1
|
Kuang W, Zhao Y, Li J, Deng Z. Structure-function analysis of the ATPase domain of African swine fever virus topoisomerase. mBio 2024; 15:e0308623. [PMID: 38411066 PMCID: PMC11005426 DOI: 10.1128/mbio.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Type II topoisomerase utilizes the energy from ATP hydrolysis to alter DNA topology during genome replication and transcription. The ATPase domain of this enzyme is required for ATP hydrolysis and plays a crucial role in coupling DNA binding and ATP turnover with the DNA strand passage reaction. The African swine fever virus (ASFV) specifically encodes a topoisomerase II (topo II), which is critical for viral replication and an attractive target for antiviral development. Here, we present a high-resolution crystal structure of the ASFV topo II ATPase domain complexed with the substrate analog AMPPNP. Structural comparison reveals that the ASFV topo II ATPase domain shares a conserved overall structure with its homologs from eukaryotes and prokaryotes but also has three characteristic regions, including the intra-molecular interface formed by the ATP-lid and QTK loop as well as helix α9, the K-loop in the transducer domain, and the antennae-like α-helix at the ATP binding domain. Mutating the key residues within these three regions impairs or abolishes the basal and DNA-stimulated ATPase activities and reduces or eliminates the relaxation activity of the holoenzyme. Our data indicate that all three regions are functionally important for the ATPase and relaxation activities and strongly suggest that ATP hydrolysis, DNA binding, and strand passage are highly coupled and managed by the allosteric coordination of multiple domains of the type II topoisomerase. Moreover, we find a promising druggable pocket in the dimeric interface of the ASFV topo II ATPase domain, which will benefit future anti-ASFV drug development. IMPORTANCE The ATPase domain of type II topoisomerase provides energy by hydrolyzing ATP and coordinates with the DNA-binding/cleavage domain to drive and control DNA transport. The precise molecular mechanisms of how these domains respond to DNA binding and ATP hydrolysis signals and communicate with each other remain elusive. We determine the first high-resolution crystal structure of the ATPase domain of African swine fever virus (ASFV) topo II in complex with AMPPNP and biochemically investigate its function in ATPase and DNA relaxation activities. Importantly, we find that mutations at three characteristic regions of the ASFV ATPase domain produce parallel effects on the basal/DNA-stimulated ATPase and relaxation activities, implying the tight coupling of the ATP hydrolysis and strand passage process. Therefore, our data provide important implications for understanding the strand passage mechanism of the type II topoisomerase and the structural basis for developing ATPase domain-targeting antivirals against ASFV.
Collapse
|
2
|
Shima T, Morikawa M, Kaneshiro J, Kambara T, Kamimura S, Yagi T, Iwamoto H, Uemura S, Shigematsu H, Shirouzu M, Ichimura T, Watanabe TM, Nitta R, Okada Y, Hirokawa N. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. J Cell Biol 2018; 217:4164-4183. [PMID: 30297389 PMCID: PMC6279379 DOI: 10.1083/jcb.201711178] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/13/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023] Open
Abstract
Kinesin-1, the founding member of the kinesin superfamily of proteins, is known to use only a subset of microtubules for transport in living cells. This biased use of microtubules is proposed as the guidance cue for polarized transport in neurons, but the underlying mechanisms are still poorly understood. Here, we report that kinesin-1 binding changes the microtubule lattice and promotes further kinesin-1 binding. This high-affinity state requires the binding of kinesin-1 in the nucleotide-free state. Microtubules return to the initial low-affinity state by washing out the binding kinesin-1 or by the binding of non-hydrolyzable ATP analogue AMPPNP to kinesin-1. X-ray fiber diffraction, fluorescence speckle microscopy, and second-harmonic generation microscopy, as well as cryo-EM, collectively demonstrated that the binding of nucleotide-free kinesin-1 to GDP microtubules changes the conformation of the GDP microtubule to a conformation resembling the GTP microtubule.
Collapse
|
3
|
Krasilnikov OV, Sabirov RZ, Okada Y. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore. J Physiol Sci 2011; 61:267-78. [PMID: 21461971 PMCID: PMC10717511 DOI: 10.1007/s12576-011-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/20/2011] [Indexed: 01/13/2023]
Abstract
Despite substantial efforts, the entire cystic fibrosis transmembrane conductance regulator (CFTR) protein proved to be difficult for structural analysis at high resolution, and little is still known about the actual dimensions of the anion-transporting pathway of CFTR channel. In the present study, we therefore gauged geometrical features of the CFTR Cl(-) channel pore by a nonelectrolyte exclusion technique. Polyethylene glycols with a hydrodynamic radius (R (h)) smaller than 0.95 nm (PEG 300-1,000) added from the intracellular side greatly suppressed the inward unitary anionic conductance, whereas only molecules with R (h) ≤ 0.62 nm (PEG 200-400) applied extracellularly were able to affect the outward unitary anionic currents. Larger molecules with R (h) = 1.16-1.84 nm (PEG 1,540-3,400) added from either side were completely excluded from the pore and had no significant effect on the single-channel conductance. The cut-off radius of the inner entrance of CFTR channel pore was assessed to be 1.19 ± 0.02 nm. The outer entrance was narrower with its cut-off radius of 0.70 ± 0.16 nm and was dilated to 0.93 ± 0.23 nm when a non-hydrolyzable ATP analog, 5'-adenylylimidodiphosphate (AMP-PNP), was added to the intracellular solution. Thus, it is concluded that the structure of CFTR channel pore is highly asymmetric with a narrower extracellular entrance and that a dilating conformational change of the extracellular entrance is associated with the channel transition to a non-hydrolytic, locked-open state.
Collapse
|
4
|
Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H. Cholesterol inhibits M-type K+ channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem 2010; 285:10939-50. [PMID: 20123983 PMCID: PMC2856299 DOI: 10.1074/jbc.m109.048868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 01/25/2010] [Indexed: 01/10/2023] Open
Abstract
M-type (KCNQ) potassium channels play an important role in regulating the action potential firing in neurons. Here, we investigated the effect of cholesterol on M current in superior cervical ganglion (SCG) sympathetic neurons, using the patch clamp technique. M current was inhibited in a dose-dependent manner by cholesterol loading with a methyl-beta-cyclodextrin-cholesterol complex. This effect was prevented when membrane cholesterol level was restored by including empty methyl-beta-cyclodextrin in the pipette solution. Dialysis of cells with AMP-PNP instead of ATP prevented cholesterol action on M currents. Protein kinase C (PKC) inhibitor, calphostin C, abolished cholesterol-induced inhibition whereas the PKC activator, PDBu, mimicked the inhibition of M currents by cholesterol. The in vitro kinase assay showed that KCNQ2 subunits of M channel can be phosphorylated by PKC. A KCNQ2 mutant that is defective in phosphorylation by PKC failed to show current inhibition not only by PDBu but also by cholesterol. These results indicate that cholesterol-induced inhibition of M currents is mediated by PKC phosphorylation. The inhibition of M currents by PDBu and cholesterol was completely blocked by PIP(2) loading, indicating that the decrease in PIP(2)-channel interaction underlies M channel inhibition by PKC-mediated phosphorylation. We conclude that cholesterol specifically regulates M currents in SCG neurons via PKC activation.
Collapse
|
5
|
Tsai NP, Tsui YC, Wei LN. Dynein motor contributes to stress granule dynamics in primary neurons. Neuroscience 2009; 159:647-56. [PMID: 19171178 DOI: 10.1016/j.neuroscience.2008.12.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/15/2022]
Abstract
Mobilization and translation of mRNAs, two important events believed to involve stress granules (SGs), in neurons are important for their survival and activities. However, the formation and disassembly of SGs in neurons remains unclear. By using an arsenite-induced neuronal stress model of rat primary spinal cord neuron cultures, we demonstrate the formation of SGs that contain common SG components and RNAs in both stressed neuronal cell bodies and their neurites. By employing small interfering RNA (siRNA) knockdown, we discovered that dynein motor subunit localizes in SG, and is important for SG assembly in neurons. Under stress, dynein motor subunit also facilitates translational repression and enhances the formation and integrity of SG in neurons. By blocking the energy source of dynein motor, both the formation and disassembly of SG are attenuated. These findings demonstrate, for the first time, that dynein motor complex plays a critical role in the dynamics of neuronal SGs, as well as translation of certain mRNAs.
Collapse
|
6
|
Antos LK, Potter LR. Adenine nucleotides decrease the apparent Km of endogenous natriuretic peptide receptors for GTP. Am J Physiol Endocrinol Metab 2007; 293:E1756-63. [PMID: 17848634 DOI: 10.1152/ajpendo.00321.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natriuretic peptide receptors A (NPR-A) and B (NPR-B) mediate most effects of natriuretic peptides by synthesizing cGMP. ATP increases the activity of these receptors by an unknown mechanism. We recently reported that a nonhydrolyzable form of ATP, adenylyl imidodiphosphate (AMPPNP), stabilizes but is not required for the activation of NPR-A and NPR-B in membranes from highly overexpressing cells. Here, we repeated these studies on receptors expressed in endogenous settings. Kinetic analysis indicated that both AMPPNP and ATP dramatically decrease the apparent K(m) of both receptors for GTP but had little effect on the V(max). The EC(50) for AMPPNP decreased as substrate concentration increased whereas the magnitude of the effect was greater at lower GTP concentrations. ATP increased the activity of a mutant receptor containing glutamates substituted for all known phosphorylation sites similarly to the wild-type receptor, consistent with a phosphorylation independent mechanism. Finally, the putative ATP binding sites were investigated. Mutation of the ATP modulatory domain region had no effect, but mutation of K535A dramatically diminished ANP-dependent cyclase activity in a manner that was unresponsive to ATP. Mutation of the highly conserved 630-KSS to AAA (all alanines) resulted in an expressed receptor that had no detectable guanylyl cyclase activity. We conclude that ATP is not required for the initial activation of NPRs but does increase activity over time by reducing the apparent K(m) for GTP.
Collapse
|
7
|
Wang YX, Shi YH, Gong LH, Li Y, Heng WJ, You JF, Zhong HH, Fang WG. [P2Y purinergic receptor activated PI-3K/Akt signaling pathway in regulation of growth and invasion of prostatic cancer]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2007; 36:681-686. [PMID: 18194602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To investigate P2Y purinergic receptor activated PI-3K/Akt signaling pathway in the regulation of growth and invasion of prostate cancer in vitro. METHODS Western blot was used to detect phosphorylation of Akt (a downstream target molecule of PI-3K) by P2Y receptor agonist in 1E8 cells (a highly metastatic subclone derived from PC-3 prostatic cancer cell line). Cell counts, flow cytometry, Matrigel invasion assay, wound healing assay and gelatin zymography were used to detect changes of biological behaviors of 1E8 cells after P2Y receptor activation. RESULTS AMP-PNP, one non-hydrolysis ATP analogue and P2Y receptor agonist, induced significant phosphorylation of Akt in a time- and dose-dependent manner in IE8 cells. LY294002, a specific inhibitor of PI-3K, effectively blocked Akt phosphorylation induced by AMP-PNP. Continuous exposure to AMP-PNP induced significant growth inhibition of 1E8 cells (inhibition rate at 50.2% at the 8th day), and this inhibition was mainly due to an arrest at S phase of the cell cycle (the S phase fraction of AMP-PNP treated cells was 22.3% higher than that of the control). Application of LY294002 did not reverse the growth inhibition effect of AMP-PNP. Matrigel invasion assay showed that AMP-PNP stimulation increased invasive ability of 1E8 cells, and this effect was effectively blocked by LY294002. No significant changes in the activation of MMP-2 and MMP-9 were detected by gelatin zymography, although wound healing assay showed 21.2% increase in cell migration after AMP-PNP treatment. CONCLUSIONS PI-3K/Akt signaling pathway participates in P2Y receptor-stimulated prostate cancer invasion by enhancing cell motility, rather than up-regulating MMP-2 and MMP-9 activities. PI-3K signaling pathway plays an important role in prostate cancer proliferation, but is not involved in P2Y receptor mediated growth inhibition.
Collapse
|
8
|
Popovic Z, Templeton DM. Inhibition of an iron-responsive element/iron regulatory protein-1 complex by ATP binding and hydrolysis. FEBS J 2007; 274:3108-19. [PMID: 17521334 DOI: 10.1111/j.1742-4658.2007.05843.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron regulatory protein-1 binding to the iron-responsive element of mRNA is sensitive to iron, oxidative stress, NO, and hypoxia. Each of these agents changes the level of intracellular ATP, suggesting a link between iron levels and cellular energy metabolism. Furthermore, restoration of iron regulatory protein-1 aconitase activity after NO removal has been shown to require mitochondrial ATP. We demonstrate here that the iron-responsive element-binding activity of iron regulatory protein is ATP-dependent in HepG2 cells. Iron cannot decrease iron regulatory protein binding activity in cell extracts if they are simultaneously treated with an uncoupler of oxidative phosphorylation. Physiologic concentrations of ATP inhibit iron-responsive element/iron regulatory protein binding in cell extracts and binding of iron-responsive element to recombinant iron regulatory protein-1. ADP has the same effect, in contrast to the nonhydrolyzable analog adenosine 5'-(beta,gamma-imido)triphosphate, indicating that in order to inhibit iron regulatory protein-1 binding activity, ATP must be hydrolyzed. Indeed, recombinant iron regulatory protein-1 binds ATP with a Kd of 86+/-17 microM in a filter-binding assay, and can be photo-crosslinked to azido-ATP. Upon binding, ATP is hydrolyzed. The kinetic parameters [Km=5.3 microM, Vmax=3.4 nmol.min(-1).(mg protein)(-1)] are consistent with those of a number of other ATP-hydrolyzing proteins, including the RNA-binding helicases. Although the iron-responsive element does not itself hydrolyze ATP, its presence enhances iron regulatory protein-1's ATPase activity, and ATP hydrolysis results in loss of the complex in gel shift assays.
Collapse
|
9
|
Bull R, Finkelstein JP, Humeres A, Behrens MI, Hidalgo C. Effects of ATP, Mg2+, and redox agents on the Ca2+ dependence of RyR channels from rat brain cortex. Am J Physiol Cell Physiol 2007; 293:C162-71. [PMID: 17360812 DOI: 10.1152/ajpcell.00518.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite their relevance for neuronal Ca(2+)-induced Ca(2+) release (CICR), activation by Ca(2+) of ryanodine receptor (RyR) channels of brain endoplasmic reticulum at the [ATP], [Mg(2+)], and redox conditions present in neurons has not been reported. Here, we studied the effects of varying cis-(cytoplasmic) free ATP concentration ([ATP]), [Mg(2+)], and RyR redox state on the Ca(2+) dependence of endoplasmic reticulum RyR channels from rat brain cortex. At pCa 4.9 and 0.5 mM adenylylimidodiphosphate (AMP-PNP), increasing free [Mg(2+)] up to 1 mM inhibited vesicular [(3)H]ryanodine binding; incubation with thimerosal or dithiothreitol decreased or enhanced Mg(2+) inhibition, respectively. Single RyR channels incorporated into lipid bilayers displayed three different Ca(2+) dependencies, defined by low, moderate, or high maximal fractional open time (P(o)), that depend on RyR redox state, as we have previously reported. In all cases, cis-ATP addition (3 mM) decreased threshold [Ca(2+)] for activation, increased maximal P(o), and shifted channel inhibition to higher [Ca(2+)]. Conversely, at pCa 4.5 and 3 mM ATP, increasing cis-[Mg(2+)] up to 1 mM inhibited low activity channels more than moderate activity channels but barely modified high activity channels. Addition of 0.5 mM free [ATP] plus 0.8 mM free [Mg(2+)] induced a right shift in Ca(2+) dependence for all channels so that [Ca(2+)] <30 microM activated only high activity channels. These results strongly suggest that channel redox state determines RyR activation by Ca(2+) at physiological [ATP] and [Mg(2+)]. If RyR behave similarly in living neurons, cellular redox state should affect RyR-mediated CICR.
Collapse
|
10
|
Sedletska Y, Fourrier L, Malinge JM. Modulation of MutS ATP-dependent functional activities by DNA containing a cisplatin compound lesion (base damage and mismatch). J Mol Biol 2007; 369:27-40. [PMID: 17400248 DOI: 10.1016/j.jmb.2007.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/27/2022]
Abstract
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.
Collapse
|
11
|
Belous AE, Jones CM, Wakata A, Knox CD, Nicoud IB, Pierce J, Chari RS. Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors. J Cell Biochem 2006; 99:1165-74. [PMID: 16795051 DOI: 10.1002/jcb.20985] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ischemia-reperfusion injury remains a major clinical problem in liver transplantation. One contributing factor is mitochondrial calcium (mCa(2+)) overload, which triggers apoptosis; calcium also regulates mitochondrial respiration and adenosine 5'-triphosphate (ATP) production. Recently, we reported the presence of purinergic P2Y(1)- and P2Y(2)-like receptor proteins in mitochondrial membranes. Herein, we present an evaluation of the functional characteristics of these receptors. In experiments with isolated mitochondria, specific P2Y(1) and P2Y(2) receptors ligands: 2-methylthio-adenosine 5'-diphosphate (2meSADP) and uridine 5'-triphosphate (UTP), respectively, were used, and mitochondrial calcium uptake was measured. 2meSADP and UTP had a maximum effect at concentrations in the range of the known P2Y(1) and P2Y(2) receptors. The P2Y inhibitor phosphate-6-azophenyl-2',4'-disulfonate (PPADS) blocked the effects of both ligands. The phospholipase C (PLC) antagonist U73122 inhibited the effect of both ligands while its inactive analog U73343 had no effect. These data strongly support the hypothesis that mitochondrial Ca(2+) uptake is regulated in part by adenine nucleotides via a P2Y-like receptor mechanism that involves mitochondrial PLC activation.
Collapse
|
12
|
Wolner I, Kassack MU, Ullmann H, Karel A, Hohenegger M. Use-dependent inhibition of the skeletal muscle ryanodine receptor by the suramin analogue NF676. Br J Pharmacol 2006; 146:525-33. [PMID: 16056233 PMCID: PMC1751178 DOI: 10.1038/sj.bjp.0706359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The skeletal muscle Ca2+ release channel, the ryanodine receptor, is activated by the trypanocidal drug suramin via the calmodulin-binding site. As calmodulin activates and inhibits the ryanodine receptor depending on whether Ca2+ is absent or present, suramin analogues were screened for inhibition of the ryanodine receptor. Up to 300 microM, the novel suramin analogue, 4,4'-(carbonyl-bis(imino-4,1-phenylene-(2,5-benzimidazolylene)carbonylimino))-bis-benzenesulfonic acid disodium salt (NF676) was not able to significantly inhibit the basal [3H]ryanodine binding. However, kinetic analysis of the high affinity [3H]ryanodine binding elucidates a time-dependent increment of inhibition by NF676, which is indicative for an open channel blocker. Moreover, the ryanodine receptor was much more sensitive towards inhibition by NF676 when preactivated with caffeine or the nonhydrolysable ATP analogue, adenylyl-imidodiphosphate. Nonetheless, the suramin activated ryanodine receptor was not susceptible towards high-affinity NF676 inhibition, indicating an allosteric hindrance between the binding sites of suramin and NF676. In the line of this finding, NF676 per se was not capable to elute the purified ryanodine receptor from a calmodulin-Sepharose, but it prevented the elution by suramin. Other than suramin, NF676 did not inhibit the Ca2+ ATPase of the sarcoplasmic reticulum. However, suramin-induced Ca2+ release from sarcoplasmic reticulum was completely abrogated by preincubation with NF676. Taken together, we conclude from these data that NF676 represents a novel lead compound as a potent use-dependent blocker of the skeletal muscle ryanodine receptor via an allosteric interaction with the suramin-binding site.
Collapse
|
13
|
Angermann JE, Sanguinetti AR, Kenyon JL, Leblanc N, Greenwood IA. Mechanism of the inhibition of Ca2+-activated Cl- currents by phosphorylation in pulmonary arterial smooth muscle cells. ACTA ACUST UNITED AC 2006; 128:73-87. [PMID: 16801382 PMCID: PMC2151553 DOI: 10.1085/jgp.200609507] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl− currents (IClCa) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, IClCa was evoked immediately upon membrane rupture but then exhibited marked rundown to ∼20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5′-(β,γ-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, IClCa was ∼100% of initial levels. IClCa recorded with AMP-PNP–containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in IClCa was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater “on” rates, and voltage-dependent closing steps (“off” rates). Our model reproduced well the Ca2+ and voltage dependence of IClCa as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl− channel complex influences current generation dramatically through one or more critical voltage-dependent steps.
Collapse
|
14
|
De Lorenzo S, Veggetti M, Muchnik S, Losavio A. Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction. Neuroscience 2006; 142:71-85. [PMID: 16843602 DOI: 10.1016/j.neuroscience.2006.05.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/15/2006] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
At the neuromuscular junction, ATP is co-released with the neurotransmitter acetylcholine (ACh) and once in the synaptic space, it is degraded to the presynaptically active metabolite adenosine. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of extracellular ATP (100 muM) and the slowly hydrolysable ATP analog 5'-adenylylimidodiphosphate lithium (betagamma-imido ATP) (30 muM) on miniature end-plate potential (MEPP) frequency. We found that application of ATP and betagamma-imido ATP decreased spontaneous secretion by 45.3% and 55.9% respectively. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) adenosine receptor antagonist and alpha,beta-methylene ADP sodium salt (alphabeta-MeADP), which is an inhibitor of ecto-5'-nucleotidase, did not prevent the inhibitory effect of ATP, demonstrating that the nucleotide is able to modulate spontaneous ACh release through a mechanism independent of the action of adenosine. Blockade of Ca(2+) channels by both, Cd(2+) or the combined application of nitrendipine and omega-conotoxin GVIA (omega-CgTx) (L-type and N-type Ca(2+) channel antagonists, respectively) prevented the effect of betagamma-imido ATP, indicating that the nucleotide modulates Ca(2+) influx through the voltage-dependent Ca(2+) channels related to spontaneous secretion. betagamma-Imido ATP-induced modulation was antagonized by the non-specific P2 receptor antagonist suramin and the P2Y receptor antagonist 1-amino-4-[[4-[[4-chloro-6-[[3(or4)-sulfophenyl] amino]-1,3,5-triazin-2-yl]amino]-3-sulfophenyl] amino]-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid (reactive blue-2), but not by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS), which has a preferential antagonist effect on P2X receptors. Pertussis toxin and N-ethylmaleimide (NEM), which are blockers of G(i/o) proteins, prevented the action of the nucleotide, suggesting that the effect is mediated by P2Y receptors coupled to G(i/o) proteins. The protein kinase C (PKC) antagonist chelerythrine and the calmodulin antagonist N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) occluded the effect of betagamma-imido ATP, while the protein kinase A (PKA) antagonist KT-5720 and the inhibitor of the calcium/calmodulin-dependent protein kinase II (CAMKII) KN-62 failed to do so. betagamma-Imido ATP did not affect 10, 15 and 20 mM K(+)-evoked release and application of reactive blue-2 before incubation in high K(+) induced a higher asynchronous secretion. Thus, our results show that at mammalian neuromuscular junctions, ATP induces presynaptic inhibition of spontaneous ACh release due to the modulation of Ca(2+) channels related to tonic secretion through the activation of P2Y receptors coupled to G(i/o) proteins. We also demonstrated that at increasing degrees of membrane depolarization evoked by K(+), endogenously released ATP induces presynaptic inhibition as a means of preventing excessive neurotransmitter secretion.
Collapse
|
15
|
Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci U S A 2006; 103:5741-5. [PMID: 16585530 PMCID: PMC1424663 DOI: 10.1073/pnas.0508511103] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural differences between dynein and kinesin suggest a unique molecular mechanism of dynein motility. Measuring the mechanical properties of a single molecule of dynein is crucial for revealing the mechanisms underlying its movement. We measured the step size and force produced by single molecules of active cytoplasmic dynein by using an optical trap and fluorescence imaging with a high temporal resolution. The velocity of dynein movement, 800 nm/s, is consistent with that reported in cells. The maximum force of 7-8 pN was independent of the ATP concentration and similar to that of kinesin. Dynein exhibited forward and occasional backwards steps of approximately 8 nm, independent of load. It is suggested that the large dynein heads take 16-nm steps by using an overlapping hand-over-hand mechanism.
Collapse
|
16
|
Liu B, Zhang C, Qin F. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2006; 25:4835-43. [PMID: 15888659 PMCID: PMC6724779 DOI: 10.1523/jneurosci.1296-05.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Capsaicin and other naturally occurring pungent molecules have long been used as topical analgesics to treat a variety of chronic pain conditions. The analgesic effects of these compounds involve long-term desensitization of nociceptors after strong stimulation. To elucidate the underlying mechanisms, we studied the recovery from desensitization of the vanilloid receptor TRPV1. We showed that prolonged applications of capsaicin led to nearly complete desensitization of the channel and that its functional recovery from desensitization required a high concentration of intracellular ATP. Nonhydrolyzable ATP analogs did not substitute for ATP to promote recovery. Neither inhibition nor activation of protein kinases prevented recovery of the channel from desensitization. In contrast, blockade of lipid kinases, in particular phosphatidylinositol-4-kinase, abolished recovery, as did activation of membrane receptors that stimulate hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Additional experiments using the PIP2-sensitive inward rectifier potassium channel Kir2.1 as a biosensor showed a high degree of temporal correlation between the two channels on both functional suppression after capsaicin stimulation and subsequent recovery. These data suggest that depletion of PIP2 occurs concomitantly with activation of TRPV1 and its replenishment in the membrane determines recovery of the channel from desensitization. In addition to revealing a new role of phosphoinositide signaling in regulation of nociception, our results provide novel insight into the topical mechanisms of the analgesic effects of capsaicin and the strategies to improve its effectiveness.
Collapse
|
17
|
Yang Q, Jankowsky E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 2006; 44:13591-601. [PMID: 16216083 DOI: 10.1021/bi0508946] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DEAD-box RNA helicases, which are involved in virtually all aspects of RNA metabolism, are generally viewed as enzymes that unwind RNA duplexes or disrupt RNA-protein interactions in an ATP-dependent manner. Here, we show in vitro that the DEAD-box protein DED1 from Saccharomyces cerevisiae promotes not only RNA unwinding but also strand annealing, the latter in such a profound fashion that the physical limit for a bimolecular association rate constant is approached. We further demonstrate that DED1 establishes an ATP-dependent steady state between unwinding and annealing, which enables the enzyme to modulate the balance between the two opposing activities through ATP and ADP concentrations. The ratio between unwinding and annealing and the degree to which both activities are ATP- and ADP-modulated are strongly influenced by structured as well as unstructured regions in the RNA substrate. Collectively, these findings expand the known functional repertoire of DEAD-box proteins and reveal the capacity of DED1 to remodel RNA in response to ADP and ATP concentrations by facilitating not only disruption but also formation of RNA duplexes.
Collapse
|
18
|
Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA. Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 2006; 25:6286-95. [PMID: 16000618 PMCID: PMC6725280 DOI: 10.1523/jneurosci.0628-05.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ATP is released in a vesicular manner from nerve terminals mainly at higher stimulation frequencies. There is a robust expression of ATP (P2) receptors in the brain, but their role is primarily unknown. We report that ATP analogs biphasically modulate the evoked release of glutamate from purified nerve terminals of the rat hippocampus, the facilitation being mediated by P2X1, P2X2/3, and P2X3 [antagonized by 8-(benzamido)naphthalene-1,3,5-trisulfonate and 2',3'-O-(2,4,6-trinitrophenyl)-ATP] and the inhibition by P2Y1, P2Y2, and/or P2Y4 [antagonized by reactive blue 2 and 2'deoxy-N6-methyladenosine-3',5'-bisphosphate and mimicked by P1-(urinine 5'-),P4-(inosine 5'-) tetraphosphate and 2-methylthio-ADP] receptors. The combination of single-cell PCR analysis of rat hippocampal pyramidal neurons, Western blot analysis of purified presynaptic active zone fraction, and immunocytochemical analysis of hippocampal glutamatergic terminals revealed that the P2 receptors expressed in glutamatergic neurons, located in the active zone and in glutamatergic terminals, were precisely P2X1, P2X2, and P2X3 subunits and P2Y1, P2Y2, and P2Y4 receptors. This provides coincident functional and molecular evidence that P2 receptors are present and act presynaptically as a modulatory system controlling hippocampal glutamate release.
Collapse
MESH Headings
- Adenosine Diphosphate/analogs & derivatives
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Adenosine Triphosphate/physiology
- Adenylyl Imidodiphosphate/pharmacology
- Animals
- Astrocytoma/metabolism
- Astrocytoma/pathology
- Calcium/analysis
- Cell Line/metabolism
- Cell Line, Tumor/metabolism
- Glutamic Acid/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Kidney
- Male
- Potassium/pharmacology
- Pyramidal Cells/metabolism
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
- Recombinant Fusion Proteins/biosynthesis
- Subcellular Fractions/metabolism
- Suramin/analogs & derivatives
- Suramin/pharmacology
- Synaptosomes/chemistry
- Synaptosomes/metabolism
- Transfection
- Triazines/pharmacology
- Triazoles/pharmacology
- Xanthines/pharmacology
Collapse
|
19
|
Jovanovic M, Dynan WS. Terminal DNA structure and ATP influence binding parameters of the DNA-dependent protein kinase at an early step prior to DNA synapsis. Nucleic Acids Res 2006; 34:1112-20. [PMID: 16488883 PMCID: PMC1373693 DOI: 10.1093/nar/gkj504] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) regulates the non-homologous end-joining pathway of DNA double-strand break repair in mammalian cells. The ability of DNA-PKcs to sense and respond to different terminal DNA structures is postulated to be important for its regulatory function. It is unclear whether discrimination occurs at the time of formation of the initial protein–DNA complex or later, at the time of formation of a paired, or synaptic complex between opposing DNA ends. To gain further insight into the mechanism of regulation, we characterized the binding of DNA-PKcs to immobilized DNA fragments that cannot undergo synapsis. Results showed that DNA-PKcs strongly discriminates between different terminal structures at the time of initial complex formation. Although Ku protein stabilizes DNA-PKcs binding overall, it is not required for discrimination between terminal structures. Base mispairing, temperature and the presence of an interstrand linkage influence the stability of the initial complex in a manner that suggests a requirement for DNA unwinding, reminiscent of the ‘open complex’ model of RNA polymerase–promoter DNA interaction. ATP and a nonhydrolyzable ATP analog also influence the stability of the DNA-PKcs•DNA complex, apparently by an allosteric mechanism that does not require DNA-PKcs autophosphorylation.
Collapse
|
20
|
Plotz G, Piiper A, Wormek M, Zeuzem S, Raedle J. Analysis of the human MutLalpha.MutSalpha complex. Biochem Biophys Res Commun 2005; 340:852-9. [PMID: 16403449 DOI: 10.1016/j.bbrc.2005.12.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/14/2005] [Indexed: 11/23/2022]
Abstract
Human DNA mismatch repair is initiated by MutSalpha which ATP-dependently recruits MutLalpha. Analysis of this complex is difficult due to its transient and dynamic nature. We have optimized conditions for investigation of MutLalpha.MutSalpha complexes using a DNA pulldown assay. Non-specific DNA end-binding, which frequently interfered with analysis of the interaction, did not occur under the applied conditions. MutSalpha had significantly higher affinity to DNA mispairs, but its interaction with MutLalpha did not require a mismatch. Complex formation was best supported by low magnesium concentration and low temperature at physiological pH and salt concentration. Complex formation was delayed by the slowly hydrolyzable ATP analog ATPgammaS, undetectable with the non-hydrolyzable analog AMP-PNP, and occurred weakly with a combination of AMP-PNP and ADP, confirming that hydrolysis was required. The described conditions likely capture an intermediate of the repair reaction which has bound ATP and ADP in the two nucleotide-binding sites of MutSalpha.
Collapse
|
21
|
Petrushenko ZM, Lai CH, Rai R, Rybenkov VV. DNA reshaping by MukB. Right-handed knotting, left-handed supercoiling. J Biol Chem 2005; 281:4606-15. [PMID: 16368697 PMCID: PMC1633270 DOI: 10.1074/jbc.m504754200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MukB is a bacterial SMC (structural maintenance of chromosome) protein required for faithful chromosome segregation in Escherichia coli. We report here that purified MukB introduces right-handed knots into DNA in the presence of type-2 topoisomerase, indicating that the protein promotes intramolecular DNA condensation. The pattern of generated knots suggests that MukB, similar to eukaryotic condensins, stabilizes large right-handed DNA loops. In contrast to eukaryotic condensins, however, the net supercoiling stabilized by MukB was negative. Furthermore, DNA reshaping by MukB did not require ATP. These data establish that bacterial condensins alter the shape of double-stranded DNA in vitro and lend support to the notions that the right-handed knotting is the most conserved biochemical property of condensins. Finally, we found that MukB can be eluted from a heparin column in two distinct forms, one of which is inert in DNA binding or reshaping. Furthermore, we find that the activity of MukB is reversibly attenuated during chromatographic separation. Thus, MukB has a unique set of topological properties, compared with other SMC proteins, and is likely to exist in two different conformations.
Collapse
MESH Headings
- Acyl Carrier Protein/chemistry
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Adenylyl Imidodiphosphate/pharmacology
- Centrifugation, Density Gradient
- Chromatography
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/physiology
- DNA/chemistry
- DNA, Bacterial/genetics
- DNA, Superhelical/chemistry
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/physiology
- Heparin/chemistry
- Microscopy, Electron
- Models, Biological
- Models, Genetic
- Molecular Conformation
- Molecular Weight
- Nucleic Acid Conformation
- Plasmids/metabolism
- Sepharose/pharmacology
- Sucrose/pharmacology
Collapse
|
22
|
Salinas S, Carazo-Salas RE, Proukakis C, Cooper JM, Weston AE, Schiavo G, Warner TT. Human spastin has multiple microtubule-related functions. J Neurochem 2005; 95:1411-20. [PMID: 16219033 DOI: 10.1111/j.1471-4159.2005.03472.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are neurodegenerative diseases caused by mutations in more than 20 genes, which lead to progressive spasticity and weakness of the lower limbs. The most frequently mutated gene causing autosomal dominant HSP is SPG4, which encodes spastin, a protein that belongs to the family of ATPases associated with various cellular activities (AAAs). A number of studies have suggested that spastin regulates microtubule dynamics. We have studied the ATPase activity of recombinant human spastin and examined the effect of taxol-stabilized microtubules on this activity. We used spastin translated from the second ATG and provide evidence that this is the physiologically relevant form. We showed that microtubules enhance the ATPase activity of the protein, a property also described for katanin, an AAA of the same spastin subgroup. Furthermore, we demonstrated that human spastin has a microtubule-destabilizing activity and can bundle microtubules in vitro, providing new insights into the molecular pathogenesis of HSP.
Collapse
|
23
|
Shimono D, Fujimoto S, Mukai E, Takehiro M, Nabe K, Radu RG, Shimodahira M, Kominato R, Aramaki Y, Nishi Y, Funakoshi S, Yamada Y, Seino Y. ATP enhances exocytosis of insulin secretory granules in pancreatic islets under Ca2+-depleted condition. Diabetes Res Clin Pract 2005; 69:216-23. [PMID: 16098917 DOI: 10.1016/j.diabres.2005.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/30/2004] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Glucose and other nutrients have been shown to stimulate insulin release from pancreatic islets under Ca2+-depleted condition when protein kinase A (PKA) and protein kinase C (PKC) are activated simultaneously. We investigated the role of metabolic nucleotide signals including ATP, ADP, and GTP in exocytosis of insulin secretory granules under Ca2+-depleted condition using electrically permeabilized rat islets. ATP under PKC activation augmented insulin release concentration-dependently by 100 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in Ca2+-depleted condition, while ADP could not suppress ATP-dependent insulin release in this condition. Neither GTP nor activated PKA in the absence of PKC activation increased insulin release under Ca2+-depleted condition in the presence of ATP, but both enhanced insulin secretion in the presence of ATP when PKC was activated. In conclusion, activated PKC and the presence of ATP both are required in the insulin secretory process under Ca2+-depleted condition. While PKA activation and GTP cannot substitute for PKC activation and ATP, respectively, under Ca2+-depleted condition, they enhance ATP-dependent insulin secretion when PKC is activated.
Collapse
|
24
|
Moreira OC, Rios PF, Barrabin H. Inhibition of plasma membrane Ca(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2+)-occluded state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:411-9. [PMID: 15975546 DOI: 10.1016/j.bbabio.2005.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/16/2005] [Accepted: 05/24/2005] [Indexed: 11/20/2022]
Abstract
The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.
Collapse
|
25
|
Huang Y, Man HY, Sekine-Aizawa Y, Han Y, Juluri K, Luo H, Cheah J, Lowenstein C, Huganir RL, Snyder SH. S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 2005; 46:533-40. [PMID: 15944123 DOI: 10.1016/j.neuron.2005.03.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 01/12/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Postsynaptic AMPA receptor (AMPAR) trafficking mediates some forms of synaptic plasticity that are modulated by NMDA receptor (NMDAR) activation and N-ethylmaleimide sensitive factor (NSF). We report that NSF is physiologically S-nitrosylated by endogenous, neuronally derived nitric oxide (NO). S-nitrosylation of NSF augments its binding to the AMPAR GluR2 subunit. Surface insertion of GluR2 in response to activation of synaptic NMDARs requires endogenous NO, acting selectively upon the binding of NSF to GluR2. Thus, AMPAR recycling elicited by NMDA neurotransmission is mediated by a cascade involving NMDA activation of neuronal NO synthase to form NO, leading to S-nitrosylation of NSF which is thereby activated, enabling it to bind to GluR2 and promote the receptor's surface expression.
Collapse
|