiwari RK, Parang K, Threlkeld SW, Chodobski A. TrkB-enhancer facilitates functional recovery after traumatic brain injury. Sci Rep 2017; 7:10995. [PMID: 28887487 PMCID: PMC5591207 DOI: 10.1038/s41598-017-11316-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022] [Imported: 05/05/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key player in regulating synaptic strength and learning, is dysregulated following traumatic brain injury (TBI), suggesting that stimulation of BDNF signaling pathways may facilitate functional recovery. This study investigates whether CN2097, a peptidomimetic ligand which targets the synaptic scaffold protein, postsynaptic density protein 95, to enhance downstream signaling of tropomyosin-related kinase B, a receptor for BDNF, can improve neurological function after TBI. Moderate to severe TBI elicits neuroinflammation and c-Jun-N-terminal kinase (JNK) activation, which is associated with memory deficits. Here we demonstrate that CN2097 significantly reduces the post-traumatic synthesis of proinflammatory mediators and inhibits the post-traumatic activation of JNK in a rodent model of TBI. The recordings of field excitatory post-synaptic potentials in the hippocampal CA1 subfield demonstrate that TBI inhibits the expression of long-term potentiation (LTP) evoked by high-frequency stimulation of Schaffer collaterals, and that CN2097 attenuates this LTP impairment. Lastly, we demonstrate that CN2097 significantly improves the complex auditory processing deficits, which are impaired after injury. The multifunctionality of CN2097 strongly suggests that CN2097 could be highly efficacious in targeting complex secondary injury processes resulting from neurotrauma.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
23 |
70
|
Kumar A, Wang Y, Lin X, Sun G, Parang K. Synthesis and evaluation of 3-phenylpyrazolo[3,4-d]pyrimidine-peptide conjugates as Src kinase inhibitors. ChemMedChem 2007; 2:1346-1360. [PMID: 17530729 DOI: 10.1002/cmdc.200700074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 11/12/2022] [Imported: 05/05/2024]
Abstract
3-Phenylpyrazolo[3,4-d]pyrimidine (PhPP) derivatives substituted with an alkyl or aryl carboxylic acid at the N1-endocyclic amine, such as PhPP-CH(2)COOH (IC(50)=250 microM), and peptides Ac-CIYKYY (IC(50)=400 microM) and Ac-YIYGSFK (IC(50)=570 microM) were weak inhibitors of polyE(4)Y phosphorylation by active c-Src. A series of PhPP-peptide conjugates were synthesized using PhPP as an ATP mimic and CIYKYY or YIYGSFK as a peptide substrate to improve the inhibitory potency against active c-Src kinase. PhPP derivatives were attached to the N terminus or the side chain of amino acids in the peptide template. Two N-terminal substituted conjugates, PhPP-CH(2)CO-CIYKYY (IC(50)=0.38 microM) and PhPP-CH(2)CO-YIYGSFK (IC(50)=2.7 microM), inhibited the polyE(4)Y phosphorylation by active c-Src significantly higher than that of the parent compounds. The conjugation of PhPP with the peptides produced a synergistic inhibition effect possibly through creation of favorable interactions between the conjugate and the kinase domain as shown by molecular modeling studies.
Collapse
|
|
18 |
22 |
71
|
Ayrapetov MK, Wang YH, Lin X, Gu X, Parang K, Sun G. Conformational basis for SH2-Tyr(P)527 binding in Src inactivation. J Biol Chem 2006; 281:23776-23784. [PMID: 16790421 DOI: 10.1074/jbc.m604219200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 05/05/2024] Open
Abstract
Src protein-tyrosine kinase contains a myristoylation motif, a unique region, an Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a C-terminal tail. The C-terminal tail contains a Tyr residue, Tyr527. Phosphorylation of Tyr527 triggers Src inactivation, caused by Tyr(P)527 binding to the SH2 domain. In this study, we demonstrated that a conformational contribution, not affinity, is the predominant force for the intramolecular SH2-Tyr(P)527 binding, and we characterized the structural basis for this conformational contribution. First, a phosphopeptide mimicking the C-terminal tail is an 80-fold weaker ligand than the optimal phosphopeptide, pYEEI, and similar to a phosphopeptide containing three Ala residues following Tyr(P) in binding to the Src SH2 domain. Second, the SH2-Tyr(P)527 binding is largely independent of the amino acid sequence surrounding Tyr(P)527, and only slightly decreased by an inactivating mutation in the SH2 domain. Furthermore, even the unphosphorylated C-terminal tail with the sequence of YEEI suppresses Src activity by binding to the SH2 domain. These experiments demonstrate that very weak affinity is sufficient for the SH2-Tyr(P)527 binding in Src inactivation. Third, the effective intramolecular SH2-Tyr(P)527 binding is attributed to a conformational contribution that requires residues Trp260 and Leu255. Although the SH3 domain is essential for Src inactivation by Tyr(P)527, it does not contribute to the SH2-Tyr(P)527 binding. These findings suggest a conformation-based Src inactivation model, which provides a unifying framework for understanding Src activation by a variety of mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
22 |
72
|
Lin X, Wang Y, Ahmadibeni Y, Parang K, Sun G. Structural basis for domain-domain communication in a protein tyrosine kinase, the C-terminal Src kinase. J Mol Biol 2006; 357:1263-1273. [PMID: 16483606 DOI: 10.1016/j.jmb.2006.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/17/2005] [Accepted: 01/09/2006] [Indexed: 11/19/2022] [Imported: 05/05/2024]
Abstract
The catalytic activity of protein tyrosine kinases is commonly regulated by domain-domain interactions. The C-terminal Src kinase (Csk) contains a catalytic domain and the regulatory SH3 and SH2 domains. Both the presence of the regulatory domains and binding of specific phosphotyrosine-containing proteins to the SH2 domain activate Csk. The structural basis for both modes of activation is investigated here. First, the SH3-SH2 linker is crucial for Csk activation. Mutagenic and kinetic studies demonstrate that this activation is mediated by a cation-pi interaction between Arg68 and Trp188. Second, Ala scanning and kinetic analyses on residues in the SH2-catalytic domain interface identify three functionally distinct types of residues in mediating the communication between the SH2 and the catalytic domains. Type I residues are important in mediating a ligand-triggered activation of Csk because their mutation severely reduces Csk activation by the SH2 domain ligand. Type II residues are involved in suppressing Csk activity, and their mutation activates Csk, but makes Csk less sensitive to activation by the SH2 ligand. Both type I and type II residues are likely involved in mediating SH2 ligand-triggered activation of Csk. Type III residues are those located in the SH2 domain whose mutation severely decreases Csk catalytic activity without affecting the SH2 ligand-triggered activation. These residues likely mediate SH2 activation of Csk regardless of SH2-ligand interaction. These studies lead us to propose a domain-domain communication model that provides functional insights into the topology of Csk family of protein tyrosine kinases.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
22 |
73
|
El-Sayed NS, Shirazi AN, Sajid MI, Park SE, Parang K, Tiwari RK. Synthesis and Antiproliferative Activities of Conjugates of Paclitaxel and Camptothecin with a Cyclic Cell-Penetrating Peptide. Molecules 2019; 24:1427. [PMID: 30978971 PMCID: PMC6480016 DOI: 10.3390/molecules24071427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022] [Imported: 05/05/2024] Open
Abstract
Cell-penetrating peptide [WR]₅ has been previously shown to be an efficient molecular transporter for various hydrophilic and hydrophobic molecules. The peptide was synthesized using Fmoc/tBu solid-phase chemistry, and one arginine was replaced with one lysine to enable the conjugation with the anticancer drugs. Paclitaxel (PTX) was functionalized with an esterification reaction at the C2' hydroxyl group of PTX with glutaric anhydride and conjugated with the cyclic peptide [W(WR)₄K(βAla)] in DMF to obtain the peptide-drug conjugate PTX1. Furthermore, camptothecin (CPT) was modified at the C(20)-hydroxyl group through the reaction with triphosgene. Then, it was conjugated with two functionalized cyclic peptides through a formyl linker affording two different conjugates, namely CPT1 and CPT2. All the conjugates showed better water solubility as compared to the parent drug. The cytotoxicity assay of the drugs and their conjugates with the peptides were evaluated in the human breast cancer MCF-7 cell line. PTX inhibited cell proliferation by 39% while the PTX-peptide conjugate inhibited the proliferation by ~18% after 72 h incubation. On the other hand, CPT, CPT1, and CPT2 reduced the cell proliferation by 68%, 39%, and 62%, respectively, in the MCF-7 cell lines at 5 µM concentration after 72 h incubation.
Collapse
|
research-article |
6 |
22 |
74
|
Ahmadibeni Y, Parang K. Solid-phase reagents for selective monophosphorylation of carbohydrates and nucleosides. J Org Chem 2005; 70:1100-1103. [PMID: 15675883 DOI: 10.1021/jo048113e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 05/05/2024]
Abstract
Two classes of aminomethyl polystyrene resin-bound linkers of p-acetoxybenzyl alcohol were subjected to reactions with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite to produce the corresponding polymer-bound phosphitylating reagents. These were reacted with a number of unprotected nucleosides and carbohydrates in the presence of 1H-tetrazole. Oxidation with tert-butyl hydroperoxide followed by removal of the cyanoethoxy group with 1,8-diazabicyclo[5.4.0]undec-7-ene afforded the corresponding polymer-bound phosphate diesters. Acidic cleavage of the p-acetoxybenzyl alcohol linker yielded monophosphorylated products with high regioselectivity and trapped linkers on the resins that can be reused.
Collapse
|
|
20 |
21 |
75
|
Fallah-Tafti A, Tiwari R, Shirazi AN, Akbarzadeh T, Mandal D, Shafiee A, Parang K, Foroumadi A. 4-Aryl-4H-chromene-3-carbonitrile derivatives: evaluation of Src kinase inhibitory and anticancer activities. Med Chem 2011; 7:466-472. [PMID: 21801146 DOI: 10.2174/157340611796799258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 05/05/2011] [Indexed: 11/22/2022] [Imported: 08/09/2024]
Abstract
Src kinase mutations and/or overexpression have been implicated in the development of a number of human cancer including colon, breast, and lung cancers. Thus, designing potent and selective Src kinase inhibitors as anticancer agents is a subject of major interest. A series of 4-aryl substituted derivatives of 2-amino-7-dimethylamino-4H-chromene-3-carbonitrile were synthesized using one-pot reaction of appropriate substituted aromatic aldehydes, malononitrile, and 3-(dimethylamino)phenol in the presence of piperidine. All 23 compounds were evaluated for inhibition of Src kinase and cell proliferation in human colon adenocarcinoma (HT-29) and leukemia (CCRF-CEM) cell lines. Among the tested compounds, 2-chlorophenyl- (4c), 3-nitrophenyl- (4h), 4-trifluoromethyphenyl- (4i), and 2,3-dichlorophenyl- (4k) substituted chromenes showed Src kinase inhibitory effect with IC(50) values of 11.1-18.3 µM. Compound 4c was relatively selective against Src (IC(50) = 11.1 µM), when compared with selected kinases, epidermal growth factor receptor (EGFR, IC(50) > 300 µM), C-terminal Src kinase (Csk, IC(50) = 101.7 µM), and lymphocyte-specific protein tyrosine kinase (Lck, IC(50) = 46.8 µM). 3-Chlorophenyl substituted thiazole (4v) and 2-chlorophenylsubstituted thiazole (4u) chromene derivatives inhibited the cell proliferation of HT-29 and CCRF-CEM by 80% and 50% respectively, at a concentration of 50 µM. The data indicate that 4H-chromene-3-carbonitrile scaffold has the potential to be optimized further for designing more potent Src kinase inhibitors and/or anticancer lead compounds.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
21 |