1
|
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 2008; 11:1065-71. [PMID: 18627410 DOI: 10.1111/j.1461-0248.2008.01219.x] [Citation(s) in RCA: 884] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
17 |
884 |
2
|
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 2004; 140:543-50. [PMID: 15232729 DOI: 10.1007/s00442-004-1624-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 05/14/2004] [Indexed: 10/26/2022]
Abstract
We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity ( k(L)) of upper branches was positively correlated with maximum rates of net CO(2) assimilation per unit leaf area ( A(area)) and stomatal conductance ( g(s)) across 20 species of canopy trees. Maximum k(L) showed stronger correlation with A(area) than initial k(L) suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch k(L) was negatively correlated with A(area)/ g(s) and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics ( k(theoretical)) was positively related to A(area) and k(L), consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, k(L), A(area), net CO(2) assimilation per unit leaf mass ( A(mass)), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.
Collapse
|
|
21 |
253 |
3
|
Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE, Van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N. Global patterns of leaf mechanical properties. Ecol Lett 2011; 14:301-12. [PMID: 21265976 DOI: 10.1111/j.1461-0248.2010.01582.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
14 |
237 |
4
|
Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 2011; 92:1616-25. [PMID: 21905428 DOI: 10.1890/10-1558.1] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
14 |
218 |
5
|
Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E. A review of volatile analytical methods for determining the botanical origin of honey. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.07.068] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
18 |
175 |
6
|
Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C 3 plants? Review and synthesis of current hypotheses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:199-213. [PMID: 32688639 DOI: 10.1071/fp08216] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/18/2009] [Indexed: 05/08/2023]
Abstract
Non-photosynthetic, or heterotrophic, tissues in C3 plants tend to be enriched in 13C compared with the leaves that supply them with photosynthate. This isotopic pattern has been observed for woody stems, roots, seeds and fruits, emerging leaves, and parasitic plants incapable of net CO2 fixation. Unlike in C3 plants, roots of herbaceous C4 plants are generally not 13C-enriched compared with leaves. We review six hypotheses aimed at explaining this isotopic pattern in C3 plants: (1) variation in biochemical composition of heterotrophic tissues compared with leaves; (2) seasonal separation of growth of leaves and heterotrophic tissues, with corresponding variation in photosynthetic discrimination against 13C; (3) differential use of day v. night sucrose between leaves and sink tissues, with day sucrose being relatively 13C-depleted and night sucrose 13C-enriched; (4) isotopic fractionation during dark respiration; (5) carbon fixation by PEP carboxylase; and (6) developmental variation in photosynthetic discrimination against 13C during leaf expansion. Although hypotheses (1) and (2) may contribute to the general pattern, they cannot explain all observations. Some evidence exists in support of hypotheses (3) through to (6), although for hypothesis (6) it is largely circumstantial. Hypothesis (3) provides a promising avenue for future research. Direct tests of these hypotheses should be carried out to provide insight into the mechanisms causing within-plant variation in carbon isotope composition.
Collapse
|
|
16 |
169 |
7
|
Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR. Nighttime transpiration in woody plants from contrasting ecosystems. TREE PHYSIOLOGY 2007; 27:561-75. [PMID: 17241998 DOI: 10.1093/treephys/27.4.561] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is commonly assumed that transpiration does not occur at night because leaf stomata are closed in the dark. We tested this assumption across a diversity of ecosystems and woody plant species by various methods to explore the circumstances when this assumption is false. Our primary goals were: (1) to evaluate the nature and magnitude of nighttime transpiration, E(n), or stomatal conductance, g(n); and (2) to seek potential generalizations about where and when it occurs. Sap-flow, porometry and stable isotope tracer measurements were made on 18 tree and eight shrub species from seven ecosystem types. Coupled with environmental data, our findings revealed that most of these species transpired at night. For some species and circumstances, nighttime leaf water loss constituted a significant fraction of total daily water use. Our evidence shows that E(n) or g(n) can occur in all but one shrub species across the systems we investigated. However, under conditions of high nighttime evaporative demand or low soil water availability, stomata were closed and E(n) or g(n) approached zero in eleven tree and seven shrub species. When soil water was available, E(n) or g(n) was measurable in these same species demonstrating plasticity for E(n) or g(n). We detected E(n) or g(n) in both trees and shrubs, and values were highest in plants from sites with higher soil water contents and in plants from ecosystems that were less prone to atmospheric or soil water deficits. Irrespective of plant or ecosystem type, many species showed E(n) or g(n) when soil water deficits were slight or non-existent, or immediately after rainfall events that followed a period of soil water deficit. The strongest relationship was between E(n) or g(n) and warm, low humidity and (or) windy (> 0.8 m s(-1)) nights when the vapor pressure deficit remained high (> 0.2 kPa in wet sites, > 0.7 kPa in dry sites). Why E(n) or g(n) occurs likely varies with species and ecosystem type; however, our data support four plausible explanations: (1) it may facilitate carbon fixation earlier in the day because stomata are already open; (2) it may enhance nutrient supply to distal parts of the crown when these nutrients are most available (in wet soils) and transport is rapid; (3) it may allow for the delivery of dissolved O(2) via the parenchyma to woody tissue sinks; or (4) it may occur simply because of leaky cuticles in older leaves or when stomata cannot close fully because of obstructions from stomatal (waxy) plugs, leaf endophytes or asymmetrical guard cells (all non-adaptive reasons). We discuss the methodological, ecophysiological, and theoretical implications of the occurrence of E(n) or g(n) for investigations at a variety of scales.
Collapse
|
|
18 |
148 |
8
|
Santiago LS, Kitajima K, Wright SJ, Mulkey SS. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 2004; 139:495-502. [PMID: 15083356 DOI: 10.1007/s00442-004-1542-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 02/25/2004] [Indexed: 11/25/2022]
Abstract
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost-benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar delta15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
131 |
9
|
Pivovaroff AL, Sack L, Santiago LS. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. THE NEW PHYTOLOGIST 2014; 203:842-50. [PMID: 24860955 DOI: 10.1111/nph.12850] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 05/05/2023]
Abstract
Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment.
Collapse
|
|
11 |
99 |
10
|
Silvera K, Santiago LS, Cushman JC, Winter K. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. PLANT PHYSIOLOGY 2009; 149:1838-47. [PMID: 19182098 PMCID: PMC2663729 DOI: 10.1104/pp.108.132555] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/28/2009] [Indexed: 05/18/2023]
Abstract
Species of the large family Orchidaceae display a spectacular array of adaptations and rapid speciations that are linked to several innovative features, including specialized pollination syndromes, colonization of epiphytic habitats, and the presence of Crassulacean acid metabolism (CAM), a water-conserving photosynthetic pathway. To better understand the role of CAM and epiphytism in the evolutionary expansion of tropical orchids, we sampled leaf carbon isotopic composition of 1,103 species native to Panama and Costa Rica, performed character state reconstruction and phylogenetic trait analysis of CAM and epiphytism, and related strong CAM, present in 10% of species surveyed, to climatic variables and the evolution of epiphytism in tropical regions. Altitude was the most important predictor of photosynthetic pathway when all environmental variables were taken into account, with CAM being most prevalent at low altitudes. By creating integrated orchid trees to reconstruct ancestral character states, we found that C3 photosynthesis is the ancestral state and that CAM has evolved at least 10 independent times with several reversals. A large CAM radiation event within the Epidendroideae, the most species-rich epiphytic clade of any known plant group, is linked to a Tertiary species radiation that originated 65 million years ago. Our study shows that parallel evolution of CAM is present among subfamilies of orchids, and correlated divergence between photosynthetic pathways and epiphytism can be explained by the prevalence of CAM in low-elevation epiphytes and rapid speciation of high-elevation epiphytes in the Neotropics, contributing to the astounding diversity in the Orchidaceae.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
98 |
11
|
Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS. Multiple strategies for drought survival among woody plant species. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
|
10 |
94 |
12
|
Simonin KA, Santiago LS, Dawson TE. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. PLANT, CELL & ENVIRONMENT 2009; 32:882-92. [PMID: 19302173 DOI: 10.1111/j.1365-3040.2009.01967.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil-plant-atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.
Collapse
|
|
16 |
87 |
13
|
Silvera K, Santiago LS, Winter K. Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:397-407. [PMID: 32689142 DOI: 10.1071/fp04179] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 01/06/2005] [Indexed: 06/11/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of three metabolic pathways found in vascular plants for the assimilation of carbon dioxide. In this study, we investigate the occurrence of CAM photosynthesis in 200 native orchid species from Panama and 14 non-native species by carbon isotopic composition (δ13C) and compare these values with nocturnal acid accumulation measured by titration in 173 species. Foliar δ13C showed a bimodal distribution with the majority of species exhibiting values of approximately -28‰ (typically associated with the C3 pathway), or -15‰ (strong CAM). Although thick leaves were related to δ13C values in the CAM range, some thin-leaved orchids were capable of CAM photosynthesis, as demonstrated by acid titration. We also found species with C3 isotopic values and significant acid accumulation at night. Of 128 species with δ13C more negative than -22‰, 42 species showed nocturnal acid accumulation per unit fresh mass characteristic of weakly expressed CAM. These data suggest that among CAM orchids, there may be preferential selection for species to exhibit strong CAM or weak CAM, rather than intermediate metabolism.
Collapse
|
|
20 |
75 |
14
|
Santiago LS, De Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Hérault B, Fortunel C, Bonal D. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. THE NEW PHYTOLOGIST 2018; 218:1015-1024. [PMID: 29457226 DOI: 10.1111/nph.15058] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure-volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50 ). Wood density was correlated (r = -0.57 to -0.97) with sapwood pressure-volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.
Collapse
|
|
7 |
65 |
15
|
Hasselquist NJ, Allen MF, Santiago LS. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 2010; 164:881-90. [PMID: 20658152 PMCID: PMC2981736 DOI: 10.1007/s00442-010-1725-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/04/2010] [Indexed: 11/28/2022]
Abstract
Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
55 |
16
|
|
|
25 |
45 |
17
|
Liu H, Xu Q, He P, Santiago LS, Yang K, Ye Q. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Sci Rep 2015; 5:12246. [PMID: 26179320 PMCID: PMC4503962 DOI: 10.1038/srep12246] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/19/2015] [Indexed: 11/12/2022] Open
Abstract
The early diverged Magnoliaceae shows a historical temperate-tropical distribution among lineages indicating divergent evolution, yet which ecophysiological traits are phylogenetically conserved, and whether these traits are involved in correlated evolution remain unclear. Integrating phylogeny and 20 ecophysiological traits of 27 species, from the four largest sections of Magnoliaceae, we tested the phylogenetic signals of these traits and the correlated evolution between trait pairs. Phylogenetic niche conservatism (PNC) in water-conducting and nutrient-use related traits was identified, and correlated evolution of several key functional traits was demonstrated. Among the three evergreen sections of tropical origin, Gwillimia had the lowest hydraulic-photosynthetic capacity and the highest drought tolerance compared with Manglietia and Michelia. Contrastingly, the temperate centred deciduous section, Yulania, showed high rates of hydraulic conductivity and photosynthesis at the cost of drought tolerance. This study elucidated the regulation of hydraulic and photosynthetic processes in the temperate-tropical adaptations for Magnoliaceae species, which led to strong phylogenetic signals and PNC in ecophysiological traits across divergent lineages of Magnoliaceae.
Collapse
|
research-article |
10 |
41 |
18
|
Pouzoulet J, Pivovaroff AL, Santiago LS, Rolshausen PE. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. FRONTIERS IN PLANT SCIENCE 2014; 5:253. [PMID: 24971084 PMCID: PMC4054811 DOI: 10.3389/fpls.2014.00253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/17/2014] [Indexed: 05/20/2023]
Abstract
This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management.
Collapse
|
research-article |
11 |
36 |
19
|
Pivovaroff AL, Cook VMW, Santiago LS. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. PLANT, CELL & ENVIRONMENT 2018; 41:2617-2626. [PMID: 29904932 DOI: 10.1111/pce.13367] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Isohydry (maintenance of plant water potential at the cost of carbon gain) and anisohydry (gas exchange maintenance at the cost of declining plant water status) make up two ends of a stomatal drought response strategy continuum. However, few studies have merged measures of stomatal regulation with xylem hydraulic safety strategies based on in situ field measurements. The goal of this study was to characterize the stomatal and xylem hydraulic safety strategies of woody species in the biodiverse Mediterranean-type ecosystem region of California. Measurements were conducted in situ when California was experiencing the most severe drought conditions in the past 1,200 years. We found coordination among stomatal, hydraulic, and standard leaf functional traits. For example, stem xylem vulnerability to cavitation (P50 ) was correlated with the water potential at stomatal closure (Pclose ); more resistant species had a more negative water potential at stomatal closure. The degree of isohydry-anisohydry, defined at Pclose -P50 , was correlated with the hydraulic safety margin across species; more isohydric species had a larger hydraulic safety margin. In addition, we report for the first time Pclose values below -10 MPa. Measuring these traits in a biodiverse region under exceptional drought conditions contributes to our understanding of plant drought responses.
Collapse
|
|
7 |
34 |
20
|
Ávila-Lovera E, Zerpa AJ, Santiago LS. Stem photosynthesis and hydraulics are coordinated in desert plant species. THE NEW PHYTOLOGIST 2017; 216:1119-1129. [PMID: 28833259 DOI: 10.1111/nph.14737] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/06/2017] [Indexed: 05/15/2023]
Abstract
Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum.
Collapse
|
|
8 |
33 |
21
|
Evans JR, Santiago LS. PrometheusWiki Gold Leaf Protocol: gas exchange using LI-COR 6400. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:223-226. [PMID: 32480982 DOI: 10.1071/fp10900] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/28/2013] [Indexed: 06/11/2023]
Abstract
This leaf gas exchange protocol enables light or CO2 response curves using a LI-COR LI-6400 portable photosynthesis system. The protocol originates in PrometheusWiki (http://prometheuswiki.publish.csiro.au/) where it has been tested and verified, and has received favourable user reviews. This reformatted and non-editable version is published as a Gold Leaf Protocol. For the most current version, including any user-commentary updates, readers may view the live version of the protocol at http://bit.ly/PWLicorGold.
Collapse
|
|
11 |
33 |
22
|
Santiago LS, Goldstein G, Meinzer FC, Fownes JH, Mueller-Dombois D. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. TREE PHYSIOLOGY 2000; 20:673-681. [PMID: 12651517 DOI: 10.1093/treephys/20.10.673] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transpiration, leaf characteristics and forest structure in Metrosideros polymorpha Gaud. stands growing in East Maui, Hawaii were investigated to assess physiological limitations associated with flooding as a mechanism of reduced canopy leaf area in waterlogged sites. Whole-tree sap flow, stomatal conductance, microclimate, soil oxidation-reduction potential, stand basal area and leaf area index (LAI) were measured on moderately sloped, drained sites with closed canopies (90%) and on level, waterlogged sites with open canopies (50-60%). The LAI was measured with a new technique based on enlarged photographs of individual tree crowns and allometric relationships. Sap flow was scaled to the stand level by multiplying basal area-normalized sap flow by stand basal area. Level sites had lower soil redox potentials, lower mean stand basal area, lower LAI, and a higher degree of soil avoidance by roots than sloped sites. Foliar nutrients and leaf mass per area (LMA) in M. polymorpha were similar between level and sloped sites. Stomatal conductance was similar for M. polymorpha saplings on both sites, but decreased with increasing tree height (r(2) = 0.72; P < 0.001). Stand transpiration estimates ranged from 79 to 89% of potential evapotranspiration (PET) for sloped sites and from 28 to 51% of PET for level sites. Stand transpiration estimates were strongly correlated with LAI (r(2) = 0.96; P < 0.001). Whole-tree transpiration was lower at level sites with waterlogged soils, but was similar or higher for trees on level sites when normalized by leaf area. Trees on level sites had a smaller leaf area per stem diameter than trees on sloped sites, suggesting that soil oxygen deficiency may reduce leaf area. However, transpiration per unit leaf area did not vary substantially, so leaf-level physiological behavior was conserved, regardless of differences in tree leaf area.
Collapse
|
|
25 |
31 |
23
|
Pasquini SC, Wright SJ, Santiago LS. Lianas always outperform tree seedlings regardless of soil nutrients: results from a long-term fertilization experiment. Ecology 2015; 96:1866-76. [DOI: 10.1890/14-1660.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
10 |
31 |
24
|
Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher RA, Wullschleger SD, Reich PB, Vrugt JA, Bauerle WL, Santiago LS, Wilson CJ. Global-scale environmental control of plant photosynthetic capacity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:2349-2365. [PMID: 26910960 DOI: 10.1890/14-2111.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V(cm)) rate scaled to 25 degrees C (i.e., V(c),25; μmol CO2 x m(-2)x s(-1)) and maximum electron transport rate (J(max)) scaled to 25 degrees C (i.e., J25; μmol electron x m(-2) x s(-1)) at the global scale. Our results showed that the percentage of variation in observed V(c),25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2-2.5 times and 6-9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain -56% and -66% of the variation in V(c),25 and J25 at the global scale, respectively. Our analyses suggest that model projections of plant photosynthetic capacity and hence land-atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.
Collapse
|
|
10 |
29 |
25
|
Martínez-Vilalta J, Santiago LS, Poyatos R, Badiella L, de Cáceres M, Aranda I, Delzon S, Vilagrosa A, Mencuccini M. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. THE NEW PHYTOLOGIST 2021; 232:404-417. [PMID: 34153132 DOI: 10.1111/nph.17571] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/14/2021] [Indexed: 05/12/2023]
Abstract
Minimum water potential (Ψmin ) is a key variable for characterizing dehydration tolerance and hydraulic safety margins (HSMs) in plants. Ψmin is usually estimated as the absolute minimum tissue Ψ experienced by a species, but this is problematic because sample extremes are affected by sample size and the underlying probability distribution. We compare alternative approaches to estimate Ψmin and assess the corresponding uncertainties and biases; propose statistically robust estimation methods based on extreme value theory (EVT); and assess the implications of our results for the characterization of hydraulic risk. Our results show that current estimates of Ψmin and HSMs are biased, as they are strongly affected by sample size. Because sampling effort is generally higher for species living in dry environments, the differences in current Ψmin estimates between these species and those living under milder conditions are partly artefactual. When this bias is corrected using EVT methods, resulting HSMs tend to increase substantially with resistance to embolism across species. Although data availability and representativeness remain the main challenges for proper determination of Ψmin , a closer look at Ψ distributions and the use of statistically robust methods to estimate Ψmin opens new ground for characterizing plant hydraulic risks.
Collapse
|
|
4 |
19 |