1
|
Woltz RL, Zheng Y, Choi W, Ngo K, Trinh P, Ren L, Thai PN, Harris BJ, Han Y, Rouen KC, Mateos DL, Jian Z, Chen-Izu Y, Dickson EJ, Yamoah EN, Yarov-Yarovoy V, Vorobyov I, Zhang XD, Chiamvimonvat N. Atomistic mechanisms of the regulation of small-conductance Ca 2+-activated K + channel (SK2) by PIP2. Proc Natl Acad Sci U S A 2024; 121:e2318900121. [PMID: 39288178 PMCID: PMC11441529 DOI: 10.1073/pnas.2318900121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
Collapse
Grants
- OT2 OD026580 NIH HHS
- T32 HL086350 NHLBI NIH HHS
- NIH R01 DC016099 HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- I01 CX001490 CSRD VA
- T32 GM136597 NIGMS NIH HHS
- R01 DC016099 NIDCD NIH HHS
- NIH F32 HL151130 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Anton 2 allocation MCB210014P Pittsburgh Supercomputing Center
- NIH T32 HL86350 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158961 NHLBI NIH HHS
- R01 HL137228 NHLBI NIH HHS
- T32 GM007377 NIGMS NIH HHS
- R01 HL174001 NHLBI NIH HHS
- F32 HL151130 NHLBI NIH HHS
- R01 HL128537 NHLBI NIH HHS
- NIH R01 HL085727 NIH R01 HL085844 NIH R01 HL137228 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL152681 NHLBI NIH HHS
- R01 HL085727 NHLBI NIH HHS
- R01 GM116961 NIGMS NIH HHS
- NIH R01 HL152681 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AG060504 NIA NIH HHS
- R35 GM149211 NIGMS NIH HHS
- I01 BX000576 BLRD VA
- NIH R01 AG060504 and NIH 2P01 AG051443 HHS | NIH | National Institute on Aging (NIA)
- R01 HL085844 NHLBI NIH HHS
- NIH R01 HL158961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R35 GM149211 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P01 AG051443 NIA NIH HHS
- NIH R01 HL128537 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
|
2
|
Yang Z, Li Y, Huang M, Li X, Fan X, Yan C, Meng Z, Liao B, Hamdani N, El-Battrawy I, Yang X, Zhou X, Akin I. Small conductance calcium-activated potassium channel contributes to stress induced endothelial dysfunctions. Microvasc Res 2024; 155:104699. [PMID: 38901735 DOI: 10.1016/j.mvr.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
Patients with Takotsubo syndrome displayed endothelial dysfunction, but underlying mechanisms have not been fully clarified. This study aimed to explore molecular signalling responsible for catecholamine excess induced endothelial dysfunction. Human cardiac microvascular endothelial cells were challenged by epinephrine to mimic catecholamine excess. Patch clamp, FACS, ELISA, PCR, and immunostaining were employed for the study. Epinephrine (Epi) enhanced small conductance calcium-activated potassium channel current (ISK1-3) through activating α1 adrenoceptor. Phenylephrine enhanced edothelin-1 (ET-1) and reactive oxygen species (ROS) production, and the effects involved contribution of ISK1-3. H2O2 enhanced ISK1-3 and ET-1 production. Enhancing ISK1-3 caused a hyperpolarization, which increases ROS and ET-1 production. BAPTA partially reduced phenylephrine-induced enhancement of ET-1 and ROS, suggesting that α1 receptor activation can enhance ROS/ET-1 generation in both calcium-dependent and calcium-independent ways. The study demonstrates that high concentration catecholamine can activate SK1-3 channels through α1 receptor-ROS signalling and increase ET-1 production, facilitating vasoconstriction.
Collapse
|
3
|
Romito O, Lemettre A, Chantôme A, Champion O, Couty N, Ouldamer L, Hempel N, Trebak M, Goupille C, Potier‐Cartereau M. Plasma membrane SK2 channel activity regulates migration and chemosensitivity of high-grade serous ovarian cancer cells. Mol Oncol 2024; 18:1853-1865. [PMID: 38480668 PMCID: PMC11306528 DOI: 10.1002/1878-0261.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 08/09/2024] Open
Abstract
No data are currently available on the functional role of small conductance Ca2+-activated K+ channels (SKCa) in ovarian cancer. Here, we characterized the role of SK2 (KCa2.2) in ovarian cancer cell migration and chemosensitivity. Using the selective non-cell-permeant SK2 inhibitor Lei-Dab7, we identified functional SK2 channels at the plasma membrane, regulating store-operated Ca2+ entry (SOCE) in both cell lines tested (COV504 and OVCAR3). Silencing KCNN2 with short interfering RNA (siRNA), or blocking SK2 activity with Lei-Dab7, decreased cell migration. The more robust effect of KCNN2 knockdown compared to Lei-Dab7 treatment suggested the involvement of functional intracellular SK2 channels in both cell lines. In cells treated with lysophosphatidic acid (LPA), an ovarian cancer biomarker of progression, SK2 channels are a key player of LPA pro-migratory activity but their role in SOCE is abolished. Concerning chemotherapy, SK2 inhibition increased chemoresistance to Taxol® and low KCNN2 mRNA expression was associated with the worst prognosis for progression-free survival in patients with serous ovarian cancer. The dual roles of SK2 mean that SK2 activators could be used as an adjuvant chemotherapy to potentiate treatment efficacy and SK2 inhibitors could be administrated as monotherapy to limit cancer cell dissemination.
Collapse
|
4
|
Schmidt CC, Tong R, Emptage NJ. GluN2A- and GluN2B-containing pre-synaptic N-methyl-d-aspartate receptors differentially regulate action potential-evoked Ca 2+ influx via modulation of SK channels. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230222. [PMID: 38853550 PMCID: PMC11343232 DOI: 10.1098/rstb.2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) play a pivotal role in synaptic plasticity. While the functional role of post-synaptic NMDARs is well established, pre-synaptic NMDAR (pre-NMDAR) function is largely unexplored. Different pre-NMDAR subunit populations are documented at synapses, suggesting that subunit composition influences neuronal transmission. Here, we used electrophysiological recordings at Schaffer collateral-CA1 synapses partnered with Ca2+ imaging and glutamate uncaging at boutons of CA3 pyramidal neurones to reveal two populations of pre-NMDARs that contain either the GluN2A or GluN2B subunit. Activation of the GluN2B population decreases action potential-evoked Ca2+ influx via modulation of small-conductance Ca2+-activated K+ channels, while activation of the GluN2A population does the opposite. Critically, the level of functional expression of the subunits is subject to homeostatic regulation, bidirectionally affecting short-term facilitation, thus providing a capacity for a fine adjustment of information transfer. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
|
5
|
Yang Z, Li Y, Huang M, Li X, Fan X, Yan C, Meng Z, Liao B, Hamdani N, Yang X, Zhou X, El-Battrawy I, Akin I. Roles and Mechanisms of Dopamine Receptor Signaling in Catecholamine Excess Induced Endothelial Dysfunctions. Int J Med Sci 2024; 21:1964-1975. [PMID: 39113882 PMCID: PMC11302566 DOI: 10.7150/ijms.96550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial dysfunction may contribute to pathogenesis of Takotsubo cardiomyopathy, but mechanism underlying endothelial dysfunction in the setting of catecholamine excess has not been clarified. The study reports that D1/D5 dopamine receptor signaling and small conductance calcium-activated potassium channels contribute to high concentration catecholamine induced endothelial cell dysfunction. For mimicking catecholamine excess, 100 μM epinephrine (Epi) was used to treat human cardiac microvascular endothelial cells. Patch clamp, FACS, ELISA, PCR, western blot and immunostaining analyses were performed in the study. Epi enhanced small conductance calcium-activated potassium channel current (ISK1-3) without influencing the channel expression and the effect was attenuated by D1/D5 receptor blocker. D1/D5 agonists mimicked the Epi effect, suggesting involvement of D1/D5 receptors in Epi effects. The enhancement of ISK1-3 caused by D1/D5 activation involved roles of PKA, ROS and NADPH oxidases. Activation of D1/D5 and SK1-3 channels caused a hyperpolarization, reduced NO production and increased ROS production. The NO reduction was membrane potential independent, while ROS production was increased by the hyperpolarization. ROS (H2O2) suppressed NO production. The study demonstrates that high concentration catecholamine can activate D1/D5 and SK1-3 channels through NADPH-ROS and PKA signaling and reduce NO production, which may facilitate vasoconstriction in the setting of catecholamine excess.
Collapse
|
6
|
Qiu H, Miraucourt LS, Petitjean H, Xu M, Theriault C, Davidova A, Soubeyre V, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Levesque-Damphousse P, Estall JL, Bourinet E, Sharif-Naeini R. Parvalbumin gates chronic pain through the modulation of firing patterns in inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2403777121. [PMID: 38916998 PMCID: PMC11228497 DOI: 10.1073/pnas.2403777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
Collapse
|
7
|
Rice CA, Stackman RW. The small conductance Ca 2+-activated K + channel activator GW542573X impairs hippocampal memory in C57BL/6J mice. Neuropharmacology 2024; 252:109960. [PMID: 38631563 DOI: 10.1016/j.neuropharm.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Small conductance Ca2+-activated K+ (SK) channels, expressed throughout the CNS, are comprised of SK1, SK2 and SK3 subunits, assembled as homotetrameric or heterotetrameric proteins. SK channels expressed somatically modulate the excitability of neurons by mediating the medium component of the afterhyperpolarization. Synaptic SK channels shape excitatory postsynaptic potentials and synaptic plasticity. Such SK-mediated effects on neuronal excitability and activity-dependent synaptic strength likely underlie the modulatory influence of SK channels on memory encoding. Converging evidence indicates that several forms of long-term memory are facilitated by administration of the SK channel blocker, apamin, and impaired by administration of the pan-SK channel activator, 1-EBIO, or by overexpression of the SK2 subunit. The selective knockdown of dendritic SK2 subunits facilitates memory to a similar extent as that observed after systemic apamin. SK1 subunits co-assemble with SK2; yet the functional significance of SK1 has not been clearly defined. Here, we examined the effects of GW542573X, a drug that activates SK1 containing SK channels, as well as SK2/3, on several forms of long-term memory in male C57BL/6J mice. Our results indicate that pre-training, but not post-training, systemic GW542573X impaired object memory and fear memory in mice tested 24 h after training. Pre-training direct bilateral infusion of GW542573X into the CA1 of hippocampus impaired object memory encoding. These data suggest that systemic GW542573X impairs long-term memory. These results add to growing evidence that SK2 subunit-, and SK1 subunit-, containing SK channels can regulate behaviorally triggered synaptic plasticity necessary for encoding hippocampal-dependent memory.
Collapse
|
8
|
Yakhnitsa V, Thompson J, Ponomareva O, Ji G, Kiritoshi T, Mahimainathan L, Molehin D, Pruitt K, Neugebauer V. Dysfunction of Small-Conductance Ca 2+-Activated Potassium (SK) Channels Drives Amygdala Hyperexcitability and Neuropathic Pain Behaviors: Involvement of Epigenetic Mechanisms. Cells 2024; 13:1055. [PMID: 38920682 PMCID: PMC11201618 DOI: 10.3390/cells13121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.
Collapse
|
9
|
Belghazi M, Iborra C, Toutendji O, Lasserre M, Debanne D, Goaillard JM, Marquèze-Pouey B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells 2024; 13:944. [PMID: 38891076 PMCID: PMC11172389 DOI: 10.3390/cells13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.
Collapse
|
10
|
Papin M, Fontaine D, Goupille C, Figiel S, Domingo I, Pinault M, Guimaraes C, Guyon N, Cartron PF, Emond P, Lefevre A, Gueguinou M, Crottès D, Jaffrès PA, Ouldamer L, Maheo K, Fromont G, Potier-Cartereau M, Bougnoux P, Chantôme A, Vandier C. Endogenous ether lipids differentially promote tumor aggressiveness by regulating the SK3 channel. J Lipid Res 2024; 65:100544. [PMID: 38642894 PMCID: PMC11127165 DOI: 10.1016/j.jlr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.
Collapse
|
11
|
Xu J, Zhang D, Ma Y, Du H, Wang Y, Luo W, Wang R, Yi F. ROS in diabetic atria regulate SK2 degradation by Atrogin-1 through the NF-κB signaling pathway. J Biol Chem 2024; 300:105735. [PMID: 38336298 PMCID: PMC10938124 DOI: 10.1016/j.jbc.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.
Collapse
|
12
|
Xing H, Sabe SA, Shi G, Harris DD, Liu Y, Sellke FW, Feng J. Role of Protein Kinase C in Metabolic Regulation of Coronary Endothelial Small Conductance Calcium-Activated Potassium Channels. J Am Heart Assoc 2024; 13:e031028. [PMID: 38293916 PMCID: PMC11056132 DOI: 10.1161/jaha.123.031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCβ knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCβ inhibitor LY333531. NADH (30-300 μmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCβ small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCβ expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCβ inhibitor LY333531. CONCLUSIONS NADH-induced inhibition of endothelial SK channel function is mediated via PKCβ. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.
Collapse
|
13
|
Yang H, Zhang X, Zhang M, Lu Y, Xie B, Sun S, Yu H, Cong B, Luo Y, Ma C, Wen D. Roles of lncLingo2 and its derived miR-876-5p in the acquisition of opioid reinforcement. Addict Biol 2024; 29:e13375. [PMID: 38380802 PMCID: PMC10898844 DOI: 10.1111/adb.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.
Collapse
|
14
|
Xiao B, Xiang Q, Deng Z, Chen D, Wu S, Zhang Y, Liang Y, Wei S, Luo G, Li L. KCNN1 promotes proliferation and metastasis of breast cancer via ERLIN2-mediated stabilization and K63-dependent ubiquitination of Cyclin B1. Carcinogenesis 2023; 44:809-823. [PMID: 37831636 PMCID: PMC10818095 DOI: 10.1093/carcin/bgad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Potassium Calcium-Activated Channel Subfamily N1 (KCNN1), an integral membrane protein, is thought to regulate neuronal excitability by contributing to the slow component of synaptic after hyperpolarization. However, the role of KCNN1 in tumorigenesis has been rarely reported, and the underlying molecular mechanism remains unclear. Here, we report that KCNN1 functions as an oncogene in promoting breast cancer cell proliferation and metastasis. KCNN1 was overexpressed in breast cancer tissues and cells. The pro-proliferative and pro-metastatic effects of KCNN1 were demonstrated by CCK8, clone formation, Edu assay, wound healing assay and transwell experiments. Transcriptomic analysis using KCNN1 overexpressing cells revealed that KCNN1 could regulate key signaling pathways affecting the survival of breast cancer cells. KCNN1 interacts with ERLIN2 and enhances the effect of ERLIN2 on Cyclin B1 stability. Overexpression of KCNN1 promoted the protein expression of Cyclin B1, enhanced its stability and promoted its K63 dependent ubiquitination, while knockdown of KCNN1 had the opposite effects on Cyclin B1. Knockdown (or overexpression) ERLNI2 partially restored Cyclin B1 stability and K63 dependent ubiquitination induced by overexpression (or knockdown) of KCNN1. Knockdown (or overexpression) ERLIN2 also partially neutralizes the effects of overexpression (or knockdown) KCNN1-induced breast cancer cell proliferation, migration and invasion. In paired breast cancer clinical samples, we found a positive expression correlations between KCNN1 and ERLIN2, KCNN1 and Cyclin B1, as well as ERLIN2 and Cyclin B1. In conclusion, this study reveals, for the first time, the role of KCNN1 in tumorigenesis and emphasizes the importance of KCNN1/ERLIN2/Cyclin B1 axis in the development and metastasis of breast cancer.
Collapse
|
15
|
Peixoto-Neves D, Yadav S, MacKay CE, Mbiakop UC, Mata-Daboin A, Leo MD, Jaggar JH. Vasodilators mobilize SK3 channels in endothelial cells to produce arterial relaxation. Proc Natl Acad Sci U S A 2023; 120:e2303238120. [PMID: 37494394 PMCID: PMC10401010 DOI: 10.1073/pnas.2303238120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Endothelial cells (ECs) line the lumen of all blood vessels and regulate functions, including contractility. Physiological stimuli, such as acetylcholine (ACh) and intravascular flow, activate transient receptor potential vanilloid 4 (TRPV4) channels, which stimulate small (SK3)- and intermediate (IK)-conductance Ca2+-activated potassium channels in ECs to produce vasodilation. Whether physiological vasodilators also modulate the surface abundance of these ion channels in ECs to elicit functional responses is unclear. Here, we show that ACh and intravascular flow stimulate rapid anterograde trafficking of an intracellular pool of SK3 channels in ECs of resistance-size arteries, which increases surface SK3 protein more than two-fold. In contrast, ACh and flow do not alter the surface abundance of IK or TRPV4 channels. ACh triggers SK3 channel trafficking by activating TRPV4-mediated Ca2+ influx, which stimulates Rab11A, a Rab GTPase associated with recycling endosomes. Superresolution microscopy data demonstrate that SK3 trafficking specifically increases the size of surface SK3 clusters which overlap with TRPV4 clusters. We also show that Rab11A-dependent trafficking of SK3 channels is an essential contributor to vasodilator-induced SK current activation in ECs and vasorelaxation. In summary, our data demonstrate that vasodilators activate Rab11A, which rapidly delivers an intracellular pool of SK3 channels to the vicinity of surface TRPV4 channels in ECs. This trafficking mechanism increases surface SK3 cluster size, elevates SK3 current density, and produces vasodilation. These data also demonstrate that SK3 and IK channels are differentially regulated by trafficking-dependent and -independent signaling mechanisms in endothelial cells.
Collapse
|
16
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
|
17
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
|
18
|
Heijman J, Zhou X, Morotti S, Molina CE, Abu-Taha IH, Tekook M, Jespersen T, Zhang Y, Dobrev S, Milting H, Gummert J, Karck M, Kamler M, El-Armouche A, Saljic A, Grandi E, Nattel S, Dobrev D. Enhanced Ca 2+-Dependent SK-Channel Gating and Membrane Trafficking in Human Atrial Fibrillation. Circ Res 2023; 132:e116-e133. [PMID: 36927079 PMCID: PMC10147588 DOI: 10.1161/circresaha.122.321858] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.
Collapse
|
19
|
van Herck IGM, Seutin V, Bentzen BH, Marrion NV, Edwards AG. Gating kinetics and pharmacological properties of small-conductance Ca 2+-activated potassium channels. Biophys J 2023; 122:1143-1157. [PMID: 36760125 PMCID: PMC10111258 DOI: 10.1016/j.bpj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Small-conductance (SK) calcium-activated potassium channels are a promising treatment target in atrial fibrillation. However, the functional properties that differentiate SK inhibitors remain poorly understood. The objective of this study was to determine how two unrelated SK channel inhibitors, apamin and AP14145, impact SK channel function in excised inside-out single-channel recordings. Surprisingly, both apamin and AP14145 exert much of their inhibition by inducing a class of very-long-lived channel closures (apamin: τc,vl = 11.8 ± 7.1 s, and AP14145: τc,vl = 10.3 ± 7.2 s), which were never observed under control conditions. Both inhibitors also induced changes to the three closed and two open durations typical of normal SK channel gating. AP14145 shifted the open duration distribution to favor longer open durations, whereas apamin did not alter open-state kinetics. AP14145 also prolonged the two shortest channel closed durations (AP14145: τc,s = 3.50 ± 0.81 ms, and τc,i = 32.0 ± 6.76 ms versus control: τc,s = 1.59 ± 0.19 ms, and τc,i = 13.5 ± 1.17 ms), thus slowing overall gating kinetics within bursts of channel activity. In contrast, apamin accelerated intraburst gating kinetics by shortening the two shortest closed durations (τc,s = 0.75 ± 0.10 ms and τc,i = 5.08 ± 0.49 ms) and inducing periods of flickery activity. Finally, AP14145 introduced a unique form of inhibition by decreasing unitary current amplitude. SK channels exhibited two clearly distinguishable amplitudes (control: Ahigh = 0.76 ± 0.03 pA, and Alow = 0.54 ± 0.03 pA). AP14145 both reduced the fraction of patches exhibiting the higher amplitude (AP14145: 4/9 patches versus control: 16/16 patches) and reduced the mean low amplitude (0.38 ± 0.03 pA). Here, we have demonstrated that both inhibitors introduce very long channel closures but that each also exhibits unique effects on other components of SK gating kinetics and unitary current. The combination of these effects is likely to be critical for understanding the functional differences of each inhibitor in the context of cyclical Ca2+-dependent channel activation in vivo.
Collapse
|
20
|
Nam YW, Rahman MA, Yang G, Orfali R, Cui M, Zhang M. Loss-of-function K Ca2.2 mutations abolish channel activity. Am J Physiol Cell Physiol 2023; 324:C658-C664. [PMID: 36717104 PMCID: PMC10069973 DOI: 10.1152/ajpcell.00584.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Small-conductance Ca2+-activated potassium channels subtype 2 (KCa2.2, also called SK2) are operated exclusively by a Ca2+-calmodulin gating mechanism. Heterozygous genetic mutations of KCa2.2 channels have been associated with autosomal dominant neurodevelopmental disorders including cerebellar ataxia and tremor in humans and rodents. Taking advantage of these pathogenic mutations, we performed structure-function studies of the rat KCa2.2 channel. No measurable current was detected from HEK293 cells heterologously expressing these pathogenic KCa2.2 mutants. When coexpressed with the KCa2.2_WT channel, mutations of the pore-lining amino acid residues (I360M, Y362C, G363S, and I389V) and two proline substitutions (L174P and L433P) dominant negatively suppressed and completely abolished the activity of the coexpressed KCa2.2_WT channel. Coexpression of the KCa2.2_I289N and the KCa2.2_WT channels reduced the apparent Ca2+ sensitivity compared with the KCa2.2_WT channel, which was rescued by a KCa2.2 positive modulator.
Collapse
|
21
|
Nam YW, Downey M, Rahman MA, Cui M, Zhang M. Channelopathy of small- and intermediate-conductance Ca 2+-activated K + channels. Acta Pharmacol Sin 2023; 44:259-267. [PMID: 35715699 PMCID: PMC9889811 DOI: 10.1038/s41401-022-00935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for KCa2.3 (SK3), and KCNN4 for KCa3.1 (IK). The three KCa2.x channel subtypes are expressed in the central nervous system and the heart. The KCa3.1 subtype is expressed in the erythrocytes and the lymphocytes, among other peripheral tissues. The impact of dysfunctional KCa2.x/KCa3.1 channels on human health has not been well documented. Human loss-of-function KCa2.2 mutations have been linked with neurodevelopmental disorders. Human gain-of-function mutations that increase the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels have been associated with Zimmermann-Laband syndrome and hereditary xerocytosis, respectively. This review article discusses the physiological significance of KCa2.x/KCa3.1 channels, the pathophysiology of the diseases linked with KCa2.x/KCa3.1 mutations, the structure-function relationship of the mutant KCa2.x/KCa3.1 channels, and potential pharmacological therapeutics for the KCa2.x/KCa3.1 channelopathy.
Collapse
|
22
|
Halling DB, Philpo AE, Aldrich RW. Calcium dependence of both lobes of calmodulin is involved in binding to a cytoplasmic domain of SK channels. eLife 2022; 11:e81303. [PMID: 36583726 PMCID: PMC9803350 DOI: 10.7554/elife.81303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
KCa2.1-3 Ca2+-activated K+-channels (SK) require calmodulin to gate in response to cellular Ca2+. A model for SK gating proposes that the N-terminal domain (N-lobe) of calmodulin is required for activation, but an immobile C-terminal domain (C-lobe) has constitutive, Ca2+-independent binding. Although structures support a domain-driven hypothesis of SK gate activation by calmodulin, only a partial understanding is possible without measuring both channel activity and protein binding. We measured SK2 (KCa2.2) activity using inside-out patch recordings. Currents from calmodulin-disrupted SK2 channels can be restored with exogenously applied calmodulin. We find that SK2 activity only approaches full activation with full-length calmodulin with both an N- and a C-lobe. We measured calmodulin binding to a C-terminal SK peptide (SKp) using both composition-gradient multi-angle light-scattering and tryptophan emission spectra. Isolated lobes bind to SKp with high affinity, but isolated lobes do not rescue SK2 activity. Consistent with earlier models, N-lobe binding to SKp is stronger in Ca2+, and C-lobe-binding affinity is strong independent of Ca2+. However, a native tryptophan in SKp is sensitive to Ca2+ binding to both the N- and C-lobes of calmodulin at Ca2+ concentrations that activate SK2, demonstrating that the C-lobe interaction with SKp changes with Ca2+. Our peptide-binding data and electrophysiology show that SK gating models need deeper scrutiny. We suggest that the Ca2+-dependent associations of both lobes of calmodulin to SKp are crucial events during gating. Additional investigations are necessary to complete a mechanistic gating model consistent with binding, physiology, and structure.
Collapse
|
23
|
Butler AS, Hancox JC, Marrion NV. Preferential formation of human heteromeric SK2:SK3 channels limits homomeric SK channel assembly and function. J Biol Chem 2022; 299:102783. [PMID: 36502918 PMCID: PMC9841042 DOI: 10.1016/j.jbc.2022.102783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Three isoforms of small conductance, calcium-activated potassium (SK) channel subunits have been identified (SK1-3) that exhibit a broad and overlapping tissue distribution. SK channels have been implicated in several disease states including hypertension and atrial fibrillation, but therapeutic targeting of SK channels is hampered by a lack of subtype-selective inhibitors. This is further complicated by studies showing that SK1 and SK2 preferentially form heteromeric channels during co-expression, likely limiting the function of homomeric channels in vivo. Here, we utilized a simplified expression system to investigate functional current produced when human (h) SK2 and hSK3 subunits are co-expressed. When expressed alone, hSK3 subunits were more clearly expressed on the cell surface than hSK2 subunits. hSK3 surface expression was reduced by co-transfection with hSK2. Whole-cell recording showed homomeric hSK3 currents were larger than homomeric hSK2 currents or heteromeric hSK2:hSK3 currents. The smaller amplitude of hSK2:hSK3-mediated current when compared with homomeric hSK3-mediated current suggests hSK2 subunits regulate surface expression of heteromers. Co-expression of hSK2 and hSK3 subunits produced a current that arose from a single population of heteromeric channels as exhibited by an intermediate sensitivity to the inhibitors apamin and UCL1684. Co-expression of the apamin-sensitive hSK2 subunit and a mutant, apamin-insensitive hSK3 subunit [hSK3(H485N)], produced an apamin-sensitive current. Concentration-inhibition relationships were best fit by a monophasic Hill equation, confirming preferential formation of heteromers. These data show that co-expressed hSK2 and hSK3 preferentially form heteromeric channels and suggest that the hSK2 subunit acts as a chaperone, limiting membrane expression of hSK2:hSK3 heteromeric channels.
Collapse
|
24
|
Song Y, Xing H, He Y, Zhang Z, Shi G, Wu S, Liu Y, Harrington EO, Sellke FW, Feng J. Inhibition of mitochondrial reactive oxygen species improves coronary endothelial function after cardioplegic hypoxia/reoxygenation. J Thorac Cardiovasc Surg 2022; 164:e207-e226. [PMID: 34274141 PMCID: PMC8710187 DOI: 10.1016/j.jtcvs.2021.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardioplegic ischemia-reperfusion and diabetes mellitus are correlated with coronary endothelial dysfunction and inactivation of small conductance calcium-activated potassium channels. Increased reactive oxidative species, such as mitochondrial reactive oxidative species, may contribute to oxidative injury. Thus, we hypothesized that inhibition of mitochondrial reactive oxidative species may protect coronary small conductance calcium-activated potassium channels and endothelial function against cardioplegic ischemia-reperfusion-induced injury. METHODS Small coronary arteries and endothelial cells from the hearts of mice with and without diabetes mellitus were isolated and examined by using a cardioplegic hypoxia and reoxygenation model to determine whether the mitochondria-targeted antioxidant Mito-Tempo could protect against coronary endothelial and small conductance calcium-activated potassium channel dysfunction. The microvessels or mouse heart endothelial cells were treated with or without Mito-Tempo (0-10 μM) 5 minutes before and during cardioplegic hypoxia and reoxygenation. Microvascular function was assessed in vitro by vessel myography. K+ currents of mouse heart endothelial cells were measured by whole-cell patch clamp. The levels of intracellular cytosolic free calcium (Ca2+) concentration, mitochondrial reactive oxidative species, and small conductance calcium-activated potassium protein expression of mouse heart endothelial cells were measured by Rhod-2 fluorescence staining, MitoSox, and Western blotting, respectively. RESULTS Cardioplegic hypoxia and reoxygenation significantly attenuated endothelial small conductance calcium-activated potassium channel activity, caused calcium overload, and increased mitochondrial reactive oxidative species of mouse heart endothelial cells in both the nondiabetic and diabetes mellitus groups. In addition, treating mouse heart endothelial cells with Mito-Tempo (10 μM) reduced cardioplegic hypoxia and reoxygenation-induced Ca2+ and mitochondrial reactive oxidative species overload in both the nondiabetic and diabetes mellitus groups, respectively (P < .05). Treatment with Mito-Tempo (10 μM) significantly enhanced coronary relaxation responses to adenosine 5'-diphosphate and NS309 (P < .05), and endothelial small conductance calcium-activated potassium channel currents in both the nondiabetic and diabetes mellitus groups (P < .05). CONCLUSIONS Administration of Mito-Tempo improves endothelial function and small conductance calcium-activated potassium channel activity, which may contribute to its enhancement of endothelium-dependent vasorelaxation after cardioplegic hypoxia and reoxygenation.
Collapse
|
25
|
Liu D, Liu W, Chen X, Yin J, Ma L, Liu M, Zhou X, Xian L, Li P, Tan X, Zhao J, Liao Y, Cao G. circKCNN2 suppresses the recurrence of hepatocellular carcinoma at least partially via regulating miR-520c-3p/methyl-DNA-binding domain protein 2 axis. Clin Transl Med 2022; 12:e662. [PMID: 35051313 PMCID: PMC8775140 DOI: 10.1002/ctm2.662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recurrence is the major cause of hepatocellular carcinoma (HCC) death. We aimed to identify circular RNA (circRNA) with predictive and therapeutic value for recurrent HCC. METHODS Tissue samples from recurrent and non-recurrent HCC patients were subjected to circRNA sequencing and transcriptome sequencing. circKCNN2 was identified through multi-omics analyses. The effects of circKCNN2 on HCC were evaluated in cells, animals, database of The Cancer Genome Atlas, and a cohort with 130 HCC patients. circRNA precipitation, chromatin immunoprecipitation assay, RNA pull-down, luciferase assay, and cell experiments were applied to evaluate the interaction of circKCNN2 with miRNAs and proteins. The association between circKCNN2 and the therapeutic effect of lenvatinib was investigated in HCC cell lines and HCC tissue-derived organoids. RESULTS The expression of circKCNN2 was downregulated in HCC tissues and predicted a favorable overall survival and recurrence-free survival. The expression of circKCNN2 was positively correlated with the parental gene, potassium calcium-activated channel subfamily N member (KCNN2). Nuclear transcription factor Y subunit alpha (NFYA) was proven to inhibit the promoter activity of KCNN2, downregulate the expression of KCNN2 and circKCNN2, and predict an unfavorable recurrence-free survival. Ectopic expression of circKCNN2 inhibited HCC cell proliferation, colony formation, migration, and tumor formation in a mouse model. miR-520c-3p sponged by circKCNN2 could reverse the inhibitory effect of circKCNN2 on HCC cells and down-regulate the expression of methyl-DNA-binding domain protein 2 (MBD2). The intratumoral expression of MBD2 predicted a favorable recurrence-free survival. circKCNN2 down-regulated the expression of fibroblast growth factor receptor 4 (FGFR4), which can be reversed by miR-520c-3p and knockdown of MBD2. Lenvatinib inhibited the expression of FGFR4 and upregulated the expression of circKCNN2 and MBD2. Ectopic expression of circKCNN2 in HCC cells enhanced the therapeutic effect of lenvatinib. However, the high inherent level of circKCNN2 in HCC cells was associated with lenvatinib resistance. CONCLUSIONS circKCNN2, transcriptionally repressed by NFYA, suppresses HCC recurrence via the miR-520c-3p/MBD2 axis. Inherent level of circKCNN2 in HCC cells predisposes anti-tumor effect of lenvatinib possibly because both circKCNN2 and lenvatinib repress the expression of FGFR4. circKCNN2 may be a promising predictive biomarker and therapeutic agent for HCC recurrence.
Collapse
|